Chapitre 10

Le lecteur de disquette

Nous avons vu comment accéder à la mémoire, comment saisir au clavier et comment afficher à l'écran. Il reste à voir comment accéder à la mémoire de masse. Le premier IBM-PC utilisait un lecteur de cassettes numériques, très vite abandonné. IBM est ensuite passé au lecteur de disquette puis au disque dur.

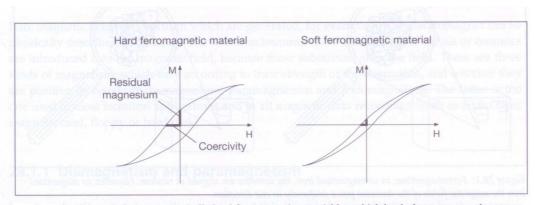
Le lecteur de disquette est abandonné au profit des clés USB mais le disque dur existe encore. Pour des raions de compatibilité, une clé USB est formate comme une disquette; les fonctionnalités de la routine de service du BIOS concernant le lecteur de disquette peuvent donc être utilisées pour une clé USB, même si le code de la routine proprement dit est revue. Partons donc du modèle de la diquette.

10.1 Description matérielle d'une disquette

Une **disquette** (en anglais diskette ou floppy disk), voir figure 10.1, est un support de stockage composé d'un disque, en fait une couronne circulaire, fin et flexible (d'où son nom de disque souple par opposition au disque dur) recouvert d'une couche magnétique, placé dans une enveloppe de plastique pour le protéger de la poussière. Une disquette est lue par une **lecteur de disquette** (en anglais FDD pour Floppy Disk Drive). Les premières disquettes (utilisées sur les ordinateurs IBM, pas sur des micro-ordinateurs) avaient un diamètre de 8 pouces (200 mm), puis sont apparues les disquettes de 5,25 pouces (133 mm), avec une enveloppe souple, puis de 3,5 pouces (89 mm), avec une enveloppe rigide.

FIGURE 10.1 – Disquettes de 8, 5.25 et 3.5 pouces

10.1.1 Les principes physiques de l'enregistrement magnétique


Cette section n'est pas indispensable pour la programmation, sauf en ce qui concerne le modèle de répartition des donnés. Le reste n'est donné qu'à titre informatif, par souci de complétude. On peut donc se dispenser de la lire si on préfère.

Les enregistrements magnétiques, que ce soient les magnétophones, les magnétoscopes, les cartes magnétiques, les disquettes ou les disques durs, reposent tous sur les mêmes principes physiques : le ferromagnétisme et l'induction.

10.1.1.1 Le ferromagnétisme

Le champ magnétique engendré dans le vide par un électro-aimant se décrit facilement en Physique, synthétisé par les équations de Maxwell. La situation devient plus compliquée lorsque des métaux ou des céramiques sont introduits dans le champ magnétique, car ces substances altèrent le champ. Il existe alors trois types de magnétisme : le diamagnétisme, le paramagnétisme et le ferromagnétisme.

- Tous les matériaux son diamagnétiques : lorsqu'une substance, telle que l'hydrogène ou l'argent, est introduite dans un champ magnétique, elle affaiblit légèrement celui-ci (de l'ordre de 0,000 0001 % à 0,05 %). Cet affaiblissement ne dépend pas de la température. Pour la plupart des substances, ce phénomène est occulté par le paramagnétisme, plus puissant. On s'aperçoit que le diamagnétisme pur apparaît pour les atomes dont tous les électrons sont appariés, tels que les gaz rares ou les sels de métaux.
- Lorsqu'on introduit une subtance paramagnétique, par exemple l'aluminium ou l'oxygène liquide, dans un champ magnétique, elle renforce, cette fois-ci, celui-ci de l'ordre de 0,000 01 % à 0,05 % au lieu de l'affaiblir. On s'aperçoit qu'il s'agit d'atomes dont au moins un électron est non apparié. Cet effet s'accentue aux températures basses.
- Les substances ferromagnétiques, comme le fer, peuvent fortement amplifier le champ magnétique, par un facteur pouvant aller jusqu'à un million. Une autre caractèristiques des substances ferromagnétiques est qu'elles conservent un pouvoir magnétique (elles peuvent attirer de la limaille de fer) après avoir été introduites dans un champ magnétique; on parle de **rémanence** magnétique.

Hysteresis loop: a magnetically hard ferromagnetic material has a high level of remanence and coerzitivitu, i.e. high hysteresis. In contrast, if the ferromagnetic material is weak, both curves almost intersect.

FIGURE 10.2 – Le phénomène d'hystérésie

La figure 10.2 montre la relation entre le champ magnétique externe H et la magnétisation M de la substance ferromagnétique. La magnétisation M augmente avec le champ magnétique externe H jusqu'à une valeur de saturation Js. Lorsque le champ magnétique H décroît, la magnétisation M décroît également mais sans suivre la courbe d'augmentation. Lorsque H atteint 0, il reste une magnétisation rémanente. Cette magnétisation rémanente disparaît lorsqu'on applique un champ magnétique de sens contraire. La courbe de la figure 10.2 s'appelle la boucle hystérésique.

Les substances diamagnétiques et paramagnétiques ne génèrent pas de champ magnétique permanent; elles ne conviennent donc pas à l'enregistrement des données à long terme. On se sert donc du ferromagnétisme. Des additifs spéciaux sont utilisés pour créer des substances ferromagnétiques ayant un fort niveau d'hystérésie, c'est-à-dire une rémanence forte et une haute coercivité.

La boucle d'hystérésie montre que, pour enregister des données, il faut utiliser un champ magnétique au moins égal à la coercivité. Par ailleurs, il ne faut pas que le champ soit trop fort pour ne pas magnétiser ou démagnétiser les zones proches, représentant d'autres données. Les substances ferromagnétiques les plus utilisées sont le fer, le cobalt, le nickel et leurs alliages.

10.1.1.2 L'induction

Le champ magnétique utilisé pour enregistrer des données est évidement fourni par un électroaimant.

Pour lire les données, on utilise le phénomène de l'*induction*, c'est-à-dire le fait qu'un champ magnétique mobile crée du courant électrique.

10.1.2 Disquette

Les phénomènes de ferromagnétisme et d'induction sont utilisés depuis longtemps pour l'enregistrement du son (magnétophone). On utilise alors une bande magnétique se déplaçant devant une tête de lecture-écriture, qui détecte l'information stockée sur la bande ou écrit une nouvelle information sur celle-ci. On peut utiliser une bande magnétique pour conserver de l'information numérique mais le rembobinage de celle-ci a pour conséquence un temps d'accès très long, d'où l'intérêt des disquettes. Au lieu d'un long et fin ruban, une disquette est un disque de plastique recouvert, des deux côtés, d'une substance ferromagnétique, enfermée dans un étui protecteur en plastique.

