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We survey how the definability problem in first-order logic was born and the 
relations between this problem and the question of decidability of logical theories. We 
also show present connections between definability and the important theoretical 
problems of computational complexity. 

1. Definability 

1.1. WHAT IS A DEFINITION? 

1.1.1. Historical remarks 

1.1.1.1. Definitions as a shortcut 

When someone uses a word whose meaning is unkown to us, our first reaction, 

if we dare, is to ask for a defini t ion of the underlying concept. The notion of 

definition is very widespread. 
It can happen that we misuse a definition, with vicious circles as the result. 

For instance, the favorite quotation of Quine l~ is a defini t ion of a "bachelor" as an 
"unmarr ied man" and an "unmarried man" as a "bachelor" [58]. 

Aristotle was the first to teach that it is not possible to define each word. It 

is necessary to dist inguish between primitive terms and defined terms, with an 

analogy between theorem and axioms. 
Pascal clarified this argumentat ion with many details in De l'esprit gdo- 

m~trique et de l'art de persuader (around 1657, published in 1728). 
The Polish logician Lesniewski first explicited rules for the definition process 

in mathematical  logic (see Suppes [78, Chap. 8]). 
Nowadays,  these definit ions appear as an introduction to new symbols,  or a 

shortcut, popularised by Bourbaki [4] in 1954: 

~)The occurrence of a name is also a reference which does not always appear with a ref. no. in the 
text itself, but which is given in the list of references. 
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The exclusive use of assemblies would lead to insuperable difficulties 
both for the printer and for the reader. For this reason, current texts use 
abbreviating symbols (notably words of ordinary speech) which do not 
belong to formal mathematics. The introduction of such symbols is the 
object of  definitions. Their use is not indispensable to the theory, and can 
often lead to confusion which only a certain familiarity with the subject will 
enable the reader to avoid. 

1.1.1.2. Implicit definition 

A definition as a shortcut does not pose any problem when it is explicit. 
Nevertheless, for many reasons, implicit definitions appeared. Gergonne [21 ] pointed 
out this problem in 1818. Let us consider two sorts of implicit definitions. 

Fibonacci [19] defined his famous sequence ( f n ) n ~  in 1202 by 

f0 =1, fl =1, fn+2 =fn+l +fn .  
Actually, he wrote: 

How many pairs of rabbits will be produced in a year, beginning with 
a single pair, if in every month each pair bears a new pair which becomes 
productive from the second month on ? 

and Girard [22] solved the problem in the above form in 1634. This definition is 
not explicit because the terms of the sequence to be defined appear in the left and 
right members. Dedekind [18] was the first to justify this recursive definition in 
1888 (The Nature and Meaning of Numbers, § 124 and following). In fact, he 
justified primitive recursive definitions; Ackermann [1] and then P6ter [53] introduced 
other forms of recursive definitions (complete, simultaneous, multiple, etc.). 

Frege studied definitions by abstraction in 1884 (Foundations of Arithmetic, 
§ 63-69) .  The definition of a concept is by abstraction when this concept is 
the common characteristic of severaI things. The original problem is to define 
cardinality of a set as the common characteristic of equipotent sets. Frege introduces 
the notion of equivalence relation and equivalence class, and identifies "common 
characteristic" with equivalence class. For instance, he clarifies in this way the 
notion of direction of straight lines in geometry, where the equivalence relation is 
the relation of parallelism and a direction is just an equivalence class. It is interesting 
to note that Frege makes such a definition clear, but does not solve the original 
problem because it is not possible to define cardinality with this method since the 
set of all sets does not exist (Russell's Paradox [72]). 

1.1.1.3. Definition with limited vocabularly 

The problem of presenting mathematical theories with a minimum of un- 
defined terms and axioms greatly interested Peano's school. To reduce the total 
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number of definitions and axioms, members of this school used unusual undefined 
terms and tried to find a definition for usual notions. This is not an easy task; 
moreover, the existence of such a definition is not assured. In 1889, for instance, 
Peano [51] based his treatment of Euclidean geometry upon primitive terms: "point", 
"betweenness" (a ternary relation) and "distance". In 1899, Pieri [54] employed two 
primitive terms: "point" and "motion". 

In a certain way, this paper relates the formalisation and the explicitation of 
definitions with limited vocabulary in a general setting. 

1.1.1.4. Definability in first-order logic 

Tarski gave definitions of definability in 1931 and 1935 [80, 82]. He identified 
primitive terms as a more elaborate notion of a first-order logical language; in 
particular, proper symbols represent classical "primitive terms". He defined de- 
finability in a theory, completed by definability in a structure in 1948 [84]. 

1.1.2. Definition 

In what follows, we suppose an acquaintance with basic notions of mathe- 
matical logic (cf., for instance, Mendelson [45]). 

Let L be a logical first-order language, S a symbol (symbol of individual 
constant, function symbol or predicate) and L* = L LI {S}. 

DEFINITION 1 

Let M be an L-structure with domain M. 

(1) We say that an element a of M is definable in the stucture M if and only if 
there exists an L-formula ¢ with one free variable such that 

(M, a) ~ x = a ~ ~(x). 

(2) We say that an n-ary function f over M is definable in the structure M if and 
only if there exists an L-formula ¢ with n + 1 free variables such that 

~O(xl ..... x., y). 

(3) definable in the structure M if and 
n free variables such that 

¢(xi  . . . . .  x . ) .  

( M , f )  N y = f ( x  I ..... xn) 

We say that an n-ary relation R over M is 
only if there exists an L-formula q~ with 

(M, R) ~ R(xl ..... x,) 

DEFINITION 2 

Let T be a logical first-order theory in the language L*. 
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(1) We say that a symbol of individual constant S is (p rovab ly  L-) definable in 
the theory T if and only if there exists an L-formula  q~ with one free variable 
which verifies 

T ~- x = S <---> ~(x). 

(2) The n-aryfunction symbol S is said to be definable in the theory T if and only 
if there exists an L-formula  ~0 with n + 1 free variables which verifies 

T F- y = S(xl ..... x,) ~ O(xl ..... Xn, y). 

(3) The n-ary predicate S is said to be definable in the theory T if and only if 
there exists an L-formula  ¢ with n free variables which verifies 

T f- S(x I ..... Xn) <---> q~(x I ..... Xn). 

Notation 

We denote by Th(M)  the theory of the £-s t ruc ture  .TV/, that is the set of  all 
sentences of  L which are true in .9H. We observe the fol lowing fact: S is definable 
in the structure 5Vl if  and only if  S is definable in the theory Th(Yv~, S). 

