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Abstract

We recall a first result of Alan Woods: the undecidability of the first-
order theory Th(N, S,⊥), where ⊥ denotes the binary relation of coprime-
ness, with two different proofs. The question of the (S,⊥)-definability of
the full first-order arithmetic leads to the famous Erdös-Woods Conjec-
ture (EWC) (There is some k ∈ N such that every natural number x is
determined uniquely by the sequence S0, S1, . . . , Sk of sets of prime num-
bers defined by Si = { p | p divides x + i }). In case EWC is false,
then a-b-c conjecture, Hall’s conjecture, Hall-Schinzel’s conjecture, and
Lang-Waldschmidt’s conjecture are also false (Michel Langevin). After
Alan Woods, and except for EWC, the situations (mutual definability,
decidability) of many (not all!) reasonable natural theories Th(N, R1, R2)
– where R1 is a subset of the relation of addition and R2 a subset of the
relation of divisibility – were investigated (Alexis Bès, Patrick Cégielski,
Françoise Maurin, Denis Richard) with some surprising results. Con-
cerning the theory of addition and a predicate, for primes essentially, noth-
ing was known before Alan, in a joint work with C. G. Jockush and P.
T. Bateman, proved under Schinzel’s hypothesis (a polynomial general-
ization of the twin-primes conjecture) that Th(N,+,P) is undecidable.
Patrick Cégielski, Denis Richard, and Maxim Vsemirnov have shown
an absolute result: the undecidability of Th(N,+, n 7→ n × f(n)), where
f is a good approximation of n 7→ pn/n and pn is the (n+1)-th prime.

Alan also proved that the class RUD of all rudimentary (i. e. ∆0-de-
finable) sets of positive integers is contained in the class consisting of the
spectra SΦ = {|M | such that M is finite and M |= Φ} of those sentences
Φ having only graphs as models. Malika More, Alex Esbelin, and Fré-
déric Olive gave a toolbox for investigating rudimentary predicates and
also extended results to second order languages.

The name of Alan is attached to another very known concept : the
Erdös-Woods numbers, which are the positive integers k such that there
is a closed interval of integers [a, a+k] with the property that every integer
in the interval has a factor in common with either a or a + k. Results
on these numbers are due to M. Bienkowski, Patrick Cégielski, D. L.
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Dowe, François Heroult, M. Korzeniowki, K. Lorys, N. Lygeros,
Denis Richard, Maxim Vsemirnov, and others.

Although sure of not being at all exhaustive in speaking of the works of
Alan Robert Woods, we add some results and interesting open questions
about the p-destinies (Francis Nézondet) within < N, S,⊥>.

1 Undecidability of successor and coprimality

In the Open Days in Model Theory and Set Theory held in Jadwisin in the
Karpacz Mountains near Warsaw in September 1981, Jeff Paris gave a lecture
in which he mentioned the thesis of Alan Woods, quoting one of Alan’s results,
the proof that I∆0 + ∆0 − PHP ` Bertrand’s theorem. Denis Richard met
Jeff for discussing about his lecture and two of his own results on questions
appearing in the thesis of Julia Robinson, namely the (≤,⊥)-definability of the
whole arithmetic and the undecidability of Th(N, S,⊥), where S is the successor
function. Jeff told him that one of his PhD students, namely Alan, had also
proved those two results. Denis was glad that Jeff could know his arguments
to prove the undecidability result just mentioned and compare them with those
of Alan. He was at that time at the University Claude Bernard of Lyon, and
organized a visit of Alan in order to give some lectures on his thesis. In fact,
Alan visited Lyon in the following winter and they were able to compare their
independent proofs of the undecidability of Th(N, S,⊥) and Th(N,=, S,⊥).

Alan’s Proof.- Alan introduces infinitely many equivalence relations such as

• x ≈ y iff ν(x) = ν(y), where ν(a) is the cardinal of the set of prime divisors
of a

• x ∼ y iff x and y have the same set of prime divisors

• x ∼n y iff (x ∼ y) ∧ (x+ 1) ∼ (y + 1) ∧ . . . ∧ (x+ n) ∼ (y + n)

For x 6= 0, let us denote by x, xn, and x, respectively, the ∼, ∼n, and ≈
equivalence classes of which x is a representative.