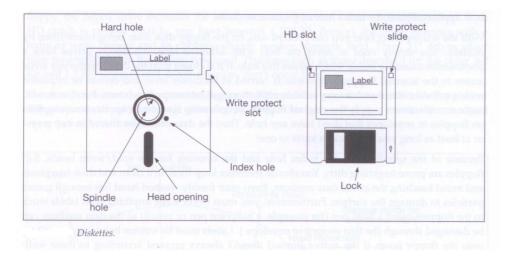


FIGURE 10.3 – Description des disquettes de 5,25 et de 3,5 pouces

La figure 10.3 montre l'essentiel ce qu'il y a à voir sur cet étui protecteur pour une disquette de 5,25 pouces :

- Au centre se trouve un trou (*spindle hole*) dans lequel viendra s'encastrer une broche permettant de faire tourner le disque, ce qui a à la fois pour effet de faire passer chaque zone aimantée devant la tête de lecture-écriture mais, également, par son mouvement, de créer le courant induit de lecture. On remarquera que le bord interne de la couronne circulaire est renforcé pour le protéger des nombreuses fois où il sera embrocher.
- Une ouverture le long d'un rayon (head opening) permet à la tête de lecture d'accéder à la couronne circulaire dans laquelle on pourra enregistrer les données. On perd un peu d'espace en haut et en bas de la couronne, entièrement caché dans l'étui protecteur.
- Un petit trou circulaire (*index hole*) dans l'enveloppe, en conjonction avec un petit trou circulaire dans la couronne circulaire, permet plus ou moins, lorsqu'ils se croisent, de définir l'origine des rayons de la couronne circulaire. Comme nous le verrons, il est beaucoup trop gros pour définir celle-ci de façon précise.
- Une encoche (*write protect slot*) permet de spécifier qu'on veut protéger le disque en écriture, lorsqu'elle est recouverte par un bout de ruban adhésif.

10.1.3 Lecteur de disquette

La figure 10.4 montre le principe d'un lecteur de disquette :

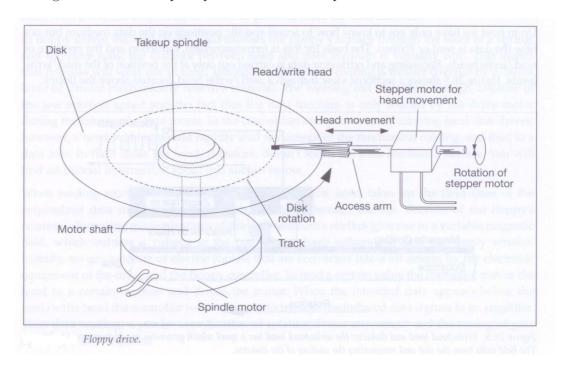


FIGURE 10.4 – Principe d'un lecteur de disquette

- La broche, permettant à la disquette d'être maintenue en place sur l'axe, tourne (takeup spindle) en étant reliée par un axe (motor shaft) à un moteur qui lui fait effectuer 300 ou 360 rotations par minute (RPM).
- Les deux têtes de lecture-écriture (une par face) se déplacent radialement grâce à un moteur pas à pas de façon à ce qu'elles puissent voir passer plusieurs cercles (appelés pistes) de la couronne circulaire. Elles sont situées à un même bras, une de chaque côté de la disquette, pas exactement au même emplacement pour éviter les interférences (l'écriture d'une face au lieu de l'autre). La même tête est utilisée à la fois pour l'écriture et la lecture alors qu'une tête plus large est utilisée pour effacer avant d'écrire.
- deux cellules photoélectriques permettent de détecter, pour l'une, le passage du trou d'index et, pour l'autre, si la disquette est protégée ou non en écriture.

10.1.4 Modèle de répartition des données sur une disquette

Sur un ruban magnétique, le modèle de répartition des données peut être simple : une fois qu'on a déterminé comment coder un bit, on a une suite linéaire de bits. Pour améliorer le temps d'accès, les données ne sont pas réparties de façon linéaire sur un disque :

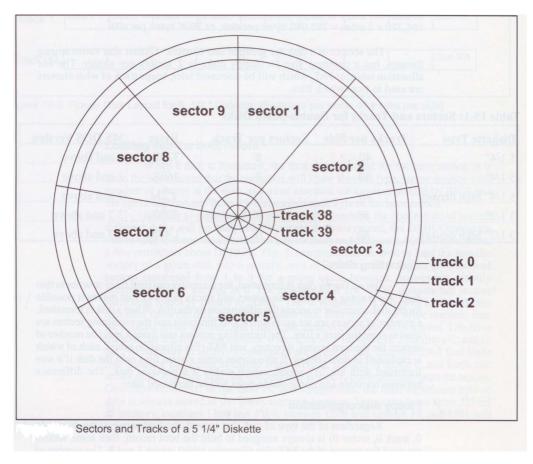


FIGURE 10.5 – Modèle de répartition des données sur une disquette

- Une **disquette** possde deux **faces** (en anglais *side* ou *surface*). Nous avons vu qu'il y a une tête de lecture-écriture par face.
- Chaque face contient un certain nombre de **pistes** (en anglais *track*), à savoir des cercles du même axe que la disquette. Ces pistes sont d'une certaine façon imaginaires : elles ne sont pas matérialisées. Les pistes sont numérotées à partir de 0, correspondant à la piste la plus externe. Une piste est décrite par la rotation de la disquette, une fois la tête de lecture-écriture positionnée par le moteur pas à pas.

— Chaque piste est divisée en un certain nombre de **secteurs** (en anglais sector), correspondant à un angle donné. Cet angle est $2\pi/n$, où n est un entier naturel non nul; une piste a une longueur d'autant plus courte qu'elle est plus proche du centre. Là encore un secteur n'est pas matérialisé. Un secteur contient un nombre fixé d'octets, le plus souvent 512.

Le secteur est la plus petite unité d'information accessible physiquement sur un disque : on ne peut lire (ou écrire) les données que par bloc et non octet par octet. Lorsqu'on veut enregistrer un donnée d'un seul octet, on est obligé d'utiliser un bloc. Pour enregistrer un bloc il faut rechercher le début de celui-ci, ce qui demande un certain temps. Il faut donc trouver un compromis entre le gaspillage de l'espace (maximum lorsqu'un bloc est un secteur) et le temps d'accès (maximum lorsqu'un bloc est constitué d'un seul octet). Ce compromis est le secteur.

