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1. An attempt to de�ne Weak Arithmetics from the Journ�ees sur les Arithm�etiques
Faibles

It is amusing, indeed astonishing, that no-one among a community of about 100
computer scientists, logicians and mathematicians organizing meetings twice a year for
almost 10 years 1 has thought it advisable properly and precisely to de-ne the -eld
of research one usually calls Weak Arithmetics. In my opinion, everybody, within
this group, brought to it his own interest and wondered at not having to justify the
relevance of Weak Arithmetics.
In discussions by ourselves, it appears that this relevance is intuitively founded on a

common -eld of mathematical interest, a common set of questions and logical methods
to investigate problems, and a general culture within computer science. Basically, a sci-
entist interested in Weak Arithmetics knows some mathematical logic, like Peano arith-
metic and the two G4odel Theorems, works or has been working on decision problems,
on algorithms and their complexities, and uses all kinds of abstract machines. Through
these machines Weak Arithmetics are strongly in6uenced by the computer-dominated
modern world. The Weak Arithmetics scientist is not a professional mathematician
who studies numbers (using such tools as algebraic methods, complex analysis and
algebraic geometry) but is often (or always in some areas) in contact with Number
Theory. Therefore, it is di8cult to give a precise de-nition of Weak Arithmetics as
a discipline in the same way as, say, Model Theory. Nevertheless we can nowadays
consider the list of lectures and talks given from JAF1 to JAF17, in order to determine
the main directions and themes provided by the participants at those events. One can
distinguish four groups of lectures which the reader can -nd in the Annex.

Theme 1. Construction of Nonstandard Models of /rst-order Arithmetics in order to
investigate
(1) axiomatizations of subtheories of Peano Arithmetic (PA) in which induction

schemata are restricted to a special subset of formulas; and
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(2) complexities of the considered subtheories; especially for developing polynomial
time algorithms.

This theme is closely linked, on the one hand, to the study of induction schemata
which are, respectively, called logarithmic, open, parameter free, �k -induction, etc.,
and, on the other hand, to the Buss Arithmetic. In this theme, logicians try to construct
(nonstandard) models having speci-c properties (for example an ordered -eld without
an integer part (Boughattas)). One tries also to prove (or disprove) some axiomatiz-
ability properties such as the fact that open induction in normal rings is not -nitely
axiomatizable (Boughattas). Algorithmic and complexity theories are also connected
to this theme because computability in polynomial time corresponds to some speci-c
axiomatisations one can characterize: for instance P. Pudlak proved the equivalence of
a strict polynomial hierarchy to /nite axiomatizability of the arithmetical theory in
the language of addition; multiplication and x�log x� with induction schemata restricted
to �0-formulas.
The lively style of the preface by J.P. Ressayre provides a precise and well-

documented presentation, the deep links between nonstandard models, axiomatizability
and algorithmic complexity. So on this matter, we refer to his text.
Another illustration of this theme is bounded arithmetics, which were introduced

by Buss within a -rst-order logical language which we denote L(BA). This language
contains the symbols of successor, addition, multiplication, 0, �(x=2)�, length of x, that
is to say �(log2(x+1))�, the function 2|x|:|y|, identity and natural order. In this language,
Buss de-nes a special induction-schemata on certain subsets of formulas providing a
Weak Arithmetical theory S such that a subset A of N is P if and only if it is
S-provably NP∩(Co−NP). In so doing, Buss provides a promising method to prove
a set A is P since, according to this result, it is su8cient to prove it is both NP
and Co−NP in some explicitly known and speci-c (weak) theory. About this result,
P. Cegielski wrote: Practically; if we know it is both NP and Co−NP; then the method
used to prove this result certainly is not too complex and the demonstration can be
formalized in such a theory. However; up to now; no set has been shown in P by
such a method. The reason is that bounded arithmetics are still not widely developed.
For instance we do not know which classical theorems of Number Theory are true
in these Weak Arithmetics. The length of proof of any classical theorem increases
greatly with weakness of the arithmetical theory in which this proof takes place. For
instance, a proof of the Dirichlet theorem on the (in/nity of) primes in arithmetical
sequences in primitive recursive arithmetic PRA is 100 pages long. Such results would
help to apply Buss’(results).

Theme 2. De/nability and decidability of weak substructures of the Standard Model
of Peano.