1.2. HOW TO PROVE DEFINABILITY? 

Theoret ical ly speaking, it is very easy: it is sufficient to exhibit  a suitable 
formula  q~. 

Practically, it varies from easy to very difficult and open problems.  

Examples (or exercises for courageous or motivated readers) 

(1) (Easy) Define 0 in (~,  +, =). 

(2) (Less easy) Define _< in (2~, +, ×, =). 

(3) (Difficult) Define the exponentiat ion function (x, y) --> x y in (1~, +, ×, =). 

(4) (Really hard) Define I~ in (Q, +, ×, =). 

(5) (Open problem) Is the divisibili ty relation I definable in (~ ,  S, ± ,  =)? (As 
usual, [ is the divisibility relation, S is the successor function defined by 
Sx = x + 1, and _1_ is the copr imeness  relation). 

Answers 

(1) 0 is definable by the formula x = x + x .  

(2) We use Lagrange ' s  famous theorem (every integer is a sum of  four squares) 
to define x _< y as 3u, v , w , t  ( y = x + u  2 + v  2 + w  2+t2 ) .  
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(3) 

(4) 

(5) 

G6del [23] established this result in 1931 by using his famous beta funct ion 
fl : N 3 ---) N such that fl(x, y, z) = x mod 1 + (z + 1)xy is the remainder  in 
Euclidean division o f x  by 1 + (z + 1)xy. It is not difficult to see that this beta 
function is definable in (/~, +, ×, =). The beta function verifies the fol lowing 
fundamental  property: for every finite sequence a0 ..... an of  natural numbers, 
u and v exist such that for i ~ [0, n], we have fl(u, v, i) = ai. 
This property allows the fol lowing to be proved: if g is a binary function 
definable in (N, +, x,  =), then for every natural number a, the function f 
defined by primitive recursion without a parameter 

f ( 0 )  = a, 

f ( x  + 1) = g(x,  f ( x ) ) ,  

is also definable in (N, +, x, =). It is precisely definable as follows: 

y = f ( x )  ~ 3u3v[]3(u,v ,O)  = a A /~(u,v,x) = y A 

Vt < x Vr Vs[[]3(u, v, t) = r A fl(u, v, t + 1) = s] --) s = g(t, r)]], 

in other words, (u, v) is a code for the tuple ( f ( 0 ) , f ( 1 )  ..... f ( x ) ) ,  i.e. for a 
history o f  the computation of  f ( x ) .  
Then exponentiation is definable as usual from its recursive definition x ° = 1 
and X y +  I -~ X y X X .  

(Hints) Robinson [69] established this result is 1949. She introduced a 
(mysterious) relation between rational numbers, now denoted by JR(a,  b, k), 
which asserts that some particular quadratic form has a solution. Actually, 
JR(a,  b, k) is 

3x, y , z [ 2 + a x b x k  2 + b x z  z = x  z + a x y 2 ] .  

She shows that a rational k is an integer if and only if 

Va, b[[JR(a, b, O) /x Vm[JR(a,  b, m) ~ JR(a, b, m + 1)]] --~ JR(a, b, k)]. 

Her difficult and technical proof  uses the quadratic reciprocity law of  Gauss 
together with M i n k o w s k i - H a s s e ' s  theorem on rational quadratic forms (hence 
p-adic numbers) and Dirichlet 's theorem on primes in an arithmetical pro- 
gression. 
Positive integers are defined as in example 2. 

In subsection 3.2, we shall see that, according to Wood 's  work [95], open 
problem 5 turns out to be equivalent to some conjecture of  the theory of  
numbers. 
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1.3. HOW CAN WE PROVE UNDEFINABILITY? 

1.3.1. Padoa's method [49] 

The following proposition justifies this method, analogous to the model 
theoretical method to prove independence of axioms. Padoa [49] introduced this 
method in 1900. Tarski [81,82] in 1934 and 1935, and independently McKinsey [44] 
in 1935, have proved the proposition in well-defined contexts. 

PROPOSITION 1 

If a theory T* in the language L* = L U {S} admits two models M and N 
so that 

IMI =lNI 
0 -M = 0 - N  

S M ¢ S  N 

[same domain] 

for o" E L [same interpretation for primitive symbols] 

[different interpretation for examined symbol S] 

then S is not definable in the theory T*. 

Example 

An order relation < is not definable in the theory of commutative fields. 

Indeed, consider (Q[-,~-], ~,  ®, =), where Q[-,~-] = {a + b. ~,/2/a, b E Q} C N, addition 
and multiplication ® being restrictions of addition and multiplication on N. We 

can define two orders that are comparable with • and ®, namely the order < 
induced by natural order on N and the order -< defined by 

a + b.-,~ -< c + d.~/2- if and only if a - b.-,~ < c - d.-,/2. 

Note 

Beth [3] has proved a converse of this proposition in 1953, i.e.: 

Let T* be a theory in the language L* = L tO {S}. If for every model M and 
N of T* such that 

[MI = [ N I ,  a M = c r  N for all o raL,  

we have S M = S N, then S is definable in the theory T*. 

A more classical (but equivalent) statement of this theorem is: 

Let T* and T be two theories within the respective language L* and L (with 
L* = L U {S}) so that T* is an extension of T. If every model of T has at most an 
expansion which is a model of T*, then S is T*-definable. 

The hypothesis of both theorems is expressed by saying that S is implicitly 
definable in T*. 
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The proof of Beth's theorem is difficult (see, for instance, Monk [47] for a 
simpler proof given by Craig [15] in 1957). But we do not know any historical 
examples o f  constant S definable thanks to this theorem. 

However, Beth's theorem gives a method that can be used to obtain non- 
standard models. For instance, Beth remarks that there exists an "addition" + and 
two different "multiplications" x I and x 2 so that the structures (IN, +, xj ,  --) and 
(N, +, x 2, =) are both models of Th(N, +, x, =). These multiplcations cannot be 
explicitly determined; this is the purpose of a famous result from Tennebaum [91 ], 
improved by McAloon [43]. 

1.3.2. Svenonius' method [79] 

This method, based on the following proposition 2, is in fact a variation of 
Padoa's method. 

PROPOSITION 2 

If  a theory T admits a model .34 with an L-automorphism which is not an S- 
homomorphism, then the constant S is not definable in 7". 

It is important to notice that such an L-automorphism is not necessarily 
definable. 

Examples 

(I)  The usual order relation < is not definable in the multiplicative structure 
(N, .): consider the function which exchanges exponents of prime numbers 
2 and 3 in the factorisation of a natural number in prime factors. 