— Un **cylindre** (en anglais *cylinder*) est l'ensemble des pistes de même numéro. Un cylindre de disquette contient deux pistes.

10.1.5 Codage d'un bit sur une disquette

La rotation de la disquette permet de récupérer (ou d'écrire) des signaux le long de chaque piste. Il existe deux méthodes pour représenter un bit comme le montre la figure 10.6 :

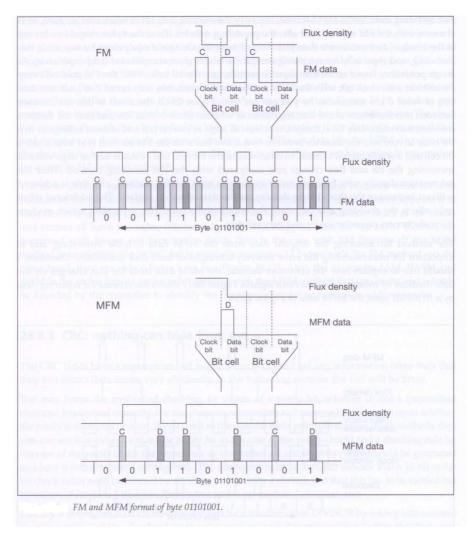


FIGURE 10.6 - Codage d'un bit sur une disquette

<u>Méthode FM</u>.- Dans le format d'enregistrement en modulation de fréquence (**FM** pour *Frequency Modulation*), un bit est stocké dans une **cellule de bit** (*bit cell* en anglais), divisée en deux parties, appelées **bit d'horloge** et **bit de donnée**. Ceci est dû au fait que seul un changement de flux sur le support magnétique est capable d'engendrer un signal : le bit d'horloge est toujours présent.

Pour écrire dans le format FM, on utilise un compteur d'horloge qui envoie une impulsion d'horloge tous les nombres impairs. Pour les nombres pairs, une impulsion est envoyée vers la tête d'écriture si le bit vaut 1 et rien s'il vaut 0.

Lors de la lecture, le circuit de lecture détecte le bit d'horloge et détermine s'il y a un signal actif, représentant la valeur 1 du bit de donnée, entre deux bits d'horloge successifs.

 $\underline{\text{M\'ethode MFM}}$.- Le format \mathbf{MFM} (pour *Modified Frequency Modulation*) a été introduit par IBM en 1970 pour son lecteur de disque dur IBM 3330. Dans ce format :

- Le bit d'horloge n'est pas systématiquement présent. Il ne l'est que si les bits d'horloge et de donnée précédent ne le sont pas.
- Le bit de donnée est, comme pour FM, présent si le bit vaut 1.

La distance entre deux bits actifs est donc plus grande que dans le cas de FM. On a besoin de connaître deux cellules de bit successifs pour déterminer la valeur d'un bit. L'équipement électronique pour exécuter le codage et le décodage est beaucoup plus compliqué que dans le cas de FM mais on peut enregistrer une plus grande densité d'information avec la méthode MFM sur le même support. Cette dernière caractéristique fait que la méthode FM a très vite disparu.

10.1.6 Codage des secteurs

Il est facile de repérer une face (grâce à la tête de lecture-écriture correspondante) ou une piste (grâce au positionnement de la tête par le moteur pas à pas). Les bits d'une piste ne sont pas entièrement dédiés aux données. Une partie d'entre eux sert à structurer la piste en secteurs, comme le montre la figure 10.7. Décrivons ce codage dans le cas de MFM.

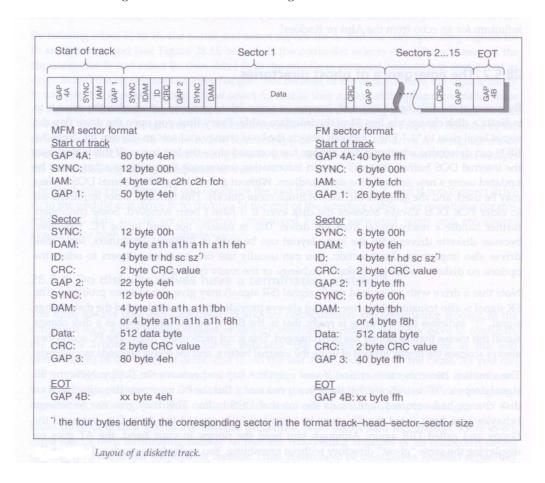


FIGURE 10.7 - Codage d'un secteur sur une disquette

Voyons d'abord comment on repère l'origine d'une piste, à l'aide de 146 octets :

- L'origine d'une la piste commence par le code **GAP 4A**. Il s'agit de 80 octets de valeur 4eh, valeur que l'on retrouve pour les autres GAP. Une disquette spécifie l'origine de la piste au moyen d'un trou d'index, mais sa position n'est pas suffisamment précise pour en déterminer exactement le début. Le motif GAP 4A informe le contrôleur du début de la piste et laisse suffisamment de temps à l'électronique pour être capable de répondre à ce signal.
- Le motif **SYNC**, constitué de 12 octets nuls, permet de synchroniser le décodeur du contrôleur avec la vitesse de rotation de la disquette. Les bits d'horloge de ce motif permettent de synchroniser l'horloge du décodeur, la vitesse de rotation de la disquette étant approximative.

- Le motif **IAM** (pour *Index Address Mark*), constitué de quatre octets de valeurs respectives c2h, c2h, c2h et fch, informe le contrôleur qu'on passe maintenant aux secteurs de la piste.
- Pour laisser le temps de se mettre en train, un motif **GAP1**, constitué de 50 octets de valeur 4eh, suit IAM.
- Les secteurs suivent, codés de la façon décrite ci-dessous.
- La piste se termine par un motif **EOT** (pour *End Of Track*), qui est un **GAP 4B**, de taille pas précisément définie, jouant le rôle de tampon.

