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Abstract

Given two strings, text t of length n, and pattern p = p1 : : : pk of length k, and given a
natural number w, the subsequence matching problem consists in 3nding the number of size w
windows of text t which contain pattern p as a subsequence, i.e. the letters p1; : : : ; pk occur
in the window, in the same order as in p, but not necessarily consecutively (they may be
interleaved with other letters). Subsequence matching is used for 3nding frequent patterns and
association rules in databases. We generalize the Knuth–Morris–Pratt (KMP) pattern matching
algorithm; we de3ne a non-conventional kind of RAM, the MP-RAMs which model more closely
the microprocessor operations; we design an O(n) on-line algorithm for solving the subsequence
matching problem on MP-RAMs. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Subsequence matching; Algorithms; Frequent patterns; Episode matching;
Datamining

1. Introduction

We address the following problem. Given a text t of length n and a pattern p=
p1 · · ·pk of length k6w, both from the alphabet A, and given a natural number w,
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3nd the number of size w windows of text t which contain pattern p as a subsequence
so that the letters p1; : : : ; pk occur in the window in the same order as in p though
not necessarily consecutively because they may be interleaved with additional letters.
We call this problem with arguments the size w, the text t, and the pattern p, the
Window-Accumulated Subsequence matching Problem or in short WASP. 3

The subsequence matching problem is an intrinsically interesting generalization of
the pattern-matching problem. It has not attracted attention earlier because the plain
subsequence matching problem, where one stops as soon as an occurrence of p is found
(regardless of any window size), is easily solved in linear time: a 3nite state automaton
with k + 1 states s0; s1; : : : ; sk scans the text; its initial state is s0; when it scans letter
p1 it goes in state s1, then when it scans letter p2 it goes in state s2; : : : ; the text is
accepted as soon as it reaches state sk . Subsequence matching within a w-window is a
more diMcult problem, which emerged due to its applications in knowledge discovery
and datamining (in short KDD) [15, 16], and as a 3rst step for solving a problem in
molecular biology [14, 13]. One quite important use of subsequence matching in KDD
consists in recognizing frequent patterns in sequences of data. Knowledge of frequent
patterns is then used to determine association rules in databases and to predict the
behavior of large data [15, 16]. Consider for instance a text t consisting of a university
WWW-server log3le containing requests to see WWW pages, and suppose we want
to see how often, within a time window of at most 10 units of time, the sequence of
events e1e2e3e4 has occurred, where: e1 = ‘Computer Science Department homepage’,
e2 = ‘Graduate Course Descriptions’, e3 = ‘CS586 homepage’, e4 = ‘homework’. This
will be achieved by counting the number of 10-windows of t containing p= e1e2e3e4
as a subsequence. This example calls for three remarks.
1. An on-line analysis is much preferable to an o=-line analysis. In the second case,

we record the text, and we then read it back and forth to process it. In the 3rst
case, we read the text once, and immediately process it: that is, we have both
(i) a bounded amount of working memory available (much smaller that the size of
the text, hence we cannot memorize the whole text), and (ii) a bounded amount of
time available between reading two consecutive text symbols.

2. The length k of the pattern is usually much smaller than the length n of the text,
hence an O(f(w; k)+n) processing time may be preferable to an O(nk) processing
time, even if f(w; k) is a rapidly growing function.

3. The pattern is often reused, hence a preprocessing of the pattern, done only once,
can pay oP in the long run. Moreover the preprocessing can be done during ‘oP-
hours’ and it is important to have an answer as fast as possible while a user is
querying a text during ‘peak-hours’.

The contribution of this paper is twofold: (i) we design two new eMcient algorithms
(Sections 3.2 and 3.3) for solving the subsequence matching problem, (ii) in so doing,

3 The WASP is called episode matching in [9], and serial episode matching in [16]; we use subsequence
matching in order to follow the terminology of [2]. A closely related problem is the matching with don’t
cares of [14, 13].
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we establish two intrinsically interesting results (a) and (b) stated below. Let L be the
language consisting of the strings t where pattern p occurs as a subsequence within a
w-window.
(a) In Theorem 2 we build the minimal >nite state automaton accepting L; this

yields an O(f(w; k) +n) on-line algorithm for solving the subsequence matching
problem, with f(w; k) exponential in k, w.

(b) We introduce a nonconventional kind of RAMs, the MP-RAMs, which are inter-
esting per se because they model more closely the microprocessor basic operations.
In Theorem 3 we show that the transitions of a 3nite state automaton accepting
L can be encoded in such a way as to be e?ciently computed on an MP-RAM
using only the basic (and fast) operations of shifting bits, binary AND and addi-
tion; this yields an O(logw+k+n) on-line algorithm for solving the subsequence
matching problem. We checked that the MP-RAM-based algorithm is much faster
in practice. We believe that, for other algorithms too, a speed-up will be achieved
by programming them on the MP-RAMs that we de3ne in Section 3.3.

Text searching problems have been extensively studied for a long time: most im-
portant are pattern-matching problems, which consist in searching for (possibly con-
strained) occurrences of ‘small’ patterns in ‘large’ texts. Pattern-matching algorithms
fall in four categories:
– o=-line algorithms reading text and=or pattern back and forth, or
– on-line algorithms which can be coarsely divided into three types

1. algorithms preprocessing a 3xed text and then reading a variable pattern [19, 14]
(organizing text by various methods as e.g. a suMx array [14] or a suMx tree
[21]),

2. algorithms preprocessing a 3xed pattern and then scanning the text on-line
[12, 10, 8],

3. algorithms scanning both text and pattern on-line [17, 9, 16, 13].
For the subsequence matching problem, we study here on-line algorithms which scan

text t forward, reading each text symbol only once. The algorithms of Sections 3.1 and
3.3 fall in the third category, while the algorithm of Section 3.2 falls in the second
category. A standard on-line algorithm for the subsequence matching problem is de-
scribed in [9, 16]. It has some similarities with the algorithms used for pattern-matching
[1, 2] and runs in time O(nk); it will be described in more detail in Section 3.1. An-
other on-line algorithm is described in [8]: its basic idea consists in cutting the pattern
into k= log k suitably chosen pieces organized in a trie; it then runs in time O(nk= log k).