Let N = {x | x ∈ N\{0}}, N = {x | x ∈ N\{0}}, Nn = {xn | x ∈ N\{0}}.
Alan proves < N,=,+,× > is a model isomorph to < N,=,+,× > under

the mapping ν−1. Then he proves that, considered as predicates on N, the
expressions x = y, x+y = z, and x×y = z are (S,⊥)-definable and hence there
is an effective way of transforming any sentence Φ of the language L(=,+,×)
into an equivalent L(S,⊥) sentence Φ∗ asserting that

< N,=,+,× >|= Φ∗.

This result, of course, permits to deduce the undecidability of Th(N, S,⊥) and
of Th(N,=, S,⊥) from the known undecidability of the full first order arith-
metic. Also the existence of these formulas reduces the problem of the (S,⊥)-
definability of multiplication to the question of whether ν−1 is (S,⊥)- definable.

Through some lemmas of definability using the Chinese Remainder Theorem,
Alan proves the (S,⊥)-definability of relations x ≤ y, x+ y = z, and x× y = z.
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Richard’s proof.- Instead of “Richard’s proof”, maybe it could be better to say
“proof as a corollary of the following result, due to G.D Birkhoff and H.S.
Vandiver–Zsigmondy–Carmichael”.

Theorem.- (ZBV-theorem) If x and y are coprime positive integers such that
x > y ≥ 1 then, for every n > 0, there exists at least a prime divisor of
xn− yn which divides none of the of xm− ym for 0 < m < n (such divisors are
called primitive divisors of xn − yn) except in the following cases:

• n = 1, x− y = 1 (since there is no prime divisor)

• n = 2, x+ y = 2α (for α > 0)

• n = 6, x = 2, y = 1.

Actually, it is not difficult to give a (S,⊥)-definition of x = n, for every
n in N, of P(x) (meaning x is prime), of the relation “p is prime and x is
a power of p different from 1”, of the relation “x and y are powers (a priori
different) primes and are equal”, of set-theoretic relations of union, intersection,
and complementation on the supports (the support of an integer a is the set of
the prime divisors of a), and of the relation “x 6= 1 and x is a power of some
prime and q is a primitive divisor of x− 1”.

Let p be some fixed prime. We denote by pN the set of powers of the prime
p, by pα ⊕p pβ = pα+β a binary function of addition and by pα ⊗p pβ = pα×β a

binary function of multiplication in pN. We also denote by =p the restriction to

pN of the equality relation. It is obvious that the structure < pN,=p,⊕p,⊗p >
is isomorphic to the usual model < N,=,+,× >. Then we have proved that the

structure < pN,=p,⊕p,⊗p > is (S,⊥)-definable in N.
As a by-product, we get the fact that the (S,⊥)-definability of any map

n 7→ pn, for any fixed prime p, would be sufficient for giving the (S,⊥)-
definability of multiplication.

In fact, the two proofs have their advantages. On the one hand, Alan does
not need any deep result in Number Theory (just the Chinese Remainder The-
orem) and proves by using quotient structures the transfer of undecidability
from full arithmetic to the weak first order (S,⊥)-arithmetic. On the other
hand, the ZBV-theorem provides a powerful tool for investigating Th(N, S,⊥)
and Th(N,=, S,⊥). The coding Denis Richard uses to transfer undecidability
is explicit and, in case of a negative answer, we shall know in terms of Number
Theory, exactly where the (S,⊥)-definability fails.

The previous result straightforwardly shows that :

(i) z = x× y is (S,⊥)-definable in N

(ii) z = x+ y is (S,⊥)-definable in N

(iii) x ≤ y is (S,⊥)-definable in N

(iv) x = y is (S,⊥)-definable in N

(v) For any fixed prime p, the map n 7→ pn is (S,⊥)-definable in N.
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Statements (i) to (iv) appear at first in the thesis of Alan [Woo-81], (v) in
[Ric-82].

2 Erdös-Woods Conjecture (EWC)

(Erdös-Woods Conjecture) There is some k ∈ N such that every natural
number x is determined uniquely by the sequence S0, S1, . . . , Sk of sets of
prime numbers defined by Si = { p | p divides x+ i}

Let Supp(a) denote the set of prime divisors of a. Consider the following
conjectures of Number Theory.

