
Theoretical Computer Science 257 (2001) 51–77
www.elsevier.com/locate/tcs

Decidability of the theory of the natural integers with
the cantor pairing function and the successor

Patrick Cegielskia ; ∗, Denis Richardb

aLACL, Universite Paris XII, Route foresti�ere Hurtault, 77300 Fontainebleau, France
bLLAIC1, Universite d’Auvergne, I.U.T. Informatique des Cezeaux, B.P. 86, F-63172 Aubiere,

Cedex, France

Abstract

The binary Cantor pairing function C from N × N into N is de(ned by C(x; y) = (12)(x+y)
(x + y + 1) + y. We consider the theory of natural integers equipped with the Cantor pairing
function and an extra relation or function X on N. When X is equal either to multiplication,
or coprimeness, or divisibility, or addition or natural ordering, it can be proved that the theory
Th(N; C; X) is undecidable. Let S be the successor function. We provide an algorithm solving
the decision problem for Th(N; C; S). c© 2001 Elsevier Science B.V. All rights reserved.

0. Introduction

In 1873 [1, 2], Cantor has proved sets N2 and N are equipotent, where N is the set
of natural numbers, exhibiting a one-to-one mapping de(ned by

C(x; y) = (1=2)(x + y)(x + y + 1) + y:

There exist many other one-to-one mappings and injections from N2 to N. A pairing
function J is an injection from N×N in N. It is interesting, for many reasons, to
study the elementary theory of such structures (N; J). We know [4] that there exists
pairing function J0 such that (N; J0) is decidable and (recursive) pairing function J1
such that (N; J1) is undecidable. No result existed on well-known pairing functions. A
lower bound is known on computational complexity of structures (N; J) [10, 7, Chapter
8, 5]: If f is a one-to-one function from A2 in A the computational complexity of the
1rst-order theory of the structure (A; f; =) has a lower bound in

NTime(exp∞(O(n))), where exp∞(n)is an exponetial tower 22
::
:2

of height n.

∗ Corresponding author.
E-mail addresses: cegielski@univ-paris12.fr (P. Cegielski), richard@llaic.u-clermont1.fr (D. Richard).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00109 -2

52 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

We are interested in the most famous of these pairing functions: the Cantor pairing
function C is de(ned above. A permutation between x and y provides the symmetrical
Cantor pairing function whose investigation is obviously the same to the previous.
The theory Th(N; C) is decidable as shown by Cegielski et al. [11]. The proof of this
result is based on Malcev theorem on decidability of free semi-groups without relations;
C(0; 0)=0 and some other relations need some special arguments to permit a reduction
to the situation solved by Malcev. Our concern is the theory TH (N; C; R) where R is
one of the following predicates or functions: multiplication, divisibility, addition, order
or successor. It turns out the case of the last one is the unique to be decidable among
considered predicates and functions. The present paper is only devoted to prove this
decidability result.

1. Expansion of the language

To prove TH (N; C; R) is decidable, we eliminate quanti(ers in an eCective manner
within an expansion by de(nition.

1.1. De1nition of expanded languages

In a short (rst step, we investigate the general structure (N; J; S), for any pairing
function J . Let us notice the right and left inverse maps we denote, following Julia
Robinson [9], by K and L, are de(nable in the structure (N; J) since we have

x = K(y) ↔ ∃uJ (x; u) = y;
x = L(y) ↔ ∃uJ (u; x) = y:

The constant 0 is also de(nable in the structure (N; S):

x = 0 ↔ ∀y(Sy �= x):
The predecessor function P is similarly de(ned by P(x + 1)= x and P(0)= 0.
We shall consider the languages L= {J; K; L; S}, M= {K; L; S; P; 0}, and

N= {K; L}: In compliance with the syntax of (rst-order languages, L-terms, M-terms,
N-terms, atomic L-formulas and M-formulas are presented by structural induction.

De�nition 1.1.1. The set of L-terms is de(ned as follows:
(i) any variable is an L-term;
(ii) if t is an L-term then K(t), L(t) and S(t) are also L-terms;
(iii) if t and u are L-terms then J (t; u) is also a L-term.

De�nition 1.1.2. The set of M-terms is de(ned as follows:
(i) 0 is an M-term;
(ii) any variable is an M-term;
(iii) if t is an M-term then K(t); L(t), S(t), and P(t) are also M-terms.

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 53

De�nition 1.1.3. The set of N-terms is de(ned as follows:
(i) any variable is an N-term;
(ii) if t is an N-term then K(t) and L(t) are N-terms.

We must note that in an L-term, as many variables as we want may occur but only
one variable, say x, occurs in an N-term t so that in this case we denote t by t(x).
As usual, the term we obtain by substitution of u to the variable x is written as t(u).
In an M-term at the most one variable occurs.

De�nition 1.1.4. (1) An atomic L-formula is of the form t(Ex)= u(Ey), where t and u
are L-terms and Ex and Ey are (nite sequences of variables.
(2) An atomic M-formula is of the form t(x)= u(y), where t and u are M-terms

and x and y are variables or the constant 0.
(3) An atomic N-formula is of the form t(x)= u(y), where t and u are N-terms

and x and y are variables.

1.2. Elimination of the symbol J

Let us begin by eliminating from L-formulas all occurrences of the functional sym-
bol J . In order to do this, we show in next lemma that any L-formula is equivalent
in the structure 〈N; J; K; L; S; P; O〉 to an M-formula lemma.

Lemma 1.2.1. Any L-formula is equivalent to an M-formula.

Proof. This comes from the fact J is M-de(nable by J (x; y)= z ↔ [K(z)= x ∧
L(z)=y].

1.3. Normalization of terms

From now and then we consider the special case when J is the Cantor pairing
function C. A non-closed M-term is characterized by its variable and by a (nite
sequence of occurrences of the functions K; L; S and P. We prove that one can
normalize these terms by putting all S and P at the head of the sequence. Moreover,
we can insure any M-term t(x) is equivalent to a normal form according to some
condition on x expressed by a N-term. Although, natural order on integers is not
easily de(nable in our languages L; M and N and in order to simplify notations,
we may make a free use of x¿n for a (xed integer constant n.

De�nition 1.3.1. As usual, the term SSS : : : Sx (resp. PPP : : : Px) with n occurrences
of the symbol S (resp. P) is denoted by x + n (resp. x − n). We denote by x¿n+ 1
the conjunction x �= 0, x �= 1; : : : ; x �= n.

Proposition 1.3.1 (Externalization of the symbols S and P). For any M-term t(x);
where x is a variable; there exist an integer m and m+ 1 conditions Hi(x) of one of

54 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

the forms u0(x)= 0; or u1(x) �= 0; or : : : ; or um−1(x)=m− 1; or um(x)¿m; where ui
is an N-term and m+1N-terms vi(x) and the integers ki’s are positive; negative or
null integers such that; if Hi(x) holds then t(x)= vi(x) + ki.

Such a condition Hi(x) is said a normalization condition.

Proposition 1.3.1 is easily proved by induction on the length of the term t(x) using
the following lemmas.

Lemma 1.3.1 (Pseudo-inversion of P and S). For any x we have PS(x)= x. For any
x di>erent from zero; we have SP(x)= x. For x=0; we have SP(x)= S(x).

Lemma 1.3.2 (Pseudo-commutation of P; S and K; L):
(1) If K(x) �= 0 then KS(x)=PK(x). If K(x)= 0 then KS(x)= SL(x).
(2) If K(x) �= 0 then LS(x)= SL(x). If K(x)= 0 then LS(x)= 0:
(3) If L(x) �= 0 then KP(x)= SK(x): If L(x)= 0 then KP(x)= 0:
(4) If L(x) �= 0 then LP(x)=PL(x): If L(x)= 0 then LP(x)=PK(x):

Proof. It suIces to write x as an expression of the form C(a; b):
(1) (a) KS(x)=KSC(a; b)=KC(a− 1; b+ 1)= a− 1=PK(x):

(b) KS(x)=KSC(0; b)=KC(b+ 1; 0)= b+ 1= SL(x):
(2) (a) LS(x)=LSC(a; b)=LC(a− 1; b+ 1)= b+ 1= SL(x):

(b) LS(x)=LSC(0; b)=LC(b+ 1; 0)=0:
(3) (a) KP(x)=KPC(a; b)=KC(a+ 1; b− 1)= a+ 1= SK(x):

(b) KP(x)=KPC(a; 0)=KC(0; a− 1)=0:
(4) (a) LP(x)=LPC(a; b)=LC(a+ 1; b− 1)= b− 1=PL(x):

(b) LP(x)=LPC(a; 0)=LC(0; a− 1)= a− 1=PK(x):

1.4. Condition of elimination of quanti1ers

From the previous discussion a necessary and suIcient condition for eliminating
quanti(ers is the following.

