
Normalization of Extended Abstract State Machines

Cégielski,Patrick
Université Paris Est–IUT, LACL EA 4219,

Route forestière Hurtault, F-77300 Fontainebleau, France,

e-mail: cegielski@univ-paris12.fr

Guessarian,Irène
LIAFA, UMR 7089 and Université Paris 6,

2 Place Jussieu, 75254 Paris Cedex 5, France;
corresponding author

e-mail: ig@liafa.jussieu.fr

ABSTRACT
We compare the control structure of Abstract State Ma-
chines (in short ASM) defined by Yuri Gurevich and AsmL,
a language implementing it. AsmL is not an algorithmi-
cally complete language, as opposed to ASM, but it is closer
to usual programming languages because it allows until

and while iterations and sequential composition. We here
give a formal definition of AsmL, its semantics, and we con-
struct, for each AsmL program Π, a normal form (which is
an ASM program Πn) computing the same function as Π.
Keywords:Abstract State Machine, algorithm.

1. INTRODUCTION
Yuri Gurevich has given a schema of languages which is not
only a Turing-complete language (a language allowing to ex-
press at least an algorithm for each computable function),
but which also allows to express all algorithms for each com-
putable function (it is an algorithmically complete language);
this schema of languages was first called dynamic structures,
then evolving algebras, and finally ASM (for Abstract State
Machines) [4]. He proposed the Gurevich’s thesis (the no-
tion of algorithm is entirely captured by the model) in [5].

There exist several partial implementations of ASMs as a
programming language. These implementations are partial
by nature for two reasons: (i) ASMs allow to program func-
tions computable by Turing machines with oracles, but ob-
viously not the implementations; (ii) in ASMs any (com-
putable) first order structures may be defined, which is not
true for the current implementations.

Yuri Gurevich has directed a group at Microsoft Laborato-
ries (Redmond) which has implemented such a programming
language, called AsmL (for ASM Language), written first in
C++ then in C# as a language of the .NET framework of
Microsoft. To invite programmers to use its language, this
group extended the control structures used in ASMs. Pure
ASM control structures are represented by normal forms
of AsmL programs.

The aim of this paper is to give a formal definition of AsmL
(more precisely of the part concerning control structures; we
are not interested by constructions of first-order structures
here), a formal definition of normal forms in AsmL and to
show how to build a normal form from an AsmL program.

2. DEFINITIONS
2.1 Definition of ASMs
We first recall the definition of ASMs and then precise our
point of view on ASMs because different definitions exist.

2.2 Syntax
Definition 1. An ASM vocabulary, or signature, is

a first-order signature L with a finite number of function
symbols, two boolean constant symbols (true and false), a
constant symbol (denoted by null or undef), logical connec-
tives (not, and, and or), and the equality predicate.

Terms are defined as usual in first order logic (see for in-
stance [1]). Let us note that an ASM signature is a first-
order signature whose only predicate symbol is equality.
The fact that there are no other relation symbols simplifies
some definitions and proofs but is not essential.

Definition 2. Boolean terms (or formulæ) are defined
inductively by:

– if t and t′ are terms, then t = t′ is a formula;

– if p is a functional symbol onto {true, false} of arity n
and t1, . . . , tn are terms, then p(t1, . . . , tn) is a formula;

– if F, F ′ are formulæ, then ¬F , F ∧F ′, F ∨F ′ are formulæ.

Definition 3. Let L be an ASM signature. ASM rules are
defined inductively as follows:

• An update rule is an expression of the form:

f(t1, . . . , tn) := t0

where f is a n-ary functional symbol and t0, t1, . . . , tn
are closed terms of L.

• If R1, . . . , Rk are rules of signature L, then the fol-
lowing expression is also a rule of L, called block:

par
R1

...
Rk

endpar

If k = 0, it is the empty instruction, denoted skip.

• Let ϕ be a boolean term, and let R1 and R2 be rules of
signature L. The expression:

if ϕ then R1

else R2

endif

is a rule of vocabulary L, called alternative rule.