Oesterlé-Masser’s conjecture.- (Also called a-b-c conjecture) For all (a, b, c) ∈
(N∗)3 such that a + b = c and for every real r, there exists an effectively com-
putable constant K(r) such that

Πp∈Supp(abc) p > K(r)1−ε(a)

with ε(r) tends to 0 when r tends to infinity.

Hall’s conjecture.- If x3 6= y2 then there exists an effectively computable constant
C such that

|x3 − y2| > [C.Max(x3, y2)]1/6

Hall-Schinzel’s conjecture. If xm 6= yn then there exists an effectively com-
putable constant C such that

|xm − yn| > [Max(xm, yn)]C

Michel Langevin proved in 1988 [Lan-88] that the three previous conjec-
tures are false in case EWC fails. Moreover every conjecture which is false if
Hall’s conjecture is false becomes false in turn if EWC is. This is the case for
Lang-Waldschmidt’s conjecture (which gives lower bounds of linear forms of
logarithms) and for Vojta’s conjecture about abelian varieties.

Obviously, a positive solution to one of the conjectures above would give a
positive solution to EWC and Alan was right when he gave the title of his thesis
[Woo-81]. Denis Richard [Ric-88] was able to prove, after some discussion with
A. Schinzel, that if the a-b-c conjecture is true then the equality of supports
(sets of prime divisors) leads to the equality of numbers

Supp[x2n

− 1] = Supp[y2n

− 1]⇒ x = y.

Before leaving EWC, we must note that Maxim Vsemirnov was able to
extend the EWC to a conjecture on polynomial rings. Parallel to the second
proof using the so-called ZBV-theorem, Maxim Vsemirnov developed an in-
vestigation of Carmichaël numbers useful for coding in the logical approach of
EWC [Vse-02].
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3 Definability, Decidability, and Undecidability
within theories of N in various first-order lan-
guages

After Alan’s thesis, a lot of PhD students and experienced researchers investigate
the questions first opened by Julia Robinson, and then revisited by Alan and
members of the team of Denis Richard.

Here is an (non-exhaustive) abstract table giving some of the results on
decidability found between 1980 and 2000. The theories in the first four lines
are undecidable and decidable in the two last lines.

< N,=,+,× >
↑↓

< N,⊥, <> → < N, |, <> → < N,=,×, <>
[Woo-81] ←
↑ (↓ ?) ↑↓ ↑↓

< N,⊥, S > → < N, |, S > → < N,=,×, S >
[Woo-81] ← ? [Rob-49] ←
[PB-81]
↑ ¬ ↓ ↑↓ ↑↓

< N,⊥, <Π> → < N, |, <Π> → < N,=,×, <Π>
[BR-98] [BR-98] [BR-98]
↑ ¬ ↓ ↑ ¬ ↓ ↑ ¬ ↓

< N,⊥, <P2
> → < N, |, <P2

> → < N,=,×, <P2
>

[BR-98] [BR-98] [BR-98]
↑ ¬ ↓

< N,=,×, <P>
[Mau-97]
↑ ¬ ↓

< N,=,×, (n)n∈N >
[Sko-30]

4 Results about addition and primes

Before 1981, almost nothing was known about the association of the operation
of addition and the predicate of being a prime. Of course, there is the famous
theorem of Schnirelmann on the fact that every integer is a sum of less than 27
(nowadays 19) primes and the theorem of Vinogradov which reduces asymp-
totically this sum to three primes. Such results show, at least, the depth and
the interest of Th(N,+,P).

The first results on this area were conditional results under a conjecture of
Schinzel. Let SH denote Schinzel’s hypothesis, i.e. the following generalization
of the twin primes conjectures:

(SH) Let f1(x), f2(x), . . . , fn(x) irreducible polynomials over Z, each having a
positive leading coefficient. If there is no prime p such that p|f1(x)f2(x) . . . fn(x)
then there are infinitely many integers x such that [f1(x) ∈ P∧ f2(x) ∈ P∧ . . .∧
fn(x) ∈ P].
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Let (DC) denote Dickson’s conjecture, which is (SH) restricted to linear
polynomials. In 1981, Alan proved

(DC) ⇒ Th∀(N,+,P) is decidable.

In 1983, Belyakov and Martyanov extended this result of Alan by showing

(DC) ⇒ Th∀(Z,+,P, 1) is decidable.

