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The field of Weak arithmetics is application of logical methods to Num-
ber Theory. The most famous results are: undecidability of elementary
arithmetic (in contrast with elementary geometry [46, 47], there is no
computer program to determine whether an arithmetical sentence is true
[8]); and the negative answer to the Hilbert’s tenth problem (there is no
general algorithm to decide whether a diophantine equation with integer
coefficients has a solution in integers [11, 25, 12, 26]).

Number Theory is free to use any method to obtain results concern-
ing natural integers. The adjective ‘weak’ in weak arithmetics refers to
restrictions used in this topic. First of all, weak arithmetics specify its
object of study: it is not a vague ‘study of natural integers’ but a study
of the first order structure 〈IN,+,×〉, where IN is the set of natural
integers 0, 1, 2,..., + denotes addition, and × denotes multiplication*.
In fact, we study expansions by definitions of this structure and sub-
structures of such expansions. Because IN is not well defined in the
universe of sets, we also study non standard models of 〈IN,+,×〉, more
precisely of Th(IN,+,×), where ‘Th’ means theory in a formal sense.

* See, for instance, [27, 16, 15] for an introduction to mathematical logic and
its vocabulary.
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As well as we are interested in nonstandard models of Th(A), where A
is a substructure of an expansion by definitions of 〈IN,+,×〉 or Th(A)
is a theory given by a set of axioms (satisfied in the standard structure
〈IN,+,×〉).

Secondly, weak arithmetics also impose a restriction on the studied
properties. We do not consider ill defined properties but only well de-
fined logical sentences: first-order sentences and second-order sentences,
or more precisely for the second ones monadic second-order sentences
or weak monadic second-order sentences. The origin of this restric-
tion comes from set theory. After the axiomatization of set theory
by Zermelo [55], Henri Poincaré criticized the explanation given by
Zermelo of the notion of ‘defined property’ implied in the axiom of sep-
aration [31]. In 1922, Fraenkel and Skolem proposed, independently,
a more precise definition [19, 43]; nowadays we prefer to use the second
one: to employ a formal first-order language and to consider a ‘defined
property’ to be a property that can be expressed by a first-order formula
(an idea inspired by Hermann Weyl [53]). First-order formulas have a
long history: introduced in the second part of the nineteenth century,
essentially by Gotlob Frege, they were formally defined by Skolem in
the above-cited paper.

Definition 1. Let denote by L(PA) the first-order logical language
whose proper symbols are an unary function symbol S, two binary func-
tion symbols + and ×, and a constant symbol 0.

Terms of L(PA) are defined recursively:

1) A variable x0, x1, x2,... is a term.

2) 0 is a term.

3) If s and t are terms, so are Ss, (s+ t), and (s× t).
Primitive formulas of L(PA) are t = s, where t and s are terms.

Formulas of L(PA) are defined recursively:

1) Primitive formulas are formulas.

2) If φ and ψ are formulas then φ ∧ ψ, φ ∨ ψ, φ → ψ, and ¬φ are
formulas.

3) If x is a variable and φ is a formula then ∀xφ and ∃xφ are formulas.

A sentence is a formula without free variables. Every sentence of
L(PA) is either true or false in the structure 〈IN,+,×〉. Howewer, the
undecidability of elementary arithmetic amounts to the nonexistence
of a general algorithm to decide whether a given sentence is true in
〈IN,+,×〉.
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One of the topics of weak arithmetics is to try to axiomatize the
theory of some arithmetical structure, i.e. to find a set of sentences
(true in this structure) whose deductions are exactly the sentences
true in this structure. Dedekind [13] and Peano [29] showed that
ThL(IN,+,×) is axiomatizable for an ill-defined logic L (a sort of but
not exactly second-order logic). Gödel proved that Th1(IN,+,×) is
not first-order axiomatizable [20]. Inspired by Dedekind and Peano’s
axiomatization, Skolem defined a first-order theory whose axioms are
all true in 〈IN,+,×〉, but is not an axiomatization of Th1(IN,+,×), for
Gödel proved that Th1(IN,+,×) is not first-order axiomatizable [20].