The general framework of de-nability is presented in a detailed way in the survey
carried out by P. Cegielski in the Annals of Mathematics and Arti-cial
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Intelligence, 16 (1:4) (1996). For a structure M , we denote by DEF(M) the set of
constants, functions and relations which are -rst-order de-nable within M . Follow-
ing Church and Turing’s proof in 1936 that the theory of natural integers equipped
with addition and multiplication and identity is not decidable, we obtain a method for
proving the undecidability of the theory of a structure M which consists in showing
DEF(M)=DEF(N;+;×;=). The set DEF(N;+;×;=) is well known and K. G4odel
proved it contains any relation we can de-ne by recursion (with some particular set
of natural functions as primitives) so that, if M is a sub-structure of the standard
model, then the inclusion of DEF(M) into DEF(N;+;×;=) is trivial. One of the
most famous questions to have been solved in the framework of arithmetical de-n-
ability is Hilbert’s 10th problem; It asks for an algorithm to determine whether a given
diophantine equation has a solution or, in other words whether there exists a program
such that given a polynomial P(x1; : : : ; xn) with integer coe8cients as input, we can
obtain as output the set, possibly empty, of integer solutions of P(x1; : : : ; xn) = 0.
In 1970, I. Matiassevitch proved the key-results leading to a negative answer to this
problem: exponentiation is de-nable by a diophantine equation, i.e., by a �1-formula
within Peano Arithmetic. Of course, this result was obtained after years of research
and collaboration with M. Davis, H. Putnam, J. Robinson who provided many classical
theorems and conjectures. Due to this cooperation, in the de-nability area we refer
to as the MDRP (for Matiassevitch–Davis–Robinson–Putnam) Theorem the fact that
every �1- formula is equivalent to a Diophantine formula. The key-points of this fa-
mous proof of the negative solution of the 10th-Hilbert problem belong to arithmetical
coding and de-nability:
– It is possible to code the process of register machines by the masking relation r � s
between the integers r and s given in their binary expansion; more precisely, we say
that s masks r if and only if when 0 appears as a digit in the binary expansion of
s then 0 also appears as the digit of the same rank in the binary expansion of r;

– (A corollary of Lucas’ Theorem) the miracle is that r � s if and only if ( rs )≡ 1
(mod 2), which means that one can completely describe in the language of /rst-
order arithmetic not only the operation of a register machine, but also that of a
normal computer as well;

– the description, via -rst-order arithmetical formulas describing the operating cycles,
of a register machine, can -nally be rewritten as a conjunction of diophantine equa-
tions; this is due to arithmetical properties such as, for instance, the exponential
growth of the sequence of the solutions xa(n) and ya(n) to the Pell–Fermat equation
x2 −√

a2 − 1y2 = 1.
A by-product of this is the possibility of -rst-order de-ning the set of primes as the
set of positive value P(Nn)∩N of a certain polynomial P due to J.P. Jones and etc.

In the present theme, usually we consider an arithmetical substructure M of the
standard model and we try to prove that either the whole arithmetical standard model
is de-nable within M , or M is decidable and in this case we investigate the com-
plexity of the considered structure. This is not an alternative: there are undecidable
weak substructures of Peano where addition and multiplication are not simulteneously
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de/nable and which are undecidable. The problem of de-nability which is the main
topic of Theme 2 goes back to Number Theory questions raised a long time ago,
as we shall show in part II below. Arithmetical de-nability is closely related to
Number Theory and, in a sense, sheds new light on its classical results. In part II
of the present preface, we intend to develop on an example having historical roots
going back a century before the second main theme of Weak Arithmetics, namely the
problem of mutual de-nability of arithmetical relations within -rst-order Number The-
ory. Undecidability is a corollary of de-nability of addition and multiplication in the
framework of Peano Arithmetic. Weak Arithmetics therefore also include arithmetical
decision problems such as decidable extensions of Presburger (additive) arithmetic and
Skolem (multiplicative) arithmetic. The decision problem for additive prime number
theory is adressed both within Number Theory and the Theory of Automata. There are
conditional results in this -eld (mostly due to A. Woods) under Shinzel’s Hypothesis on
primes, and absolute results recently proved by Cegielski, Richard and Vsmirnov. The
study of the set RUD Of rudimentary predicates (Grzegorczyk and Esbelin) is linked
both to Buss Arithmetics, and to algorithmic and Spectra problems which concern the
set of cardinalities of the -nite models of a given -rst-order formula. It is worth noting
that rudimentary predicates extend to real analysis and to the problem of speeding up
software used in computer science and numerical analysis. In our somewhat arbitrary
classi-cation, we put RUD in a special theme with the study of the problem of spectra
(-nite models), arithmetization of graphs and Grzegorczyk hierarchy.