Proposition 1.4.1. The theory Th(N;L) eliminates quanti1ers if; and only if; any
formula of the form

∃x
{(

n∧
i=1

Mi(x) = M ′
i (x) + ki

)
∧
(

m∧
i=n+1

Mi(x) �= M ′
i (x) + ki

)
;

∧
(p∧
i=m+1

Mi(x) = M ′
i (yji) + ki

)
∧

 q∧
i=p+1

Mi(x) �= M ′
i (yji) + ki

 ;

∧

 r∧
i=q+1

Mi(yji) = M
′
i (zji) + ki

 ∧

(
s∧

i=r+1

Mi(yji) �= M ′
i (zji) + ki

)
 ; (F)

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 55

(where the Mi’s and the M ′
i ’s are N-terms; whose the set is supposed not to be

empty; the yji’s and the zji’s being variables di>erent from the variable x; the ki’s
being positive; negative or null integers) is equivalent to a boolean combination of
atomic M-formulas just depending on the terms Mji and M ′

ji of the given formula.

Proof. As usual when we want to eliminate quanti(ers, it suIces to eliminate ∃x
within a formula of the form ∃x'(x; y1; : : : ; yn), where ' is a conjunction of atomic
or negatomic formulas.

Actually the subformula (
∧r
i=q+1Mi(yji)=M

′
i (zji)+ki)∧(

∧s
i=r+1Mi(yji) �=M ′

i (zji)+ki)
of this formula does not depend on x; it occurs just as a condition. We denote it by
CONDEXTOR (meaning external original condition).
In order to perform the reduction of a formula of the form (F), we shall use the

representation of an N-term by a word on the alphabet {K; L} and the representation
of an open M-formula by a (nite set of labelled trees in a speci(c way we precise
later on.

2. Representations of N-terms and open M-formulas in one variable

2.1. Words associated to N-terms

Let us note that an N-term, say t=K(K(L(L(K(x))))), is determined by a variable,
namely x in the present case, and a word on the alphabet {K; L}, denoted 1 by m(t),
namely KKLLK in the present case. This leads to the following.

De�nition 2.1.2. (1) The word m(t) on {K; L} which is associated to the N-term t
is de(ned by structural induction as follows:
• if t is a variable then m(t)= (, where (is the empty word;
• if t=K(t′) then m(t)=Km(t′);
• if t=L(t′) then m(t)=Lm(t′).
(2) The length lg(t) of the N-term t is the length of the word m(t).

2.2. Parametrized trees

With the previous de(nitions, N-terms are represented by words of {K; L}∗, and
now we are going to consider the speci(c trees we intend to associate to the investigated
M-formulas.

De�nition 2.2.1. The N-term fn; i(x), where x is a variable, n and i are natural inte-
gers, is de(ned by induction on n and i as follows:
• f0;0(x)= x;

1 The french equivalent to word is mot.

56 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

• fn+1;2n+j(x)=fn; j(L(x)); for 06j¡2n;
• fn+1; j(x)=fn; j(K(x)); for 06j¡2n:

Example. For n=2, the four possible terms f2; i(x) are

KK(x); KL(x); LK(x); LL(x);

since

f2;0(x) = f1;0(K(x)) = f0;0(K(K(x) = KK(x);

f2;1(x) = f1+1;1(x) = f1;1(K(x)) = f0+1;20+0(K(x)) = f0;0(LK(x)) = LK(x)

f2;2(x) = f1+1;21+0(x) = f1;0(L(x)) = f0;0(KL(x)) = KL(x);

f2;3(x) = f1+1;21+1(x) = f1;1(Lx) = f0;0LL(x) = LLx:

Proposition 2.2.1. For any nonnegative integer n, we have x=y if and only if

∀i ∈ [0; 2n − 1] (fn; i(x) = fn; i(y)):

De�nition 2.2.2. For any variable x and any natural integer n ∈ N, we put the notation

[Arb(x; n); (B0; : : : ; B2n−1)];

and we call tree with conditional parametrized leaves, or more brieKy parametrized
tree, any ordered pair such that
– The (rst component of the ordered pair is the binary tree with height n + 1 which
is labelled by the N-terms t with length lg(t)6n in the usual way as shown in
Fig. 1

– The second component of the ordered pair is an 2n-tuple whose the ith coordinate is,
for 06i62n−1, a (nite set Bi, we call constraints box, which consists of conditions
(or constraints) of one of the following forms:
(1) either t(fp; i(x))=m;
(1′) or t(fp; i(x)) �= m;
(2) or fp; i(x)= v(fp; j(x)) + m;
(2′) or t(fp; i(x)) �= v(fp; j(x)) + m;
(3) or fp; i(x)= v(y) + m;
(3′) t(fp; i(x)) �= v(y) + m;

Fig. 1. Arb(x; 2).

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 57

Fig. 2.

where t(z) and v(z) are N-terms, where j is a natural integer which can be equal
to i, where y is a variable diCerent from x, and where m is an integer (necessarily
positive if the word associated to m(t) is empty).

We note point (1′) is a special case of point (3′). We consider (1′) purely to keep
symmetry. Above we give (Fig. 2) an example of parametrized tree with height 4. In
order to provide a convenient legibility, we place the box Bi exactly under the leaf
fp; i(x).

Remark. The fact that there is no symmetry between the case of Eq. (2) and dise-
quations (2′) on the one hand and, on the other between Eq. (3) and disequations (3′)
within De(nition 2.2.2 (a term t appears in a case and not in the other one) is volun-
tary: actually, we do not know exactly how to eliminate the pre(x t in a disequation
but, fortunately, we know how to perform it in equations. However, this fact of not
knowing how to simplify disequations will not be as much constraining as it seems at
the (rst glance.

Now, we classify variables occurring in a parametrized tree.

De�nition 2.2.3. Let [Arb(x; n); (p0; : : : ; p2n−1)] be some parametrized tree. The vari-
able x (root of the tree) is called the main variable. The variables y1; : : : ; yp diCerent
from x occurring or not occurring in the constraints boxes are called box-variables.

58 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

The main variable and the box-variables make up the whole set of free variables of
the tree.

2.3. Semantics of parametrized trees

In the previous sections we introduced expanded languages and parametrized trees
which are on a sense the syntactical framework of our proof of decidability of the theory
Th(N; C; S). In order to justify this decision process on the set N of natural integers,
we need to interpret all the introduced notions as trees, roots, variables, constraints,
boxes. This is what we intend to do in the present section.

De�nition 2.3.1. Let T (x;y1; : : : ; yq) be some parametrized tree with main variable x
and box-variables y1; : : : ; yq: The (q+1)-tuple 〈a; b1; : : : ; bq〉 of natural integers satis1es
the parametrized tree T (x;y1; : : : ; yp) if, and only if, for every constraints box Bi, all
conditions, obtained from the constraints of this box by substitution of a to x and of
the adequate bj to each corresponding yj are satis(ed.

De�nition 2.3.2. Let T (x;y1; : : : ; yq) be some parametrized tree with main variable x
and box-variables y1; : : : ; yq. Given the q-tuple 〈b1; : : : ; bq〉 of natural integers the para-
metrized tree T (x; b1; : : : ; bp) is said to be consistent if, and only if, there is some
natural integer a which satis(es this tree.

De�nition 2.3.3. Let F= {Tr(x;y1; : : : ; yq)=r ∈ I} and G= {Ts(x;y1; : : : ; yq)=s ∈ J}
be (nite families of parametrized trees having the same main variable x. We say
these families are equivalent if, and only if, for every q-tuple 〈b1; : : : ; bq〉 of natu-
ral integers, the set of natural integers a such that 〈a; b1; : : : ; bq〉 satis(es all trees
of F is equal to the set of natural integers a such that 〈a; b1; : : : ; bq〉 satis(es all trees
of G. A parametrized tree T is equivalent to a family F of parametrized if, and only
if, families {T} and F are equivalent.