We brieQy compare the subsequence matching problem with closely related problems
studied in the literature:
1. the matching with don’t cares problem: given k pattern strings P1; : : : ; Pk ∈A∗,

search text t for occurrences of the form P1u1 · · · uk−1Pk for u1; : : : ; uk−1 ∈A∗.
2. the subsequence matching problem: given a pattern p=p1 · · ·pk ∈A∗, with pi ∈A,

search text t for occurrences of the form p1u1 · · · uk−1pk for u1; : : : ; uk−1 ∈A∗, with
the constraint that the total length of p1u1 : : : uk−1pk is not greater than a given
integer w (i:e:6w).
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3. the pattern-matching problem: given a pattern p∈A∗, 3nd occurrences of p in
text t.

The matching with don’t cares has been studied, without bounds on the lengths
of the uis, in [13] and, with constraints on the lengths of the uis, in [14]. From a
purely algebraic viewpoint, pattern-matching is a particular instance of subsequence
matching, which is in turn a particular instance of matching with don’t cares. How-
ever, from the complexity viewpoint, these problems are diPerent and not inter-
reducible.

Noticing that the subsequence matching problem is a generalization of the pattern-
matching problem, we introduce here two algorithms based on new ideas. We ob-
serve 3rst that, when the window size w is equal to the pattern length k, the subse-
quence matching problem reduces to the pattern-matching problem. We note then that
a very eMcient pattern-matching algorithm, the Knuth–Morris–Pratt (KMP) algorithm,
is based on preprocessing the pattern [12]. We thus use a similar approach for sub-
sequence matching: given a window size w, we preprocess the pattern, in order to
obtain a minimal 3nite-state automaton which then runs in time n on any length n
text and computes the number of w-windows containing pattern p as a subsequence.
Indeed, when w= k, after the preprocessing, our algorithm runs exactly like the KMP
algorithm. Our automaton is based on an idea diPerent from the ones used in suf-
3x automata [8], suMx trees [21] and similar structures [13], or suMx arrays [14]:
we use pre3xes of the pattern and substrings of the text instead of the usually used
suMxes.

The paper is organized as follows: in Section 2, we de3ne the problem, in Section 3
we describe the algorithms and study their complexities; experimental results are stated
in Section 4.

2. The problem

2.1. The subsequence matching problem

An alphabet is a 3nite nonempty set A. A string of length n over the alphabet
A is a mapping t from the set of integers {1; : : : ; n} into A. The only string of
length zero is the empty string, denoted by �. A nonempty string t : i �→ ti will be
denoted by t1t2 · · · tn. A language over alphabet A is a set of strings on the alphabet
A.

Let t= t1t2 · · · tn be a string. A string p=p1p2 · · ·pk is said to be a substring
(or factor) of t iP there exists an integer j such that tj+i =pi for 16i6k. A win-
dow of size w on string t, in short w-window, is a substring ti+1ti+2 · · · ti+w of t of
length w; there are n− w + 1 such windows. String p is a subsequence of t iP there
exist integers 16i1¡i2¡ · · ·¡ik6n such that tij =pj for 16j6k. If p is a subse-
quence of t and if we have ik − i1¡w, then p is a subsequence of t within a w-
window.
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Fig. 1. A 7-window with a minimal substring containing ‘see’.

Example 1. If t= ‘researcher’ then ‘sea’ is a substring of t, hence ‘sea’ is also a
subsequence of t. Further, ‘see’ is neither a substring, nor a subsequence of t within a
6-window, but ‘see’ is a subsequence of t within a 7-window. See Fig. 1.

Given an alphabet A, and strings p; t over A:
• the pattern-matching problem consists in 3nding whether p is a substring of t,
• the plain subsequence matching problem is to 3nd whether p is a subsequence

of t,
• given moreover a window size w,

– the Window-Existence Subsequence matching Problem, in short WESP, consists
in 3nding whether p is a subsequence of t within a w-window.

– the Window-Accumulated Subsequence matching Problem, in short WASP, con-
sists in counting all the w-windows within which p is a subsequence of t.

A naive solution exists for the pattern-matching problem whose time complex-
ity on RAM is O(nk). Knuth et al. [12] have given a well-known algorithm to
solve the problem in linear time O(n + k). A naive solution for the WASP is in
O(nkw). A more elaborate algorithm, we call it the standard algorithm, is in O(nk)
(see [16]). In [15] Mannila asks whether the WASP can be solved in
o(nk).

2.2. The o(nk) notation

An important issue is to 3rst explicit the meaning of the o(nk) notation de3ned by
Landau (cf. [11]). Originally, the o(h(n)) notation was introduced to compare growths
of functions of a single argument; when we are to compare functions in several ar-
guments, diPerent non-equivalent interpretations of o(h(n; m; : : :)) are possible. In our
case, assume an algorithm in time t(n; k); then t(n; k) = o(nk) can be interpreted in
two diPerent ways:
1. either as limn+k→+∞ t(n; k)=nk = 0, i.e. ∀�;∃N , ∀n;∀k(n+ k¿N⇒ t(n; k)¡�);
2. or as lim n→+∞

k→+∞
t(n; k)=nk = 0, i.e. ∀�;∃N , ∀n;∀k(n¿N and k¿N⇒ t(n; k)¡�).