Theme 3. Abstract Machines; Automata and Words.

Any program in a speci-ed language which we use in a computer has a corre-
sponding abstract machine, for instance a Turing machine. Actually, we can formalize
any program because with addition and multiplication we can de-ne (or simulate)
all recursive schemata. Now, if we consider only some Weak Arithmetic (for instance
Presburger Arithmetic) then a corresponding abstract machine computing functions and
relations de-nable in this theory, or in a model of this one, is of course weaker
than a Turing machine (for instance, it can be an automat on for Presburger Arith-
metic). In this way, it is natural to associate abstract machines (Automata, Push Down
Automata, Cellular Automata, Beltiukov Machines, Alternating Turing Machines, etc.)
with diQerent weak arithmetical theories and to the models we investigate. During the
JAF, many machines, algorithms and the objects they represent were presented. Of
course, the words – arguments which these machines use – with the diQerent meaning
we give to this notion in computer science, were studied. To this theme also belong
general coding theory and all problems of weak arithmetical structures consisting of
the usual integers with pairing functions (such as Cantor pairing polynomial) or cod-
ings of n-tuples (using for example the well-known �-function of G4odel). Machines
as tools for solving problems of de-nability or decidability were used by I. KoreRc,
A. Bs, V. Bruyre, C. Michaux, J.E. Pin, J. Tomasik, etc. Machines are not only the tools
but are themselves the objects of investigation such as for instance Turing Machines
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submitted to strong constraints which, nevertheless, remain universal (M. Margenstern
and Pavlotskaia), or the Matiassevitch machines introduced to solve problems of trace
monoid (A. Muscholl, Y. Matiassevitch). Results on these latter machines are due to
O. Teytaud and A. Bs. The problem of determining whether counting is possible with
a given abstract machine is closely connected to questions of complexity hierarchies as
in the case of the Grzegorczyk Hierarchy. Automata trees and modular counting were
developed by H.A. Esbelin and R. Espel llima. In the framework of in-nite games and
particularly on Borelsets, J. Duparc, J.P. Ressayre, O. Finkel refer to automata but this
is considered to be on the boundary between Weak Arithmetics and Set Theory.
We have seen that Weak Arithmetics cover two main themes (Axiomatizibility and

Complexity in Subtheories of Peano Arithmetic on the one hand, and Arithmetical
De-nability and Decidability on the other). We have also noted that Abstract
Machines underlie our investigations and thus become another theme of studies within
the framework of Weak Arithmetics. Nevertheless, these three areas do not exhaust the
topics presented by participants of the JAF. We list some recurrent questions and some
new concepts in the last section of this part.
Other Themes.

(a) Graphs, Spectra and RUD;
(b) Elementary proofs of classical Number Theory results; Arithmetical Proof Theory;
(c) Functional Programing and Recursivity;
(d) General Logic;
(e) Applied Algorithmics.

Theme (a) refers to Finite Models and to the Fagin conjecture which is also linked
to RUD according to some results of A. Woods. The notion of Graph is central and its
arithmetization addresses this question within Weak Arithmetics. In the present issue,
there is an arithmetization of the four-colour problem due to Y. Matiassevitch.
Theme (b) stems from the work Erds and Selfridge who were the -rst to ask for

what they called elementary proofs (i.e. in the framework of real analysis instead of
complex analysis) of results such as the Dirichelet Theorem on the in-nity of primes
in arithmetical sequences. Logicians such as Takaeuti, Kreisel and Simpson (with his
reverse mathematics) have contributed to the subject but in a general way. P. Cegielski
and O. Sudac have constructed proofs for speci-c classical theorems (such as the
Prime Number Theorem of De La Valle Poussin). They have also constructed some
-rst-order denumerable structures modelling a version of Peano Analysis to provide
proofs within Peano Arithmetic models or even within the standard model of weaker
arithmetical theories (e.g. PRA, the Primitive Recursive Arithmetic). It is clear that
this work should be continued in order to strengthen the tools developed by Buss.
Theme (c) is clearly within the scope of Weak Arithmetics wherein one attempts to