(2) The usual order < is definable in the additive structure (IN, +, =) from the 
following equivalence: x < y ¢=~ 3z (x + z = y). We have seen that < is definable 
in the integer structure (77, + , . ,  =). But _< is not definable in the substructure 
(77, +, =): it is sufficient to consider the additive automorphism f defined by 
f ( x )  = - x  which does not respect the order relation. 

(3) (Richard [62]) Multiplication of natural numbers is not definable from the 
divisibility relation alone, i.e. in the structure (N, l, =). It is not possible to 
find a suitable automorphism of the standard model, but we can find some 
in nonstandard models. Let (M, SM, +M, xM, =) be a nonstandard model of the 
complete arithmetic, i.e. the theory Th(IN, S, +, x, =). Consider the function 
f so defined: 

0 if x = O ,  

f ( x ) =  2 a -b  if x = 2 " - b  where a E N a n d  b is odd, 

2 a - l .  b if x = 2a- b where a ff N and b is odd. 

Then f is a I-automorphism but does not preserve multiplication. 
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Note 
We observe that Svenonius' method allows us to prove simply that the order 

relation is not definable in the theory of ordered commutative fields. We take the 
above example and function f on O[x/2] defined by: f (a + b. ~ ) = a -  b.-,/-2. 

In fact, I have never heard of any concrete case where Padova's  method is 
suitable, but Svenonius'  method is not suitable. 

1.3.3. Elimination of quantifiers 

DEFINITION 3 

We say that a (logical first-order) theory T within the language L admits 
elimination of quantifiers if and only if for every formula 0 there exists an open 
formula (i.e. without occurrence of any quantifier) ~b such that: T I- 0 +-r ~b. 

Application 

If  a theory T admits elimination of quantifiers and if the language L is simple 
enough, then it is possible to characterize the relations which are definable in the 
theory T. 

Example (Langford [35]) 

The theory Th(r~, S, 0, _<) admits elimination of quantifiers. Thus, a subset A 
of r~ is definable in the structure (~, S, 0, <) (or (~, <)) if and only if A is finite 
or cofinite (i.e. its complement I%I\A is finite): a formula is equivalent to a Boolean 
combination of "x < n"  or "x >_ n", where n is a natural number. In particular, the 
subset 2 .  I%1 of even numbers is not definable and consequently addition is not 
definable in this structure. 

1.3.4. Decidability 

Method 

If  M is an L-structure such that the theory Th(M)  is decidable and the theory 
Th(M, S) is not decidable, then S is not definable in M .  

Examples 

(1) Presburger [57] proved in 1929 that the theory of addition of natural numbers, 
i.e. Th(r~, +, =), is decidable. Church [14] and Turing [92] proved in 1936 
that the theory Th(r~, +, x, =) is not decidable, hence multiplication is not 
definable in (~, +, =). 
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(2) Sko lem [75] showed in 1930 that the theory of  mul t ip l ica t ion of  natural  
numbers ,  i.e. Th(N, x, =), is decidable ,  hence addition is not definable in 
(~,  x, =). 

(3) Tarski  [84,85] proved in 1929 (publ ished in 1948) that the theory of  real-  
c losed  f ie lds  is the theory Th(R, +,., <) and is decidable ,  hence the subset 
rN is not definable in the structure (R, +,., <). 

(4) Goods te in  [25] in 1975 used the undec idabi l i ty  of  Diophant ine  equat ions  (see 
sect ion 3.1) and the dec idabi l i ty  of  equat ions of  a special  form to show that  
the pos i t ive  d i f ference  x "- y [= sup(0, x - y)] is not a member  o f  the class of  
funct ions generated by composi t ion  from the four funct ions x + y, x - y, 1 - -  x 
and x - 1. 

1.3.5. Diagonalisation 

The method o f  d iagonal i sa t ion  was first invented and appl ied  by Cantor  [7] 
in 1891 to prove that the set tl~ is not denumerable .  Its appl ica t ions  may be very 

tricky. 

Example 

The set of  arithmetical theorems is the set of  true sentences of  the structure 
(N, S, +,  x ,  =). We may cons ider  this set as a formal  language (note the di f ference 
to a logical  language)  A on the alphabet:  

I; = {v,0,~, --,, A, v ,V,  9 , ( , ) , S , + , x , = } ,  

with var iables  v,  writ ten as the concatenat ion of  v and the binary expans ion  of  n 

(using 0 and i). 
Let  Z + be the set of  nonempty  words over  Z and let ng:Z+--~ N* any 

reasonable  sur ject ive  map such as the usual GOdel numbering 2~. 
Let  A be the subset  of  N def ined by {ng(O)/O is an ar i thmet ical  theorem}.  

" ) L e t  g : Z ---r N ° be  such  tha t  

g(v) = 1, g(0) = 2, g(1) = 3, g(-,) = 4, g(A) = 5, g(v) = 6, g(V) = 7. g(3) = 8, 

g ( )  = 9,  g ( )  = 10, g(S) = 11, g ( + )  = 12, g ( x )  = 13, g ( = )  = 14, 

a n d  let ng : E ÷ --4 N* be  so  tha t  

ng(w I . . .  w . )  = p ~ ' ~  x . . .  x p~(~" 

w h e r e  Pi is the  i th  p r i m e  n u m b e r  a n d  P0 = 2 (GOdel numbering). 
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THEOREM (Grdel [24], Tarski [83]) 

The subset A is not definable in the structure (1%/, S, +, x, --). 

Proof 
The main idea is to use an argument of diagonalisation. Set 

B = {n E ~ / n  is the Grdel  numbering of a unary {S, +, x, =}- 
formula ¢(x) and ¢(n) is an arithmetical theorem}. 

It is easy to prove that the set 

{n e ~ / n  is the G6del numbering of a unary {S,+, x, =}- 
formula ~(x)} 

is definable in the structure (~1, S, x, =). Suppose that A is definable. Then B is also 
definable. So there exists a unary {S, +, ×, = }-formula q~(x) so that 

n ~ B ¢~ -1 cp(n) is an arithmetical theorem. 

We shall see below the interest in considering a negative formula. 
Let m be the Grdel  numbering of the formula cp(x). If  cp(m) is an arithmetical 

theorem, then m ~ B, hence -1 q~(m) is also an'arithmetical theorem, a contradiction. 
If  --,q~(m) is an arithmetical theorem, then q~(m) is not an arithmetical theorem, 
hence m ~ B, so ~0(m) is not an arithmetical theorem, contradicting the fact that the 
theory Th(~, S, +, x, =) is complete. 