With interpretation 1, no algorithm can solve the WASP in time o(nk). Indeed, any
algorithm for the WASP must read the text once, hence t(n; k)¿n. Then, for a given
k, e.g. k = 2, t(n; k)=nk¿1=2, hence limn+k→+∞ t(n; k)=nk = 0 is impossible. We thus
choose interpretation 2.

Das et al. [9] give an O(nk= log k) algorithm for the WASP by using tries to rep-
resent the pattern, hence solves Mannila’s problem. We improve this result in another
direction by giving a linear (O(n)) on-line algorithm on MP-RAM for the WASP
(Section 3.3.2).
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3. Algorithms and upper bounds on their complexities

We describe 3rst the standard algorithm, then two new algorithms counting the
number of w-windows of t which contain p as a subsequence, and we study their
complexity.

3.1. The standard algorithm

Introduction: Our intention is to give algorithms improving the algorithm of [16],
called here the standard algorithm. Let us 3rst recall this algorithm.

Main idea: Let p=p1p2 · · ·pk be the pattern and let t= t1t2 · · · tn be the text. We
note 3rst that the subsequence matching problem reduces to 3nding the number of
w-windows of t which contain a minimal substring containing p: a substring of t
containing p is said to be minimal if no proper substring of it contains p.

Example 2. For instance, let t= researshers (sic) and p= se; then, rese and rshe

are substrings containing se, but are not minimal substrings containing se. On the
other hand, se and she are minimal substrings containing se.

De�nition 1. A string tr : : : ts is said to be a minimal substring of t containing p1 : : : pl
iP

1. there exist integers r6i1¡i2¡: : :¡il6s such that tij =pj for 16j6l (we say
that i1; i2; : : : ; il is an occurrence of p1 : : : pl in tr : : : ts),

2. and moreover, no proper substring of tr : : : ts contains p1 : : : pl, i.e. for all occur-
rences of p1 : : : pl in tr : : : ts, i1 = r and il = s.

Indeed any window containing p as a subsequence also contains a minimal substring
containing p. See Fig. 1.

Proposition 1. There exists an O(nk) algorithm to solve the WASP with arguments
n; k; w and dealing with integers less than n.

Proof. We 3rst explain the idea of the algorithm, inspired from those of [16, 8].
In order to count the number of w-windows of t which contain a minimal substring
containing p we maintain an array of integers s[1 : : : k], where s[l] contains the starting
position in t of the most recently seen minimal substring containing p1 : : : pl if such
a substring exists, and 0 otherwise. We initialize s[1 : : : k] with [0 : : : 0]. The algorithm
runs by sliding a w-window on t. Let i be the index in t where the current window
ends. If s[l] = j �= 0, this means there is a minimal substring containing p1 : : : pl and
starting at index j in the substring tj : : : ti. Thus, if s[k] = j and i− j¡w we conclude
that the current window contains a minimal substring containing p. The variable count
gives the number of w-windows containing p as a subsequence.
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Example 3. Let for instance t= researshers, p= see, and w= 8; we obtain the
following table:

i t s[1] s[2] s[3] i − s[3] Accept?
1 r −∞ −∞ −∞ ∞ No
2 e −∞ −∞ −∞ ∞ No
3 s 3 −∞ −∞ ∞ No
4 e 3 3 −∞ ∞ No
5 a 3 3 −∞ ∞ No
6 r 3 3 −∞ ∞ No
7 s 7 3 −∞ ∞ No
8 h 7 3 −∞ ∞ No
9 e 7 7 3 6 Yes

10 r 7 7 3 7 Yes
11 s 11 7 3 8 No

We accept when i − s[3]¡8.

Algorithm. The algorithm is given below, in a pseudo-language (‘DO forall l∈ I
inst ENDDO’ performs inst simultaneously for all indices l∈ I).
DO forall l∈ [1 : : : k] s[l] := 0 ENDDO

count := 0
DO for i∈ [1 : : : n] in increasing order

IF ti =p1 then s[1] := i ENDIF
DO forall l∈ [2 : : : k]

IF ti =pl then s[l] := s[l− 1] ENDIF ENDDO

IF i − s[k]¡w then count := count + 1 ENDIF

ENDDO

We obtain easily the computational complexity which is announced.

Remark 1. Note that, as a practical improvement, to 3nd more quickly the entries
of s that need to be updated, implementations may maintain, for every letter a, a list
waits[a] of elements of A consisting of those entries of s that need to be updated if
the next letter scanned is a.

3.2. An algorithm preprocessing the pattern

Remark 2. In the standard algorithm, we have to maintain an array of integers:
s[1] : : : s[k]

where s[i] is a position in the string t, hence is an integer of length ln(|n|).
A 3rst variation is to replace this array by the array:
l[1] : : : l[k]

where l[i] is the distance between the current position and the starting position of the
most recently seen minimal substring containing p1 : : : pi if such a substring exists,
and +∞ otherwise. Of course this distance is interesting when it is less than the size
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of the window, hence we may truncate it by w. The consequence is we have to deal
with integers of length ln(|w|) instead of integers of length ln(|n|).

Example 4. Let, as in example 3, t= researshers, p= see and w= 8; we obtain
the following table:

i t l[3] l[2] l[1] Accept?
1 r +∞ +∞ +∞ No
2 e +∞ +∞ +∞ No
3 s +∞ +∞ 1 No
4 e +∞ 2 2 No
5 a +∞ 3 3 No
6 r +∞ 4 4 No
7 s +∞ 5 1 No
8 h +∞ 6 2 No
9 e 7 3 3 Yes

10 r 8 4 4 Yes
11 s +∞ 5 1 No

We accept when l[3]68. For this reason, we changed the order of presentation of l[1],
l[2], l[3].