Remark. Of course, one can arrange things in order to have the same set of box-
variables: it suIces to take the set of all occurring variables.

3. Solving some equations

In order to eliminate quanti(ers, we are led to solve certain equations in which occur
K and L. More precisely, we prove

Proposition 3.1.1. The equation Mz= z − k, where M ∈ {K; L}∗ is a word of a non-
zero length lg(M) and k ∈ N∗; has a 1nite number of solutions; all of them being
bounded by a constant just depending on k and lg(M):

To prove Proposition 3.1.1, we shall use several lemmas.

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 59

Lemma 3.1.1. For all z¿7, the inequality K(z)¡z=2 holds.

Proof. Let z be an arbitrary natural integer. There is a unique natural integer d such
that

d(d+ 1)
2

6z¡
(d+ 1)(d+ 2)

2
:

This integer d is nothing but the number of the diagonal to which belongs point
〈K(z); L(z)〉, whose Cantor number is z, so that K(z) + L(z)=d. Since we have

(d+ 1)(d+ 2)
2

− d(d+ 1)
2

= d+ 1;

there is a unique integer r such that

z =
d(d+ 1)

2
+ r

verifying 06r¡d+ 1:
Then we have L(z)= r, K(z)=d− r, hence K(z)6d.
But d(d+ 1)=2 + r= z leads to d2 + d + 2r=2z, hence d2¡2z, so that d¡

√
2z;

so we have K(z)¿
√
2z. If

√
2z6z=2, then K(z)¡z=2. By squaring

√
2z¡z=2 we see

this is the case for z¿9:
One easily checks that, for z68, the required strict inequality holds, except for z=0

and z=6, achieving the proof.

Lemma 3.1.2. For all z¿3; the inequality L(z)¡z=2 holds.

Proof. Putting once more z under the form z=d(d+ 1)=2+r, we have L(z)= r. Hence

L(z) = r6d ¡
z
2

for z¿9;

according to what we just did in the proof of previous lemma. One easily checks that,
for z68, the requested strict inequality holds, except for z=0 and 2, achieving the
proof.

Proof of Proposition 3.1.1. Let M be a word with a non-zero length. Let a be an
integer.
– If there is no suIx M ′ of M such that M ′(a)66, then we have M (a)¡a=2n

according to previous Lemmas 3.1.1 and 3.1.2.
– If there is a suIx M ′ of M such that M ′(a)66, then we have M (a)66 so that
M (a)¡a=2n, hence we get M (a)¡a=2n for a¿6:2n:

– Of course, there are (nite solutions in the equation M (z)= z − k for z66:2n:
– For a¿6:2n, we have M (a)¡a=2n: Hence M (z)= z − k implies z¡k:2n=(2n − 1):
– Then it suIces to search for solutions within a (nite set.

60 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

Proposition 3.1.2. The set of solutions of the equation Mz= z, where M ∈ {K; L}∗ is
a word of non-null length; is included in {0; 1}:

Proof. More precisely, 0 is always a solution and 1 is a solution if and only if M =Kn:
For z¿2, we have M (z)¡z and hence M (z) �= z.

Proposition 3.1.3. The equation Mz= z + k; where M ∈ {K; L}∗ and k ∈ N∗; has no
solution.

Proof. Indeed we have M (z)6z, consequently M (z) �= z + k:

4. Reduction of a formula to a family of trees

We have to eliminate quanti(ers from an existential formula. We transform this
existential formula in x into a (nite set (we say family, which are below always (nite)
of trees, whose representation as a disjunction of open formulas is easy, and a set of
external conditions where x does not occur.

Proposition 4.1.1. Let ' be a formula of the form (F) of the Section 1:4. There
exists an M-formula CONDEXTOR and a (1nite) family F of ordered pairs; each
of them consisting of a parametrized tree T and of an M-formula CONDEXT(T);
such that the formula ' is equivalent to a formula denoted by CONDEXT; with no
occurrence of x and which is the conjunction of the formula CONDEXTOR with the
disjunction of all formulas CONDEXT(T) that are the 1rst components of an ordered
pair belonging to F whose associated tree is consistent.

Proof. The existence of such a family is proved in a constructive way. The ((nite)
family of the ordered pairs associated to ' will be obtained at the last step of the long
process which follows in sections up to Section 7 below. At each step of the process,
we shall deal with cases and subcases and in every case or subcase we call T the tree
to be transformed and T ′ the transformation obtained tree.

Initialization step: We refer to formula (F) of Section 1.4 with its literals and its
bounds n; m; p; q; r; s. The formula CONDEXTOR has been de(ned in Section 1.4. Let
N be the maximum of lengths of N-terms in x occurring in the formula '. Let k0 be
the maximum of absolute value of integer constants occurring in the (rst m literals of
formula (1). We start by considering the family of ordered pairs (T , CONDEXT (T)),
where
– T is one of the (k0 + 1)2

N
trees of height N whose every box Bi contains one

of the k0 + 1 conditions:
– either fN; i(x)= 2, where 2 is an integer constant lesser than k0,
– or fN; i(x)¿k0 (of course it is an abbreviation for the k0 conditions fN; i(x) �=0,
fN; i(x) �=1; : : : ; fN; i(x) �= k0 − 1);

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 61

– CONDEXT (T) contains, for each i∈ [m+ 1; q], for each N-terms W of length less
than N − length(Mi), a factor:

– either WM ′
i (yji)= 4, where 4 is an integer constant lesser than |ki|,

– or WM ′
i (yji)¿|ki|.

This family represents all possibilities of ordered pairs (T; CONDEXT (P)) up to an
obvious isomorphism.
Equivalent step: Now we treat every tree of this family, i.e. we add conditions in

boxes to obtain a set of conditions equivalent to the (rst q literals of formula (1). Let
T be such a tree. We shall inspect every literal and odd conditions. Treatment depends
on the form of literal.
Case 1: At (rst, we deal with the n literals of the form M (x)=M ′(x) + k (atomic

formulas). We must distinguish two kinds of literals among the literals of this form
according to the fact whether M is a suIx of M ′.
Case 1.1: Let us begin by looking at the literals of the second kind, namely those

of the form M (x)=M ′(x) + k where neither M nor M ′ is a suIx of each other,
what implies that the subtrees having respective roots M (x) and M ′(x) are disjoint.
Moreover, one can assume by symmetry that lg(M (x))¿lg(M ′(x)):
Since, the length of the tree is greater than N , there exists two nodes of T (which

are not necessarily leaves) labelled M (x) and M ′(x): For every leaf fN; i(x) of the
subtree having M ′(x) for root, there exist a word, say U , on the alphabet {K; L} such
that we have fp; i(x)=UM ′(x): The equality M (x)=M ′(x) + k is equivalent (due to
Proposition 2.2.1) to the set of conditions UM ′(x)=U (M (x) − k) for leaves of the
subtree of root M ′(x). The initial conditions of tree T lead to a normalization

UM ′(x)=ViV ′
i M (x) + mi;

where Vi and V ′
i are words on {K; L}; where lg(V ′

i M)= lg(UM ′) and mi is an integer.
The node V ′

i M (x) is a leaf fN; j(x) of the subtree having M (x) for root.
Therefore we have to add constraints

fN; i(x)=Vi(fN; j(x)) + mi

in box Bi. Because the subtrees are disjoint, we see that leaves fp; i(x) and fp; j(x) are
diCerent. We note that if V is the empty word and if m is strictly negative then we
can forget the corresponding tree since one is sure it cannot be satis(ed due to the
fact that fN; i(x) cannot take any negative value.
Case 1.2. Let us now consider the case when M ′ is a suIx of M , i.e. the case

when M =M ′′M ′ for some M ′′. Put x̃=M ′(x): Therefore the literal M (x)=M ′(x)+ k
is equivalent to M ′′(x̃)= x̃ + k: According to Section 3, the two following subcases
arise.
Subcase 1.2.1: The word M ′′ is empty (M ′′ = (): If k =0 then there is no constraint

and we do not have to add any condition in the box. If k �=0 there is a contradiction
and we may forget the considered tree.
Subcase 1.2.2: The word M ′′ is not empty (M ′′ �= (). In this case, according to