The contradictions show that A is not definable. []  

1.3.6. Complexity 

Principle 

This method is an improvement on those mentioned in section 1.3.4. Let us 
replace the decidable/undecidable dichotomy by easy/hard. Let _Tv/be an L-structure 
so that the theory Th(3Vl) has complexity measure m and the theory Th(Yvl, S) has 
complexity measure m" greater than m. If  no extension by definition of 2V/can have 
the complexity measure m' ,  then S is not definable in 9V/. 

Example (Cegielski et al [13]) 

The binary relation SUPEQUI of equipotency between sets of prime divisors 
of positive integers is not definable within the divisibility lattice of positive integers. 

This theorem is proved using the following lemmas: 

(1) Th(~, +, =) can be emulated in Th(~l, I, SUPEQUI, =); 
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(2) Th(N, +, =) has a complexity of at least ATIME-ALT(2 ~c~, n), while Th(N, t, =) 
has a complexity of at most ATIME-ALT(2 c~, n). 

We remind the reader of some complexity notions which are useful to 
appreciate this example. Concerning these questions of complexity, we take as a 
reference the book by Bovet and Crescenzi published in 1994 [5]. It seems that the 
most adequate model of a theoretical machine for measuring complexities of logical 
theories is the alternating Turing machine. It allows, in particular, the exact 
complexity class of a given logical theory to be obtained. 

An alternating Turing machine (abbreviated to ATM) is a generalization of 
the well-known nondeterministic Turing machine (abbreviated to NDM), where 
each state is an ordered pair (q' ,  V) or (q", 3). We say that the quantifier C is the 
color of the ordered pair (q, C). A tree of computations and a subtree of a tree of  
computations have the same definitions as in the NDM case. Every vertex of such 
a subtree of labeled 1 or 0 in the following way: first of all, every leaf (of this 
subtree) is labeled 1 if and only if this leaf is accepting; secondly, any interior node 
(of this subtree including the root) is labeled 1 if and only if either its color in 3 
and one of its sons is labeled 1 or its color is V and all of its sons are labeled 1. 
A subtree is accepting if and only if its root is labeled 1. 

Let T and A be mappings from N to N. Let Iwl be the length of the word 
w of a given formal language. A formal language A belongs to the complexity class 
ATIME-ALT(T(n), A(n)) if and only if there exists an ATM recognizing A such that, 
for every w in A, there exists an accepting subtree with depth at most T( I wl ) and 
such that every path linking the root to an accepting leaf presents at most A(Iwl ) 
alternations of  colors. 

Now take a (decidable) theory T within a logical language L. Its associated 
formal language A is the set of words in the alphabet { ~, 0,~, -", A, V, V, 3, (,),  = } 
U L which are the theorems of T. It must be emphasized that numerating of variables 
Vl, vl, v~0 .... is given by their binary expansion. We say that T belongs to the 
complexity class ATIME-ALT(T(n), A(n)) if and only if A does. 

2. Definability and decidability 

2.1. IMPORTANCE OF DECIDABILITY 

Hilbert raises the supreme question: are mathematics decidable? Actually, 
Hilbert has raised this problem, his tenth, for Diophantine equations in 1900 [30]. 
The French logician Herbrand did not hesitate to call this problem the "fundamental 
problem of mathematics" in 1931 [29]. 

There are two difficulties in answering Hilbert 's question. The first problem 
is to know what mathematics is. The second problem is to carefully define what a 
decidable class of problems (or a decidable theory) is. 
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Reflections by logicians such as Frege, Peano, Russell, Skolem and Hilbert 
have given answers to the first question. In fact, mathematics is a certain logical 
first-order theory; perhaps the Zermelo-Fraenkel set theory with some supple- 
mentary axioms. The French group of mathematicians known as Bourbaki popular- 
ized this idea. Of course, for the working mathematician, mathematics remains 
rather a naive logical second-order theory than a formalized first-order logical 
theory, but the formalized point of view is necessary for studies on mathematics 
itself. 

Turing [92] answered the second question in 1936 by defining his famous 
model of abstract machines. His answer is somehow universal according to the so- 
called Church thesis [14] claiming that every notion of computability is reducible 
to Turing's machines. 

In 1936, Church and Turing proved that mathematics is not decidable. 
Still, this does not close the problem. We have an essentially unique method 

to prove that a theory is undecidable, while to prove decidability methods are as 
old as mathematics. Hence, it is important to continue to bring out special theories 
on specific domains and to see if they are decidable or not. 

2.2. ESSENTIAL UNDECIDABILITY 

At this step of the paper, we know ohly undecidable theory. How can we 
prove the undecidability of other theories? Essentially, this can be done thanks to 
a particular theory Q and to the notion of essential undecidability due to Tarski in 
1949. 

DEFINITION 4 

Let T and T* be (logical first-order) theories within respective languages L 
and L*. 

A suitable formula for a constant S of L* is a formula ~s of L with, 
respectively, one free variable if S is an individual constant, n + 1 free variables if 
S is an n-ary function symbol f, and n free variables if S is an n-ary predicate R. 

Let be given suitable formulas for every constant of L" and a formula N(x) 
for the domain. The translation of a formula 0 of L* is the formula trans(O) of L 
obtained by replacing every constant S of L* by ~0 s and every quantification by a 
quantification relative to N. 

The theory T* is definable in the theory T if such a translation of T* in T 
exists such that for every sentence 0 of L' ,  if T* t- 0 then T t- trans(O). 

DEFINITION 5 

A theory T" within language L* is essentially undecidable iff every theory T" 
within this language L* extension of T* is inconsistent or undecidable. 
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Fact 
If a theory T" is essentially undecidable, then every theory T in which T* is 

definable is undecidable. 

Important note 

Essentially undecidable is different from undecidable. The theory of fields is 
undecidable but not essentially undecidable. This is so because the theory of real- 
closed fields is decidable (Tarski, 1929, published in 1948 [85]). 

PROPOSITION 3 (Rosser [71]) 

Peano arithmetic PA is essentially undecidable. 

.COROLLARY 

Zermelo set theory Z 
(essentially) undecidable. 

and the theory of  the structure (Z, +, x,  =) are 

Proof 

It is well-known that PA is definable in Z. Since < is definable in Th(7/, +, x, =), 
Peano arithmetic is also definable in this theory. [] 

The theory PA is too special to obtain many results of undecidability. The 
following result is an improvement of proposition 3. 

DEFINITION 6 

The theory Q is the theory with language (S, +, x, 0, =) with the following 
axioms: 

(I) Vx[Sx ,~ 01; (2) Vx, y[Sx = Sy --* x = y]; 

(3) Vx[x ~: O ~ qy[x = Sy]]; (4) Vx[x + O = x]; 

(5) Vx, y[x + Sy = S(x + y)]; (6) Vx[x x 0 = 0]; 

(7) Vx, y [ x x S y = x x y + x ] .  

