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The subsequence matching problem is an intrinsically interesting generalization of the pattern-matching problem. It has not attracted attention earlier because the plain subsequence matchingproblem, where one stops as soon as an occurrence of p is found (regardless of any window size), iseasily solved in linear time: a �nite state automaton with k + 1 states s0; s1; : : : ; sk scans the text;its initial state is s0; when it scans letter p1 it goes in state s1, then when it scans letter p2 it goes instate s2, . . . ; the text is accepted as soon as it reaches state sk. Subsequence matching within a w-window is a more di�cult problem, which emerged due to its applications in knowledge discovery anddatamining (in short KDD) [M97, MTV95], and as a �rst step for solving a problem in molecularbiology [MBY91, KR97]. One quite important use of subsequence matching in KDD consists inrecognizing frequent patterns in sequences of data. Knowledge of frequent patterns is then used todetermine association rules in databases and to predict the behavior of large data [M97, MTV95].Consider for instance a text t consisting of a university WWW-server log�le containing requests tosee WWW pages, and suppose we want to see how often, within a time window of at most 10 unitsof time, the sequence of events e1e2e3e4 has occurred, where: e1 = `Computer Science Departmenthomepage', e2 = `Graduate Course Descriptions', e3 = `CS586 homepage', e4 = `homework'. Thiswill be achieved by counting the number of 10-windows of t containing p = e1e2e3e4 as a subsequence.This example calls for three remarks.1. An on-line analysis is much preferable to an o�-line analysis. In the second case, we record thetext, and we then read it back and forth to process it. In the �rst case, we read the text once,and immediately process it: that is, we have both (i) a bounded amount of working memoryavailable (much smaller that the size of the text, hence we cannot memorize the whole text),and (ii) a bounded amount of time available between reading two consecutive text symbols.2. The length k of the pattern is usually much smaller than the length n of the text, hence anO(f(w; k)+n) processing time may be preferable to an O(nk) processing time, even if f(w; k)is a rapidly growing function.3. The pattern is often reused, hence a preprocessing of the pattern, done only once, can pay o�in the long run. Moreover the preprocessing can be done during `o�-hours' and it is importantto have an answer as fast as possible while a user is querying a text during `peak-hours'.The contribution of this paper is twofold: (i) we design two new e�cient algorithms (Sections 3.2and 3.3) for solving the subsequence matching problem, (ii) in so doing, we establish two intrinsicallyinteresting results (a) and (b) stated below. Let L be the language consisting of the strings t wherepattern p occurs as a subsequence within a w-window.(a) In Theorem 2 we build the minimal �nite state automaton accepting L; this yields an O(f(w; k)+n) on-line algorithm for solving the subsequence matching problem, with f(w; k) exponentialin k, w.(b) We introduce a non conventional kind of RAMs, the MP{RAMs, which are interesting per sebecause they model more closely the microprocessor basic operations. In Theorem 3 we showthat the transitions of a �nite state automaton accepting L can be encoded in such a way as tobe e�ciently computed on an MP{RAM using only the basic (and fast) operations of shiftingof [MBY91, KR97]. 2



bits, binary AND and addition; this yields an O(logw + k + n) on-line algorithm for solvingthe subsequence matching problem. We checked that the MP{RAM based algorithm is muchfaster in practice. We believe that, for other algorithms too, a speed{up will be achieved byprogramming them on the MP{RAMs that we de�ne in section 3.3.Text searching problems have been extensively studied for a long time: most important arepattern-matching problems, which consist in searching for (possibly constrained) occurrences of`small' patterns in `large' texts. Pattern-matching algorithms fall in four categories:{ o�-line algorithms reading text and/or pattern back and forth, or{ on-line algorithms which can be coarsely divided into three types1. algorithms preprocessing a �xed text and then reading a variable pattern [S71, MBY91](organizing text by various methods as e.g. a su�x array [MBY91] or a su�x tree [U95]),2. algorithms preprocessing a �xed pattern and then scanning the text on-line [KMP77,G81, C88],3. algorithms scanning both text and pattern on-line [Ma71, DFGGK97, MTV95, KR97].For the subsequence matching problem, we study here on-line algorithms which scan text tforward, reading each text symbol only once. The algorithms of Sections 3.1 and 3.3 fall in thethird category, while the algorithm of Section 3.2 falls in the second category. A standard on-linealgorithm for the subsequence matching problem is described in [DFGGK97, MTV95]. It has somesimilarities with the algorithms used for pattern-matching [A90, AHU74] and runs in time O(nk); itwill be described in more detail in section 3.1. Another on-line algorithm is described in [DFGGK97]:its basic idea consists in cutting the pattern into k= logk suitably chosen pieces organized in a trie;it then runs in time O(nk= logk).We briey compare the subsequence matching problem with closely related problems studied inthe literature:1. the matching with don't cares problem: given k pattern strings P1; : : : ; Pk 2 A�, search text tfor occurrences of the form P1u1 � � �uk�1Pk for u1; : : : ; uk�1 2 A�.2. the subsequence matching problem: given a pattern p = p1 � � �pk 2 A�, with pi 2 A, searchtext t for occurrences of the form p1u1 � � �uk�1pk for u1; : : : ; uk�1 2 A�, with the constraintthat the total length of p1u1 � � �uk�1pk is not greater than a given integer w (i.e. � w).3. the pattern-matching problem: given a pattern p 2 A�, �nd occurrences of p in text t.The matching with don't cares has been studied, without bounds on the lengths of the uis,in [KR97] and, with constraints on the lengths of the uis, in [MBY91]. From a purely algebraicviewpoint, pattern-matching is a particular instance of subsequence matching, which is in turn aparticular instance of matching with don't cares. However, from the complexity viewpoint, theseproblems are di�erent and not inter-reducible.Noticing that the subsequence matching problem is a generalization of the pattern-matchingproblem, we introduce here two algorithms based on new ideas. We observe �rst that, when thewindow size w is equal to the pattern length k, the subsequence matching problem reduces to thepattern-matching problem. We note then that a very e�cient pattern matching algorithm, the3