In 1993, Alan, T. Bateman, and C.G. Jockush [BJW-93] showed, using argu-
ments from automata theory, a conditional result on a subtheory of Th(N,+,P),
namely

(DC) ⇒ Th2(N, S,P) is decidable.

So that multiplication is (+,P)-definable and hence

(SH) ⇒ Th(N, S,P) is undecidable.

Maurice Boffa briefly proves in the one-page paper [Bof-98] that

(SH) ⇒ Th(N,+, {primes of the form an+ b for a ⊥ b}) is undecidable.

Patrick Cégielski, Yuri Matiiassevich, Denis Richard, and Maxim Vse-
mirnov decided to investigate on unconditional results around the same theory
Th(N,+,P). In 1996 [CMR-96], they proved that

Th(N, n 7→ pn, R) for R ∈ {×, |,⊥} are undecidable.

Now remember that

pn = nlog(n) + n(log(log(n)− 1) +O(nlog(log(n))/log(n)).

In [CRV-07], they proved the following unconditional theorem

The theories Th(N,+, n 7→ nlog(n) + n(log(log(n) − 1)), Th(N,+, n 7→
pn, n 7→ rem(pn, n)), and Th(N,+, n 7→ nf(n)) are undecidable, for any func-
tion f “close” to the integer part (floor) of pn/n.

Below, PP denotes the set of products of two primes, X the set of primary
numbers (powers of a prime number), and <A the restricted natural order of N
to A for a part A of N.

R. Villemaire and Véronique Bruyère showed in 1992 that if Vk(x) is the
valuation of an integer for the (k+1)-th prime then Th(N,+, Vk) is decidable
but Th(N,+, Vk, Vh) is undecidable for k and h multiplicatively independent
integers. Alexis Bès [Bes-96] completed these results by showing that Vh can
be replaced by any set of n-tuples h-recognizable by a finite automaton.

To complete this part of the problems on addition and primes first opened
by Alan, we must mention the result of Françoise Maurin [Mau-97] show-
ing that Th(N, <P ,×) is decidable so that Th(N, <P ,P) is decidable although
Th(N, <PP ,P) and Th(N, <X ,P) are undecidable [BR-98].
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5 Rudimentary predicates, Spectra, and Rudi-
mentary languages of first and second order

Alan Woods, in chapter 2 of his thesis, considered the problem of defining addi-
tion and multiplication on the natural numbers by first order bounded quantifier
formulas involving only the predicate of coprimeness (x ⊥ y) and the natural
order predicate (≤).

He also proved as an application that the class RUD of all rudimentary
(i.e. ∆0-definable) sets of positive integers is contained in the class consisting
of the spectra SΦ = {|M | such that M is finite and M |= Φ} of those sentences
Φ having only graphs as models.

The equality between these classes holds if and only if SΦ is rudimentary for
every first order sentence Φ.

An analogous result holds for partial orderings instead of graphs. Alan noted
that if SΦ is rudimentary for every first order sentence Φ then we have NP 6=
co-NP. It is worth to note that Alan was often concerned with key-questions.

This part of Alan’s thesis inspired a lot of logicians and computer scientists.
In the team of Denis Richard, Alex Esbelin and Malika More stubbornly
worked to make some links with Grzegorczyk small classes (Esbelin), to inves-
tigate binary spectra by explicit polynomial transformations of graphs (More),
to give tools for recognizing rudimentary predicates (Esbelin and More) and
also to extend results to second order languages (More and Frédéric Olive).

In his thesis [Esb-94], Alex Esbelin studied the problem of equality of RUD
with the first class (E0)∗ containing the projections, the constant functions, the
successor function and closed under composition and bounded recursion. He
investigated two specific cases of (E0)∗: 1) the over-rudimentary classes, the
associated functions of which contain RUD (it is possible somehow counting
in all these classes) and he has founded results of derecursivation; 2) the sub-
rudimentary classes, the associated classes of relations of which are strictly
contained in RUD and he solved the problem of derecursivation for these classes.
Roughly speaking, derecursivation consisys to found the complete definability
of the values of a function or of a relation from the variables and the parameters
occurring in these without using the history of the computation, hence without
recursive function.