Definition 2. The first-order Peano arithmetic is the first-order
theory in the language L(PA) whose proper axioms are:

- ∀x (Sx 6= 0);

- ∀x,∀y (Sx = Sy ⇒ x = y);

- ∀x (x+ 0 = x);

- ∀x,∀y [x+ Sy = S(x+ y)];

- ∀x (x.0 = 0);

- ∀x,∀y [x.Sy = x.y + x];

- For each formula φ(x, ~y) of L(PA), we have:

∀~y [[φ(0, ~y) ∧ ∀x [φ(x, ~y)→ φ(Sx, ~y)]]→ ∀x φ(x, ~y)]].

The last item is a schema of axioms (induction axiom schema) hence
the number of axioms is infinite. Indeed, it is proved that this theory is
not finitely axiomatizable.

Many works in weak arithmatics concern axiomatizability of the
first-order theory of substructures of an expansion of 〈IN,+,×〉, e.g.
Th1(IN, S) [24], Th1(IN,+) (Presburger arithmetic [33, 16]), Th1(IN,×)
(Skolem arithmetic [3, 4, 5, 45]), and Th1(IN, |), where | is the divisibility
relation (which is finitely axiomatizable [6, 7]).

In a second topic, the goal is to determine whether a well-defined
logical theory of a substructure of an expansion of 〈IN,+,×〉 is decidable,
i.e. to determine the existence of an algorithm to decide whether a gen-
eral sentence of this theory is true. Church has shown Th1(IN,+,×)
is undecidable. In contrast, Th1(N,+) (Presburger arithmetic [33, 16]),
Th1(N,×) (Skolem arithmetic [44, 28, 5, 45]), Th1(N, |) (natural lattice
theory), or monadic second-order theory of 〈IN, S, 0〉 (Büchi arithmetic
[1, 41]) are decidable. The best overall reference on undecidability prob-
lem is [17, 21].
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A third topic involves determining the complexity of decidable the-
ories. For instance Th1(IN,+) has complexity of order 22

cn

(double
exponential), i.e. there are constants c, c′ such that i. every sentence φ
of the given language of size ≤ n can be decided in at most 22

cn

steps,
and ii. for any decision procedure there are, for infinitely many n, sen-

tences of size ≤ n which require more than 22
c′n

steps of the procedure
to be decided. The lower complexity for Th1(IN,×) has been shown to

be of order 22
2cn

(triple exponential) [18]. The analog for undecidable
theories, to determine the corresponding Turing degrees, is not an alive
topic.

We have seen first-order Peano Arithmetic has an infinite num-
ber of axioms, due to the schema of induction. A very active fourth
topic of weak arithmetics is interested in variants of the schema of in-
duction, searching equivalence of such variants with other variants or
consequences of this variant. Many variants are known for the full first-
order Peano arithmetic. Peano Arithmetic contains an induction axiom
for each first-order formula φ. But, what happens if we restrict formulas
φ to belong to a given well defined set of formulas? A lot of such sets of
formulas have been considered in the literature: either natural subsets
of the set of first-order formulas characterized by their logical structure,
either set of formulas characterizing a given property in the standard
model. Certainly the most famous of this second sort of sets are the
sets of Σn and Πn sentences and the sets defined by Samuel Buss [2] to
characterize NP and P.

Algorithms are fundamental in Number Theory. A fifth topic of
weak arithmetic aims to find out which algorithms are expressible in
certain restricted programming language. For instance Löıc Colson
has shown [9] that the “best” algorithm to obtain the minimum of two
natural integers (to decrease one then the other until one of the inte-
gers is zero) is not expressible in many natural functional programming
languages.

There exist other topics in weak arithmetics but this description of
the domain is sufficient to give an idea of its subject and the methods
involved. Classical books on weak arithmetics are [30, 11, 41, 18, 2, 45,
21, 23, 22, 26]. Another survey on weak arithmetics is [35].

The European researches on weak arithmetics (mainly in Arme-
nia, Belgium, Czech Republic, Federation of Russia, France, Great
Britain, Greece, Israel, Italy, Poland, Portugal, Slovakia, Spain, Tunisia,
Ukraine) have had their annual conference since 1990, called JAF
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(French acronym for “Journées sur les Arithmétiques Faibles”) or, equiv-
alently, Weak Arithmetics Days. The original name, due to the fact that
the first issues were held in France, has not been changed until now).
The first issue was held in École Normale Supérieure de Lyon in June
1990, the twenty-eighth issue at University Paris-Est Créteil, campus of
Fontainebleau, in June 2009. Some records on JAF are maintained at

http://lacl.univ-paris12.fr/jaf/

where we may see the various locations of the conference (for instance
Saint-Petersburg in May 1997 and June 2002, Mons in December 1997,
Varsaw in May 1998 (and June 2010), New-York in November 1999,
Naples in June 2003, Yerevan in June 2004, Sevilla in June 2007, and
Athens in June 2008). This book consists of a choice of talks given in
JAF, mainly in the lastest issue, representative of several topics in weak
arithmetics.