Maintenant que nous avons vu comment l'origine de la piste est repérée, voyons comment on code un secteur, occupant 654 octets pour des données utiles de 512 octets :

- Tout secteur commence par un motif de synchronisation SYNC.
- La synchronisation est suivie par le motif **IDAM** (pour *ID Address Mark*), constitué de trois octets a1h et d'un octet feh, indiquant le début du champ d'identification du secteur concerné.
- L'identificateur **ID** est constitué de quatre octets spécifiant la piste, la tête, le secteur et la taille du secteur.
- Le contrôleur du lecteur de disquette calcule, au moment du formatage, à partir des quatre octets IDAM et de l'identificateur ID, un code de vérification CRC (pour *Cyclic Redundancy Check*) de taille deux octets, apparaissant tout de suite après ID. Son rôle est analogue au bit de parité en plus sophistiqué.
- Un motif **GAP 2** de 22 octets suit le CRC. Il laisse le temps au contrôleur, lors de la lecture, de vérifier le CRC.
- On synchronise à nouveau le contrôleur grâce au motif SYNC qui suit.
- Le motif **DAM** (pour *Data Address Mark*), constitué de trois octets a1h et d'un octet fbh ou f8h, indique le début des données.
- Les données occupent les octets suivants, au plus 512, la taille étant précisée dans ID.
- Au moment de l'écriture, le contrôleur calcule un CRC pour les données et en stocke la valeur juste après celles-ci.
- Le secteur se termine par le motif **GAP 3**, constitué de 80 octets de valeur 4Eh, servant de tampon élastique entre chaque secteur.

10.2 Contrôleur de lecteur de disquette

Le **contrôleur de disque** (en anglais disk drive controller, plus précisément FDC pour Floppy Disk Controller dans le cas d'un contrôleur de lecteurs de disquettes) est l'interface entre le microprocesseur et le disque. Le contrôleur reçoit, par exemple, l'information lui demandant de lire des données sur un secteur donné; son rôle est alors de placer la tête de lecture-écriture au bon endroit, de lire les données et de les renvoyer au microprocesseur.

L'IBM PC utilise le μ PD765 de NEC comme contrôleur. Le PC/AT peut être muni d'un contrôleur Intel 82072A alors que le PS/2 utilise un Intel 82077A. Décrivons le PD765.

10.2.1 Brochage du PD765

Les broches du PD765 sont indiquées sur la figure 10.8.

RD	RESET	1	\neg	40□ ∨cc
CS	FD C	2		39 RW/SEEK
A0 5 36 HDL DB0 6 35 RDY DB1 7 34 WP/TS DB2 8 33 FLT/TR _C DB3 9 μPD 32 PS ₀ DB4 10 765A 31 PS ₁ DB5 11 30 WDA DB6 12 29 US ₀ DB7 13 28 US ₁ DB0 14 27 HD DACK 15 26 MFM TC 16 25 WE IDX 17 24 VCO INT 18 23 RD CLK 19 22 RDW	WR C	3	8	38 LCT/DIR
DB ₀	ᇡᆸ	4		37 FRISTP
DB ₁ □ 7 DB ₂ □ 8 DB ₃ □ 9 DB ₄ □ 10 DB ₅ □ 11 DB ₆ □ 12 DB ₇ □ 13 DB ₀ □ 14 DACK □ 15 TC □ 16 DDX □ 17 DDX □ 17 DDX □ 17 DDX □ 18 CLK □ 19 DB ₂ □ 32 DB ₇ □ 18 DB ₆ □ 19 DACK □ 15 DACK □ 15 DACK □ 15 DACK □ 16 DACK □ 17 DACK □ 17 DACK □ 17 DACK □ 18 DACK □ 18 DACK □ 19 DACK □ 19 DACK □ 18 DACK □ 18 DACK □ 19 DACK □ 18 DACK □ 18 DACK □ 19 DACK □ 18 DACK	A0 [5		36 ☐ HDL
DB2	DB ₀	6		35 ROY
DB ₃	DB1 C	7		34 WP/TS
DB4	DB2	8	144	33 FLT/TRC
DB5	ов₃ □	9	μPD	32 PS ₀
DB ₅ ☐ 11 30 ☐ WDA DB ₆ ☐ 12 29 ☐ US ₀ DB ₇ ☐ 13 28 ☐ US ₁ DRO☐ 14 27 ☐ HD DACK☐ 15 26 ☐ MFM TC ☐ 16 25 ☐ WE IDX☐ 17 24 ☐ VCO INT☐ 18 23 ☐ RD CLK☐ 19 22 ☐ RDW	DB4	10	765A	31 🗆 PS ₁
DB7	DB ₅	11		30 WDA
DRO 14 27 HD DACK 15 26 MFM TC 16 25 WE 1DX 17 24 VCO INT 18 23 RD CLK 19 22 RDW	DB6	12		29 □ US ₀
DACK ☐ 15 26 ☐ MFM TC ☐ 16 25 ☐ WE IDX ☐ 17 24 ☐ VCO INT ☐ 18 23 ☐ RD CLK ☐ 19 22 ☐ RDW	DB7	13		28 🗖 US ₁
TC 16 25 WE 10X 17 24 VCO INT 18 23 RD CLK 19 22 RDW	DRO	14		27 🗀 но
1DX	DACK	15		26 MFM
INT 18 23 RD CLK 19 22 RDW	тс⊏	16		25 □ WE
CLK 19 22 RDW	IDX	17		24 🗆 VCO
	INT	18		23 🗖 RD
GND C 21 TO WCK	CLK	19		22 RDW
	GND	20		21 WCK

FIGURE 10.8 – Brochage du PD765 de NEC

Le symbole utilisé pour chaque broche et la description lapidaire de sa fonction apparaissent dans le tableau suivant :

No.	Symbole	Fonction					
1	RESET	Reset input					
2	$\overline{\mathrm{RD}}$	Read control input					
3	$\overline{ m WR}$	Write control input					
4	$\overline{\mathrm{CS}}$	Chip select input					
5	A0	Data or status select input					
6-13	DB0-DB7	Bidirectional data bus					
14	\overline{DRQ}	DMA request output					
15	$\overline{\mathrm{DACK}}$	DMA acknowledge input					
16	TC	Terminal count input					
17	INDEX	Index output					
18	INT	Interrupt request output					
19	CLK	Clock input					
20	GND	Ground					
21	WCLK	Write clock input					
22	WINDOW	Read data window input					
23	RDATA	Read data input					
24	SYNC	VCO Sync output					
25	WE	Write enable output					
26	MFM	MFM output					
27	SIDE	Head select output					
28,29	US1,US0	FDD unit select output					
30	WDATA	Write data output					
$31,\!32$	PS1,PS0	Preshift output					
33	FLT/TRK0	Fault/Track zero input					
34	WRT/2SIDE	Write protect/two side input					
35	READY	Ready input					
36	HDLD	Head load output					
37	FLTR/STEP	Fault reset/step output					
38	LCT/DIR	Low current direction output					
39	$\overline{\mathrm{RW}}/\mathrm{SEEK}$	Read/write/seek output					
40	Vcc	DC power $(+5V)$					

Donnons-en une description plus complète :

— RESET

L'entrée RESET place le FDD dans l'état d'attente (*idle state*). Il réinitialise les broches de sortie du FDC à 0, sauf PS0, prenant la valeur 1 et WDATA, indéfinie. Lorsque l'entrée RDY est maintenue à niveau haut durant la réinitialisation, le FDC engendre un signal de 1,024ms sur la broche INT. Pour effacer cette interruption il faut utiliser la commande « Sense Interrupt Status ».