The expression if ϕ then R1 is a rule called test rule.



At the beginning of ASMs, par meant parallel, nowadays it
stands for parenthesis.

Definition 4. Let L be an ASM signature. A program
on signature L, or L-program is a synonym for a rule of
that signature.

2.3 Semantics
Definition 5. If L is an ASM signature, an ASM ab-

stract state, or more precisely an L-state, is a synonym
for a first-order structure A of signature L (an L-structure).

The universe of A consists of the disjoint union of three
sets: the basis set A, the Boolean set B = {true, false},
and a singleton set {⊥}. The values of the Boolean constant
symbols true and false and of null (or undef) in A will be
denoted by true, false and null (or ⊥).

Definition 6. Let L be an ASM signature and A a non
empty set. A set of modifications (more precisely an (L,
A)-modification set) is any finite set of triples:

(f, a, a),

where f is a function symbol of L, a = (a1, . . . , an) is an
n-tuple of A (where n is the arity of f), and a is an element
of A.

Definition 7. Let L be an ASM signature, let A be an L-
state and let Π be an L-program. Let ∆Π(A) denote the set
defined by structural induction on Π as follows:

1. If Π is an update rule: f(t1, . . . , tn) := t0 , then,

denoting a1 = t1
A
, . . . , an = tn

A
and a = t0

A
, the set

∆Π(A) is the singleton:

{(f, (a1, . . . , an), a)}

2. If Π is a block: par R1 . . . Rn endpar , then the set
∆Π(A) is the union:

∆R1(A) ∪ . . . ∪∆Rn(A)

for n 6= 0 and the empty set otherwise.

3. If Π is a test: if ϕ then R , we first have to evaluate
the expression ϕA. If it is false then the set ∆Π(A) is
empty, otherwise it is equal to:

∆R(A).

The semantics of the alternative rule is similar.

We may check that ∆Π(A) is an (L,A)-set of modifications.

Definition 8. A set of modifications is incoherent if it
contains two elements (f, a, a) and (f, a, b) with a 6= b. It
is coherent otherwise.

Definition 9. Let L be an ASM signature, Π an L-program,
and A an L-state.

If ∆Π(A) is coherent, the transform τΠ(A) of A by Π is
the L-structure B defined by:

• the base set of B is the base set A of A;

• for any element f of L and any element a = (a1, . . . , an)
of An (where n is the arity of f):

– if (f, a, a) ∈ ∆Π(A) for an a ∈ A, then :

f
B

(a) = a ;

– otherwise:

f
B

(a) = f
A

(a).

If ∆Π(A) is incoherent then τΠ(A) = A (hence the state is
a fixed point).

Definition 10. Let L be an ASM signature, Π an L-program,
and A an L-state. The computation is the sequence (An)

n∈N
defined by:

• A0 = A (called the initial algebra of the computa-
tion);

• An+1 = τΠ(An) for n ∈N.

A computation terminates if there exists a fixed point An+1 =
An.

Definition 11. The semantics is the partial function which
transforms {Π,A}, where Π is an ASM program and A a
state, in the result of iterating τΠ starting from τΠ(A) until
a fixed point is reached (it will be denoted [[(Π,A)]] = τ∗Π(A))
if such a fixpoint exists, otherwise it is undefined.

3. DEFINITION OF EXTENDED ASMS
We call extended ASM the analog of ASM with additional
rules to take into account the supplementary control struc-
tures of AsmL. No paper defines formally AsmL but [3] gives
a precise informal description.

3.1 Syntax
Roughly speaking, AsmL considers more control structures
than ASMs. We first define AsmL rules, then explain them.

Definition 12. Let L be an ASM signature.

• An ASM rule is also an extended rule of L.

• If ϕ is a boolean term, and R1 and R2 are extended
rules, then:

if ϕ then R1

else R2

endif

is an extended rule, called alternative rule.