Section 3, the solutions in x̃ are taken in the (nite set {21; : : : ; 2Q} of solutions of the

62 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

equation M ′′(x̃)= x̃+k. First, every tree T is cloned into Q trees T1; : : : ; TQ. Afterwards,
for the tree Tj; 16j6Q, we add to the constraints boxes Bi, where fN; i(x) is a leaf
of the subtree having x̃ as its root, an extra constraint fN; i(x)=mi. The value of the
constant mi depends at the same time on the value 2j and of the path going from x̃ to
the considered leaf. More precisely if fN; i(x)=M ′′′(x̃) then mi=M ′′′(2j):
Case 2: We deal with literals of the form M (x) �=M ′(x) + k (negatomic formulas)

in a similar way, by denying what we get in case of equalities.
Case 3: Let us deal with literals of the form M (x)=M ′(y) + k: Since the tree T

has height N , which is the maximum of lengths of the terms occurring in the formula,
there exists in the tree some nodes labelled by the name M (x): For every leaf fN; i(x)
of the subtree having M (x) for its root, there exists a word U on {K; L} such that
fN; i(x)=UM (x):
The equality M (x)=M ′(y) + k is equivalent to the set of equalities

UM (x)=U (M ′(y) + k)

for all the leaves of the subtree of root M (x). The formula CONDEXT (T) contains
conditions for normalization allowing us to replace the above formula by

UM (x)=VM ′(y) + m′

for an N-term V of same length than U and an integer constant m′.
We add the constraint fp; i(x)=VM ′(y) + m′ in the box Bi of the tree T .
Case 4: In a similar way, one can deal with conditions of the form M (x) �=

M ′(y) + k.

Remark. At the end of this (rst step, the boxes of constraints of the considered
parametrized trees contain constraints of the form (F) with lg(t)6N , (1′), (2) or
(2′) with j �= i, (3) or (3′).

Conclusion: To (nish elimination of quanti(ers, we have to determine consistency
of parametrized trees. To determine the consistency of a parametrized tree obtained at
the end of this (rst step of reduction seems a little bit easier than eliminating quanti(er
from formula (F). Indeed, for every constraints box, it suIces to (nd a natural integer
fN; i(x) verifying some constraints of the forms we recall above.
It is easy to see whether a set of conditions of forms (1), (1′), (3) and (3′) are

compatible, even if we must add for doing this some factors in the external disjunction.
Only the conditions
(2) fN; i(x)= v(fN; j(x)) + m;
(2′) fN; i(x) �= v(fN; j(x)) + m;
provide some problems. This is due to two reasons: on the one hand, there is no
intrinsic order on the leaves such that if we have (2) then we have fj¡fi (what can
lead to viceous circle in the algorithm); on the other, even in case there does exist such
an intrinsic order, it would remain some latitude to assign a value to certain leaves so

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 63

that the appearance of some uncompatibility at the level of some leaves would result
of a wrong choice and not at all of the inconsistency of the tree.

5. Extension of a parametrized tree

To solve the problem pointed above, we shall have to expand a given tree into a
(nite set of trees with increasing heights. Here, we must emphasize on the following
point: we cannot a priori bound the size of our trees. We have to exend several times
successively the trees in order to obtain a family of simpler trees whose consistency
is easy. Now, we are going to de(ne what we call extension of the parametrized
tree [Arb(x; N); (B0; : : : ; B2N−1)] in the family of trees [Arb(x;M); (C0; : : : ; C2M−1)] for
M¿N . It suIces to de(ne this notion in the case M =N + 1 and for doing this, due
to the fact the integer N and the variable x completely determine the underlying binary
tree, it suIces to determine the new constraint boxes of the trees which expand the
given tree.

De�nition 5.1.1. An extension of a parametrized tree T of height N is a (nite family
of parametrized tree of height N + 1 which is equivalent to T (here considered as a
family consisting of just one element).

Remark. Every tree belonging to the extension has a number of constraints boxes
which is double the number of constraints boxes of T .

Proposition 5.1.1. Any extension of a parametrized tree T of height N is the 1nite
set of parametrized trees of height N + 1 de1ned by conditions (1)–(7) below. (We
denote by adjunction of a symbol prime (′) the constraints boxes concerning the trees
of the extension of T; so that a box Bi of the original tree gives rise to two new
boxes B′2i−1 and B′2i for every tree of the extension of T).
Transformations due to equations:

(1) If Bi contains t(fN; i(x))= 2 then we distinguish the following three cases:
• if t is the empty word then B′2i−1 contains fN+1;2i−1(x)= 4 and B′2i contains
fN+1;2i(x)= 9; where 4 and 9 are integer constants such that K(2)= 4 and
L(2)= 9;

• if t= uK; with u∈{K; L}∗; then B′2i−1 contains u(fN+1;2i−1(x))= 2;
• if t= uL; with u∈{K; L}∗; then B′2i contains u(fN+1;2i(x))= 2:

(2) It suCces to explain the case when Bi contains fN; i(x)= t(fN; j(x)) + m on an
example. Let us suppose fN; i(x)= t(fN; j(x)) + 2 and let us just consider the
situation of the box B′2i−1:
• If t= (is the empty word; we obtain the following three families of trees:
– a family for which B′2j−1 contains fN+1;2j−1(x)= 0 and B′2i−1 contains
fN+1;2i−1(x)=fN+1;2j(x);

64 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

– a family for which B′2j−1 contains fN+1;2j−1(x)= 1 and B′2i−1 contains
fN+1;2i−1(x)=fN+1;2j(x) + 2;

– a family for which B′2j−1 contains fN+1;2j−1(x)¿2; and B′2i−1 contains
fN+1;2i−1(x)=fN+1;2j(x)− 2:

• If t= uK; with u∈{K; L}∗; then this gives rise to three families of trees:
– a family for which B′2j−1 contains Ku(fN+1;2j−1(x))= 0 and B′2i−1 contains
fN+1;2i−1(x)=Lu(fN;2j−1(x));

– a family for which B′2j−1 contains Ku(fN+1;2j−1(x))= 1 and B′2i−1 contains
fN+1;2i−1(x)=Lu(fN+1;2j−1(x)) + 2;

– a family for which B′2j−1 contains Ku(fN+1;2j−1(x))¿2 and B′2i−1 contains
fN+1;2i−1(x)=Lu(fN+1;2j−1(x))− 2:

(3) If Bi contains fN; i(x)= v(y) + k then B′2j−1 contains fN+1;2i−1(x)=K(v(y) + k)
and B′2i contains fN+1;2i(x)=L(v(y) + k):

Transformations due to disequations:
We deal with disequations in a similar way by considering negations of the conditions
we just obtained. For instance if Bi contains fN; i(x) �= 2 then two families of extended
trees appear; in one of them B′2i−1 contains fN+1;2i(x) �= 4 and in the other B′2i contains
fN+1;2i(x) �= 9 with K(2)= 4 and L(2)= 9:

Proof. To justify points (1) and (2) it suIces to note that the sons (relatively to
K and L respectively) of the leaf fp; i(x) are the respective leaves fN+1;2i−1(x) and
fN+1;2i(x):
(1) (a) The case when t= (is the empty word is trivial.