Remark 3. A value of the last array may be seen as one of wk states. As in the Knuth–
Morris–Pratt algorithm, we may consider an automaton instead of computing a new
state on the Qy. We note that when the window size w is equal to the pattern length
k, the WASP reduces to the usual pattern matching problem addressed by the Knuth–
Morris–Pratt algorithm. Hence we generalize the KMP algorithm by preprocessing the
pair (pattern + window size w). However, our automaton uses pre3xes of the pattern
instead of the more commonly used suMxes [8, 13].

3.2.1. A complexity result
Theorem 1. There exists an O(f(w; k) + n) algorithm to solve the WASP with
arguments n; k; w on a classical RAM; dealing with integers less than w.

Proof. The main point here is that the function f(w; k) does not depend on n; we
shall bound its growth rate later. The algorithm consists of two steps: the 3rst step
preprocesses the pattern and the second step scans the text.

Step 1: We construct a 3nite state automaton A by preprocessing pattern p.
The alphabet of A is A; the states of A are k-tuples of numbers 〈l1; : : : ; lk〉 with
lj ∈{1; : : : ; w; w + 1}. Indeed we saw that the numbers in tuples may be truncated
to w; here w + 1 plays the rôle of +∞.

We 3rst informally describe the behaviour of A. When automaton A is scanning
a string t, it will be in state 〈l1; : : : ; lk〉 after reading t1 : : : tm iP, li is the length of
the shortest suMx 4 of t1 : : : tm which is of length not greater than w and contains

4 Recall that string s is a pre>x (resp. su?x) of string t iP there exists a string v such that t= sv (resp.
t= vs).
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p1 : : : pi as a subsequence, for i= 1; : : : ; k; if no suMx (of length not greater than w)
of t1 : : : tm contains p1 : : : pi as a subsequence, we let li =w + 1. Namely, for every i
such that 16i6k and li¡w + 1, if we assume t= t′tmax{m−w+1;1} : : : tmt′′, then string
si =p1 : : : pi is a subsequence of tm−li+1 : : : tm and is not a subsequence of tm−li+2 : : : tm.

We now formally de3ne automaton A. Let Next(l) be the auxiliary function

Next(l) =

{
l+ 1 if l¡w + 1;

w + 1 otherwise:

1. The initial state of A is the k-tuple 〈w + 1; : : : ; w + 1〉.
2. The accepting states of A are the k-tuples 〈l1; : : : ; lk〉 such that lk¡w+ 1, meaning

that pattern p is a subsequence of the w-window ending at the currently scanned
letter of t.

3. Transitions: starting from 〈l1; : : : ; lk〉 and reading a, automaton A will go in
〈l′1; : : : ; l′k〉, denoted by 〈l1; : : : ; lk〉 a→〈l′1; : : : ; l′k〉, where, for i= 1; : : : ; k

l′i =

{
Next(li−1) if pi = a;

Next(li) if pi �= a:
(We take l0 = 0 for k = 1.)
Step 2: Automaton A scans text t1 : : : tn, starting with count= 0 initially, and incre-

menting count by 1 each time an accepting state is encountered.
The second step takes time n on a classical RAM, and the 3rst step takes time

f(w; k) related to the number of states of A, which is (w + 1)k .

3.2.2. Minimization of automaton A

The algorithm of Theorem 1 can be optimized. To this end,
1. consider only k-tuples representing reachable states and discard the other k-tuples,

and
2. moreover, substitute w+1 for li if the length k− i of pi+1 : : : pk is ¿w−li, because

then si is too short and p cannot be a subsequence in the next w − li windows.
The optimized automaton Aopt is in state 〈l1; : : : ; lk〉 after reading t1 : : : tm iP li is the

length of the shortest suMx of tmax{m−w+k−i+1;1} · · · tm containing p1 : : : pi as a subse-
quence, for i= 1; : : : ; k. The transitions of Aopt are de3ned by 〈l1; : : : ; lk〉 a→〈l′1; : : : ; l′k〉
where

l′i =



li−1 + 1 if pi = a;

li + 1 if pi �= a and li + 16w − k + i;

w + 1 otherwise:

It will be shown below that, in the worst case, the number N of states of Aopt satis-
3es

(w+1
k

)
6N6

(w+k
k

)
. Hence, even for the optimized algorithm, f(w; k) is exponential

in k.
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When w= k, our optimized construction gives an automaton having the same number
of states as the KMP algorithm for pattern-matching. Moreover:

Theorem 2. Assume that alphabet A contains at least one letter x which does not
occur in pattern p; then Aopt is the minimal >nite state automaton (i.e. having
the minimal number of states) accepting the strings t where pattern p occurs as a
subsequence within a w-window.

Proof. We show that any automaton B accepting the same strings as Aopt has at least
as many states as Aopt . Let s= 〈l1; : : : ; li−1; li; : : : ; lk〉 and s′ = 〈l1; : : : ; li−1; l′i ; : : : ; l

′
k〉 be

two states of Aopt, both reachable from 〈w + 1; : : : ; w + 1〉, who 3rst diPer at their
ith components. Let t1 : : : tm and t′1 : : : t

′
m′ be corresponding input strings bringing Aopt

from 〈w + 1; : : : ; w + 1〉 to s and s′; respectively. Let us show that, after scanning
inputs t1 : : : tm and t′1 : : : t

′
m′ , automaton B should come to diPerent states sB and s′B;

respectively. Without loss of generality, we further assume that li¡l′i ; let x be a letter
not occurring in pattern p, then sB accepts the text when the next scanned w−li letters
consist of xw−li+i−kpi+1 : : : pk while s′B rejects the text in the same circumstances.