reconstruct a missing induction or recursive schemata. In Functional Programming also
attempts to avoid recursion and recursive de-nition. For example, L. Colson demon-
strates that roughly speaking primitive recursive algorithms are not optimal in terms of
complexity.
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Theme (d) is mainly concerned with Nezondet’s p-destinies which are a general tool
founded on trees for deciding closed sentences when applied to theories consisting of a
set of sentences in a relational language which have a bounded number of quanti-ers.
This is a promising new method which, for example gives rise to many interesting
questions in Number Theory (Guillaume, Jelei Yin, Richard).
Theme (e) could considered to be the future of Weak Arithmetics in Informatics.

A considerable proportion of software relies on algorithms which derive from numerical
analysis however, due to the undecidability of the real zero, many of these programs
have to be written within the framework of the standard model Z of integers. This is
particularly the case in discrete geometry, computer imagery and arti-cial vision where
faster computation with increasing precision is constantly demanded. Some structure
such as the natural integers with the mappings ceiling and 6oor is necessary to describe
digital planes and their algorithms of connectivity, or to perform ray tracing and so on.
Here the blend of Number Theory, Logical Arithmetic and Computer Science (automata
and chips) which make up Weak Arithmetics has been applied eQectively and will
become more and more useful.

2. An illustration of a de�nability problem is Weak Arithmetics de�nability: the
Woods–Erds conjecture

The question of whether /rst-order arithmetic on the set of nonnegative integers is
de/nable in terms of the successor function S and the coprimeness predicate ⊥ is a
typical problem of Weak Arithmetics and perhaps, historically speaking, one of the -rst
to be posed in this modern framework. It was raised in 1949 by Julia Robinson in her
thesis, when she investigated the axiomatizability of diQerent theories of elementary
structures on numbers. More precisely, Julia Robinson stated: We might also try to
improve the theorem by replacing divisibility by the relation of relative primeness.
However, I have not been able to determine whether • is arithmetically de/nable in
terms of ⊥ and S or even in terms of ⊥ and +. This question, and some others of the
same nature such as the de-nability of all arithmetical relations in terms of addition
and coprimeness, were neglected for decades. In the 1980s, Alan Woods, returned
to these problems. He was the -rst to realize that the question of de-nability within
mathematical logic is equivalent to the following conjecture of Number Theory: there is
an integer k such that for every pair (x; y) of integers, the equality x=y holds if and
only if x+i and y+i have the same prime divisors for 06i6k. This number-theoretical
form of Julia Robinson’s question is itself very closely linked to some open questions
proposed by Paul Erd4os and for which he had conjectured a positive answer. In the
book by Richard Guy entitled Unsolved Problems of Number Theory, the question is
attributed to Alan Woods, but due to its close relation with conjectures of Erd4os which
were known to A. Woods, this conjecture is known as the Woods–Erd4os conjecture, or
WE or WE(k) if it is necessary to state the parameter k. Indeed, WE is a weakening of
the following conjecture of P. Erd4os: Erd4os asks if there are in/nitely many 4-tuples
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(m; k; n; l) such that (m+1)(m+2) : : : (m+k) and (n+1)(n+2) : : : (n+l) with k¿l¿3
can contain the same prime factors. For example, 2:3:4:5:6:7:8:9:10 and 14:15:16 or
48:49:50, also 2:3:4:5:6:7:8:9:10:11 and 98:99:100. For k = l¿3 he conjectures that there
are only -nitely many. Erd4os’ interest is the relationship between prime divisors and
consecutive integers is supported by many other papers. Weak Arithmetic, combines
a Number–Theoretoc point of view with approches based on mathematical Logic and
concept of de-nability in a fashion particulary appropriate to the investigation of the
WE-conjecture.

2.1. The Number Theoretical approach to WE

The problem of -nding a local characterization of an integer a by its prime divisors
and by the prime divisors of a−1 (or a+1) – which actually is a problem of de-nability
– was raised by famous mathematicians many years ago. The fundamental result on
this question is due to Zsigmondy and was rediscovered and generalized by BirkhoQ
and Vandiver 12 years later. They showed that, except for 2 and 8, each power u of
a prime number p is characterized by p and the prime divisors of u+1. An analogue
of the previous result dealing with xn + yn has been proved by Lucas and generalized
by Carmichael.
Another Classical result closely related to WE is due to C. StUrmer who showed the

following:
Let p1; : : : ; pn be distinct prime numbers and K , �1; : : : ; �n be nonnegative integers.