eh rcraeser Figure 1: A 7-window with a minimal substring containing \see".Knuth-Morris-Pratt (KMP) algorithm, is based on preprocessing the pattern [KMP77]. We thususe a similar approach for subsequence matching: given a window size w, we preprocess the pattern,in order to obtain a minimal �nite-state automaton which then runs in time n on any length ntext and computes the number of w-windows containing pattern p as a subsequence. Indeed, whenw = k, after the preprocessing, our algorithm runs exactly like the KMP algorithm. Our automatonis based on an idea di�erent from the ones used in su�x automata [C88], su�x trees [U95] andsimilar structures [KR97], or su�x arrays [MBY91]: we use pre�xes of the pattern and substringsof the text instead of the usually used su�xes.The paper is organized as follows: in section 2, we de�ne the problem, in section 3 we describethe algorithms and study their complexities; experimental results are stated in section 4.2 The problem2.1 The subsequence matching problemAn alphabet is a �nite nonempty set A. A string of length n over the alphabet A is a mapping t fromthe set of integers f1; : : : ; ng into A. The only string of length zero is the empty string, denoted by". A nonempty string t : i 7! ti will be denoted by t1t2 � � � tn. A language over alphabet A is aset of strings on the alphabet A.Let t = t1t2 � � � tn be a string. A string p = p1p2 � � �pk is said to be a substring (or factor) of ti� there exists an integer j such that tj+i = pi for 1 � i � k. A window of size w on string t, inshort w-window, is a substring ti+1ti+2 � � � ti+w of t of length w; there are n �w + 1 such windows.String p is a subsequence of t i� there exist integers 1 � i1 < i2 < � � �< ik � n such that tij = pj for1 � j � k. If p is a subsequence of t and if we have ik � i1 < w, then p is a subsequence of t withina w-window.Example 1 If t = \researcher" then \sea" is a substring of t, hence \sea" is also a subsequence oft. Further, \see" is neither a substring, nor a subsequence of t within a 6-window, but \see" is asubsequence of t within a 7-window. See Figure 1. utGiven an alphabet A, and strings p; t over A:� the pattern-matching problem consists in �nding whether p is a substring of t,� the plain subsequence matching problem is to �nd whether p is a subsequence of t,� given moreover a window size w,{ the Window-Existence Subsequence matching Problem, in shortWESP, consists in �ndingwhether p is a subsequence of t within a w-window.4



{ the Window-Accumulated Subsequence matching Problem, in short WASP, consists incounting all the w-windows within which p is a subsequence of t.A naive solution exists for the pattern-matching problem whose time complexity on RAM isO(nk). Knuth, Morris, and Pratt [KMP77] have given a well-known algorithm to solve the problemin linear time O(n+ k). A naive solution for the WASP is in O(nkw). A more elaborate algorithm,we call it the standard algorithm, is in O(nk) (see [MTV95]). In [M97] Mannila asks whether theWASP can be solved in o(nk).2.2 The o(nk) notationAn important issue is to �rst explicit the meaning of the o(nk) notation de�ned by Landau (cf[Knu76]). Originally, the o(h(n)) notation was introduced to compare growths of functions of asingle argument; when we are to compare functions in several arguments, di�erent non-equivalentinterpretations of o(h(n;m; :::)) are possible. In our case, assume an algorithm in time t(n; k); thent(n; k) = o(nk) can be interpreted in two di�erent ways:1. either as limn+k!+1 t(n; k)=nk = 0, i.e. 8"; 9N; 8n; 8k�n+ k > N =) t(n; k) < "�;2. or as limn!+1k!+1 t(n; k)=nk = 0, i.e. 8"; 9N; 8n; 8k�n > N and k > N =) t(n; k) < "�.With interpretation 1, no algorithm can solve theWASP in time o(nk). Indeed, any algorithm for theWASP must read the text once, hence t(n; k) � n. Then, for a given k, e.g. k = 2, t(n; k)=nk � 1=2,hence limn+k!+1 t(n; k)=nk = 0 is impossible. We thus choose interpretation 2.[DFGGK97] gives an O(nk= logk) algorithm for the WASP by using tries to represent the pattern,hence solves Mannila's problem. We improve this result in another direction by giving a linear(O(n)) on-line algorithm on MP{RAM for the WASP (Section 3.3.2).3 Algorithms and upper bounds on their complexitiesWe describe �rst the standard algorithm, then two new algorithms counting the number of w-windows of t which contain p as a subsequence, and we study their complexity.3.1 The standard algorithmIntroduction.- Our intention is to give algorithms improving the algorithm of [MTV95], called herethe standard algorithm. Let us �rst recall this algorithm.Main idea.- Let p = p1p2 : : : pk be the pattern and let t = t1t2 : : : tn be the text. We note �rst thatthe subsequence matching problem reduces to �nding the number of w-windows of t which containa minimal substring containing p: a substring of t containing p is said to be minimal if no propersubstring of it contains p. 5