3.2.3. About the size of automaton Aopt

As in Theorem 1, our algorithm consists in running Aopt on a text t: counting the
number of times we pass through an accepting state gives the number of w-windows
of t containing p as a subsequence in time exactly n. Hence, after the preprocessing,
we scan the text t in time merely n. We now study how long takes our preprocessing:
this is related to N , the number of states of Aopt.

Lemma 1. 1: In the worst case; the size N of Aopt satis>es
(w+1
k

)
6N .

2: In all cases; the size M of the (nonoptimized) automaton A satis>es M6
(w+k
k

)
.

Proof. In all cases, M6
(w+k
k

)
because the states of A assume the form 〈l1; l2; : : : ; lk〉

with l16l26 · · ·6lk6w + 1. In the case when p= ak , we have N =
(w+1
k

)
because,

when p= ak , the states of Aopt assume the form 〈l1; l2; : : : ; li; w + 1; : : : ; w + 1〉 with
l1¡l2¡ · · ·¡li6w− k+ i and because there are

(w+1
k

)
such sequences. Hence, in the

worst case,
(w+1
k

)
6N .

Corollary 1. The number of states of Aopt is exponential in the worst case.

Remark 4. Using hashing methods divides the preprocessing time by a factor of 10,
and thus our algorithm with hashing can still run about twice as fast as the standard
algorithm for windows of size 14 or 15.

Corollary 2 (Space complexity). The Aopt-based algorithm uses at most O(n+
(w+k
k

)
)

locations of size O(k logw).
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Proof. Indeed, up to O(
(w+k
k

)
) additional memory locations may be needed to store

the states of Aopt, and a state is a k-tuple of numbers 6w+1, hence each state needs
k logw bits.

3.3. An algorithm on MP-RAMs

For ‘large’ windows, for instance on a PC for windows of size w¿14 and patterns
of size k¿6, the previous preprocessing explodes, due to the exponential growth in
the number of states of Aopt, and the standard algorithm is better than our algorithm.
Whence the idea of a smaller preprocessing which is almost independent of the pattern
and of the window; this method is described in the present section.

3.3.1. MP-RAMs
It is usual to give pattern matching algorithms on RAMs. Indeed the RAM model

of computation is well-suited for computational complexities greater than n2. For low
complexities though, RAMs are not a well-suited model of computation, because any
random access to the memory is counted as one elementary operation: this is no longer
a valid model when there are too many diPerent values to be stored, as for instance
the

(w+1
k

)
states of A.

Already in 1974, the motivation of Pratt et al. [18] for introducing vector machines
was the remark that bitwise boolean operations and shift are implemented on com-
mercial computers and are ideally suited for certain problems. This paper started a
quite interesting series of papers comparing the computational complexities of various
models of machines accounting for bitwise boolean operations and shifts with those of
conventional machines, such as Turing machines, RAMs, etc. [20, 6]. Going back to
the 3rst motivation of Pratt et al. [18], concrete applications of this technique to vari-
eties of string-matching problems began with [4, 22]: they are known as bit-parallelism
or shift-OR. We follow this path with our problem, which is close to the problems
treated in [4, 22, 5], although it is diPerent from these problems.

In what follows, we use a re3nement of the RAM model, which is a more realistic
model of computation. Moreover, we encode A in such a way that (i) each state of A
can be stored in a single memory location, and (ii) only the most basic micro-processor
operations are needed to compute the transitions of A. We use a RAM with the same
control structures as those of conventional RAMs, 5 but with a set of initial operations
enlarged by including bitwise boolean operations and shifts; whenever possible, these
operations will be preferred. Such RAMs are closer to microprocessors, hence we call
them MP-RAMs.

De�nition 2. An MP-RAM is a RAM extended by the following new operations:
1. bitwise AND, denoted by &,

5 For a formal de3nition of classical RAMs see e.g. [2, pp. 5–11.]
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Binary expansion of L︷ ︸︸ ︷
0

... |︸ ︷︷ ︸
binary expansion of lk

· · · 0
... |︸ ︷︷ ︸

binary expansion of l2

0
... |︸ ︷︷ ︸

binary expansion of l1

Fig. 2. Encoding of 〈l1; : : : ; lk〉.

2. left shift, denoted by �, or by shl, and
3. right shift, denoted by �, or by shr.

The new operations are low-level operations which will be executed much faster than
the complex MULT, DIV operations.

Example 5. Assuming MP-RAMs with unbounded memory locations, we have for in-
stance:

(10110 & 01101) = 100; (10110 � 4) = 101100000; (10110 � 3) = 10:

If memory locations were bounded to 8 bits, we would have: (10110�4) = 1100000,
which we may write in the form (00010110�4) = 01100000.

3.3.2. A complexity result
The idea of the algorithm consists in encoding automaton A of Theorem 1 so

that its transitions can be computed by an MP-RAM without using the MULT, DIV
operations. We describe the encoding of A. Let ! be the least natural number such
that w + 262!. The rôle of +∞ is now played by the number 2! − 1 whose binary
representation consists of ! units. We rede3ne the function Next as:

Next!(l) =

{
l+ 1 if l ¡ 2! − 1;

2! − 1 otherwise:

State 〈l1; : : : ; lk〉 is then coded by the number:

L=
k∑
i=1

li(2!+1)i−1

=
k∑
i=1

li � ((! + 1)(i − 1)): (1)

The binary expansion of L consists of the binary expansions of the lis padded by lead-
ing zeros up to the length !+ 1; see Fig. 2. Note that all these padded representations
begin with 0 because all lis are less than 2! − 1. These 0s play an important rôle in
the implementation of the function Next!.
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According to the de3nition of Eq. (1), the initial state 〈2! − 1; : : : ; 2! − 1〉 is coded
as

I0 =
k∑
i=1

(2! − 1)2(!+1)(i−1)

=
k∑
i=1

((1 � !) − 1) � ((! + 1)(i − 1)):

Respectively, accepting states are exactly those L satisfying L¡F where F = (w +
1)2(!+1)(k−1), which means that lk6w.