(b) If t= uK , then t(fN; i(x))=m is equivalent to uK(fN; i(x))=m, but we have
K(fN; i(x))=fN+1;2i−1(x), proving the result.
(2) (a) For the case when t= (is the empty word, we make use of the given rules
de(ning our terms normalization,
• if K(fN; j(x))= 0 then K(fN; j(x) + 1)=L(fN; j(x)) + 1:
• if K(fN; j(x)) �=0 then K(fN; j(x) + 1)=K(fN; j(x)) − 1 and L(fN; j(x) + 1)=
L(fN; j(x)) + 1:

Hence,
• if K(fN; j(x))= 0 then K(fN; j(x) + 1)=L(fN; j(x)) + 1 �=0; hence K(fN; i(x))=
L(fN; j(x)) + 1− 1=L(fN; j(x)):

• if K(fN; j(x))= 1 then K(fN; j(x) + 1)=K(fN; j(x)) − 1=0; hence K(fN; i(x))=
L(fN; j(x) + 1) + 1=L(fN; j(x)) + 2:

• if K(fN; j(x))¿2 then K(fN; j(x) + 1)=K(fN; j(x)) − 1 �=0; hence K(fN; i(x))=
K(fN; j(x) + 1)− 1=K(fN; j(x))− 2:
For the extended trees,

• in the (rst case, we have fN+1;2j−1(x)= 0 and fN+1;2i−1(x)=fN+1;2j(x),
• in the second case, we have fN+1;2j−1(x)= 1 and fN+1;2i−1(x)=fN+1;2j(x) + 2;
• in the third case, we have fN+1;2j−1(x)¿2 and fN+1;2i−1(x)=fN+1;2j−1(x)− 2:
(b) The case when t= uK is analogous and can be developed as follows for the

considered example:

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 65

• if KM (fN; j(x))= 0 then K(M (fN; j(x)) + 1)=LM (fN; j(x)) + 1;
• if KM (fN; j(x)) �=0 then K(M (fN; j(x))+1)=KM (fN; j(x))− 1 and L(M (fN; j(x))+1)

=LM (fN; j(x)) + 1:
Hence,
• if KM (fN; j(x))= 0 then K(M (fN; j(x)) + 1)=LM (fN; j(x)) + 1 �=0; hence K(fN; j
(x))=LM (fN; j(x)) + 1− 1=LM (fN; j(x)):

• if KM (fN; j(x))= 1 then K(M (fN; j(x)) + 1)=KM (fN; j(x)) − 1=0; hence K(fN; j
(x))=LM (fN; j(x)) + 2:

• if KM (fN; j(x))¿2 then K(M (fN; j(x)) + 1)=KM (fN; j(x)) − 1 �=0; hence K(fN; j
(x))=KM (fN; j(x))− 2:

This can be translated, for the extended trees in the case of our example where
M =M ′K , using the fact that KfN; j(x)=fN+1;2j−1(x), by
• in the (rst case, KM ′(fN+1;2j−1(x))= 0 and fN+1;2i−1(x)=LM ′(fN+1;2j−1(x)),
• in the second case, KM ′(fN+1;2j−1(x))= 1 and fN+1;2i−1(x)=LM ′(fN+1;2j−1(x))+2;
• in the third case, KM ′(fN+1;2j−1(x))¿2 and fN+1;2i−1(x)=KM ′(fN+1;2j−1(x))− 2:
All the other cases are treated in an analogous way.

6. Simpli�cation of parametrized trees

Up to now, what we did consists in associating a family of ordered pairs (namely
each of them consists of a formula and a tree) to the original formula (F) we intend
to eliminate the existential quanti(er. Therefore, the question on the original formula
is transfered to a problem of consistency of trees. The (rst step of the determination
of the consistency of a parametrized tree is devoted to associate to a (xed tree T a
new family of more simple (in a sense) trees which is equivalent to T .

6.1. Simple tree

The notion of a simple tree is related to the content of the constraints boxes of the
considered tree. Let us begin by noting that the (of course (nitely many) constraints
of a tree can be classi(ed in several types we introduce in the following de(nition.

De�nition 6.1.1. (1) A fundamental constraint is a constraint of one of the following
forms:
(1) t(fN; i(x))=m with t having a non-null length;
(1′) t(fN; i(x)) �=m;
(2′) t(fN; i(x)) �= t′(fN;k(x)) + m (with the possibility k and i are the same index);
(3′) t(fN; i(x)) �= v(y) + m:
(2) We call determining constraint any constraint of the form fN; i= v(y) + m or

fN; i=m:
(3) We call dependence constraints any constraint of the form fN; i= t(fN; j) + m,

where the leaf fN; j is diCerent from the leaf fN; i.

66 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

The notion of a simple tree lies on the nature and the number of the permitted
constraints one can (nd within boxes. More precisely, in order to be simple a tree
must satisfy conditions as in the following de(nition.

De�nition 6.1.2. We call a simple tree any parametrized tree whose every constraints
box contains:
(a) either nothing;
(b) or only one determining constraint,
(c) or only one constraint of dependence fi= t(fj) + m;
(d) or only a set of more than one determining constraints.

The main result of section Section 6 is completely contained in the next proposition.

Proposition 6.1.1. Every parametrized tree is equivalent to a family of simple trees.

Proof (Sketch). Let T be a parametrized tree. By the very de(nition of such a tree,
a constraints box Bi of this tree contains a (nite set (possibily empty) of constraints
which are necessarily of one of the following forms:
(1) t(fN; i(x))=m;
(1′) t(fN; i(x)) �=m;
(2) fN; i(x)= v(fN; j(x)) + m;
(2′) t(fN; i(x)) �= v(fN;k(x)) + m;
(3) fN; i(x)= v(y) + m;
(3′) t(fN; i(x)) �= v(y) + m:
Now, the reduction to a family of simple trees is performed via an exhaustive classi-
(cation of the contents of the boxes as follows.
• The content of a box is said to be of type 2 if there exists in the considered con-
straints box, a determining constraint, say fi= v(y) + m.

• The content of a box is said to be of type 4 if there does not exist in the con-
sidered constraints box any determining constraint but there does exist a constraint
of form (2), say fN; i(x)= v(fN; j(x)) + m, where the length of v is diCerent from
zero.

• The content of a box is said to be of type 9 if there does not exist in the consid-
ered constraints box any determining constraint but there does exist one or several
constraint of form (2), where the lengths of the terms v are diCerent from zero.

• The content of a box is said to be of type : if there exist in the considered constraints
box neither a determining constraint nor a constraint of the form (2).

If a constraints box has a content of
• type 2 then we are going to show in Section 6.3 below some intuitive result from
which we shall see that the corresponding leaf fi is completely determined (modulo
some y) so that the other constraints in the box of the same leaf can be advanta-
geously carried in another constraints box without involving anymore the leaf fi;
afterwards we shall be in case (b) of the de(nition of simple trees;

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 67

• type 4 then we are going to show, what is also an intuitive strategy, that it suIces
to keep only one such constraint; afterwards we shall be placed in case (c) of the
de(nition of simple trees;

• type 9, then we shall show that we are once again led to case (c) of the de(nition
of simple trees;

• type :, then we shall show that we are led to case (a) or (d) of the de(nition of
simple trees.

6.2. Equivalent family of saturated trees

Let us note a constraints box Bi can apparently seem not to be of the type 2 although
it contains some constraints fi= v(fj) + m where the box Bj is of type 2. Of course,
the box Bi is “morally” speaking of this type 2. For this reason we wish to consider
a special kind of trees which are saturated in the sense we explained below.

De�nition 6.2.1. A parametrized tree is said to have saturated boxes, and is called
a saturated tree, when, for every pair of boxes Bj and Bi, if we have the constraint
fi= v(fj) + m then:
• if t(fj)= q is in the box Bj, and if t is a suIx of v, that is to say if v can be
written as v= v′t, then we have fi= v′(q) + m in the box Bi;

• if fj = q is in the box Bj and if t is not a suIx of v, then we do not change
anythings;

• if fj = t(fk) + r is in the box Bj then we have one of the ordered pair of normal-
ization u(fk)= q (or u(fk)¿q) and fi= v′(t(fk)) + r′ in the boxes Bk and Bi;

• if fj = t(y) + r is in the Bj then we have one of the external condition u(y)= q
(or u(y)¿q) and fi= v′(t(y)) + r′ in the box Bi.

We begin by proving our notion of saturation of trees is conservative for the truth.

Lemma 6.2.1. Every parametrized tree is equivalent to a family of trees whose con-
straints boxes are saturated (saturated trees).

Proof. If the constraint fi= v(fj) + m is contained in the box Bi then one adds, if
they are not already there, the adequate constrainsts.
We start again until we cannot add any more constraints, so that all boxes are

saturated. Let us notice that this process terminates since when there are Q leaves and
the maximum number of constraints is R in a given box then; after performing as
above, the box containing the maximum number of constraints will contain at most
QR constraints.
Since, during the process, the conjunction of all the constrainsts of all boxes remains

invariant, we get an equivalent tree.

One can note that, after each step of simpli(cation, the obtained trees are such that it
is useless to begin again this process of saturating boxes (although one could perform
it easily without any problem).

68 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

6.3. Equivalent family of 2-reduced trees

We are going to show that every leaf fi whose constraints box contains at least
a determining constraint fi= v(y) + m is completely determined (modulo some y),
so that the other constraints due to this leaf may advantageously sent into either the
external condition or one another constraints box (without involving the leaf fi). We
will prove that every parametrized tree is equivalent to a family of trees of those kind
more precisely.