Example 2 For instance, let t = researshers (sic) and p = se; then, rese and rshe are substringscontaining se, but are not minimal substrings containing se. On the other hand, se and she areminimal substrings containing se. utDe�nition 1 A string tr : : : ts is said to be a minimal substring of t containing p1 : : : pl i�1. there exist integers r � i1 < i2 < : : : < il � s such that tij = pj for 1 � j � l (we say thati1; i2; : : : ; il is an occurrence of p1 : : : pl in tr : : : ts),2. and moreover, no proper substring of tr : : : ts contains p1 : : : pl, i.e. for all occurrences ofp1 : : : pl in tr : : : ts, i1 = r and il = s.Indeed any window containing p as a subsequence also contains a minimal substring containingp. See Figure 1.Proposition 1 There exists an O(nk) algorithm to solve the WASP with arguments n; k; w anddealing with integers less than n.Proof We �rst explain the idea of the algorithm, inspired from those of [MTV95, DFGGK97]. Inorder to count the number of w-windows of t which contain a minimal substring containing p wemaintain an array of integers s[1:::k], where s[l] contains the starting position in t of the mostrecently seen minimal substring containing p1 : : : pl if such a substring exists, and 0 otherwise. Weinitialize s[1:::k] with [0:::0]. The algorithm runs by sliding a w-window on t. Let i be the index in twhere the current window ends. If s[l] = j 6= 0, this means there is a minimal substring containingp1 : : : pl and starting at index j in the substring tj : : : ti. Thus, if s[k] = j and i� j < w we concludethat the current window contains a minimal substring containing p. The variable count gives thenumber of w-windows containing p as a subsequence.Example 3 Let for instance t = researshers, p = see, and w = 8; we obtain the following table:i t s[1] s[2] s[3] i � s[3] accept?1 r �1 �1 �1 1 no2 e �1 �1 �1 1 no3 s 3 �1 �1 1 no4 e 3 3 �1 1 no5 a 3 3 �1 1 no6 r 3 3 �1 1 no7 s 7 3 �1 1 no8 h 7 3 �1 1 no9 e 7 7 3 6 yes10 r 7 7 3 7 yes11 s 11 7 3 8 noWe accept when i � s[3] < 8. utAlgorithm The algorithm is given below, in a pseudo-language (\DO forall l 2 I inst ENDDO"performs inst simultaneously for all indices l 2 I).6



DO forall l 2 [1:::k] s[l] := 0 ENDDOcount := 0DO for i 2 [1:::n] in increasing orderIF ti = p1 then s[1] := i ENDIFDO forall l 2 [2:::k]IF ti = pl then s[l] := s[l � 1] ENDIF ENDDOIF i � s[k] < w then count := count+ 1 ENDIFENDDOWe obtain easily the computational complexity which is announced. utRemark 1 Note that, as a practical improvement, to �nd more quickly the entries of s that needto be updated, implementations may maintain, for every letter a, a list waits[a] of elements of Aconsisting of those entries of s that need to be updated if the next letter scanned is a.3.2 An algorithm preprocessing the patternRemark 2 In the standard algorithm, we have to maintain an array of integers :s[1] : : : s[k]where s[i] is a position in the string t, hence is an integer of length ln(jnj).A �rst variation is to replace this array by the array :l[1] : : : l[k]where l[i] is the distance between the current position and the starting position of the most recentlyseen minimal substring containing p1 : : : pi if such a substring exists, and +1 otherwise. Of coursethis distance is interesting when it is less than the size of the window, hence we may truncate it byw. The consequence is we have to deal with integers of length ln(jwj) instead of integers of lengthln(jnj).Example 4 Let, as in example 3, t = researshers, p = see and w = 8; we obtain the followingtable: i t l[3] l[2] l[1] accept?1 r +1 +1 +1 no2 e +1 +1 +1 no3 s +1 +1 1 no4 e +1 2 2 no5 a +1 3 3 no6 r +1 4 4 no7 s +1 5 1 no8 h +1 6 2 no9 e 7 3 3 yes10 r 8 4 4 yes11 s +1 5 1 noWe accept when l[3] � 8. For this reason, we changed the order of presentation of l[1], l[2], l[3]. ut7