No te 
The theory Q is a finitely axiomatized theory, without induction axioms. 

PROPOSITION 4 (Robinson [70]) 

The theory Q is essentially undecidable. 
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COROLLARY 

The theories of rings, of commutative rings and of ordered rings are un- 
decidable. 

Proof 
The theory Q is easily definable in the theory of discreted ordered rings (i.e. 

there exists an element 1 so that: Vx[0 < x < 1 ~ [x = 0 v x = 1]]): it is sufficient 
to lay x > 0 for N(x) and x + 1 for Sx. Hence, this theory is undecidable. The 
undecidability of the former theories follows, because a finite set of axioms is 
sufficient to obtain the latter theory. Let us suppose, for instance, that the theory 
of rings is decidable. Let A~ ..... An be the axioms to add to this theory to obtain the 
theory of discreted ordered rings. A sentence 0 is a theorem of the theory of 
discreted ordered rings if and only if (A 1 A ... A An) --~ 0 is a theorem of the theory 
of rings. Hence, the theory of discreted ordered rings would be decidable, a contra- 
diction. [ ]  

2.3. DEFINABILITY HUNTERS 

Introduction 

Previous results have induced many people to try to find languages L such 
that structure (l~, S, +, ×, =) is definable in (~, L). Tarski and Robinson are the 
most prominent names. Richard in France and Woods in England (now in his native 
country Australia) are their most important successors. 

We give some samples of their results. 

PROPOSITION 5 (Tarski, in Robinson [69]) 

Theories of (1~1, <, x) and (1~1, S, ×, =) are undecidable. 

Proof 
It is sufficient to define the addition. This is obtained by observing that for 

a, b ~ 0 ,  we have 

c = a + b c : ~ ( l + a × c )  x ( l + b × c ) = l + c  2 x(1 + a  x b). [] 

PROPOSITION 6 (Robinson [69]) 

Theories of (~d, S, I, =)  and (Q, +, x,  =) are undecidable. 

Proof 
The second result is a consequence of section 1.2, example 4. For the first 

result, using proposition 5, it is sufficient to define the multiplication. This is 
obtained by proving that for a, b ~ 0, we have 
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c = a x b  ¢=~ [ V x ( a l x  A b l x  A c l x )  V Vx ,  y , m ( ( a _ l _ x  A b_l_y A c_l_x A 

c_l_ y A x_l_ y A a X x - - l[m] A b x y - - l[m]) ~ x x y x c - l[ml)],  

where x I y and x = y[z], respectively, means x and y are coprime and x is congruent 
to y modulo z. It is interesting to note that the proof uses Dirichlet's theorem, 
ensuring the existence of primes in an arithmetical progression. []  

COROLLARY 

The theories of fields, of commutative fields and of ordered fields are un- 
decidable. 

P r o o f  

Let N a t ( x )  be Robinson's formula defining N in (Q, +, x, =) (example 4 of 
section 1.2). We define a theory T in the language (S, +, x, <, 0) with 

• axioms for ordered commutative fields; 

• axioms for Q restricted to Nat,  for instance, V x [ N a t ( x )  --) Sx  ~ 0]. 

This theory is consistent because (Q, +1, +, x, _<, 0) is a model. This theory is 
undecidable because the theory Q is essentially undecidable. If a theory is 
decidable, then a theory obtained by adding a f in i t e  set of axioms is also decidable 
(see the proof of  the corollary of proposition 4). Hence, the cited theories are 
undecidable. []  

Note  

All the above undecidable theories have a language with at least two proper 
symbols. 

PROPOSITION 7 (Pabion and Richard [481, Richard [60], Richard [66, chap. IV]) 

The theories of  structures (N, exp, =), (IN, 13, =), (N, (x)y:~ 0, =) are un- 
decidable, where exp denotes the exponentiation function exp(x, y ) =  x y, and the 
symbol 13 denotes the ternary beta function of G6del, and (X)y denotes the py-adic 
valuation of x. 

P r o o f  

For the first result, we use the following properties: 

z = x + y ¢=* Vt[exp(t, z) = exp(exp(t, x), y)], 

z = x x y ¢:, Vt Vu[exp(t, exp(u, z)) = exp(exp(t, exp(u, x)),  exp(u, y))]. []  
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PROPOSITION 8 (Woods [95]) 

The functions + and x and the identity relation = are definable in the 
structure (r~, <, _1_). 

PROPOSITION 9 (Richard [61]) 

The predicate P of  being a prime is definable in the structure without an 
identity relation (N, S, _1_). 

Richard has obtained many other results. (His main papers are listed in the 
references below.) 

2.4. EMULATION AND ISOMORPHIC RE-INTERPRETATION 

We have seen that a good method to prove the undecidability of  a theory is 
to define an essentially undecidable theory within. Richard [60] generalized in 1981 
this method with his notion of  an isomorphic re-interpretation property, and later, 
in 1992 (published in 1996), Cegielski et al. [13] with the notion of  emulation. 

DEFINITION 7 

A structure (A, ct ..... cn) is emulatable in a structure M ,  with domain M, iff 
there exists a structure (B, dl . . . . .  d. ,  --=-) isomorphic to (A, c 1 ..... cn, =),  where B is 
a subset of  M, - a binary relation on A, and B, d I ..... d n, - are M-def inable .  

A structure M has the isomorphic re-interpretation property if the structure 
(~d, +, ×, =) is emulatable in M ,  

Note 

If  a structure with undecidable theory is emulatable in a structure M ,  then 
T h ( M )  is undecidable. In particular, Th (M)  is undecidable if M has the isomorphic 
re-interpretation property. 

Richard used the isomorphic re-interpretation property to prove that many 
structures M with domain ~ have an undecidable theory (see Richard [63,65,68]) ;  
in particular, structures for which it is an open problem (related to E r d 6 s - W o o d ' s  
conjecture, stated below) to know if + and x are definable in M .  In fact, the 
isomorphic re-interpretation property does not imply definability of  + and ×: 

PROPOSITION 10 (Cegielski and Richard [12] and Cegietski et al. [13]) 

Let rc be the canonical enumeration of  prime numbers: re(0) = 2, lr(1) = 3, 
re(2) = 5, z r (3 )=7 ,  ~z(4)= I1 . . . . .  Let ~ be the following enumeration: ~ ' (0 )=  5, 
~:(1) = 7, ~(2) = 3, ~(3) = 2, ~(x) = re(x) for every x > 4. The structure (N, ~, x,  =) 
has the isomorphic re-interpretation property but + is not definable in this structure. 
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3. Definability and number theory 

It is not rare that connections exists between new problems in theoretical 
computer science and old conjectures in number theory. Here, we speak of two such 
connections, namely about the famous Hilbert 's tenth problem and about some open 
problems in number theory. 