For 16i6n, let us put �i =1 if �i is odd, �i =2 if �i is even and set D=K:p�1
1 : : : p�n

n .
If x2−1=K:p�1

1 : : : p�n
n then x is the fundamental solution of the Pell–Fermat equa-

tion x2 − Dy2 = 1;
If x(x+1)=K:p�1

1 : : : p�n
n then 2x+1 is the fundamental solution of the Pell–Fermat

equation x2 − 4Dy2 = 1.
Now, we de-ne SUPP(n) as the set of the prime divisors of n. From this result, the

following:
(i) If E is a set of n distinct prime integers, there are at most 2n nonnegative integers

satisfying the condition SUPP(x(x+ 1))⊂E, so that, for any nonnegative integer
a, the set ST(a) of nonnegative integers b such that

SUPP(a) = SUPP(b) and SUPP(a+ 1) = SUPP(b+ 1) is also finite:

(ii) The nonnegative integers x and y are equal if and only if the following conditions
are simultaneously satis/ed:
(1) SUPP(x − 1)=SUPP(y − 1) and SUPP(x + 1)=SUPP(y + 1);
(2) for all prime numbers p in SUPP(x2 − 1) (or in SUPP(y2 − 1)) the exponent

of p in the factorization of x+ 1 (resp. x− 1) has the same parity as in the
factorization of y + 1 (resp. y − 1).

Recently, number theoretists such as M. Langevin, R. Balasubramanian, T.N. Shorey
and M. Waldschmidt have investigated bounds and inequalities which permit the loca-
tion of integers in N according to the relationship of their supports. In this direction,
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Langevin provides a fundamental result he calls the reduction lemma. To present it,
we introduce his notation
• SUPP(x)= {p∈N: p is prime and p|x};
• u(n) is the product of the primes in SUPP(n);
• P(n) is the greatest prime in SUPP(n);
• w(n) is the cardinality of SUPP(n);
• u(n; k) is the product of all primes in SUPP((n+ 1)(n+ 2) : : : (n+ k));
• v(n; k)=P((n+ 1)(n+ 2) · · · (n+ k)):

Reduction Lemma (Langevin). Let x and y be positive integers. In each group
labelled (i)–(iv), the conditions given are equivalent:
(i) u(y + i)= u(x + i) for 16i6k (condition H1(k));

u(x; k)= u(y; k)|(y − x) (condition H5(k)).
(ii) u(y + i)|u(x + i) for 16i6k (condition H2(k));

u(x; k)|(y − x) (condition H3(k));
u(y; k)= gcd((y − x); u(x; k)) (condition H4(k)).

(iii) P(y + i)|(x + i) for 16i6k (condition H6(k));
v(y; k)|(y − x) (condition H7(k)).

(iv) P(y + i)=P(x + i) for 16i6k (condition H8(k));
v(y; k)= v(x; k)|(y − x) (condition H9(k)).

We note that condition H1(k) is the very hypothesis of WE. These conditions show
how close the links are between the languages of successor and coprimeness on the
one hand and successor and divisibility on the other.
Beginning with the results on inequalities, we -rst mention a fundamental result

of M. Langevin who proved that for 0¡x¡y, if SUPP(x)=SUPP(y) then |y − x|¿
[log(x + y)]1=6.
This inequality was improved upon by R. Balasubramanian, T.N. Shorey and

M. Waldschmidt who proved that for x; y; k being nonnegative integers satisfying
0¡x¡y and k¿1 and H1(k) of the previous reduction lemma:
(1) There exists an eAectively computable absolute positive constant C such that

y − x ¿ (k log log y)C·k
(log log y)(log log log y)

for y ¿ 27:

(2) There exists an eAectively computable absolute positive constant D such that

log x ¿ D(log (k))2(log(log (k))) for k ¿ 3:

(3) There exists an eAectively computable absolute positive constant E such that:

y − x ¿ exp(E:k(log (k))2(log(log (k))−1 for k ¿ 3:

2.1.1. Importance of the Woods–ErdBos conjecture
Beyond its intrinsic interest both to Mathematical Logic (more precisely for arith-

metical de-nability and axiomatizability) and Number Theory, the attempt to prove or
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disprove the questions of J. Robinson, A. Woods and P. Erd4os, gains in importance
if we realize how strong the links are between WE and other classical conjectures of
Number Theory. In the same paper by LANGEVIN, the following results were proved:

Let k be the parameter appearing in the Woods–Erd4os conjecture WE(k).
(1) If there is an absolute constant C such that for any pair (x; y) of positive integers

the condition x3 �= y2 implies:

|x3 − y2| ¿ [max(x3; y2)]C (Hall’s conjecture)

then the answer to WE is positive.
(2) Moreover, under the same hypothesis x3 �=y2 above, if we can prove

|x3 − y2| ¿ [max(x3; y2)]1=6;

then the answer to WE(k) is positive with k¿16 modulo a /nite set of exceptions.
(3) If for every positive real �, there exists a constant D such that for any pair (a; b)

of positive integers we have

u(a+ b)ab ¿ D(a+ b)=(gcd(a; b)1−�((a–b–c)-conjecture);

then the answer to WE(k) is positive with k¿3 modulo a /nite set of exceptions.
We note that as a result of conclusions (2) and (3) the above theorem is a negative
answer to WE would refute both Hall’s conjecture, and the so-called Oesterl?e-Masser’s
conjecture (also called the a–b–c-conjecture).

There are still other relationships of WE to questions recently answered by Capi
Corrales RodrigXanez and Ren?e Schoof about the characterization of x by supports of
xn − 1, for in-nitely many positive n this was also a question posed by Erd4os. Maxim
Vsmirnov (unpublished) has a proof of the characterization of integers by -nitely many
supports. Ten years ago, we asked whether SUPP(x2

n −1)= SUPP(y2n −1) for all n ∈
N implies x=y and we gave a proof due to A. Schinzel of the fact that the (a–b–c)-
conjecture implies a positive answer to our question. In the section devoted to the
logical approach to WE, we present an analogue of these results within the framework
of de-nability, when we prove that DEF(N; = ;+;×)=DEF(N; S;⊥;POW).

2.2. Logical approach to WE

To place the logical approach to WE in a more general and historical setting, it is
worth pointing out that arithmetical de-nability goes back to Kurt G4odel who proved
that the structure 〈N; = ;+;×〉 is closed under primitive recursion. In order to appre-
ciate the power of this result, consider the eQort required to obtain a direct -rst-order
de-nition of exponentiation, or of the natural enumeration of prime integers, from
equality, addition and multiplication. Another interesting aspect of G4odel’s result is
that there exist arithmetical structures which are not closed under primitive recur-
sion:
– addition does not belong to DEF(N; = ; S) as shown by Langford in 1926;
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– multiplication does not belong to DEF(N; = ;+) as shown by Presburger in 1929.
De-ning addition and multiplication from some a priori weaker languages of arithmetic
is not always easy but is sometimes possible. A classical example is the language {S;×}
which de-nes all arithmetical relations. A. Tarski provided a -rst-order 〈S;×〉-de-nition
of addition from the following equivalence:

(xz + 1)(yz + 1) = [z2(xy + 1)] + 1 if and only if

(x = y = z = 0 or x + y = z):

2.2.1. Julia Robinson’s results
In a sense, following the G4odel’s works and the above relation due to Tarski, the

-rst important and really di8cult result was the characterization of de-nability within
a Weak Arithmetic structure and was obtained by J. Robinson:
Addition and multiplication are de/nable in the structure 〈N; S; |〉.
In the same paper, J. Robinson showed that the set N of nonnegative integers is

de-nable in terms of addition and multiplication within the -eld Q of rationals. This
result is central to the investigation of decidable and undecidable theories.
In order to -nd other natural axiomatizations of arithmetic, J. Robinson asked whether

DEF(N;+;⊥)=DEF(N;+;×):
First there was an unpublished positive solution by J. Robinson, then a second

solution by A. Woods proving that the (+;⊥) – de-nability of multiplication is a
corollary of the Schnirelmann Theorem (stating that every integer is the sum of a
-nite bounded number of primes). Finally, we obtained a proof using coding devices.
It is worth observing that J. Robinson attempt to propose a natural axiomatization

of -rst-order Peano arithmetic in terms of S and |, was in part completely realized by
P. Cegielski in his thesis. Indeed, Cegielski has given a /rst-order natural axiomati-
zation of /rst-order Peano Arithmetic in the language {= ; 0; 1; S; |}. To obtain this
axiomatization, he used the so-called ZBV-method of coding which we describe below.