The question of whether a given primitive recursive relation is rudimentary is
in some cases difficult and is related to several well-known open questions in the-
oretical computer science. In [EM-98], Alex Esbelin and Malika More present
systematic tools to study this question, with various applications. Namely, they
give rudimentary definitions of various classical spectra. One of them gives a
sufficient condition for the collapsing of the first classes of the Grzegorczyk’s
hierarchy. Also they prove there exist one-to-one functions with rudimentary
graph that provide representations of various sets of spectra into RUD. Their
results are obtained via arithmetical coding of finite structures by a transforma-
tion of the first-order sentences into rudimentary formulas describing the same
semantic properties.

In [MO-97], Malika More and Frédéric Olive make conspicuous the equiv-
alence between three notions respectively coming from theory of recursive func-
tions and relations, from complexity of computing and, finally, from (finite)
model theory. On one hand, we know rudimentary languages are characterized
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by the linear hierarchy. On the other hand, we can prove this complexity class
corresponds to second-order monadic logic with addition. The authors enlighten
the deep links there is between those far distant topics by providing a straight-
forward logical characterization of the rudimentary languages and also a result
of representation of the second-order logic within those languages. (They use
arithmetical tools for doing that).

6 Erdös-Woods numbers

About the works of Alan, Gordon Royle said in SymOmega on the 18th of
december 2011: “Mathematically, his name is attached to at least one concept
theErdös-Woods numbers are the integer numbers k such that there is a closed
interval of integers [a, a+ k] with the property that every integer in the interval
has a factor in common with either a or a+ k”.

As we have already seen, many interesting problems in number theory emerge
from the thesis of Alan Woods [Woo-81]. The most famous of them is now
known as Erdös-Woods conjecture, after its publication in the book [Guy-81] of
Richard Guy.

Erdös-Woods conjecture. There exists an integer k such that integers x and
y are equal if and only if, for i = 0, . . . , k, integers x + i and y + i have same
prime divisors.

This problem is a source of an active domain of research.
In relation with this problem, Alan Woods had conjectured ([Woo-81],

p. 88) that for any ordered pair (a, d) of natural numbers, with d ≥ 3, there
exists a natural number c such that a < c < a+ d and c is coprime with a and
with a+ d. In other words

∀a,∀d > 2,∃c [a < c < a+ d ∧ a ⊥ c ∧ c ⊥ a+ d]

Very quickly, he realized the conjecture was false, by finding the counterex-
ample (2184, 16) (published in [Dow-89]). In 1989, David Dowe [Dow-89]
proved that there exist infinitely many such numbers d. We call such numbers
d Erdös-Woods numbers.

The main aim of the paper [CHR-03] is to prove that the set of Erdös-Woods
numbers is recursive.

A second aim is to give the first values of Erdös-Woods numbers and to show
there is a lot of natural open problems concerning these numbers.

Notation.- Let us denote by NoCoprimeness(a, d) the property

∀c [a < c < a+ d→ ¬(a ⊥ c) ∨ ¬(c ⊥ a+ d)]

Let us begin with some remarks.

Remarks.- (1) The relation NoCoprimeness(a, d) is recursive: it is easy to write
a program to check whether an ordered pair belongs to it.

(2) The set {(a, d) | NoCoprimeness(a, d)} is infinite: we know an
element (2184, 16) of this set and it is easy to check that for every k 6= 0, the
ordered pair (2184, 2184 + k.2.3.5.7.11.13) is also an element of this set.
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(3) The two unary relations, projections of NoCoprimeness(a, d),
defined by

ExtremNoCoprime(a) iff ∃d NoCoprimeness(a, d)

AmplitudeNoCoprime(d) iff ∃a NoCoprimeness(a, d)

are recursively enumerable: it is easy to write a program to list elements of
these sets (but not in natural order, unfortunately).

First elements of AmplitudeNoCoprime.- Theoretical reasons allows us to im-
plement an algorithm (in language C) to compute first elements of the set
AmplitudeNoCoprime. The algorithm is not very efficient, but it allows to
test quickly the first six hundred integers. We obtain the beginning of the set
AmplitudeNoCoprime:

16; 22; 34; 36; 46; 56; 64; 66; 70; 76; 78; 86; 88; 92; 94; 96; 100; 106;112;
116;118; 120; 124; 130; 134; 142; 144; 146; 154; 160; 162; 186;190; 196; 204; 210;
216; 218; 220; 222; 232; 238; 246; 248; 250; 256;260; 262; 268; 276; 280; 286;
288; 292; 296; 298; 300; 302; 306; 310;316; 320; 324; 326; 328; 330; 336; 340;
342; 346; 356; 366; 372; 378.