We have begun this introduction by recalling the result of Tarski
on decidability of elementary geometry. This result is equivalent to the
decidability of the first-order theory of the structure 〈IR,+,×〉, where
IR is the set of real numbers, axiomatized as theory of real closed fields.
Tarski also asked the question of the decidability of the first-order
theory of the structure 〈IR,+,×, exp〉, where exp is the exponential
function. There exist a lot of results related to this still open prob-
lem. In 1964, Shepherdson [40] axiomatized the theory of the integral
part 〈N,+,×〉 of a real closed field 〈R,+,×〉: it coincides with the the-
ory of discrete unitary commutative semi-ring satifying IE0 (schema of
induction restricted to quantifier free formulas). In chapter one, Sedki
Boughattas and Jean-Pierre Ressayre explain the beautiful results
they have obtained on integral parts 〈N,+,×〉 of a real exponential field
〈R,+,×, exp〉. The careful reader has noted integral part is not unique.

We have given above the definition of formulas and sentences in
the first-order language of Peano Arithmetic. Every formula is logically
equivalent to a formula under prenex form

Q1y1Q2y2 . . . Qnyp θ(y1, . . . , yp, x1, . . . , xm)

where Qi are quantifiers (∀ or ∃) and θ is an open formula, i.e. a for-
mula without quantifiers. Such a prenex formula is a Πn-formula if there
are n groups for quantifiers: the first ones (including Q1) are universal
quantifiers ∀, the following are existential quantifiers, then universal
quantifiers, ending by a n-th group. Such a prenex formula is a Σn-
formula if there are n groups for quantifiers beginning with a group of
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existential quantifiers. We have already mentioned the interest in study-
ing the so-called fragments of first-order Peano Arithmetic. That is to
say, subtheories of Peano Arithmetic obtained by imposing a restriction
on the formulas for which the induction schema (or some other related
number-theoretic principle) is postulated. Notably, IΣn, IΠn, IΣ−n , and
IΠ−n denote, respectively, the induction schema restricted to Σn formu-
las, IΠn formulas, Σn sentences, and Πn sentences. These theories,
fragments of Peano Arithmetic PA, are objets of a very lively active
topic of weak arithmetics. In chapter two, Andrés Cordón-Franco,
Alejandro Fernández-Margarit, and Francisco-Félix Lara-Mart́ın
study a number of conservation results for IΠ−n . The reference list cites
some previous papers on this topic.

Often the organizers of JAF ask for a survey on methods which
may be applied to, but are not necessarily directly connected to, weak
arithmetic. In chapter three, Anuj Dawar and Bjarki Holm present
the class of tools, called games, used in finite model theory. They begin
with the classical Ehrenfeucht-Fräıssé games, and then explain why other
games are needed (pebble, counting, and bijection games) and introduce
a new type of model-comparaison games. Not only they give the original
reasons for introducing a new type of games (related to logical expression
of PTIME) but they also motivate these games through a problem close
to weak arithmetics: the inability of logics to express a basic problem in
linear algebra, namely, to determine whether a system of linear equations
over a fixed finite field has a solution.

The sets of natural numbers defined by a formula φ(x) of L(PA) are
called arithmetics. The study of subsets of IN defined by various sets of
formulas constitutes an active field. For example, the relation < is first-
order definable in 〈IN,+,×〉; hence a new sort of quantifiers (bounded
quantifiers) are introduced: (∀x)≤y ... stands for ∀x (x ≤ y → ...) and
(∃x)≤y ... for ∀x (x ≤ y ∧ ...). Rudimentary relations are defined by
formulas using bounded quantifiers instead regular quantifiers. The class
of rudimentary relations has beeb studied for a long time but several old
open problems remain. In chapter four, Henri-Alex Esbelin proves the
constant e (basis for neperian logarithm) and π (= 3.14159...) have
rudimentary approximations.