Proposition 2. The codes of the transitions of A are computed by an MP-RAM as
follows:

L a→L′ iff L′ = T − ((T&E2) � !)

where

T = ((L� (! + 1))&Ma) + (L&Na) + E1 ;

E1 =
k∑
i=1

1 � ((! + 1)(i − 1));

E2 =
k∑
i=1

(1 � !) � ((! + 1)(i − 1));

and for a∈A;

Ma =
∑
pi=a

16i6k

((1 � !) − 1) � ((! + 1)(i − 1));

Na =
∑
pi �=a

16i6k

((1 � !) − 1) � ((! + 1)(i − 1)):

Proof. A state l= 〈l1; : : : ; lk〉 is encoded by the binary expansion L de3ned in
equation 1. The binary expansion L is obtained by concatenating the binary expan-
sions lis of the lis padded by leading zeros up to the length ! + 1; see Fig. 2. We
chose the basis 2!+1 rather than the basis 2! to encode the lis: indeed, basis 2! is
suMcient to encode all the lis, but the larger basis 2!+1 will simplify the treatment in
case of overQows.

Consequently, the binary expansion of an integer less than 2k(!+1) consists of k large
blocks of (! + 1) bits, the 3rst bit is called the overFow digit and the remaining !
bits constitute a small block. The blocks are numbered 1 to k leftward (the rightmost
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L = 0
... l5 0

... l4 0
... l3 0

... l2 0
... l1

Fig. 3. Encoding of 〈l1; : : : ; lk〉; li is the binary expansion of li .

block is block 1, and the leftmost block is block k). When no ambiguity arises we
will just say ‘block’ instead of ‘small block’.

Example 6. Assume pattern p has length k = 5 and w= 14; hence != 4. The encoding
L of state l= 〈l1; : : : ; l5〉 is depicted in Fig. 3; L consists of 5 ‘large blocks’ of the

form 0
...li, where 0 is the overQow digit and each li is a ‘small block’.

For instance if l= 〈3; 5; 10;∞;∞〉,

0
... 1111 0

... 1111 0
... 1010 0

... 0101 0
... 0011

and, with the notation of Fig. 3, depicted as

L = 0
... 15 0

... 15 0
... 10 0

... 5 0
... 3

The initial state is coded by

I0 =
k∑
i=1

(2! − 1)2(!+1)(i−1)

=
k∑
i=1

((1 � !) − 1) � ((! + 1)(i − 1)):

Example 6 (continued). != 4 and I0 is depicted by

I0 = 0
... 1111 0

... 1111 0
... 1111 0

... 1111 0
... 1111

if the sequence consisting of ! 1s and representing w + 1 is shortened into 1, the
picture becomes

I0 = 0
... 1 0

... 1 0
... 1 0

... 1 0
... 1

Accepting states are exactly those Ls satisfying L¡F where F = (w + 1)2(!+1)(k−1);
indeed, l= 〈l1; : : : ; lk〉 is an accepting state if lk¡w + 1.

Example 6 (continued). Here, w= 14 and F is depicted by

F = 0
... 1111 0

... 0000 0
... 0000 0

... 0000 0
... 0000 :
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We now will describe the proof, illustrating it by Example 6 where we assume
p= aabca.

Recall that, if l= 〈l1; : : : ; lk〉 &→ l′ = 〈l′1; : : : ; l′k〉, then l′i is either Next!(li−1) or
Next!(li) according to whether the scanned letter & is equal to pi or not. The cases
l′i = Next!(li−1) and l′i = Next!(li) will be respectively called computations of the
>rst kind and of the second kind.

Step 1: M& is a 3lter designed to prepare the computations of the 3rst kind. Precisely,
let

M& =
∑
pi=&

16i6k

((1 � !) − 1) � ((! + 1)(i − 1)):

For i ranging from 1 to k, the ith small block of M& from the right-hand side consists
of ! ones or ! zeros according to whether pi is equal to & or not.

Example 6 (continued). Here p= aabca, hence

Ma = 0
... 1 0

... 0 0
... 0 0

... 1 0
... 1

Mb = 0
... 0 0

... 0 0
... 1 0

... 0 0
... 0

Mc = 0
... 0 0

... 1 0
... 0 0

... 0 0
... 0

where 0 = 0000 and 1 = 1111.
A left shift of L by ! + 1 will shift the lis by one large block leftward.

Example 7. If l= 〈l1; l2; l3; l4; l5〉, then

L = 0
... l5 0

... l4 0
... l3 0

... l2 0
... l1

and

L� (! + 1) = 0
... l5 0

... l4 0
... l3 0

... l2 0
... l1 0

... 0

Note that the rightmost small block of L�(! + 1) is always 0.

“Adding” L�(! + 1) with M& results
1. in erasing the leftmost large block of L�(! + 1) and,
2. for i ranging from 2 to k, in setting the ith small block from the right to, respectively,
li−1 or 0 according to whether & is equal to pi or not.