Remark 3 A value of the last array may be seen as one of wk states. As in the Knuth-Morris-Prattalgorithm, we may consider an automaton instead of computing a new state on the y. We notethat when the window size w is equal to the pattern length k, the WASP reduces to the usualpattern matching problem addressed by the Knuth-Morris-Pratt algorithm. Hence we generalize theKMP algorithm by preprocessing the pair (pattern + window size w). However, our automaton usespre�xes of the pattern instead of the more commonly used su�xes [C88, KR97].3.2.1 A complexity resultTheorem 1 There exists an O(f(w; k) + n) algorithm to solve the WASP with arguments n; k; won a classical RAM, dealing with integers less than w.Proof : The main point here is that the function f(w; k) does not depend on n; we shall bound itsgrowth rate later. The algorithm consists of two steps: the �rst step preprocesses the pattern andthe second step scans the text.Step 1. We construct a �nite state automaton A by preprocessing pattern p. The alphabet of Ais A; the states of A are k-tuples of numbers hl1; : : : ; lki with lj 2 f1; : : : ; w; w+ 1g. Indeed we sawthat the numbers in tuples may be truncated to w; here w + 1 plays the rôle of +1.We �rst informally describe the behaviour of A. When automaton A is scanning a string t, itwill be in state hl1; : : : ; lki after reading t1 : : : tm i�, li is the length of the shortest su�x2 of t1 : : : tmwhich is of length not greater than w and contains p1 : : : pi as a subsequence, for i = 1; : : : ; k; if nosu�x (of length not greater than w) of t1 : : : tm contains p1 : : : pi as a subsequence, we let li = w+1.Namely, for every i such that 1 � i � k and li < w + 1, if we assume t = t0tmaxfm�w+1;1g : : : tmt00,then string si = p1 : : : pi is a subsequence of tm�li+1 : : : tm and is not a subsequence of tm�li+2 : : : tm.We now formally de�ne automaton A. Let Next(l) be the auxiliary functionNext(l) = � l + 1; if l < w + 1;w + 1; otherwise.1. The initial state of A is the k-tuple hw + 1; : : : ; w + 1i.2. The accepting states of A are the k-tuples hl1; : : : ; lki such that lk < w + 1, meaning thatpattern p is a subsequence of the w-window ending at the currently scanned letter of t.3. Transitions: starting from hl1; : : : ; lki and reading a, automaton A will go in hl01; : : : ; l0ki, de-noted by hl1; : : : ; lki a�! hl01; : : : ; l0ki, where, for i = 1; : : : ; kl0i = �Next(li�1); if pi = a;Next(li); if pi 6= a.(We take l0 = 0 for k = 1.)Step 2. Automaton A scans text t1 : : : tn, starting with count = 0 initially, and incrementing countby 1 each time an accepting state is encountered.The second step takes time n on a classical RAM, and the �rst step takes time f(w; k) relatedto the number of states of A, which is (w + 1)k. ut2Recall that string s is a pre�x (resp. su�x) of string t i� there exists a string v such that t = sv (resp. t = vs).8



3.2.2 Minimization of automaton AThe algorithm of Theorem 1 can be optimized. To this end,1. consider only k-tuples representing reachable states and discard the other k-tuples, and2. moreover, substitute w + 1 for li if the length k � i of pi+1 : : : pk is > w � li, because then siis too short and p cannot be a subsequence in the next w � li windows.The optimized automaton Aopt is in state hl1; : : : ; lki after reading t1 : : : tm i� li is the length ofthe shortest su�x of tmaxfm�w+k�i+1;1g : : : tm containing p1 : : : pi as a subsequence, for i = 1; : : : ; k.The transitions of Aopt are de�ned by hl1; : : : ; lki a�! hl01; : : : ; l0ki wherel0i = ( li�1 + 1; if pi = a;li + 1; if pi 6= a, and li + 1 � w � k + i;w + 1; otherwise.It will be shown below that, in the worst case, the number N of states of Aopt sati�es �w+1k � �N � �w+kk �. Hence, even for the optimized algorithm, f(w; k) is exponential in k. utWhen w = k, our optimized construction gives an automaton having the same number of statesas the KMP algorithm for pattern-matching. Moreover:Theorem 2 Assume that alphabet A contains at least one letter x which does not occur in pattern p;then Aopt is the minimal �nite state automaton (i.e. having the minimal number of states) acceptingthe strings t where pattern p occurs as a subsequence within a w-window.Proof : We show that any automaton B accepting the same strings as Aopt has at least as manystates as Aopt . Let s = hl1; : : : ; li�1; li; : : : ; lki and s0 = hl1; : : : ; li�1; l0i; : : : ; l0ki be two states ofAopt, both reachable from hw+ 1; : : : ; w+ 1i, who �rst di�er at their ith components. Let t1 : : : tmand t01 : : : t0m0 be corresponding input strings bringing Aopt from hw + 1; : : : ; w + 1i to s and s0respectively. Let us show that, after scanning inputs t1 : : : tm and t01 : : : t0m0 , automaton B shouldcome to di�erent states sB and s0B respectively. Without loss of generality, we further assume thatli < l0i; let x be a letter not occurring in pattern p, then sB accepts the text when the next scannedw � li letters consist of xw�li+i�kpi+1 : : : pk while s0B rejects the text in the same circumstances. ut3.2.3 About the size of automaton AoptAs in Theorem 1, our algorithm consists in running Aopt on a text t: counting the number of timeswe pass through an accepting state gives the number of w-windows of t containing p as a subsequencein time exactly n. Hence, after the preprocessing, we scan the text t in time merely n. We nowstudy how long takes our preprocessing: this is related to N , the number of states of Aopt.Lemma 1 1. In the worst case, the size N of Aopt satis�es �w+1k � � N .2. In all cases, the size M of the (non-optimized) automaton A satis�es M � �w+kk �.9