3.1. THE SOLUTION OF HILBERT'S TENTH PROBLEM 

3.1.1. The problem 

Hilbert 's tenth problem appears in the famous list which Hilbert [30] gave 
in his 1900 address before the Second International Congress of  Mathematicians. 

Many problems in number theory do have the form of a Diophantine equation 

P(xl ..... xn) = Q(xz ..... xn) 

to solve, where P and Q are polynomials with non-negative integer coefficients, and 
solutions are n-tuples (Xl ..... xn) of non-negative integers. 

It is easy to solve such an equation if P and Q are of degree one, by using 
the Euclidean Algorithm, the B6zout identity, and the Chinese Remainder Theorem. 
An algorithm to solve a Diophantine equation when P and Q are degree two exists, 
but the proof is very difficult; we have Legendre and Gauss to thank for solving, 
at the beginning of the nineteenth century, the case n = 2, and Siegel [73] for the 
general case in 1972. The case n = 2 with polynomials P and Q of respective 
degrees 3 and 2 has been studied extensively; it is related to elliptic curves; we do 
not know (in 1996) if an algorithm exists for this case. 

The famous last theorem of  Fermat is a particular (a priori schema of) such 
problems, namely to solve xn+ y n =  z n for a given natural number n. 

Hilbert 's tenth problem asks for an algorithm to determine whether or not a 
given Diophantine equation has a solution. Matiyasevich [37] proved in 1970 that 
there is no such algorithm. Hence, he negatively answers the tenth Hilbert question 
by positively solving a problem of definability. 

3.1.2. Solution of  the initial problem 

Introduction 

The problem is solved in three steps. The first one is to define what a 
decidable set (of positive integers) is. The second step is to find an undecidable set 
W. The third step is to prove that if Hilbert 's tenth problem were decidable, then 
W would be decidable. 

Apprehension o f  the notion o f  a decidable set 

Many mathematicians proposed in the same year (1936) a definition of the 
notion of a decidable set. These definitions are equivalent. The reference is a 
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definition by Turing's machine. Nowadays, the clearest definition uses the notion 
of a computer program: a set A is decidable if, and only if, a program P exists with 
an input n of  integer type output of which is "yes" if n c A  and "no" is n ~A.  

Existence of an undecidable set 

Turing [92] proves in 1936 the existence of an undeciable set by an argument 
of  diagonalisation. A result of the famous 1931 paper by G6del [23] can be seen 
as a relation between undecidable sets and sets definable in N by a certain type of 
formulas of the language of Peano arithmetic. 

DEFINITION 8 

(1) The language of Peano arithmetic is the first-order logical language L(PA), 
proper symbols of which are S, +, x, 0, <, where S is a unary functional 
symbol, + and x binary functional symbols, 0 an individual constant symbol 
and < a binary predicate. 

(2) The set of Ao-formulas is recursively defined by 

- atomic formulas are A0-formulas; 

- Boolean combinations of A0-formulas are A0-formulas; 

- bounded quantifications of Ao-formulas are A0-formulas, i.e. if ~ is a A0- 
formula, then (Vx _<y) ~0 and (3x _<y) ¢ are A0-formulas. 

(3) For n ~ N*, a Zn-formula (respectively, Hn-formula) is of the form 

3xl Vx2 3x3 ...Q~xn~ [respectively, Vxl 3x2 Vx3 ... Qnx~c~], 

where matrix q~ is a A0-formula, and Qi the convenient quantifier according 
to the parity of n. 

Note 

Every L(PA)-formula is PA-equivalent to a Y~.-formula and to a Flp-formula 
for some n, p ~ N. 

PROPOSITION 11 (G6del [23]) 

A subset A of N is decidable if and only if there are a unary Zl-formula q~(x) 
and a unary I l r f o r m u l a  ~o(x) such that 

x G A ¢:* ~b(x) ¢=:, q~(x). 

PROPOSITION 12 (Turing [92]) 

There is a subset W of N such that 
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(1) W is not decidable; 

(2) there is a IEt-formula ¢(x) such that: x ~ W ¢:* ~0(x). 

The last condition is expressed by saying that W is a recursively enumerable 
set. 

Third step 

Diophantine formulas  are the special case of Z : fo rmulas  where the matrix 
is not a Ao-formula but a polynomial formula. The works of Robinson, Putnam and 
Davis culminated in Matiyasevich's theorem (known as the M D R P  theorem to insist 
on the four contributors). 

DEFINITION 9 

An n-ary polynomial  formula  has the following form: 

P(x I ..... x n) = Q(x I .. . . .  Xn), 

with P, Q E N[Xt ..... Xn]. 
An n-ary Diophantine formula  has the following form: 

3x,+l ... 3xp ¢(xi ..... xn, x,,+ i ..... xp), 

where 4~ is a polynomial formula. 

PROPOSITION 12 (MDRP's theorem (1970); Matiyasevich [38]) 

Every Er fo rmula  is equivalent to a Diophantine formula. 

Proof  

Davis [17] presented a very clear proof of this theorem in his 1973 paper. 
The book published in 1993 by Matiyasevich [41] gives several proofs of the main 
theorem and of many improvements. 

COROLLARY 

Hilbert 's tenth problem is undecidable. 

Proof  

[] 

Proposition 13 ensures there is a polynomial formula 4~ such that 

x ~ W ~ 3xi ... 3Xp ¢(xl . . . . .  Xp, x). 

If  Hilbert 's tenth problem is decidable, then for any integer n we can decide 
if ~(x I ..... xp, n) admits an integer solution or not; hence, the membership of n to 
W is decidable. But this contradicts proposition 12. [] 
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3.1.3. New problems 

Introduction 

MDRP's  theorem does not solve a classical problem of definability. Indeed, 
we are here searching for a definition with an 53-formula and not with an L(PA)- 
formula, 53 being a subclass of  L(PA)-formulas. 

This leads to a very interesting generalization of the classical problem of 
definability. We shall again see the interest of this generalization for the study of 
computational complexity in section 4. We give the formal definition, for instance, 
in the case of a relation definable in a structure. 

DEFINITION 1 0 

Let M and 53 be, respectively, an L-structure with domain M and a subclass 
of  the set of L-formulas. We say that an n-ary relation R over M is 53-definable in 
the structure M if and only if there exists a formula ~b in the class 53 with n free 
variables such that 

(M,  R) ~ R(xl ..... xn) ¢=~ (~(xj ..... xn). 