Thus (L�(! + 1))&M& screens oP the blocks for which & �=pi and shifts everything
by one large block leftward; more precisely, for i¿1, the ith block will contain li−1

if pi = & and 0 otherwise.
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Example 6 (continued). With p= aabca; we have

(L� (! + 1))&Ma = 0
... l4 0

... 0 0
... 0 0

... l1 0
... 0

(L� (! + 1))&Mb = 0
... 0 0

... 0 0
... l2 0

... 0 0
... 0

(L� (! + 1))&Mc = 0
... 0 0

... l3 0
... 0 0

... 0 0
... 0

Similarly, N& is a 3lter designed to prepare the computations of the second kind. Let

N& =
∑
pi �=&

16i6k

((1 � !) − 1) � ((! + 1)(i − 1)):

For i ranging from 1 to k, the ith block of N& is 0 or 1 if pi = & or pi �= &, respectively.
Namely, L&N& screens oP the blocks for which &=pi. More precisely, for i¿1, the
ith block of L&N& will contain li if pi �= & and 0 otherwise.

Example 6 (continued). With p= aabca,

Na = 0
... 0 0

... 1 0
... 1 0

... 0 0
... 0

L&Na = 0
... 0 0

... l4 0
... l3 0

... 0 0
... 0

Nb = 0
... 1 0

... 1 0
... 0 0

... 1 0
... 1

L&Nb = 0
... l5 0

... l4 0
... 0 0

... l2 0
... l1

We note that M& and N& are complementary in the following sense: the small blocks
of M& and N& can assume only the values 1 and 0, and the ith small block of M& is
1 iP the ith small block of N& is 0.

The ith block of ((L� (! + 1))&M&) + (L&N&) is equal to li−1 or li, respectively
when &=pi or & �=pi. The rightmost block is special: its value is 0 when &=p1 and
l1 when & �=p1.

Example 6 (continued). With p= aabca, ((L� (! + 1))&Ma) + (L&Na) is depicted
by:

0
... l4 0

... l4 0
... l3 0

... l1 0
... 0

Let

E1 =
k∑
i=1

1 � ((! + 1)(i − 1)):

Each block of E1 consists of the binary expansion of 1.
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Example 8. E1 is depicted by

0
... 0001 0

... 0001 0
... 0001 0

... 0001 0
... 0001

Adding E1 to ((L� (! + 1))&M&) + (L&N&) results in adding 1 to each block.
Let T = ((L� (! + 1))&M&) + (L&N&) + E1.
• On the one hand, for i ranging from 2 to k, the ith large block of T contains

– l′i if the contents of ((L � (! + 1))&M&) + (L&N&) is strictly less than
1 (= 2! − 1),

– 2! otherwise. In this latter case, we have obtained 2! whilst l′i is equal to 2!−1,
because (2! − 1) + 1 = 2! − 1 (recall 2! − 1 plays the rôle of ∞); thus the ith
block of T does not contain the proper result.

• On the other hand, the rightmost block of T contains l1 + 1 or 1. In the 3rst case,
the contents of that block is again the proper result l′1c or not, respectively when
1 �= l1 or l1 = 1.

At the end of Step 1, all the large blocks of T , except may be the 3rst block, contain
a number of the form '+ 1 when we would like them to contain Next!(').

Example 6 (continued). With p= aabca; w= 14, and l= 〈3; 5; 10; w+1; w+1〉, ((L�
(! + 1))&Ma) + (L&Na) + E1 is depicted by

1
... 0000 1

... 0000 0
... 1011 0

... 0100 0
... 0001

Step 2: We replace ' + 1 by Next!(') wherever needed: it suMces to reset the
large blocks where an overQow has occurred, by substituting 2!− 1 for 2! in all such
blocks. Let

E2 =
k∑
i=1

(1 � !) � ((! + 1)(i − 1)):

In each large block of E2 the overQow digit is 1 and the small block is 0.

Example 9. E2 is depicted by

1
... 0 1

... 0 1
... 0 1

... 0 1
... 0

Hence, for each large block of T&E2, the small block is 0 and the overQow digit
is 1 if there is an overQow in the corresponding block of T , i.e. that block consists of
2!, and 0 otherwise.

Example 6 (continued).

(T&E2) = 1
... 0 1

... 0 0
... 0 0

... 0 0
... 0
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Dividing (T&E2) by 2! is realized by a right shift of every bit of (T&E2). The
ith large block of the result of this division contains the binary expansion of 1 or 0,
respectively when the overQow digit of the ith large block of (T&E2) was 1 or 0.

Example 6 (continued). ((T&E2)�!) is depicted by

0
... 0001 0

... 0001 0
... 0000 0

... 0000 0
... 0000

Hence, in T − ((T&E2)�!) the ith large block coincides with the corresponding
block of T if there was no overQow, and is the binary expansion of 2! − 1 (namely

0
... w + 1) otherwise.

Example 6 (continued). T − ((T&E2)�!) is depicted by

0
... 1111 0

... 1111 0
... 1011 0

... 0100 0
... 0001

In both cases, the ith large block is equal to l′i . Hence,

L′ = T − ((T&E2) � !):

Lemma 2. Preprocessing of w and the pattern (step 1 of the algorithm on MP-RAM)
runs in time O(k + log(w)).

Proof. In the preprocessing step 1. we compute the 2(+ 6 numbers !; I0; F; E1; E2; M&;
N&. We compute ! by the following algorithm:

DO u :=w + 1; ! := 0 ENDDO

WHILE u¿0 DO

u := u� 1; ! :=! + 1 ENDWHILE
Hence the time needed is O(log(w)).
We compute I0 by the following algorithm:

DO z := (1�!) − 1; I0 := 0 ENDDO

DO for i∈ [1 : : : k] in increasing order

I0 := (I0 � (! + 1)) + z ENDDO
Hence the time needed is O(k), and similarly for E1 and E2.
We compute F by the following O(k) algorithm:
F :=w + 1
DO for i∈ [1 : : : k − 1] in increasing order

F := (F� (! + 1)) ENDDO
We compute M& by the following O(k) algorithm, using HGorner’s method:

DO z := (1�!) − 1; M& := 0 ENDDO

DO for i∈ [1 : : : k] in decreasing order

M& := (M&� (! + 1))
IF pi = & then M& :=M& + z ENDIF ENDDO

Similarly for N&.
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Theorem 3. There exists an O(n+ k + log(w)) = O(n) on-line algorithm to solve the
WASP with arguments n; k; w on an MP-RAM.