Proof : In all cases, M � �w+kk � because the states of A assume the form hl1; l2; :::; lki withl1 � l2 � � � � � lk � w+ 1. In the case when p = ak, we have N = �w+1k � because, when p = ak, thestates of Aopt assume the form hl1; l2; :::; li; w + 1; ::; w+ 1i with l1 < l2 < � � � < li � w � k + i andbecause there are �w+1k � such sequences. Hence, in the worst case, �w+1k � � N . utCorollary 1 The number of states of Aopt is exponential in the worst case.Remark 4 Using hashing methods divides the preprocessing time by a factor of 10, and thus ouralgorithm with hashing can still run about twice as fast as the standard algorithm for windows ofsize 14 or 15.Corollary 2 (Space complexity) The Aopt based algorithm uses at most O(n+ �w+kk �) locations ofsize O(k logw).Proof : Indeed, up to O(�w+kk �) additional memory locations may be needed to store the states ofAopt, and a state is a k-tuple of numbers � w + 1, hence each state needs k logw bits. ut3.3 An algorithm on MP{RAMsFor `large' windows, for instance on a PC for windows of size w � 14 and patterns of size k � 6, theprevious preprocessing explodes, due to the exponential growth in the number of states of Aopt, andthe standard algorithm is better than our algorithm. Whence the idea of a smaller preprocessingwhich is almost independent of the pattern and of the window; this method is described in thepresent section.3.3.1 MP{RAMsIt is usual to give pattern matching algorithms on RAMs. Indeed the RAM model of computationis well-suited for computational complexities greater than n2. For low complexities though, RAMsare not a well-suited model of computation, because any random access to the memory is counted asone elementary operation: this is no longer a valid model when there are too many di�erent valuesto be stored, as for instance the �w+1k � states of A.Already in 1974, the motivation of [PRS74] for introducing vector machines was the remarkthat bitwise boolean operations and shift are implemented on commercial computers and are ideallysuited for certain problems. This paper started a quite interesting series of papers comparing thecomputational complexities of various models of machines accounting for bitwise boolean operationsand shifts with those of conventional machines, such as Turing machines, RAMs etc. [TRL92, BG95].Going back to the �rst motivation of [PRS74], concrete applications of this technique to varietiesof string-matching problems began with [BYG92, WM92]: they are known as bit-parallelism orshift-OR. We follow this path with our problem, which is close to the problems treated in [BYG92,WM92, BYN96], although it is di�erent from these problems.In what follows, we use a re�nement of the RAM model, which is a more realistic model ofcomputation. Moreover, we encode A in such a way that (i) each state of A can be stored in a singlememory location, and (ii) only the most basic micro-processor operations are needed to compute the10



transitions of A. We use a RAM with the same control structures as those of conventional RAMs3,but with a set of initial operations enlarged by including bitwise boolean operations and shifts;whenever possible, these operations will be preferred. Such RAMs are closer to microprocessors,hence we call them MP{RAMs.De�nition 2 An MP{RAM is a RAM extended by the following new operations:1. bitwise AND, denoted by &,2. left shift, denoted by <<, or by shl, and3. right shift, denoted by >>, or by shr.The new operations are low-level operations which will be executed much faster than the complexMULT, DIV operations.Example 5 Assuming MP{RAMs with unbounded memory locations, we have for instance:(10110 & 01101) = 100; (10110 << 4) = 101100000; (10110 >> 3) = 10:If memory locations were bounded to 8 bits, we would have: (10110 << 4) = 1100000, which we maywrite in the form (00010110 << 4) = 01100000.3.3.2 A complexity resultThe idea of the algorithm consists in encoding automatonA of Theorem 1 so that its transitions canbe computed by an MP{RAM without using the MULT, DIV operations. We describe the encodingof A. Let 
 be the least natural number such that w + 2 � 2
. The rôle of +1 is now played bythe number 2
 � 1 whose binary representation consists of 
 units. We rede�ne the function Nextas: Next
(l) = � l + 1; if l < 2
 � 1;2
 � 1; otherwise.State hl1; : : : ; lki is then coded by the number:L = kXi=1 li(2
+1)i�1= kXi=1 li << �(
 + 1)(i � 1)�: (1)The binary expansion of L consists of the binary expansions of the lis padded by leading zeros upto the length 
 + 1; see Figure 2. Note that all these padded representations begin with 0 becauseall lis are less than 2
 � 1. These 0s play an important rôle in the implementation of the functionNext
.3For a formal de�nition of classical RAMs see e.g. [AHU74] pages 5{11.11



Binary expansion of Lz }| {0 ... | {z }binary expansion of lkj : : : 0 ... | {z }binary expansion of l2j 0 ... | {z }binary expansion of l1jFigure 2: Encoding of hl1; : : : ; lki.According to the de�nition of equation (1), the initial state h2
 � 1; : : : ; 2
 � 1i is coded asI0 = kXi=1(2
 � 1)2(
+1)(i�1)= kXi=1 �(1 << 
) � 1� << �(
 + 1)(i� 1)�:Respectively, accepting states are exactly those L satisfying L < F where F = (w + 1)2(
+1)(k�1),which means that lk � w.Proposition 2 The codes of the transitions of A are computed by an MP{RAM as follows:L a�! L0 i� L0 = T � �(T&E2) >> 
�where T = �(L << (
 + 1))&Ma�+ (L&Na) +E1 ;E1 = kXi=1 1 << �(
 + 1)(i � 1)�;E2 = kXi=1(1 << 
) << �(
 + 1)(i � 1)�;and for a 2 A, Ma = Xpi=a1�i�k �(1 << 
)� 1� << �(
 + 1)(i � 1)�;Na = Xpi 6=a1�i�k �(1 << 
)� 1� << �(
 + 1)(i � 1)�:Proof : A state l = hl1; : : : ; lki is encoded by the binary expansion L de�ned in equation 1. Thebinary expansion L is obtained by concatenating the binary expansions lis of the lis padded byleading zeros up to the length 
+1; see Figure 2. We chose the basis 2
+1 rather than the basis 2
12