• If R1, . . . , Rk are extended rules of signature L, then
the following expression is also an extended rule of L,
called step rule:

par
step R1

...
step Rk

endpar



• If R is an extended rule of signature L, then the fol-
lowing expressions are also extended rules of L, called
iteration rules:

– step until ϕ R

– step while ϕ R

– step until fixpoint R

with ϕ a boolean term.

We now explain the above rules. Following the semantics
given above for ASMs, the meaning of the par rule:

par
R1

...
Rk

endpar

is that rules R1, ..., Rk are running simultaneously, i.e. each
rule is running (with a point of view sequential or parallel
for the observer) independently of the other rules; incoher-
ences might occur for some updates; if there is at least one
incoherence, the program stops, otherwise updates are ap-
plied.

The paradigm of simultaneity is unusual for programmers
who prefer sequentiality. Hence sequentiality was introduced
using step in AsmL. The meaning of the extended rule

par
step1

...
stepk

endpar

is as follows: rule step1 is running first; then rule step2 is
running (with values of closed terms depending of the result
of running rule step1); and so on.

Finally classical iterations appear in AsmL via the step un-
til and step while iteration rules, and the step until
fixpoint rule of ASM is also present.

4. NORMALIZATION
Definition 13. Let L be an ASM vocabulary. If R is an

extended rule of vocabulary L, then the expression step un-
til fixpoint R is called a running rule.

Running rules are implicit in ASMs and are made explicit
in AsmL. If R is an ASM rule (not extended), then step
until fixpoint R will have the same semantics as the ASM
program Π consisting of rule R.

Definition 14. Let L be an ASM vocabulary. If R1, . . .,
Rk are ASM rules of vocabulary L (not extended rules), then
the extended rule:

step until fixpoint

par

if (mode = 0) then R1

...

if (mode = j) then Rj

...

if (c=0) ∧ (mode = i) then Ri

if (c=1) ∧ (Mi ≥ mode ≥ i) then

mode:=i

c:=0

...

if (mode = k) then Rk

endpar

is a normal form of L, where mode, c are special nullary
functional constants of the ASM language whose value for
the initial algebra are 0.

The rule under step until fixpoint is called the core of
the normal form.

In the sequel par and endpar will be omitted: when rules
have the same indentation, they will be assumed to be in a
par... endpar block.

To give a normal form for a given program is a classical issue
of theoretical computer science.

Example Consider the following programming problem: to
compute the average of an array of grades and to determine
the number of grades whose value is greater than this aver-
age. A natural program in extended ASMs is:

step
avg := 0
i := 0

step until (i = n)
avg := avg + grade[i]
i := i+1

step
avg := avg/n
i := 0
nb := 0

step until (i = n)
if (grade[i] > avg) then nb := nb+1
i := i+1

using the conventions of AsmL (a same indentation indicates
a block).

The core of the normal form is:

if (mode = 0) then
avg := 0
i := 0
mode := 1

if (mode = 1) then
avg := avg + grade[i]
i := i+1
if (i = n) then mode := 2

if (mode = 2) then
avg := avg/n
i := 0
nb := 0
mode := 3

if (mode = 3) then
if (grade[i] > avg) then nb := nb+1
i := i+1
if (i = n) then mode := 4

if (mode = 4) then
skip

Theorem 15. For every extended ASM program Π, there
exists a normal form ASM program Πn such that for every
L-state A whose base set is infinite there exists an Lm-state
Am in which Πn computes the same function as Π.

Proof. We define the core of the normal form Πn of Π by
structural induction on the form of program Π. The proof
that Πn and Π compute the same function can be found in
[2].



We will need to label some blocks. To allow this, we suppose
the base set is infinite, and we use special nullary functions,
called mode, c and whose corresponding constant symbols
are added to the ASM language, i.e. Lm = L ∪ {mode, c}.
Without loss of generality, we suppose the set N of natural
integers is included in the base set.