On odd elements of AmplitudeNoCoprime.- Dowe has found [Dow-89] an infi-
nite subset of AmplitudeNoCoprime, every element being even. He conjectures
every element of AmplitudeNoCoprime is even. Marcin Bienkowski, Mirek
Korzeniowski, and Krysztof Lorys, from Wroclaw University (Poland), have
found the counterexamples d = 903 and 2545 by computation, then a general
method to generate many other examples: 4533, 5067, 8759, 9071, 9269, 10353,
11035, 11625, 11865, 13629, 15395, . . . Nik Lygeros, from Lyon 1 University
(France), has independently found the counterexample d = 903, making precise
the related extremity:

a = 9 522 262 666 954 293 438 213 814 248 428 848 908 865 242 615359 435
357 454 655 023 337 655 961 661 185 909 720 220 963 272 377170 658 485 583
462 437 556 704 487 000 825 482 523 721 777 298 113 684783 645 994 814 078
222 557 560 883 686 154 164 437 824 554 543412 509 895 747 350 810 845 757
048 244 101 596740 520097 753981 676 715 670 944 384 183 107 626 409 084
843 313 577 681 531 093 717028 660 116 797 728 892 253 375 798 305 738 503
033 846 246 769 704747 450 128 124 100 053 617.

Lygeros found other values (d = 907 and 909), proving that the previous
sufficient condition is not necessary. Also he discovered that the solution d = 903
is an old result from Erdös and Seldfridge [ES-71].

On even squares of AmplitudeNoCoprime.- We see, in scanning the above list,
that every even square except 4 appears at the beginning. However 676 =
26× 26, 1156 = 34× 34 and 1024 = 32× 32 are not Erdös-Woods numbers.

On prime elements of AmplitudeNoCoprime.- An Erdös-Woods number may
be a prime number as 15 493 and 18 637 show.
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Open problems

The above list of first elements of AmplitudeNoCoprime suggests a great
number of open problems, curiously similar to problems for the set of primes.

We may implement a program to compute, for an Erdös-Woods number
d, the smallest associated extremity a. Numerical experiments suggest that
2 ⊥ a + 1 whenever the amplitude d is even, hence 2 divides a. Is it a general
property?

The solution (a, 903), with the a found by Nik Lygeros, shows it is not the
case for d odd.

Open problem 1.- (Even extremity for even amplitude). For an even d, is
every element a such that NoCoprimeness(a, d) even?

We may note we have a great number of twin Erdös-Woods numbers among
the first elements of AmplitudeNoCoprime: 34 and 36, 64 and 66, 76 and 78,
86 and 88, 92 and 94, . . .

Open problem 2.- (Infinity of twin Erdös-Woods numbers) There exists
an infinity of integers d such that d, d+ 2 belong to AmplitudeNoCoprime.

Indeed we also have a sequence of three consecutive even Erdös-Woods num-
bers (as 92, 94, 96), even four consecutive ones (as 216, 218, 220, 222).

Open problem 3.- (Polignac’s conjecture for Erdös-Woods numbers) For
any integer k, there exists an even integer d such that d, d+ 2, d+ 4, . . . , d+ 2.k
belong to AmplitudeNoCoprime.

Nik Lygeros has searched segments of consecutive natural numbers which
are not Erdös-Woods numbers. He has found long such segments.

Open problem 4.- There exist segments of any length without elements of Am-
plitudeNoCoprime:

∀k, ∃e [e, e+ 1, . . . , e+ k /∈ AmplitudeNoCoprime]

Passing from patterns in AmplitudeNoCoprime to complexity, we may re-
mark that the algorithm we have given to decide whether an integer belongs to
AmplitudeNoCoprime is worst than exponential. It is interesting to improve
it if it is possible.

Open problem 5.- (Complexity of AmplitudeNoCoprime) To which complex-
ity classes does AmplitudeNoCoprime belong?

Open problem 6.- Find a lower bound for AmplitudeNoCoprime.

Also we may ask questions à la Vallée-Poussin–Hadamard, passing from the
complexity to the density of the set AmplitudeNoCoprime. Let us denote by
d(n) the cardinality of the set {d ≤ n | AmplitudeNoCoprime(d)}.
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Open problem 7.- Find a (simple) function f such that d(n) ∼ f(n).