The main result to solve the Hilbert tenth problem is to prove that every 
arithmetical relation which is Zrdefinable is also Diophantine-definable. Speculative 
problems arise about the complexity of universal Diophantine relations. The book 
by Matiyasevich [41] contains an excellent survey of results for these problems. 

A first measure of complexity: degree of the polynomial prefix 

The degree of a Diophantine equation is the maximum of the degree of the 
two polynomials occurring in the formula. 

PROPOSITION 14 

There is no algorithm to determine whether or not a given Diophantine 
equation of degree 4 has a solution. 

Proof 
It is a consequence of the corollary of MDRP's  theorem and of the following 

result of Skolem [76]: every Diophantine formula is arithmetically equivalent to a 
Diophantine equation with the same set of free variables and a degree 4 polynomial 
prefix. Indeed, the number of bound variables increases. Section 1.2 of Matiyasevich 
[41] contains a complete proof. [] 

As we have already said, there exists an algorithm for degree 2 (Siegel [73]) 
and it is an open problem for degree 3. 
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A second measure of complexity: number of unknowns 

The number of unknowns of a Diophantine formula is the number of quanti- 
tiers or, equivalently, the number of bound variables. 

PROPOSITION 15 

There is no algorithm to determine whether or not a given Diophantine 
equation with 9 unknowns has a solution. 

Proof 
Matiyasevich [38] proves the analog of this theorem for about 200 unknowns. 

Matiyasevich and Robinson [42] improve this result to 13 unknowns. The bound 
of 9 unknowns was announced by Matiyasevich [39] and presented with full details 
by Jones [31]. [ ]  

Both measures 

Jones [31] gives the following couples (n, p) ,  with degree n and p unknowns, 
for undecidability: 

(4, 58), (8, 38), (12, 32), (16, 29), (20, 28), (24, 26), (28, 25), (36, 24), (96, 21), (2668, 19), 

(2 x 105 , t4), (6.6 x 1043 , 13), (1.3 x t044 , 12), (4.6 x 1044,11), 

(8.6 x 1044 , 10), (1.6 x 1 0  45 , 9 ) ,  

Polynomial representation of prime numbers 

An easy by-product of the MDRP theorem is the existence of some polynomial 
with integer coefficients P(x I ..... xn) such that P(I~I n) f)1~ is exactly the set of 
(positive) prime numbers. A classical Euler proposition ensures this polynomial has 
a negative value for some natural number values. 

Many researchers were interested in knowing how few variables are sufficient 
in such a polynomial representing primes. The first upper bound of 24 variables was 
obtained by Matiyasevich [38]; the bound was reduced to 21 variables in the 
appendix to the English translation. Later, the bound was further reduced to 12 
variables by Wada [94] and by Jones et al. [32]. The present record is 10 variables, 
achieved by Matiyasevich [40], then Jones [31]. 

3.2. ERDOS-WOODS' CONJECTURE 

Robinson [69] proved in 1949 that the theory of (N, S, 1, =) is undecidable. 
She asks many related questions: is PA axiomatizable in the language {S, I, = } in 
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a natural number? Is Th(N, S, _l_, =) decidable? Is the divisibility ] definable in 
(~, S, _L, =)? 

We have seen how Woods and Richard have answered the second question. 
I have given a response to the first question (Cegielski [10, chap. V]). Let us see 
how Woods has answered the third question. 

The problem of characterizing a number by its prime divisors and those of 
its successors (a universally bounded number of successors) interested Zsigmondy 
(1892), StOrmer (1897), Birkhoff and Vandiver (1904), and Erd6s (1980). Guy [27] 
gave in 1981 the following denomination, where P is the set of prime numbers: 

EW (Erd6s-Woods '  conjecture) 

3k ~ N, Vx, y E ~[x = y ¢=~ (Vi < k)(Vp E P ) [p lx  + i <::> p[ y + i]]. 

Woods [95] showed in 1981 a surprising relation between this conjecture and 
definability. 

PROPOSITION 16 

We have the following equivalences: 

(EW) ¢=> Divisibility relation I is definable in the structure (~,  S, ± ,  =) 

¢=~ Identity relation = is definable in the structure (~, S, ±) .  

(EW) remains a conjecture, but we have many related results, for instance: 

PROPOSITION 17 (Grigorieff and Richard [26]) 

The identity relation = and the multiplication × are definable in the structure 
(~, S, _l_, R), where R is any of the following functions or relations: 

- the relation x is a quadratic residue of prime number p; 

- the relation y is a power of x; 

- the multiplication (p,  x) w-> p x x restricted to prime numbers p and natural 
numbers x; 

- or the addition (p,  x ) ~  p + x restricted to prime numbers p and natural 
numbers x. 

4. Def inabi l i ty  and complexi ty  

Buss [6] initiated in 1985 a new way to deal with great computational 
complexity problems (like the famous problem P ~ NP). He reduces these problems 
to problems of definability in weak arithmetics. 

We shall begin with some more classical notions. 
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4.1. AN ARITHMETICAL HIERARCHY 

Turing machines are well known. Subsets of N are identified through formal 
languages, for instance in unary alphabet { 1}. 

DEFINITION 11 

Let A be a subset of [~. 
We say that A is Zt (or recursively enumerable) if and only if it is accepted 

by a Turing machine. 
For n ~ ~ ' ,  a subset A is £n+ I if and only if it is accepted by a Turing machine 

with an oracle which is a Z,,-subset. 
A subset A is FI n iff its complement ~d\A is Zn. 
A subset A is An iff it is both £n and I],,. 

PROPOSITION I8 (negation theorem; Church [14]) 

A subset A of ~ is decidable (i.e. recursive) if and only if both A and its 
complement A are recursively enumerable. 

PROPOSITION 19 (Kleene [33]) 

We have the following strict inclusions for n e N*: 

A , , C Z  nCAn+l ;  AnCFI  nCAn+t .  

PROPOSITION 20 (Post [56]) 

A subset A of I~1 is £n (respectively, Fin) if and only if it is definable by a 
Zn-formula (respectively, a I-In-formula). 

4.2. A POLYNOMIAL HIERARCHY 

DEFINITION 12 

Let C be a class of subsets of ~. We say a subset A of I~ belongs to the class 
P(C) (respectively, NP(C)) iff A is accepted in polynomial time by a deterministic 
(respectively, nondeterministic) Turing machine with an oracle in C. A subset A 
belongs to co-NP(C) iff its complement ~ \ A  belongs to NP(C). 