$-- \overline{RD} (ReaD strobe)$

L'entrée RD est utilisé pour permettre le transfert de données depuis le FDC vers le bus des données, lorsqu'il se trouve à niveau bas et que soit $\overline{\text{CS}}$, soit $\overline{\text{DACK}}$ est à niveau haut.

 \overline{WR} (WRite strobe)

L'entrée \overline{WR} permet le transfert des données vers le FDC depuis les bus des données, lorsqu'il est à niveau bas.

— A0 (Data/Status Select)

L'entrée A0 sélectionne l'origine, registre des données (A0 = 1) ou registre de statut (A0 = 0), des données accéssibles par le bus des données.

 $\overline{\mathrm{CS}}$ (Chip Select)

Le FDC est accessible lorsque $\overline{\text{CS}}$ est à niveau bas, ce qui rend actif $\overline{\text{RD}}$ et $\overline{\text{WR}}$.

— DB0-DB7 (Data Bus)

 $\overline{\text{DB0-DB7}}$ constitue un bus de données bidirectionnel de 8 bits. Il est désactivé lorsque $\overline{\text{CS}}$ est à niveau haut.

— DRQ (Dma ReQuest)

Le FDC place la sortie DRQ à niveau haut pour une requête de transfert DMA.

— DACK (Dma ACKnowledge)

Lorsque l'entrée \overline{DACK} est à niveau bas, un cycle DMA est actif : le contrôleur est en train d'effectuer un transfert DMA.

— TC (Terminal Count)

L'entrée TC à niveau haut indique la fin d'un transfert DMA.

— INDEX

L'entrée INDEX est à niveau haut au début d'une piste.

— INT (INTerrupt)

La sortie INT spécifie une requête d'interruption de la part du FDC. En mode Non-DMA, le signal est émis pour chaque octet. En mode DMA, il est émis à la fin d'une opération.

-- CLK (*CLocK*)

CLK est l'entrée du FDC pour un signal carré d'horloge, à niveau TTL et en simple phase à $8~\mathrm{Mhz}$ ou à $4~\mathrm{Mhz}$.

— WCLK (Write CLocK)

L'entrée WCLK initialise le taux d'écriture des données du FDD. Il s'agit de 500 Khz pour les lecteurs FM, 1 Mhz pour les lecteurs MFM pour les opérations à 8 Mhz du FDC.

— WINDOW (Read Data WINDOW)

L'entrée WINDOW est engendrée par le PLL (*Phase-Locked Loop*). Elle est utilisée pour les données d'exemple du FDD et pour distinguer les bits de données et d'horloge du FDC.

— RDATA (Read DATA)

L'entrée RDATA permet de lire des données depuis le FDD, contenant des bits de données et d'horloge. Pour éviter un blocage, il faut utiliser ensemble RDATA et WINDOW.

— WDATA (Write DATA)

WDATA est la sortie horloge et données vers le FDD.

— WE (Write Enable)

La sortie WE permet d'écrire des données dans le FDD.

— SYNC (VCO Sync)

La sortie SYNC inhibe le VCO du PLL à niveau bas et l'active à niveau haut.

— MFM (MFM mode)

La sortie MFM montre le mode d'opération du VCO. Il est à niveau haut pour MFM, à niveau bas pour MF.

— SIDE (Head Select)

La tête 1 est choisie lorsque l'entrée SIDE est 1 (niveau haut), la tête 0 lorsque SIDE est 0.

— US0, US1 (*Unit Select 0, 1*)

Les entrées US0 et US1 permettent le choix entre quatre lecteurs de disquette.

— PS0, PS1 (*Preshift 0, 1*)

Les sorties PS1 et PS0 sont les signaux de requête de précompensation en écriture pour le mode MFM :

PS0	PS1	Shift (MFM WDATA)
0	0	Normal
0	1	Late
1	0	Early
1	1	-

— READY

L'entrée READY indique que le FDD est prêt à recevoir des données.

— HDLD (HeaD LoaD)

La sortie HDLD spécifie à la tête de lecture-écriture du FDD de s'approcher de la disquette.

— FLT/TRK0 (FauLT/TRacK θ)

En mode lecture-écriture, l'entrée FLT détecte les conditions d'échec du FDD. En mode recherche, TRK0 indique que la piste en cours est 0.

— WPRT/2SIDE (Write PRotecT/Two SIDE)

En mode lecture-écriture, l'entrée WPRT détecte le statut de protection en écriture. En mode recherche, 2SIDE indique les disquettes à deux faces.

— FLTR/STEP (Fault Reset/STEP)

En mode lecture-écriture, la sortie FLTR réinitialise la bascule d'erreur du FDD. En mode recherche, STEP émet des pulsations d'étape pour déplacer la tête vers un autre cylindre.

— LCT/DIR (Low CurrenT/DIRection)

En mode lecture-écriture, la sortie LCT indique que la tête de lecture-écriture est positionnée à un cylindre supérieur à 42. En mode recherche, la sortie DIR détermine la direction dans laquelle la tête se déplacera lorsqu'elle recevra une impulsion d'étape. Si DIR est 0, les recherches sont effectuées en arrière, en avant si DIR est 1.

 $\overline{RW}/SEEK$ (Read-Write/SEEK)

La sortie $\overline{\text{RW}}/\text{SEEK}$ spécifie le mode lecture-écriture à niveau bas, recherche à niveau haut.

-- GND (GRounD)

Doit être relié à la terre.

— Vcc (+5V)

Doit être relié à une alimentation de +5 V.

10.2.2 Les registres du FDC

Le PD765 comporte trois registres et a donc besoin de trois ports : le registre de sortie numérique (DOR pour Digital Output Register), le registre de statut (Main Status Register) et le registre de données (Data Register).