De�nition 6.3.1. Any parametrized tree is called 2-reduced iC all its constraints boxes
containing at least a determining constraint consists of a singleton whose the unique
element is the determining constraint.

This de(nition allows us to begin the proof we just announced.

Proposition 6.3.1. Any parametrized tree is equivalent to a family of 2-reduced trees.

Proof. Let Bi be a constraint box containing both together a determining constraint
and other constraints. Notice that several other determining constraints within Bi can
appear.
Let us call main determining constraint of this box Bi the unique determining con-

straint of the form fi= v0(y0) +m0, where v0 is the smallest term with respect to the
lexicographical order on {K; L}∗ (among the determining constraints occurring in Bi),
and y0 is the smallest variable (for the usual order on variables) corresponding to that
term if there are several such variables; if, after the previous process, there are still
many determining constraints, then we shall select the unique determining constraint
having a minimum m0.
Now, consider in order of appearance all the constraints of the box Bi, taking them

one after the other according to their form.
Case 1: Let us begin by constraints of form (1), namely t(fi)= q. Such a constraint

is equivalent to t(v0(y0) + m0)= q. Therefore, the ordered pair 〈T;CONDEXT (T)〉
is equivalent to the ordered pair 〈T ′;CONDEXT (T ′)〉 where T ′ is obtained from
T by removing the constraint t(fi)= q and CONDEXT (T ′) is the conjunction of
CONDEXT (T) and t(v0(y0) + m0)= q:
A constraint of form (1′), namely t(fi) �= q, can be treated in a similar way.
Case 2: Let us deal with constraints of form (2), namely equations of the form

fi=w(fj)+r. Due to our hypothesis on fi, such a constraint is equivalent to v0(y0)+
m0 =w(fj) + r, still equivalent to w(fj)= v0(y0) + m0 − r:
The idea of the proof consists in putting a new constraint in the box Bj. So doing

nevertheless, we do not obtain a parametrized tree since this constraint is alike a con-
straint of form (3) but is not necessarily of form (3) in reason of the occurrence of
the term w.
If the constraint w(fj)= v0(y0) + m0 − r is of form (3), in other words if w is the

empty word then one removes the constraint fi=w(fj) + r from Bi and we put the

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 69

constraint fj = v0(y0) + m0 − r into Bj. If the leaf fj is determined then it suIces to
put m′ = v0(y0) + m− r within CONDEXT (T):
If the constraint w(fj)= v0(y0) +m0 − r is not of the form (3) then the strategy of

simpli(cation lies on the fact of extending the tree into a family of trees (since there are
several distinct cases in the process of normalization) having a height which is equal
to the length c of w. This leads to get a constraint of the form fp+c; j(x)= v′(y0)+m′,
what brings us back to previous case.
Case 2′: Let us deal with constraints of form (2), namely disequations of the form

t(fi) �=w(fj) + r. Due to our hypothesis on fi, such a constraint is equivalent to
w(fj) �= t(v0(y0) + m0)− r. After normalization, this last constraint A is of form (3′).
We put A in the adequate box after having removed from the box Bi the constraint
which gave rise to A. If fj is a determined leaf then we put m′ = t(v0(y0) + m0) − r
into CONDEXT (T):
Cases 3 and 3′: If, in the box Bi we have external constraints (i.e. which bring on

other variables than x, that is to say constraints of form (3) as fi= u(z)+ r or (3′) as
w(fi) �= u(z)+ r) then we remove these constraints from the box Bi and we add within
the formula CONDEXT (T) as many subformulas of the forms v0(y0)+m0 = u(z)+ r
and w(v0(y0) + m0) �= u(z) + r as necessary.
After this process, all the constraints boxes which contain a determining constraint

does not contain any other determining constraint than this one.

6.4. Equivalent family of 2-4-1-reduced trees

Introduction: Now we deal with the simpli(cation of the constraints boxes containing
some constraint of the form fi=fj + m. We are going to show that if i¿j then the
box Bi can be reduced to this unique constraint.

De�nition 6.4.1. A parametrized tree is 2-4-1-reduced iC, on the one hand, every con-
straints box containing a determining constraint is reduced to a singleton just containing
such a constraint and, on the other, every constraints box containing a constraint of
the form fi=fj + m is reduced to a singleton just containing such a constraint.

This last De(nition 6.4.1 allows us to begin the proof of the result we announced
just above.

Proposition 6.4.1. Any parametrized tree is equivalent to a family of 2-4-1-reduced
trees.

Proof. According to Section 6.3, one can be satis(ed with considering only 2-reduced
trees. Now let Bi be a constraint box containing both together a constraint of the form
fi=fj + m and other constraints. Assume, for instance, i¿j:
Case 1: If the leaf fj is determined then, due to saturation, it is the same for the

leaf fi and we come back to Section 6.3.

70 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

Case 2: There are in Bi and Bj several constraints of the form fi=fj + m or
fj =fi − m. If the values of m are all equal, then we remove these constraints from
the box Bj and we keep only one constraint within Bi; so doing, we come back to the
third case. Otherwise, the tree is not consistent and we can give it up.
Case 3: In this case neither fi, nor fj is determined and there is only one constraint

which is equivalent to fi=fj+m and lies in the box Bi. Let us put C =Bi ∪{fi=fj+
m}: So we get a family (of trees T ′) equivalent to T by replacing Bi by {fi=fj+m}
and the constraints C as follows.
Subcase 1: If C contains the constraint t(fi)= q, where t has a non-zero length then

we have t(fj +m)= q and hence, by normalization, (nitely many constraints of forms
(1) and (1′) to put into Bj.

One treats constraints of form (1′) similarly.
Subcase 2: If C contains the constraints fi=w(fk) + r, with w of non-zero length

then we put fj =w(fk) + r − m into Bj:
Subcase 2′: If C contains the constraint t(fi) �=w(fk) + r then we see that t(fj +

m) �=w(fk)+ r. We are led to add (nitely many constraints of forms (1) and (1′) and
a constraint of form (2′) in Bj:
Subcase 3′: If C contains the constraint t(fi) �=w(y) + r then we see that t(fj +

m) �= v(y) + r. We are led to add (nitely many constraints of forms (1) and (1′) and
a constraint of form (3′) in Bj.
During this process, we do not add any constraint in the box of a determined box and,

consequently, the trees we obtain are 2-reduced. We add in leaves fj more constraints
of forms (1), (1′), (2) and (3′). The only precaution we must take for avoiding to
loop is to beginning by dealing with the leaves fi where i is maximum.

After 2-4-1-reduction, any constraints box contains:
– either nothing,
– or a determined constraint,
– or a determined dependence constraint, say fi=fj + m, with j¡i;
– or constraints of forms (1) with t of non-zero length, (1′); (2′); (3′) and (2) as
fi= v(fj) + m with v of non-zero length and where the leaf fj is not determined
and contains no constraint of the form fj =fk + r:

6.5. Equivalent family of 2-4-2-reduced trees

Introduction: Now we deal with the simpli(cation of the constraints boxes containing
some constraint of form (2) as fi= v(fj) + m with v of non-zero length where the
leaf fj is not determined and the associated box contains no constraint of the form
fj =fk + r:

De�nition 6.5.1. A parametrized tree is called 2-4-2-reduced iC it is 2-4-1-reduced
and every constraints box of this tree containing a constraint of form (2), with a non-
null term v, is reduced to a singleton just containing such a constraint.

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 71

The aim of the present section is to prove the following result.

Proposition 6.5.1. Any parametrized tree is equivalent to a family of 2-4-2-reduced
trees.

The fact that we can have several constraints boxes containing constraints of form
(2) imposes to (nd an adequate strategy in order to avoid any looping situation. In
this purpose, we introduce two complexity measures for a tree.

De�nition 6.5.2. The 1rst complexity measure of a parametrized tree T , we denote by
mes1(T), is the length p which is minimum (in the set of all boxes of the tree) such
that there exists a constraint of form (2), say fi= v(fj) + m, and another constraint
of form (2), say fi= u(fk) + s, with v is a term of length p and u a term of length
¿p. This measure will be equal to 0 if there does not exist any box containing such
a pair.