2.2.2. Alan Woods’ results
Concerning the language {¡;⊥}, the -rst result is due to A. Woods who also proved

that DEF(N;¡;⊥)=DEF(N;+;×). In the sequel, we call this question the Robin-
son problem (namely: is there an equality between DEF(N; = ; S;⊥) and DEF(N; =
+;×)). A. Woods has linked the Robinson problem to the Woods–Erd4os conjecture
by proving that the answer to the Robinson problem is positive if and only if the WE
conjecture is true. More precisely, Alan Woods proved that the following assertions
are all equivalent:
(i) The answer to the Robinson problem is positive, namely one can de/ne addi-

tion and multiplication in terms of equality, coprimeness predicate and successor
function (and vice versa).

(i′) One can de/ne natural order, or addition, or multiplication in terms of equality,
coprimeness predicate and successor function.
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(ii) One can de/ne equality, addition and multiplication in terms of coprimeness
predicate and successor function.

(ii′) One can de/ne natural order, or addition, or multiplication in terms of coprime-
ness predicate and successor function.

(iii) One can de/ne equality in terms of coprimeness predicate and successor function.
(iv) The answer to the Woods–Erd4os conjecture is positive, namely, there is an integer

k such that for every pair (x; y) of integers, the equality x=y holds if and only
if x + i and y + i have the same prime divisors for 06i6k.

Remark. It is worth pointing out the status of equality: if we consider successor and
coprimeness without equality, then to de-ne equality is equivalent to a positive answer
to WE; on the other hand, if we consider equality, successor and coprimeness together,
then a success at de-nition equality order (resp. addition or multiplication) is still
equivalent to a positive answer to WE.
At this step in the investigation of the Robinson problem, farther results are obtained

via the so called ZBV-Method (for Zsigmondy–BirkhoQ–Vandiver) which we have
introduced. This method allows us to prove all the results already mentioned in this
section as well as providing new results.

2.2.3. New ZBV-method of coding
The ZBV-method consists in considering integers of the form xm − ym or xm + ym

(where x and y are coprime) to be coded by their respective support or their respective
set of primitive or characteristic divisors. This method is most eQective when x is a
-xed prime p and y is 1, 2 or 3. By this method, one reduces arithmetical questions
to an investigation of -nite sets of primes and their boolean combinatorics.
Moreover, every -nite set of primes (or every function of -nite domain mapping

primes to primes) is itself codable in in-nitely many ways by a single prime integer
using a combination of the Chinese Remainder Theorem and the Dirichlet Theorem.
A prime which is a code plays the role of a memory in which we store a /nite set
of primes. One can interpret the structure 〈N;⊥〉 as a set theory on the supports of
nonnegative integers. Any -nite part A of the set of primes is coded by the set of
integers x having A as its support.

2.3. New (S;⊥)-de/nable relations and undecidability of Th(N; S;⊥) via the ZBV-
method

It can be proved that an integer u is a power of a prime (we say also primary) if
and only if the support of u is included in the support of any integer not coprime to
u. As a consequence, the following relations are (S;⊥)-de-nable:
– the set PP of powers of primes;
– the set PP(a) of powers of the same prime a;
– every /nite relation on N;
– the equality = PP restricted to PP;
– the successor function and the predecessor function restricted to PP;
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every integer which is a constant (this is not obvious but is a corollary of the previous
point).
A fundamental result derived from the ZBV-method is the possibility of de-ning

the set P of primes within the structure 〈N; S;⊥〉. This result can be extended to the
structure 〈N; pred;⊥〉 where Pred denotes the predecessor function on N. They are in
both structures 〈N; S;⊥〉 and 〈N; pred;⊥〉, we have all set theoretical combinatorics
exist on the supports.
For every pair (p; q) of distinct primes the notation qord(q;p) is by de-nition the only

power u of q such that p is a primitive divisor of u − 1. The crucial fact is that the
ternary relation