Registre de sortie numérique DOR.- La structure de ce registre est la suivante :

7	6	5	4	3	2	1	0
MOTD	MOTC	MOTB	MOTA	DMA	$\overline{ ext{REST}}$	DR1	DR0

- MOTD, MOTC, MOTB, MOTA : contrôle du moteur pour les lecteurs de disquette D, C, B et A respectivement (1 = démarrage du moteur, 0 = arrêt du moteur).
- DMA : DMA et canal IRQ (1 = activé, 0 = désactivé).
- REST : réinitialisation du contrôleur (1 = contrôleur activé, 0 = exécuter la réinitialisation du contrôleur).
- DR1, DR0 : choix du lecteur de disquette [00 = lecteur 0 (A), 01 = lecteur 1 (B), 10 = lecteur (C), 11 = lecteur 3 (D)].

On ne peut qu'écrire dans ce registre. Si le bit REST vaut 1, le contrôleur accepte et exécute les commandes. S'il est égal à zéro, le contrôleur ignore toutes les commandes et effectue une réinitialisation de tous les registres internes (autres que DOR).

Un lecteur de disquette ne peut être choisi que si son moteur est en marche (on peut le mettre en marche au moment du choix).

<u>Exemple 1</u>.- Pour démarrer le moteur du lecteur de disquette A et le sélectionner pour qu'il soit prêt pour une opération, on utilise les données suivantes :

- MOTA = 1 (démarrage du moteur du lecteur A),
- DMA = 1 (si on veut utiliser le DMA et les interruptions),
- REST = 1 (activation du contrôleur pour que les commandes puissent être exécutées),
- DR1, DR0 = 00 (sélection du lecteur A),
- tous les autres bits à zéro.

Ainsi 16 + 8 + 4 + 0 = 28, ou 01Ch, est envoyé au port adéquat (3f2h sur l'IBM PC):

```
mov al,01ch
mov dx,03f2h
out dx,al
```

Exemple 2.- Pour réinitialiser le contrôleur, il faut envoyer 0 au port 3f2h :

```
mov al,0
mov dx,03f2h
out dx,al
```

Ceci a pour effet d'arrêter les moteurs de tous les lecteurs de disquette, de ne sélectionner aucun lecteur, de désactiver le DMA et la ligne IRQ et de réinitialiser les registres.

Registre de statut principal MSR.- La structure de ce registre est la suivante :

7	6	5	4	3	2	1	0
MRQ	DIO	NDMA	BUSY	ACTD	ACTC	ACTB	ACTA

- MRQ (pour $Main\ ReQuest$): 1 = le registre des données est prêt à recevoir ou envoyer des données ou des commandes, 0 = registre des données non prêt.
- DIO (pour $Data\ Input/Output$) : $1=du\ contrôleur\ vers\ le\ microprocesseur$, $0=du\ microprocesseur\ vers\ le\ contrôleur$.
- NDMA (pour *Non-DMA mode*) : 1 = contrôleur non en mode DMA (dans ce cas, le contrôleur émet une interruption matérielle chaque fois qu'il veut recevoir ou envoyer un octet de données), 0 = contrôleur en mode DMA (qui peut être utilisé pour transférer des données vers ou depuis la mémoire vive).
- BUSY : 1 = une instruction est en train d'être effectuée, 0 = pas d'instruction en cours.
- ACTD, ACTC, ACTB, ACTA : le lecteur correspondant est actif (1) ou non actif (0). Actif veut dire que le lecteur est en train de positionner sa tête de lecture-écriture ou en train de se recalibrer.

Le MSR est seulement lu. Il contient les informations sur le statut du contrôleur.

<u>Exemple 3</u>.- Pour tester si le contrôleur est prêt à recevoir des commandes ou des données, il est nécessaire de tester MRQ et DIO. Ceci implique de lire le port, de masquer les bits et d'effectuer une comparaison :

mrqloop:

```
mov dx,03f4h
in al,dx
and al,0c0h
cmp al,080h
jne mrqloop
```

Ce code bouclera jusqu'à ce que le contrôleur dise qu'il est prêt à recevoir des données.

Registre des données.- C'est un registre de huit bits qui fournit un accès indirect à une pile de registres. Une commande nécessite de un à neuf octets; le premier octet spécifie au contrôleur le nombre d'octets nécessaires. Le contrôleur envoie les octets de commande aux registres adéquats de sa pile, ce qui permet de se passer d'un regsitre d'index, utilisé par exemple dans les contrôleurs graphiques.

10.2.3 Le jeu de commandes du FDC

Le μ PD765 comporte un jeu de 13 commandes, résumées dans le tableau suivant :

Nom de la commande	Fonction
Commandes de transfert de donnée	es
Lire la piste complète	x2h
Écrire un secteur	x5h
Lire un secteur	x6h
Écrire sur un secteur effacé	x9h
Lire un secteur effacé	xch
Formater une piste	xdh
Commandes de contrôle	
Corriger les données du lecteur	x3h
Vérifier le statut du lecteur	x4h
Calibrer le lecteur	x7h
Vérifier le statut de l'interruption	x8h
Lire l'identificateur du secteur	xah
Rechercher/ranger la tête	xfh

Toutes les commandes sont transférées via le registre de donnée. Avant d'écrire une commande ou de lire l'octet de statut, il est nécessaire de lire le bit MRQ du registre MSR de façon à s'assurer que le registre de données est prêt à recevoir un octet. On doit également fixer le format du lecteur avant les opérations de lecture, d'écriture et de formatage.

10.2.3.1 Format des commandes de transfert de données

Ce sont les commandes utilisées pour transférer des données entre une disquette et la mémoire vive ou pour formater une piste. Toutes les commandes de transfert des données renvoient leurs résultats en utilisant le même format, résumé dans le tableau suivant :

Octet \ Bit	7	6	5	4	3	2	1	0			
0	Μ	F	S	0	0	1	1	0			
1	X	X	X	X	X	HD	DR1	DR0			
2		Cylindre									
3		Tête									
4					Nur	néro d	e sectei	ır			
5					Ta	ille du	secteur	•			
6	Lor	igue	ur d	e la	pist	e/num	éro de :	secteur maximum			
7	Longueur de GAP3										
8		Longueur des données									

- Le bit **M** du premier octet spécifie s'il s'agit d'une opération multi-pistes, c'est-à-dire qu'on lit les deux pistes du cylindre en utilisant les deux têtes à la fois (1) ou d'un seul côté (0).
- Le bit **F** spécifie la méthode de codage : 1 pour MFM et 0 pour FM.
- Le bit S (pour Skip) spécifie le mode de dépassement : si S=1, on doit passer les DAM ($Data\ Address\ Mark$) effacées et ne pas le faire si S=0.
- Le bit **HD** (pour *HeaD*) du deuxième octet spécifie le numéro de la tête de lecture-écriture. Il doit désigner la même tête que dans le troisième octet.
- Les bits **DR1**–**DR0** spécifient le lecteur de la façon suivante : 00 = lecteur 0 (A), 01 = lecteur 1 (B), 10 = lecteur 2 (C) et 11 = lecteur 3 (D).
- Les octets 2, 3 et 4 permettent de spécifier le premier secteur à lire (ce qui ne sert à rien pour cette première commande).
- Le cinquième octet spécifie la taille du secteur : 0 = 128 octets, 1 = 256 octets, 2 = 512 octets, 3 = 1 024 octets, ..., 7 = 16 KiO.
- Le sixième octet spécifie le nombre de secteurs par piste ou le numéro maximum de secteur pour lequel l'instruction doit être exécutée.
- Le septième octet spécifie la longueur de GAP3 avec un minimum de 32. La valeur standard est 42.
- Le huitième octet spécifie la longueur des données, en octets, et n'a de sens que s'il s'agit de 0 (sinon on a toujours FFh).