Proof. Let ( denote the number of letters in alphabet A, 6 and let |w| denote the
length of the binary representation of w; the preprocessing consists simply in computing
2(+5 numbers of size k(|w|+2) which will be used in computing on-line and without
preprocessing the transitions of the automaton A of Theorem 1 by an MP-RAM. The
algorithm consists of the four steps below:
1. compute !; I0; F; E1; E2, and Ma; Na for a∈A;
2. set count= 0;
3. set L= I0;
4. scan the text t; after reading ti, calculate the new state L, and if L¡F increment
count by 1.

Our algorithm uses only the simple and fast operations &, �, �, and addition. We
have shown in Lemma 2 that the preprocessing step 1 takes time O(k + log(w)). In
step 4 we scan text t in time O(n). Hence the complexity is O(n+k+log(w)). Because
k6n and w6n, the complexity of the algorithm is O(n).

4. Experimental results

We implemented all algorithms in C. The experiments have been run on a PC-Cyrix
166 under Linux, on a DEC-alpha shared by several users and on an Apple Mac
PowerPC 7100. The text consisted of a randomly generated text 3le; the patterns were
of the form ak1bak2 , which give a high complexity for the preprocessing. For other
patterns, the results are much better (see Fig. 5, pattern 2). We counted the complexity
in machine clock-ticks, because quite often our algorithms ran in 0 s. In Fig. 5 the
patterns for sub-3gure pattern 1 are pre3xes of length 4, 6, 8, 10 of p1 = aabaaaaaaa
(i.e. for k = 4 we have p= aaba, for k = 6 we have p= aabaaa, etc.), and the patterns
for sub-3gure pattern 2 are pre3xes of length 4, 6, 8, 10 of p2 = ababababab. The
experiments clearly con3rm our complexity analysis and show that
• for a 3xed window size w, the maximum complexity of preprocessing is reached

for w∼ 2k (see Fig. 5): the theoretical explanation is that, for a 3xed w,
(w
k

)
has its

maximum when k =w=2,
• if we do not count the preprocessing, then our 3rst method is 5–10 times faster than

the standard method: indeed the standard method takes time nk and ours takes time
n (see Fig. 5),

• even including the preprocessing and taking patterns which give the worst-case com-
plexity, our 3rst method outperforms the standard method as soon as the data is large
(texts of length n¿106, see Fig. 4),

6 Our algorithm is alphabet-dependent, however, as noted in [9], we can map all letters not occurring in
the pattern on a single letter, and hence assume that the alphabet has at most k + 1 letters.
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Fig. 4. Window width w= 12, and pattern aabaaa. The thick solid line represents the total running time
of our 3rst algorithm including preprocessing, the dashed-and-dotted line represents the running time of our
MP-RAM algorithm, and the dotted line represents the running time of the standard algorithm.

Fig. 5. Text of length 107, window width w= 12, and varying pattern lengths for 2 diPerent patterns. The
upper solid line represents the total running time of our 3rst algorithm, the lower solid line its running time
after preprocessing, the dashed line its preprocessing time; the dashed-and-dotted line represents the running
time of our MP-RAM algorithm, and the dotted line the running time of the standard algorithm. The time
scale is linear for the preprocessing times, and logarithmic for the running times.

• Fig. 5 shows that (i) the preprocessing of our 3rst method is quite dependent of the
pattern, but after the preprocessing our algorithm runs in constant time equal to the
length of the text, for all patterns, and (ii) our MP-RAM algorithm is less dependent
on the pattern.

• our MP-RAM algorithm is 2–10 times faster than the standard algorithm: the speed-
up is by a factor of 2 for small patterns (k¡5) and can reach a factor of 10 for large
windows and large patterns (w¿30, k¿20); in average, our MP-RAM algorithm is
3 times faster than the standard algorithm.
The agrep program of [22] solves the WESP (and not the WASP) in the special

case when the window size is close to the pattern size, i.e. w¡min(2k; 2k + 9). We
compared our MP-RAM algorithm with agrep: we ran both programs on a DEC-alpha,
and measured time using the UNIX time command. In all the cases that we tested (we
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tested cases when the encoding of a state of automaton A of Theorem 1 3ts in one or
two computer words, i.e. k log w 6 64), our MP-RAM algorithm is 20% faster than
agrep for elapsed time in seconds and it is 2 times faster than agrep for CPU user
time.

5. Conclusion

We presented two new eMcient algorithms for the WASP, linear in the size of the
text. The complexity analysis showed that
1. our 3rst algorithm (including preprocessing) is faster than the standard algorithm

for large data and small windows (it blows up for large windows);
2. our second algorithm, based on MP-RAMs, is more eMcient in all cases.
This was clearly con3rmed by the implementation. Note that for both methods, im-
plementing the WASP is no more diMcult than implementing the WESP. This does
not hold in general; usually counting problems are much harder that the corresponding
existence problems: e.g., for the related problem of matching strings with don’t cares
the existence problem is in linear time while the counting problem is in polynomial
time in [13], and in the special case of [14], the existence problem is in logarithmic
time while the counting problem is in sublinear time.
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