We define 

Z~ = 1 ~  = A~ = P as P(O), 

NP as NP(~) ,  

co-NP as co-NP(O), 
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Z;+,  as NP(Z p), 

AP+1 as P(ZP), 
and 

FI~.+ 1 as co-NP(ZP). 

(p  and P are for polynomial). 

PROPOSITION 21 (Meyer and Stockmeyer [46]) 

We have the following inclusions for k E tN: 

P P P ~Pcc_z pc_zx~+~, t,~_cn~c_~x~+~. 

Note 
These notions lead to some famous open problems in computational com- 

plexity theory, for instance: Does this (pseudo-) hierarchy collapse? 

p~- NP, 

P ~ NP A co-NP. 

DEFINITION 13 

The language of bounded arithmetic is the first-order logical language L(BA), 
proper symbols of which are S, + , . ,  0, [ . / 2 J ,  [.[,  .#. ,  =,_<, where natural inter- 
pretations in I%1 for [ x/2J, [xl, x # y are, respectively, the integral part of x divided 
by 2, the length of x, i.e. [log2(x + 1)], and 2 I~l'b'l 

In this language, the bounded quantifiers are the classical (Vx_< t) and 
(3x < t), and the sharply bounded quantifiers are (Vx _< ]t[ ) and (3x _< It[ ), where 
t is a term. 

We define Z~-formulas (respectively, FI~-formutas) with no other quantifier 
than bounded quantifiers, with k alternations of bounded quantifiers which are not 
sharply bounded quantifiers, and beginning with an existential (respectively, 
universal) bounded quantifier. 

The b in exponential position signifies that the considered class consists of 
bounded formulas. A formal definition of Z~-formulas and II~-formulas is analogous 
to the above definition 7 for Zn-formulas and Fin-formulas, but is more intricate. 

PROPOSITION 22 (Stockmeyer [77], Wrathall [96]) 

A subset A of N is Zf (respectively l-I~.) if and only if it is definable by a Z b- 
formula (respectively a II~-formula). 
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Note 
The collapsing of the polynomial hierarchy is equivalent to a quantifier 

elimination. Now, this has been reduced to a logical problem studied since 1920. 
This gives new tools with which one can attack some of the fundamental questions 
of theoretical computer science. It is a field of application for definability topics. 

4.3. BOUNDED ARITHMETICS 

Buss introduced bounded arithmetics, analogous to Peano arithmetic with a 
richer language L(BA), more basic axioms and restricted axiom schemata of  
induction, and studied its connections to the polynomial hierarchy. 

DEFINITION 14 

BASIC is a theory in language L(BA) with 32 axioms, analogous to theory 
Q for language L(PA) and setting natural relations between objects of the structure 
(t~, L(BA)). The choice of these axioms is not very important. 

For a fixed class ~ of formulas of L(BA), the schemata of axioms denoted 
by ~-PIND is the set of all sentences 

[~O(0) A Vx[42(Lx/2J) ~ q~(x)]] ~ Vx ~O(x), 

where the formula ~b belongs to ~. 
The theory S~ is the theory language of which is L(BA) and axioms are BASIC 

and Zbi-PIND. 
The theory T~ is the theory language of which is L(BA) and axioms are BASIC 

and A~ +t-PIND, i.e. for Zb/+l-formulas ¢(x) and I/t(x), we have: 

Vx[¢(x)  ¢~ -~ VJ(x)] ~ [[9(0) A Vx[¢( [x/2J ) ~ ¢(x)]] ~ Vx ¢(x)].  

PROPOSITION 23 (Buss [6]) 

(1) A function f :  1~ --~ [~ is polynomial time computable if and only if there is 
a binary Z~-formula ¢(x, y) and a term t(x) in L(BA) such that 

S 1 F Vx 3y <- t(x) O(x,y), 

$21 F '#x !y ~b(x, y), 

Vn E ~ ~(n, f(n)). 

(2) If A is a ZP-subset (defined by the formula ¢(x)) and a Fl~-subset (defined by 
the formula q~(x)) and if 

s~ ~ Vx[¢(x) ~ ~p(x)], 

then A is a AiP-subset. 
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COROLLARY 

If a subset A is S~-provably NP n co-NP, then it is P. 

Consequences 

This corollary of  the Buss result provides a very promising method to prove 
that a set A is P. It is sufficient to prove it is both NP and co-NP in some theory; 
practically, if we know it is both NP and co-NP, then the method used to prove this 
result certainly is not too complex and the demonstration can be formalized in such 
a theory. 

However, up to now, no set A has been shown in P by such a method. The 
reason is that bounded arithmetics are still not widely developed. For instance we 
do not know which classical theorems of number theory are true in these weak 
arithmetics. The length of proof of any classical theorem increases greatly with 
weakness of the arithmetical theory in which this proof takes place. For instance, 
a proof of  Dirichlet's theorem on primes in arithmetical sequences in primitive 
recursive arithmetic PRA is one hundred pages long (Cegielski [11]). Such results 
would help to apply Buss' theorem. 

Work around Buss' theory is being developed. For instance, we have the 
following result: 

PROPOSITION 24 (Krajf6ek [34]) 

If  To = S~, then Z~ = I7 p. 

Consequence 

This result gives us a promising method to show that the polynomial hierarchy 
collapses. 

H~ijek and Pudlak [28] compile analogous results of relations between 
provabitity and computational complexity in chapter 5 of their book published in 
1993. 

4.4, POLYNOMIAL TIME UNIFORMIZATION PROPERTY 

Ressayre [59] introduced in 1990 a notion to generalize an aspect of proposi- 
tion 23(2). 

DEFINITION 15 

An arithmetical theory (i.e. with a definable predicate to be interpreted by 
the set of natural integers) T has the polynomial time uniformization property iff 



P Cegielski, Definability, decidability, complexity 337 

for any binary relation R in NP definable in the standard model by a formula ¢ such 

that 
Ti- (Vx)(3y _< t(x)) ~(x, y), 

there is a function f in P such that Vn E N (p(n,f(n)). 

The theory S~ has the polynomial  time uniformizat ion property. 

PROPOSITION 25 (Ressayre [59]) 

A certain recursively presented subtheory RCEI (explicitly given) of the 
theory Th(N, +, x ,  <, x ~ 2 x, N) has the polynomial  time uniformizat ion property. 

Proof of the result uses nonstandard methods. No direct proof is known.  

We are in the same situation as with Buss '  result. We have a promising 

method, but at the present time we do not have a sufficient knowledge of the 
number  theoretic properties of this theory to obtain concrete results in computat ional  
complexity. Just a (difficult) negative result exists: Boughattas has proved that this 

result does not yield factorization in polynomial  time. 
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