10.2.3.2 Lecture d'une piste (x2h)

Lorsqu'une commande de lecture de piste est émise, les données d'une piste sont complètement lues. La spécification du secteur est ignorée pour cette commande : la lecture commence au premier secteur qui suit IDAM (*Index Address Mark*), en lisant secteur par secteur (sans se préoccuper du numéro de secteur logique spécifié dans ID), jusqu'à ce que la fin de la piste soit atteinte

La piste est considérée comme un bloc continue de données. Le tampon de lecture doit être assez grand pour contenir l'ensemble des données. Les opérations multi-pistes ne sont donc pas permises pour cette commande.

L'envoi des neuf octets de commande décrits précédemment constitue la *phase de commande*. Elle est suivie d'une *phase de résultats*, constituée de sept octets :

Octet \ Bit	7	6	5	4	3	2	1	0	
0	ST0								
1		ST1							
2	ST2								
3				Cyli	ndre	9			
4				Τé	ète				
5	Numéro de secteur								
6		,	Tail	le dı	ı sec	cteu	r		

Les registres de statut ST0-ST2 renvoient des informations qui peuvent nous aider, soit à confirme une exécution correcte de la commande, soit à déterminer la cause d'une erreur :

— Le format de ST0 est :

I	7	6	5	4	3	2	1	0
	${\rm IC}_1$	${\rm IC}_0$	SE	UC	NR	НD	US_1	US_0

- IC_1 – IC_0 constitue le code d'interruption ($Interrupt\ Code$):
 - 00 = terminaison normale (la commande s'est terminée sans erreur).
 - 01 = terminaison anormale (le contrôleur a commencé l'exécution de la commande mais n'a pas pu la terminer correctement).
 - 10 = commande non valide (le contrôleur n'a donc pas commencé l'exécution de la commande).
 - 11 = terminaison anormale (le lecteur n'était pas prêt).
- SE (Seek End) indique que le contrôleur a terminé une commande de recherche ou de calibration ou a exécuté correctement une commande de lecture ou d'écriture comprenant une recherche implicite.
- UC (*Unity Check*) est positionné si le lecteur a échoué ou si une recalibration ne peut pas trouver la piste 0 après 79 impulsions.
- NR (*drive Not Ready*) est positionné si le lecteur n'est pas prêt.
- HD (HeaD) spécifie la tête de lecture actuellement active.
- US₁-US₀ (*Unit Select*) spécifie le lecteur actuellement sélectionné.

— Le format de ST1 est :

ı	7	6	5	4	3	2	1	0
	EN	xx	DE	TO	xx	NDAT	MM	NID

- EN (*ENd of cylinder*) est positionné lorsque le compteur de secteur excède le nombre de secteurs de la piste, c'est-à-dire lorsque le contrôleur essaie d'accéder à un secteur se trouvant après le dernier secteur du cylindre.
- DE (*Data Error*) est positionné lorsque le contrôleur a détecté une erreur dans le champ ID ou dans le champ de données d'un secteur.
- TO (*Time-Out*) est positionné lorsqu'aucun signal n'a été reçu de la part du contrôleur DMA ou du microprocesseur dans l'intervalle de temps requis.
- NDAT (*No DATa*) est positionné lorsque le secteur spécifié n'a pas été trouvé par le contrôleur ou lorsque le contrôleur ne peut pas lire ID ou lorsque le contrôleur ne peut pas déterminer correctement la suite de secteurs.
- NW (*Not Writable*) est positionné lorsque le disque est protégé en écriture alors qu'on essaie de lire.
- NID (*No ADdress mark*) est positionné lorsque ID n'a pas été trouvé après une révolution complète du disque ou lorsque le contrôleur ne peut pas trouver un motif DAM ou le secteur spécifié.
- Le format de ST2 est :

7	6	5	4	3	2	1	0
XX	DADM	CRCE	WCYL	SEQ	SERR	BCYL	NDAM

- DADM (*Deleted ADdress Mark*) est positionné lorsqu'un DADM est détecté lors d'une commande de lecture d'un secteur ou qu'un DAM est détecté lors d'une commande de lecture d'un secteur effaçé.
- CRCE (*CRC Error*) est positionné lorsqu'une erreur de CRC est décelée dans le champ données du secteur.
- WCYL (*Wrong CYLinder*) est positionné lorsque la piste spécifiée par le contrôleur et celle spécifiée par l'ID sont différentes.
- SEQ (Seek EQual) est positionné lorsque la condition seek equal est remplie.
- SERR (Seek ERRor) est positionné lorsque le contrôleur ne trouve pas le secteur correspondant lors d'une recherche sur le cylindre.
- BCYL (Bad CYLinder) indique que l'adresse de piste dans ID diffère de l'adresse de piste spécifiée par le contrôleur.
- NDAM (*Not DAM*) est positionné lorsque le contrôleur ne peut pas trouver un DAM valide ou effacé.

10.2.3.3 Écriture d'un secteur (x5h)

Le format de cette commande est le même que pour la commande précédente, n'en différant que par le premier demi-octet de poids faible :

Octet \ Bit	7	6	5	4	3	2	1	0		
0	Μ	F	S	0	0	1	0	1		
1	X	X	X	X	X	HD	DR1	DR0		
2		Cylindre								
3		Tête								
4					Nur	néro d	le secte	ır		
5					Ta	ille du	secteur	:		
6	Lor	Longueur de la piste/numéro de secteur maximum								
7	Longueur de GAP3									
8				L	ong	ueur d	es donn	ées .		

Elle permet de transférer un ou plusieurs secteurs de la mémoire vive vers le contrôleur, à partir duquel ils sont transférés au disque. Lorsque le contrôleur écrit un secteur, il écrit également un DAM valide. Cette commande peut concerner les deux têtes. La phase de résultats est la même que pour la commande précédente.