Quine [34] has shown that the theory of formal languages is in a
sense a field of weak arithmetics, because the first-order theory of the set
of words over a finite alphabet with concatenation is equivalent to the
first-order Peano Arithmetic. Finite words were generalized to infinite
words (more precisely, to denumerable words a0a1 . . . an . . .) by Büchi
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to prove the decidability of monadic second-order theory of < IN, S, 0 >,
then to bi-infinite words (. . . a−m . . . a1a0a1 . . . an . . .) and more recently
to pictures, i.e. infinite words in two dimensions. Olivier Finkel proves
in chapter five some undecidability results on pictures and shows that
some properties on pictures depend on the universe of sets, that is to
say, those properties are neither provable nor refutable in ZFC.

The study of restricted classes of algorithms and the expression of
these algorithms in such and such programming language is a growing
topic of Theoretical Computer Science. Possible applications of this
topic to arithmetical problems constitute a growing field of weak arith-
metics. In chapter six, David Michel and Pierre Valarcher define the
class APRA of primitive recursive algorithms (related to primitive re-
cursive functions) and show that there exists a functional programming
language that simulates in a sufficiently nice manner all algorithms of
APRA. Applications to the challenging case of GCD are also given.

It is well known in weak arithmetics that some arithmetical proper-
ties depend on the underlying universe of sets (indeed, as we have already
mentioned, a result of this kind appears in Olivier Finkel’s contribution
to these proceedings). For arithmetic, the axiom of infinity of set theory
is fundamental. In chapter seven, Eugenio Omodeo, Alberto Poli-
criti, and Alexandru Tomescu study the logical complexity of this
axiom in some variants of set theory without the axiom of foundation.

We have already mentioned the relationship between weak arith-
metics and the theory of words defined over a finite alphabet. The
theory of words is the study of the structures 〈A∗, .,=〉, where A is a
non empty finite set, called alphabet, A∗ is the set of words a1a2 . . . an
over this alphabet, the binary operation ‘.’ stands for concatenation and
‘=’ is interpreted as set equality: two words a1a2 . . . an and b1b2 . . . bm
are equal iff m = n, b1 = a1, ..., bn = an. The theory of traces is the
study of structures 〈A∗, .,≡〉 with a different interpretation of equality:
there exists a subset R of A × A (the set of elements that commute)
such that if (a, b) ∈ R (with a 6= b) then ab ≡ ba and, more generally,
σabτ ≡ σbaτ for every words σ, τ . As usual, if we want to make ex-
plicit the set R, we shall write ≡R to denote the equality relation ≡.
The theory of traces is a growing field of Theoretical Computer Science
because a trace is a representation of events in parallelism: a word is
a sequential list of tasks; the tasks a and b commute if they may be
executed in parallel [14]. A classical problem on words is to search the
best algorithm to determine if a word p (the pattern) is a factor of a
word t (the text), i.e. if there exist words σ and τ such that t = σpτ .
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We may generalize this problem where letters of p = p1 . . . pk appear
in the text, in the same order but not consecutively with a constraint
on the difference of location between the last letter and the first letter
(the problem is trivial without this constraint). In chapter eight, Karine
Shahbazyan and Yuri Shoukourian study the generalization of this
last problem to traces.
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din. Math., Helsingfors 1922, 1923, pp. 217–232; Engl. tr. in
[52].

[43] Skolem, Thoralf, Begründung der elementaren Arithmetik durch
die rekurrierende Dekweise ohne Anwendung scheinbarer Verän-
derlichen mit unendlicem Ausdehnungsberiech, Videnskapsslska-
pets skrifter, I. Matematisk-naturvidenskabelig klasse, no 6,
1923, pp. 1–38; reprinted in Selected works in logic, Universi-
tesforlaget, Oslo, 1970, pp. 153–188; Engl. tr. in [52], pp. 302–333.



12 Studies in Weak Arithmetics
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dans [49], vol. 2, pp. 203–242.

[48] Tarski, Alfred & Mostowski, Andrzej & Robinson, Raphael,
Undecidable theories, North-Holland, 1953.

[49] Tarski, Alfred, Logique, sémantique, métamathématique :
(1923–1944), Armand Colin, Paris, vol. 1 (1972), vol. 2 (1974).

[50] Tarski, Alfred, Collected Papers, Givant & McKenzie ed., Bir-
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