Remark. We have mes1(T)= 0 if, and only if, every constraints box Bi of T contains
within its subset of constraints of form (2), (nitely many (eventually zero) constraints
of the form fi=fj+r. We have seen in Section 6.4 how to come back to the situation
where there is only one dependence constraint, no other constraint of form (2) having
the possibility to be generated in this case.

De�nition 6.5.3. The second complexity measure of a parametrized T , we denote by
mes2(T), is the maximum length for the set of all the constraints boxes, among the
lengths of the terms v occurring in the constraints of form (2), namely expressed as
fi= v(fj) + m:

Now we show the invariance of these two kinds of measure by the process of
extending trees.

Lemma 6.5.1. The 1rst and second complexity measures of a tree extending an orig-
inal tree T are; respectively; equal to the corresponding measures of T .

Proof. By analysis of cases occurring in the de(nition of an extended tree.

Proof of Proposition 6.5.1. Let T be a given parametrized tree. According to
Section 6.4 one can be satis(ed just to consider trees which are 2-4-1-reduced. Let
p be the (rst complexity measure of T . Assume p �=0. For each constraints box Bi
of T , there are perhaps several constraints of the form (2) as follows: fi= v(fj) +m,
with v having length p. For a given box, we consider the set Ei of constraints of the
form fi= v(fj) + m, with v having length p. If Ei is not empty, then we call refer-
ence constraints of this box the unique constraint belonging to Ei such that (rstly j
is minimum (within the members of Ei), secondly v is minimum for the lexicographic
ordering on {K; L}∗ and, (nally, m is the smallest possible integer.

Let us denote by C the set of constraints of form (2) as fi= u(fk) + s of T which
are not equal to some reference constraints, for the i’s such that the corresponding Ei

72 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

is not empty. Let us denote by T ′ the tree we obtain from T by removing from the
constraints boxes all constraints belonging to C. The (rst complexity measure of T ′ is
strictly greater than p. Let us extend T ′, supposed to be of height m, into trees having
as common height m+p. Each one of these extended tree must be treated as follows.
Let T ′′ be anyone of these extended trees. From Lemma 6.5.1, T ′′ has the same (rst

complexity measure as T ′. Since we did not take in account the constraints of C, we
do not have at the moment an equivalent (to T) family of trees. In order to restore
this equivalence, we shall deal one by one with the constraints of C:
Case 1: If C contains the constraint t(fi)= q, where i has a non-zero length, then

t(v(fj) + m)= q holds so that, by normalization, certain constraints of form (1) and
(1′) must be placed within Bj:

We deal with Case (1′) in a similar way.
Case 2: Let fi= u(fk) + s be a constraint belonging to C. Let fi= v(fj) + m

be the reference constraint of the box Bi: The ordered pair of constraints 〈fi= v(fj)
+m; fi=u(fk)+ s〉 is equivalent to the ordered pair of constraints 〈fi= v(fj +m; v(fj)
= u(fk) + s − m〉: Since the length of u is greater or equal to p, the term u can be
written as u= u′u′′, with u′′ having length p: The terms v(fj) and u′′(fk) are leaves
of the tree T ′′, say fm+p; a(x) and fm+p; b(x): So doing, we shall get a family of trees
T ′′′ equivalent to the original T after having for any considered ordered pair of such
constraints and for any extended tree T ′′:
– adding in the box Ba the constraint fa= u′(fb) + s− m if fa �=f′

b;
– cloning this tree on (nitely many ones by adding for each one of them in the box
Ba a constraint of the form fa= constant when a= b, the set of constants being
according to Section 6.3, the (nite set of the solutions of the equation u′(f)=
f + m− s:
The obtained trees T ′′′ have not necessarily a (rst complexity measure equal to 0

since, on the one hand, there are reference constraints fi= v(fj) + m where v has
a length strictly greater than p and, on the other, there are may be new constraints
of the form (2) as fa= u′(fb) + s − m we have possibly re-introduced during the
transformation of T ′′ into T ′′′. However we can prove the following fact.
During the previous step,

either mes1(T ′′′)= 0;

or mes1(T ′′′)¡ mes1(T);

or mes2(T ′′′)¡ mes2(T) holds:

Proof of the fact within the proof of Proposition 6.5.1. The (rst complexity measure
of T ′ is p since we just keep, among the constraints of the form (2), the reference
constraint. Therefore the (rst complexity measure of T ′′ is, according to the fact, equal
to p, with p¿1: For a constraint fa= u′(fb) + s − m we introduce the length of the
term u′ verifying

lg(u′) = lg(u)− lg(u′′) = lg(u)− p6lg(u)− 1:

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 73

Let us distinguish three cases according to the fact that either the maximum of the
lg(u′)’s is zero, or strictly less than p (but diCerent from zero) or greater than p:
In the (rst case, the (rst complexity measure is zero and the proof is achieved.
In the second case, the (rst complexity measure strictly decreases. In the third case,
the second complexity measure has strictly decreased.
We are going back to the proof of Proposition 6.5.1. Beginning again, as many times

as necessary, we obtain a tree having a (rst complexity measure which is null. The
new constraints of the form fa= constant allow us to determine some more leaves.

Case 2′: If C contains the constraint t(fi) �=w(fk)+ r then t(v(fj)+m) �=w(fk)+ r
holds. We are led to add certain constraints of forms (1) and (1′) and a constraint of
the form (2′) within Bj:
Case 3′: if C contains the constraint t(fi) �= v(y) + r then t(v(fj) + m) �= v(y) + r

holds. We are led to add certain constraints of forms (1) and (1′) and a constraint of
type (3′) within Bj.

Conclusion: After 2-4-2-reduction, any constraints box contains
– either nothing,
– or a determining constraint,
– or a determining dependence constraint, say fi= v(fj) + m;
– or constraints of the forms (1) with t of non-zero length, or (1′) or (2′) or (3′),

that is to say only determining constraints.

7. Consistency of parametrized trees

At the end of the simpli(cation process, we (nd again a (nite set G of ordered pairs,
each one consisting of a simple parametrized tree Ti and of a formula CONDEXT (Ti)
of external conditions, together with the initial formula CONDEXTOR of the starting
point. In order to eliminate the existential quanti(cation on x it suIces to take the
disjunction of the external conditions CONDEXT (Ti) such that the associated tree Ti
is consistent, among the (nite set of trees which are the (rst components of the ordered
pairs of G. If there is no couple in F whose the (rst component is consistent, then
the original formula is false. Actually, the decidability of TH (N; C) is reduced to the
decision of the consistency of a simple tree, what we intend to do below.

7.1. An ordering of the leaves of a simple tree

Lemma 7.1.1. Let T be a simple parametrized tree of length N: It does exist a
permutation = from [0; 2N − 1] such that
(1) If fi is a determined leaf and fj a non-determined leaf; then =(i)¡=(j).
(2) If the condition fj = v(fi) + m lies in the box Bj; then =(i)¡=(j):

Proof. It suIces to sort the leaves in the following way:
– (rstly one places all determined leaves;

74 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

– then one places all the leaves fi whose constraints boxes only contain fundamental
constraints;

– (nally one places the leaves fi whose constraints boxes only contains the dependence
constraint (which is therefore the only one belonging to Bj) fj = v(fi) +m with fj
which is an already placed leaf.

– one iterates this last step up to the vanishment of all the leaves.
One can ask whether a problem can arise due to the appearance of a cycle, for

instance

fj = v(fi) + m and fi = w(fj) + r:

But this is impossible owing to the saturation step otherwise we would get fi= u(fi)+s
and, according to Section 3, the leaf fi would be determined.

7.2. Decidability of the consistency of the simple trees

The aim of the present section is to establish the following.

Proposition 7.2.1. The consistency of the simple trees is decidable.