L = 0 ... l5 0 ... l4 0 ... l3 0 ... l2 0 ... l1Figure 3: Encoding of hl1; : : : ; lki; li is the binary expansion of li.to encode the lis: indeed, basis 2
 is su�cient to encode all the lis, but the larger basis 2
+1 willsimplify the treatment in case of overows.Consequently, the binary expansion of an integer less than 2k(
+1) consists of k large blocks of(
 + 1) bits, the �rst bit is called the overow digit and the remaining 
 bits constitute a smallblock. The blocks are numbered 1 to k leftward (the rightmost block is block 1, and the leftmostblock is block k). When no ambiguity arises we will just say `block' instead of `small block'.Example 6 Assume pattern p has length k = 5 and w = 14; hence 
 = 4. The encoding L of statel = hl1; : : : ; l5i is depicted in Figure 3; L consists of 5 `large blocks' of the form 0 ... li, where 0 is theoverow digit and each li is a `small block'.For instance if l = h3; 5; 10;1;1i,0 ... 1111 0 ... 1111 0 ... 1010 0 ... 0101 0 ... 0011and, with the notation of Figure 3, depicted asL = 0 ... 15 0 ... 15 0 ... 10 0 ... 5 0 ... 3 utThe initial state is coded byI0 = kXi=1(2
 � 1)2(
+1)(i�1)= kXi=1 �(1 << 
) � 1� << �(
 + 1)(i� 1)�:Example 6 (continued) 
 = 4 and I0 is depicted by:I0 = 0 ... 1111 0 ... 1111 0 ... 1111 0 ... 1111 0 ... 1111if the sequence consisting of 
 1s and representing w + 1 is shortened into 1, the picture becomes:I0 = 0 ... 1 0 ... 1 0 ... 1 0 ... 1 0 ... 1 utAccepting states are exactly those Ls satisfying L < F where F = (w + 1)2(
+1)(k�1); indeed,l = hl1; : : : ; lki is an accepting state if lk < w + 1.Example 6 (continued) Here, w = 14 and F is depicted by:13



F = 0 ... 1111 0 ... 0000 0 ... 0000 0 ... 0000 0 ... 0000where 0 is a sequence of 
 0s. utWe now will describe the proof, illustrating it by Example 6 where we assume p = aabca.Recall that, if l = hl1; : : : ; lki ��! l0 = hl01; : : : ; l0ki, then l0i is either Next
(li�1) or Next
(li)according to whether the scanned letter � is equal to pi or not. The cases l0i = Next
(li�1) andl0i = Next
(li) will be respectively called computations of the �rst kind and of the second kind.Step 1. M� is a �lter designed to prepare the computations of the �rst kind. Precisely, letM� = Xpi=�1�i�k �(1 << 
) � 1� << �(
 + 1)(i� 1)�:For i ranging from 1 to k, the ith small block of M� from the right-hand side consists of 
 ones or
 zeros according to whether pi is equal to � or not.Example 6 (continued) Here p = aabca, henceMa = 0 ... 1 0 ... 0 0 ... 0 0 ... 1 0 ... 1Mb = 0 ... 0 0 ... 0 0 ... 1 0 ... 0 0 ... 0Mc = 0 ... 0 0 ... 1 0 ... 0 0 ... 0 0 ... 0where 0 = 0000 and 1 = 1111. utA left shift of L by 
 + 1 will shift the lis by one large block leftward.Example 7 If l = hl1; l2; l3; l4; l5i, thenL = 0 ... l5 0 ... l4 0 ... l3 0 ... l2 0 ... l1and L << (
 + 1) = 0 ... l5 0 ... l4 0 ... l3 0 ... l2 0 ... l1 0 ... 0Note that the rightmost small block of L << (
 + 1) is always 0 ut\Andding" L << (
 + 1) with M� results1. in erasing the leftmost large block of L << (
 + 1) and,2. for i ranging from 2 to k, in setting the ith small block from the right to respectively li�1 or0 according to whether � is equal to pi or not.Thus �L << (
 + 1)�&M� screens o� the blocks for which � 6= pi and shifts everything by one largeblock leftward; more precisely, for i > 1, the ith block will contain li�1 if pi = � and 0 otherwise.Example 6 (continued) With p = aabca, we have14