• The core of the normal form Rn of an ASM rule R is:

if (mode = 0) then
R
mode := 1

• If R′1, . . ., R′k are the respective cores of the extended
rules R1, . . ., Rk, we have to define the core of the
extended rule Π:

par
step R1

. . .
step Rk

endpar

In the (abnormal) case k = 1, the core is simply R′1.
To explain the case k ≥ 2, it is sufficient to suppose
k = 2. In this case the core of Πn is:

R′′1
R+fin1

2

with

1. R′′1 = R′1.

2. R+fin1
2 is defined as follows: Let fin1 be the

greatest value used for mode in R′1. Rule R+fin1
2

is R′2 where fin1 is added to each constant occur-
ring on the right side of the “=” (or “≥”) sign of
an expression rule beginning by mode (a boolean
expression mode = constant or an update rule
mode := constant).

• If Π is an iteration rule (step until ϕ R) and R′ is
the core of the normal form of R then the core Π′ of
the normal form Πn of Π is

if (mode = 0) then
if ¬ϕ then mode := 1
if ϕ then mode := fin + 1

R+1

where R+1 is R′ in which each constant occurring on
the right side of the “=”(or “≥”) sign of an expres-
sion beginning by mode (a boolean expression mode =
(≥)constant or an update rule mode := constant) is
incremented by 1 but for the greatest such value fin,
which is replaced by 0.

• If Π is an iteration rule (step until fixpoint R),
then the stopping condition of the iteration is defined
as follows in [3] “In the case of until fixpoint, the stop-
ping condition is met if no non-trivial updates have
been made in the step. Updates that occur to variables
declared in abstract state machines that are nested in-
side the fixed-point loop are not considered. An update
is considered non-trivial if the new value is different
from the old value.” We thus must check that all up-
dates are trivial before stopping. Let fi(t1, . . . , tn) :=

ti0, i = 1, . . . , k, be all the (non nested) updates per-
formed in R. Let us introduce a new constant c (keep-
ing track of non trivial updates), with value 0 in the
initial algebra.

Let R′ be the core of the normal form of R and M the
largest value of mode occurring in R′, , then the core
Π′ of the normal form Πn of Π is:

if (c=1) ∧ (M ≥ mode ≥ 0) then
mode:=0
c:=0

if (c=0) ∧ (mode = 0) then Rc

Rc is R′ in which each update (other than updates on
c and mode) fi(t1, . . . , tn) := ti0 has been replaced by

if fi(t1, . . . , tn) 6= ti0 then
fi(t1, . . . , tn) := ti0
c := 1

• If Π is an iteration rule (step while ϕ R), it is treated
as the until iteration, and the core of the normal form
is:

if (mode = 0) then
if ϕ then mode := 1
if ¬ϕ then mode := fin + 1

R+1

• If Π is an alternative rule,

if ϕ then R1

else R2

endif
and R′1, R′2 are the respective cores

of R1, R2, then the core of the normal form of Π is:

if (mode = 0) then
if ϕ then mode := 1 else mode := fin + 1

R+1
1

Rfin+1
2

where R+k
i is R′i where k is added to each constant

occurring on the right side of the “=” (or “≥”) sign of
an expression rule beginning by mode. ut

REFERENCES
[1] Arnold, André, Guessarian, Irène, Mathematics for

Computer Science, Prentice-Hall, London (1996), 401 p.

[2] Cegielski, Patrick, Guessarian, Irène, Normal Forms
for Extended Abstract State Machines,
http://www.liafa.jussieu.fr/~ig/g70.ps

[3] Grieskamp, Wolfgang, Tillmann, Nikolai, AsmL
Standard Library, Foundations of Software
Engineering – Microsoft Research, 2002, 38 p., see also
http://www.codeplex.com/AsmL//AsmLReference.doc

http://research.microsoft.com/en-us/downloads/

3444a9cb-47ce-4624-9e14-c2c3a2309a44/default.

aspx

[4] Gurevich, Yuri, Reconsidering Turing’s Thesis:
Toward More Realistic Semantics of Programs,
University of Michigan, Technical Report
CRL–TR–38–84, EECS Department, 1984.

[5] Gurevich, Yuri, A New Thesis, Abstracts,
American Mathematical Society, August 1985, p.
317.