{(p; q; u) ∈ P× P× PP such that u = qord(q;p)}

is de-nable in both structures 〈N; S;⊥〉 and 〈N; pred;⊥〉.
From this relation, one can provide a natural and intrinsic de-nability within PP

by successor and coprimeness, and also shed some new light on why the elemen-
tary theory of 〈N; S;⊥〉 is undecidable. Let us begin by putting NewAdd(x; y; z) (resp.
NewMult(x; y; z) if and only if 5z =5x+y (resp. 5z =5xy) and denoting = PP the
restriction of equality to PP: One can show that:
(i) The function x → 5x transforms the structure 〈N; = ;+;×〉 into a new structure

〈5PN; = PP; NewAdd; NewMult〉 which is de/nable in 〈N; S;⊥〉:
(ii) Consequently, the theory Th(N; S;⊥) is undecidable.
(iii) Moreover, DEF(5PN; = PP; NewAdd; NewMult)=DEF(N; = ;+;×):

2.4. What may be added to successor and coprimeness in order to de/ne all
arithmetical relations?

At this step, the logical approach consists in -nding out what are the relations we can
add to successor and coprimeness to obtain the de-nability of all arithmetical relations.
With this in mind, we consider the binary relations of exponentiation and power of
the form

EXP = {(x; y) ∈ N×N such that there exists a which satis/es y = ax};

and

POW(x; y) = {(x; y) ∈ N×N: ∃n[(n �= 0) ∧ (y = xn)]}:

From the previous result, it can be shown (see [RD,1985,1984] and [GSRD,1989]) that
(i) Every relation or function which is /rst-order de/nable in 〈N;+;×; = 〉 is actually

/rst-order de/nable in 〈N; S;⊥;EXP〉.
(ii) Every relation or function de/nable by a /rst-order formula of {+;×; = } is

also de/nable in the structure 〈N;S;⊥;POW〉 by a /rst-order formula of the
associated language {S;⊥;POW}.
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It now follows that the structure 〈N;⊥;¡PP〉 where ¡PP denotes the natural order
on N restricted to primaries, allows the /rst-order de/nition all arithmetical relations
on PP, and veri/es that DEF(N; =+;×)⊃�=DEF(N;⊥;¡PP).
The last result we would like to mention, is due to Francis Nezondet who showed the

importance of equality and, the diAerence between relational and functional languages,
to the investigation of arithmetical de-nability in terms of successor and exprimeness.
Actually, there is a structure 〈M;+f;×f; 0; 1;⊥〉 which is elementarily equivalent to the
standard model 〈N;+f;×f;⊥; 0; 1〉 and in which the identity relation is not de-nable.
More precisely:
Let +f, ×f be, respectively, the functional symbols of addition and multiplication.

There exists an arithmetical model

M = 〈M;=;+;×;⊥; 0; 1〉 of Th(N;+f;×f;⊥; 0; 1)

and of the relational theory with equality of the /nite arithmetic and within which
there is no (+f;×f;⊥; 0; 1)-formula de/ning equality, thus refuting WE.
Here +f, ×f are, respectively, the functional symbols of addition and multiplica-

tion, will be interpreted in the usual way on N. The coprimeness predicate ⊥ on N
and on the domain M is interpreted as a -rst-order formula F(x; y) meaning (x and
y are coprime) on N. By -nite arithmetic, we denote the (= ;+;×)-axioms which
characterize an ordered semi-ring. Of course, our -nite arithmetic (namely the RR sys-
tem of Raphael Robinson) is a purely relational theory which contains a symbol of
equality and does not contain any schema of induction. The proof of this result, con-
sists in -rst building a model of the -nite arithmetic RR and of Th〈N;+f;×f;⊥; 0; 1〉
and then demonstration, that equality is not (+f;×f;⊥)-de-nable. We emphasise that
here addition and multiplication are functions and not relations. Finally, the theory of
the standard model with the functions of addition and multiplication, the coprimeness
relation and the constants 0 and 1, does not decide the Woods–Erds conjecture.

3. Conclusion

Due to the new tools, the computers, and the new objects of our investigation, the
abstracts machines modelling fragments of human reasoning, Weak Arithmetics have
appeared. Perhaps, Weak Arithmetics precede weak real analysis which we can observe
showing up against the mist of the complexity theory of reals.