�L << (
 + 1)�&Ma = 0 ... l4 0 ... 0 0 ... 0 0 ... l1 0 ... 0�L << (
 + 1)�&Mb = 0 ... 0 0 ... 0 0 ... l2 0 ... 0 0 ... 0�L << (
 + 1)�&Mc = 0 ... 0 0 ... l3 0 ... 0 0 ... 0 0 ... 0 utSimilarly, N� is a �lter designed to prepare the computations of the second kind. LetN� = Xpi 6=�1�i�k �(1 << 
)� 1� << �(
 + 1)(i � 1)�:For i ranging from 1 to k, the ith block of N� is 0 or 1 if pi = � or pi 6= � respectively. Namely,L&N� screens o� the blocks for which � = pi. More precisely, for i � 1, the ith block of L&N� willcontain li if pi 6= � and 0 otherwise.Example 6 (continued) With p = aabca,Na = 0 ... 0 0 ... 1 0 ... 1 0 ... 0 0 ... 0L&Na = 0 ... 0 0 ... l4 0 ... l3 0 ... 0 0 ... 0Nb = 0 ... 1 0 ... 1 0 ... 0 0 ... 1 0 ... 1L&Nb = 0 ... l5 0 ... l4 0 ... 0 0 ... l2 0 ... l1 utWe note that M� and N� are complementary in the following sense: the small blocks of M� and N�can assume only the values 1 and 0, and the ith small block of M� is 1 i� the ith small block of N�is 0.The ith block of �(L << (
 + 1))&M��+ (L&N� ) is equal to li�1 or li, respectively when � = pi or� 6= pi. The rightmost block is special: its value is 0 when � = p1 and l1 when � 6= p1.Example 6 (continued) With p = aabca, �(L << (
 + 1))&Ma�+ (L&Na) is depicted by:0 ... l4 0 ... l4 0 ... l3 0 ... l1 0 ... 0 utLet E1 = kXi=1 1 << �(
 + 1)(i� 1)�:Each block of E1 consists of the binary expansion of 1.Example 8 E1 is depicted by: 15



0 ... 0001 0 ... 0001 0 ... 0001 0 ... 0001 0 ... 0001 utAdding E1 to �(L << (
 + 1))&M��+ (L&N� ) results in adding 1 to each block.Let T = �(L << (
 + 1))&M��+ (L&N�) +E1.� On the one hand, for i ranging from 2 to k, the ith large block of T contains{ l0i if the contents of �(L << (
 + 1))&M��+ (L&N�) is strictly less than 1 (= 2
 � 1),{ 2
 otherwise. In this latter case, we have obtained 2
 whilst l0i is equal to 2
�1, because(2
 � 1) + 1 = 2
 � 1 (recall 2
 � 1 plays the rôle of 1); thus the ith block of T doesnot contain the proper result.� On the other hand, the rightmost block of T contains l1+1 or 1. In the �rst case, the contentsof that block is again the proper result l01 or not, respectively when 1 6= l1 or l1 = 1.At the end of Step 1, all the large blocks of T , except may be the �rst block, contain a number ofthe form �+ 1 when we would like them to contain Next
(�).Example 6 (continued) With p = aabca, w = 14, and l = h3; 5; 10; w + 1; w + 1i, �(L <<(
 + 1))&Ma�+ (L&Na) +E1 is depicted by1 ... 0000 1 ... 0000 0 ... 1011 0 ... 0100 0 ... 0001 utStep 2. We replace �+ 1 by Next
(�) wherever needed: it su�ces to reset the large blocks wherean overow has occurred, by substituting 2
 � 1 for 2
 in all such blocks. LetE2 = kXi=1(1 << 
) << �(
 + 1)(i� 1)�:In each large block of E2 the overow digit is 1 and the small block is 0.Example 9 E2 is depicted by:1 ... 0 1 ... 0 1 ... 0 1 ... 0 1 ... 0 utHence, for each large block of T&E2, the small block is 0 and the overow digit is 1 if there isan overow in the corresponding block of T , i.e. that block consists of 2
, and 0 otherwise.Example 6 (continued) (T&E2) = 1 ... 0 1 ... 0 0 ... 0 0 ... 0 0 ... 0 ut16



Dividing (T&E2) by 2
 is realized by a right shift of every bit of (T&E2). The ith large blockof the result of this division contains the binary expansion of 1 or 0, respectively when the overowdigit of the ith large block of (T&E2) was 1 or 0.Example 6 (continued) �(T&E2) << 
� is depicted by:0 ... 0001 0 ... 0001 0 ... 0000 0 ... 0000 0 ... 0000 utHence, in T � �(T&E2) >> 
� the ith large block coincides with the corresponding block of T ifthere was no overow, and is the binary expansion of 2
 � 1 (namely 0 ... w + 1) otherwise.Example 6 (continued) T � �(T&E2) >> 
� is depicted by:0 ... 1111 0 ... 1111 0 ... 1011 0 ... 0100 0 ... 0001 utIn both cases, the ith large block is equal to l0i. Hence,L0 = T � �(T&E2) >> 
�: utLemma 2 Preprocessing of w and the pattern (step 1 of the algorithm on MP{RAM) runs in timeO(k + log(w)).Proof : In the preprocessing step 1. we compute the 2�+ 6 numbers 
; I0; F;E1; E2;M� ; N�.We compute 
 by the following algorithm:DO u := w + 1; 
 := 0 ENDDOWHILE u > 0 DOu := u >> 1; 
 := 
+ 1 ENDWHILEHence the time needed is O(log(w)).We compute I0 by the following algorithm:DO z := (1 << 
) � 1; I0 := 0 ENDDODO for i 2 [1:::k] in increasing orderI0 := (I0 << (
 + 1)) + z ENDDOHence the time needed is O(k), and similarly for E1 and E2.We compute F by the following O(k) algorithm:F := w + 1DO for i 2 [1:::k� 1] in increasing orderF := (F << (
 + 1)) ENDDOWe compute M� by the following O(k) algorithm, using H�orner's method:DO z := (1 << 
) � 1; M� := 0 ENDDODO for i 2 [1:::k] in decreasing orderM� := (M� << (
 + 1))IF pi = � then M� :=M� + z ENDIF ENDDOSimilarly for N� . ut 17