Proof. We begin by performing some treatments to the given tree T: Let = be one of
the permutations whose existence is insured by Lemma 7.1.1 above.
First treatment: Re-organization of the fundamental constraints. Let fi be a leaf of

this tree whose constraints box contains only fundamental constaints, namely of the
form
(1) t(fi)=m where t is of non-zero length;
(1′) t(fi) �=m;
(2′) t(fi) �= t′(fk) + m (with possibly k = i);
(3′) t(fi) �= v(y) + m:
Let us consider the constraints of form (2′).
For k = i, according to Section 3, one can replace such a constraint by (nitely many

constraints of form (1′).
For =(k)¿=(i), one must distinguish between three subcases. If constraints boxes of

fk only contain fundamental constraints then one can put these constraints in the box
Bk and so we obtain an equivalent tree. If fk is a determined leaf then one replaces
this constraint by another one of form (1′) or (3′). If fk is a dependent leaf, then
the only constraint belonging to Bk is of the form fk = v(fj) + r while the box Bj
contains only fundamental constraints; if j= i then we get (nitely many constraints of
form (1′) which are equivalent; otherwise we get a constraint (2′) which is equivalent
and, depending of fi and fj, we put it either in Bi or Bj according to =(i)¿=(j) or
not. After this (rst treatment, one can assume that, for the constraints of form (2′),
the inequality =(k)¡=(i) holds.

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 75

Second treatment: Regrouping the determining constraints. The constraints of form
(1) as t(fi)=m where t has a non-zero length, which are in boxes just containing
fundamental constraints are cumbersome for deciding consistency. One cannot com-
pletely eliminate them, but it is interesting to reduce them to something convenient.
If we have simultaneously in a constraints box, Ku(fi)= a and Lu(fi)= b then we
replace these two constraints by the equality u(fi)=C(a; b): One iterates this process
while there is no more possible such reductions.
Third treatment: Elimination of certain disequations. Let us consider an ordered

pair of constraints of the respective forms t(fi)=m and u(fi) �= v(fj) + r, where t is
a suIx of u. Then we have u= u′ :t: Therefore the second constraint is equivalent to
u′(m) �= v(fj) + r, or in other words to v(fj) �= u′(m) − r: Now it suIces to remove
the second constraint from the box Bi and to put the new one in Bj.
However by this way the obtained tree is not necessarily simple. If the box Bj did not

contain any constraint, it is afterwards of type (d) of the de(nition of simple trees. If
this box was determined, then we see immediately whether we introduce a contradiction
(so that the tree is inconsistent) or if the condition is redundant. If the considered box
contained only fundamental constraints then we just add one more condition. If the
box contained the unique dependence constraint fj =w(fk) + s then the leaf fk is
necessarily of type (d).
One can replace fj =w(fk) + s by v(w(fk) + s) �= u′(m) − r: By normalization of

this latter formula, we obtain an equivalent family of trees by adding within each tree
only constraints of forms (1) and (1′) within Bk , so that the obtained trees are simple.
Let us consider an ordered pair of constraints of the respective forms t(fi)=m and

u(fi) �= v(y)+ r, where t is a suIx of u. Then we have u= u′ :t: Therefore the second
constraint is equivalent to u′(m) �= v(y)+ r, or in other words to v(y) �= u′(m)− r: Now
it suIces to remove the second constraint from the box Bi and to put the new one in
CONDEXT (T):
After this treatment when we have an ordered pair of constraints, say (t(fi)=m;

u(fi) �= v(fj) + r) in any constraints box, then t is not a suIx of u.
Determination of the consistency of simple trees after the previous treatments: Let

T (x) be a simple parametrized tree treated as above. We intend to apply to this tree
a process allowing us either to construct an integer which satis(es it, or to conclude this
tree is inconsistent. For this purpose, we inspect all the leaves from the leaf f=(0) until
the leaf f=(2n−1) following the linear order we have introduced above and assigning
them values in order to compute the value of the root x. We shall deal successively
with the following exhaustive cases.
Case 1: The constraints box of the leaf is empty. We assign to it an arbitrary value,

say 0.
Case 2: The constraints box of the leaf contains a determining constraint fi=m:

We assign this value m to the leaf.
Case 3: The constraints box of the leaf fi contains a dependence constraint fi=

v(fj)+ r, with =(j)¡=(i): The leaf fj had previously received a value so that it is
easy to compute the value we have to assign to the leaf fi.

76 P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77

Case 4: The constraints box of the leaf fi contains disequations, each one being of
one of the following forms:
– t(fi) �=m;
– t(fi) �= u(fj) + m, with =(j)¡=(i);
– t(fi) �= v(y) + m
and eventually also determining constraints u(fi)= r, where u cannot be a suIx of
a term t occurring in the disequations t(fi) �= u(fj) + m or t(fi) �= v(y) + m: Let us
begin by considering only the constraints u(fi)= r and t(fi) �=m: It is easy to observe
whether they are compatible. If they are not, then the tree is inconsistent. If they are
compatible, we are going to show we can assign a value to such a leaf by choosing for
the leaves fj which occur within these constraints the previously choosen values (since
=(j)¡=(i)). Let a′ be the maximum of the values m; v(y) +m and u(fj) +m which
occur in the disequations. Put a= a′ + 1. Let p be the maximum of length among
the terms t and u occurring in the above constraints. One considers the tree having p
as its height and fi as its root. One enumerates the leaves of this auxiliary tree in a
natural way from left to right. If a node u(fi) is determined, that is to say if there
exists a constraint of the form u(fi)= r, then it is the same (via a new saturation)
for its descending nodes and, in particular, of the leaves of the subtree having u(fi)
as its root. One gives the adequate value to the determined leaves and the value a to
all non-determined leaves, what attibutes some value to fi. Now we prove the leaf fi
veri(es all the needed constraints.
Owing to the assigned values, the determining constraints are satis(ed. Next, let us

consider a disequational constraint which bears on t(fi): If all the leaves of the subtree
having t(fi) as a root would be determined, then it would be the same situation for
t(fi): Since u is the suIx of no t, this is impossible. Consequently, there is at least
a leaf which had received the value a: From x¿K(x) and x¿L(x) for x¿1, we deduce
t(fi)¿a, so that the considered disequation is satis(ed by x.

Therefore, the initial original formula is equivalent to a disjunction of
CONDEXTOR and of formulas CONDEXT (Ti). So, the existential quanti(er bearing
on x is eliminated.
The (nal formula, i.e. obtained after elimination of all quanti(ers, will be a boolean

combination of atoms of the form m= n, where m and n are explicitely determined
integers. One easily can determine the truth value of such a formula. So we do have
a decision algorithm for the sentences ot the structure 〈N; C; S〉.

References

[1] G. Cantor, R. Dedekind, Briefwelrel, Hermann, Paris, 1937; traduction franScaise in: J. CavaillTes,
Philosophie mathUematique, Hermann, Paris, 1962, pp. 177–249.

[2] G. Cantor, Uber eine Eigenschaft des InbegroCes aller reellen algebraischen Zahlen, J. Reine Angew.
Math. 77 (1874) 258–262; = Gesamm. abh., pp. 15–118, Springer, Berlin, 1930; traduction franScaise in
Acta Math. 2 (1883) 305–310.

[3] P. Cegielski, De(nability, decidability and complexity, Ann. Math. Artif. Intell. 16 (1996) 311–341.

P. Cegielski, D. Richard / Theoretical Computer Science 257 (2001) 51–77 77

[4] P. Cegielski, D. Richard, On arithmetical (rst-order theories allowing encoding and decoding of lists,
Theoret. Comput. Sci. 222 (1999) 55–75.

[5] K.J. Compton, C.W. Henson, A uniform method for proving lower bounds on the computational
complexity of logical theories, Ann. Pure Appl. Logic 48 (1990) 1–79.

[6] H.B. Enderton, A Mathematical Introduction to Logic, Academic Press, New York, 1972, XIII + 295 p.
[7] J. Ferrante, C. RackoC, The Computational Complexity of Logical Theories, Lecture Notes in

Mathematics, vol. 718, Springer, Berlin, 1979, X + 243 p.
[8] I. Korec, A list of arithmetical structures complete with respect to the (rst-order de(nability, Theoret.

Comput. Sci. 257 (this Vol.) (2001) 115–151.
[9] J. Robinson, De(nability and decision problems in arithmetic, J. Symbolic Logic 14 (1949) 98–114;

rep. in: S. Feferman (Ed.), The Collected Works of Julia Robinson, American Mathematical Society,
Provindence, RI, 1996, 338. p.

[10] R. Tenney, Decidable pairing functions, manuscript, 1974, Department of Computer Science, Cornell
University.

[11] P. Cegielski, S. GrigorieC, D. Richard, La thUeorie UelUementaire de la fonction de couplage de Cantor des
entiers naturels est dUecidable, Comptes rendus de l’AcadUemie des Sciences, Paris, to appear.