Open problem 8.- Is the density of AmplitudeNoCoprime linear? More pre-
cisely

d(n) = O(n)?

The last open problems we suggest concern Logic, more precisely Weak
Arithmetics. Problems of definability and decidability are important: Pres-
burger’s proof of decidability for the elementary theory of < N,+ > implies
that a set X ⊆ N is definable in < N,+ > iff X is ultimately periodic. The
negative solution given by Matiyasevich to Hilbert’s Tenth Problem relies on
the fact that the exponential function is existentially definable in < N,+,× >.
In the same way, the following problems deserve consideration.

Open problem 9.- Is the theory Th(N, NoCoprimeness,R) decidable? where R
is some relation or function to specify. (Addition + is an interesting candidate).

At the opposite, we may search for undecidability.

Open problem 10.- Is the theory Th(N,+, AmplitudeNoCoprime) def-complete
(i.e. is multiplication definable in the underlying structure)?

7 Is Nézondet’s method a beginning to an an-
swer to EWC?

Via the whole theory of p-destinies, Francis Nézondet proved a surprising
result which is too complicated to discuss here. Roughly speaking, Nézondet
constructs in a functional language (not relational) a non-standard structure,
the theory which is very like that of the standard model and in which EWC is
false.

Last open problems

Using p-destinies, Marcel Guillaume, Jilei Yin and Denis Richard have
tried to construct an algorithm for deciding Th3(N, S,⊥). It turns out that two
sets are the keys of this construction, namely

X = {a ∈ N | ∃b (Supp(a) ⊆ Supp(a) ∧ Supp(b) 6= Supp(a)

∧¬(b− 1 ⊥ a) ∧ ¬(b+ 1 ⊥ a)}

Y = {a ∈ N | ∃b (Supp() ⊆ Supp(a) ∧ Supp(b) 6= Supp(a)

∧(b− 1 ⊥ a) ∧ ¬(b+ 1 ⊥ a)}

It can be proved that a ∈ Y ∩ (2N + 1) iff ∃p ∈ Supp(a),∃q ∈ Supp(a) (ordp(q)
is even), where ordp(q) is the order of the element q within the group (Z/qZ)∗.

The construction of the essential 3-destiny of Th3(N,S,⊥) depends on the
answer (yes or no) to the following nine questions
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- 1) ∃a = (2n − 1) ∧ |Supp(a)| = 2 ∧ a /∈ Y

Answer: YES with a = 2227 − 1 or a = 2269 − 1.

- 2) ∃a = 2(2n − 1) ∧ |Supp(a)| = 3 ∧ a /∈ Y

Answer: YES with a = 2(2269 − 1).

- 3) ∃a = (2n − 1) ∧ |Supp(a)| ≥ 3 ∧ a /∈ Y

Answer: OPEN

- 4) ∃a = (2n + 1) ∧ n ∈ 2N ∧ |Supp(a)| = 2 ∧ a /∈ Y

Answer: OPEN

- 5) ∃a = (2n + 1) ∧ n ∈ 2N ∧ |Supp(a)| ≥ 3 ∧ a /∈ Y

Answer: OPEN

- 6) ∃a = (2n − 1) ∧ n ∈ 2N + 1 ∧ |Supp(a)| ≥ 3 ∧ a ∈ Y \X

Answer: YES with 225 − 1 = 31.601.1801

- 7) ∃a = (2n − 1) ∧ n ∈ 2N ∧ |Supp(a)| ≥ 3 ∧ a /∈ X

Answer: NO

- 8) ∃a = (2n + 1) ∧ n ∈ 2N + 1 ∧ |Supp(a)| ≥ 3 ∧ a /∈ X

Answer: OPEN

-9) ∃a = (2n + 1) ∧ n ∈ 2N ∧ |Supp(a)| ≥ 3 ∧ a /∈ Y \X

Answer: OPEN

8 Conclusion

We believe neither in paradise nor in hell. But as Sartre puts it in Les mots,
authors write with the aim of some kind of survival. In the case of mathemati-
cians, we cannot survive only by our theorems and works, but also, and above
all, by our questions. Questions of Alan Robert Woods are so pertinent, deep
and difficult that we guess he will last very long.
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primarité des entiers naturels est indécidable. Le prédicat de primarité
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