Theorem 3 There exists an O(n+ k + log(w)) = O(n) on-line algorithm to solve the WASP witharguments n; k; w on an MP{RAM.Proof : Let � denote the number of letters in alphabet A,4 and let jwj denote the length of thebinary representation of w; the preprocessing consists simply in computing 2�+ 5 numbers of sizek(jwj+ 2) which will be used in computing on-line and without preprocessing the transitions of theautomaton A of Theorem 1 by an MP{RAM. The algorithm consists of the four steps below:1. compute 
; I0; F;E1; E2, and Ma; Na for a 2 A;2. set count = 0;3. set L = I0;4. scan the text t; after reading ti, calculate the new state L, and if L < F increment count by 1.Our algorithm uses only the simple and fast operations &, <<, >>, and addition. We have shown inLemma 2 that the preprocessing step 1 takes time O(k + log(w)). In step 4 we scan text t in timeO(n). Hence the complexity is O(n+ k + log(w)). Because k � n and w � n, the complexity of thealgorithm is O(n).ut4 Experimental resultsWe implemented all algorithms in C. The experiments have been run on a PC{Cyrix 166 underLinux, on a DEC-alpha shared by several users and on an Apple Mac PowerPC 7100. The textconsisted of a randomly generated text �le; the patterns were of the form ak1bak2 , which give ahigh complexity for the preprocessing. For other patterns, the results are much better (see Figure 5,pattern 2). We counted the complexity in machine clock-ticks, because quite often our algorithmsran in 0 seconds. In Figure 5 the patterns for sub-�gure pattern 1 are pre�xes of length 4, 6, 8,10 of p1 = aabaaaaaaa (i.e. for k = 4 we have p = aaba, for k = 6 we have p = aabaaa, etc.),and the patterns for sub-�gure pattern 2 are pre�xes of length 4, 6, 8, 10 of p2 = ababababab. Theexperiments clearly con�rm our complexity analysis and show that� for a �xed window size w, the maximum complexity of preprocessing is reached for w � 2k(see Figure 5): the theoretical explanation is that, for a �xed w, �wk� has its maximum whenk = w=2,� if we do not count the preprocessing, then our �rst method is 5{10 times faster than thestandard method: indeed the standard method takes time nk and ours takes time n (seeFigure 5),� even including the preprocessing and taking patterns which give the worst-case complexity,our �rst method outperforms the standard method as soon as the data is large (texts of lengthn � 106, see Figure 4),� Figure 5 shows that (i) the preprocessing of our �rst method is quite dependent of the pattern,but after the preprocessing our algorithm runs in constant time equal to the length of the text,for all patterns, and (ii) our MP{RAM algorithm is less dependent on the pattern.4Our algorithm is alphabet-dependent, however, as noted in [DFGGK97], we can map all letters not occurring inthe pattern on a single letter, and hence assume that the alphabet has at most k + 1 letters.18
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.Figure 4: Window width w = 12, and pattern aabaaa. The thick solid line represents the total runningtime of our �rst algorithm including preprocessing, the dashed-and-dotted line represents the running timeof our MP{RAM algorithm, and the dotted line represents the running time of the standard algorithm.� our MP{RAM algorithm is 2{10 times faster than the standard algorithm: the speed-up is bya factor of 2 for small patterns (k < 5) and can reach a factor of 10 for large windows andlarge patterns (w � 30 , k � 20); in average, our MP{RAM algorithm is 3 times faster thanthe standard algorithm.The agrep program of [WM92] solves the WESP (and not the WASP) in the special case whenthe window size is close to the pattern size, i.e. w < min(2k; 2k+ 9). We compared our MP{RAMalgorithm with agrep: we ran both programs on a DEC-alpha, and measured time using the UNIXtime command. In all the cases that we tested (we tested cases when the encoding of a state ofautomaton A of Theorem 1 �ts in one or two computer words, i.e. k logw � 64), our MP{RAMalgorithm is 20% faster than agrep for elapsed time in seconds and it is 2 times faster than agrep forCPU user time.5 ConclusionWe presented two new e�cient algorithms for the WASP, linear in the size of the text. The com-plexity analysis showed that1. our �rst algorithm (including preprocessing) is faster than the standard algorithm for largedata and small windows (it blows up for large windows);2. our second algorithm, based on MP{RAMs, is more e�cient in all cases.This was clearly con�rmed by the implementation. Note that for both methods, implementing theWASP is no more di�cult than implementing the WESP. This does not hold in general; usuallycounting problems are much harder that the corresponding existence problems: e.g., for the relatedproblem of matching strings with don't cares the existence problem is in linear time while thecounting problem is in polynomial time in [KR97], and in the special case of [MBY91], the existenceproblem is in logarithmic time while the counting problem is in sublinear time.19
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