10.2.3.4 Lecture d'un secteur (x6h)

Le format de cette commande est le même que pour la première commande, n'en différant que par le premier demi-octet de poids faible :

Octet \ Bit	7	6	5	4	3	2	1	0			
0	Μ	F	S	0	0	1	1	0			
1	X	X	X	X	X	HD	DR1	DR0			
2		Cylindre									
3		Tête									
4		Numéro de secteur									
5					Ta	ille du	secteur				
6	Lon	igue	ur d	e la	pist	e/num	éro de :	secteur maximum			
7		Longueur de GAP3									
8				L	ong	ueur d	es donn	ées			

Elle permet de transférer un ou plusieurs secteurs ayant un DAM valide du disque vers le contrôleur, puis vers la mémoire vive. La phase de résultats est la même que pour la première commande.

10.2.3.5 Écriture d'un secteur effacé (x9h)

Le format de cette commande est le même que pour la première commande, n'en différant que par le premier octet :

Octet \ Bit	7	6	5	4	3	2	1	0				
0	Μ	F	0	0	1	0	0	1				
1	X	X	X	X	X	HD	DR1	DR0				
2		Cylindre										
3		Tête										
4		Numéro de secteur										
5					Ta	ille du	secteur	r				
6	Lor	Longueur de la piste/numéro de secteur maximum										
7	Longueur de GAP3											
8				L	ong	ueur d	es donn	iées				

Elle effectue la même chose que la commande d'écriture d'un secteur sauf qu'elle écrit un DDAM au lieu d'un DAM normal. La phase de résultats est la même que pour la première commande.

10.2.3.6 Lecture d'un secteur effacé (xCh)

Le format de cette commande est le même que pour la première commande, n'en différant que par le premier octet :

Octet \ Bit	7	6	5	4	3	2	1	0				
0	Μ	F	0	0	1	1	0	0				
1	X	X	X	X	X	HD	DR1	DR0				
2		Cylindre										
3		Tête										
4		Numéro de secteur										
5					Ta	ille du	secteur	r				
6	Lon	iguei	ur d	e la	pist	e/num	éro de	secteur maximum				
7	Longueur de GAP3											
8				L	ong	ueur d	es donn	iées				

Elle effectue la même chose que la commande de lecture d'un secteur sauf qu'elle ne peut lire que les secteurs avec un DDAM. Les secteurs ayant un DAM normal sont ignorés. La phase de résultats est la même que pour la première commande.

10.2.3.7 Formatage d'une piste (xDh)

Le format de cette commande est le suivant :

Octet \ Bit	7	6	5	4	3	2	1	0		
0	0	F	0	0	1	1	0	1		
1	X	X	X	X	X	HD	DR1	DR0		
2	Taille du secteur									
3		Longueur de la piste								
4	Longueur de GAP3									
5		Octet de remplissage								

Cette commande formate une piste. Un tampon de format constitué de quatre octets doit être fourni pour chaque secteur de la piste. Ce tampon contient l'identificateur ID du secteur correspondant. Le tampon doit être suffisamment grand pour contenir les données nécessaires pour tous les secteurs de la piste. Le format du tampon est le suivant :

Octet	Commande
0	Piste
1	Tête
2	Numéro de secteur
3	Taille du secteur

où la taille du secteur utilise les codes décrits lors de la première commande.

Il vaut mieux programmer le contrôleur de DMA pour qu'il lise le tampon de formats depuis un canal DAM (le canal 2 dans le cas du PC). On peut cependant, également, transférer les données de formatage en utilisant un échange de données piloté par interruption. Dans ce cas, le contrôleur émet une interruption matérielle avant le formatage de chaque secteur. La routine de service peut alors transférer les quatre octets de format pour le prochain secteur à formater.

Le formatage débute lorsque le lecteur a fourni un signal sur la broche IDX, indiquant ainsi le début d'une piste. Les secteurs sont formatés l'un après l'autre jusqu'à ce que le lecteur retransmette ce même signal, indiquant cette fois la fin de la piste (notons que le début et la fin de la piste correspondent au même point, matérialisé par le trou d'index de la disquette).

La phase de résultats est la même que pour la première commande.

10.2.3.8 Correction des données du lecteur (x3h)

Le format de cette commande est le suivant :

Octet \ Bit	7	6	5	4	3	2	1	0	
0	0	0	0	0	0	0	1	1	
1	S	tep	Rat	е	Head Unload Time				
2		Не	NDM						

Cette commande est utilisées pour transmettre les données de contrôle mécanique au contrôleur pour tous les lecteurs de disquette connectées, conformément aux tableaux ci-dessous :

	Step	Rate ((ms)						
Entry	Data Transfer Rate								
	1M	1M 500k 300k 250l							
0h	8.0	16	26.7	32					
1h	7.5	15	25.0	30					
2h	7.0	14	23.3	28					
Eh	1.0	2	3.3	4					
Fh	0.5	1	1.7	2					

Не	Head Unload Time (ms)										
Entry	Data Transfer Rate										
	1M	1M 500k 300k 250k									
0h	128	256	426	512							
1h	8	16	26.7	32							
2h	16	32	53.3	64							
Eh	112	224	373	448							
Fh	120	240	400	480							

H	Head Load Time (ms)									
Entry	Data Transfer Rate									
	1M	1M 500k 300k 250k								
0h	128	256	426	512						
1h	1	2	3.3	4						
2h	2	4	6.6	8						
Eh	126	252	420	504						
Fh	127	254	423	508						

Le champ NDM ($Non\text{-}DMA\ Mode$) est égal à 0 pour un transfert des données par DMA et à 1 sinon.

Cette commande n'a pas de phase de résultat.

317

10.2.3.9 Vérification du statut d'un lecteur (x4h)

Le format de cette commande est le suivant :

Octet \ Bit	7	6	5	4	3	2	1	0
0	0	F	0	0	1	1	0	1
1	X	X	X	X	X	HD	DR1	DR0

Cette commande renvoie des information de statut relatives à l'état des lecteurs de disquettes connectées.

La phase de résultats consiste à lire un octet :

Octet \ Bit	7	6	5	4	3	2	1	0
0				Sī	Г3			

Le registre de statut 3 contient des informations sur le lecteur : Le format de ST0 est :

7	6	5	4	3	2	1	0
ESIG	WPDR	RDY	TRK0	DSDR	HDDR	DS1	DS0

- ESIG (*Error SIGnal*) est positionné lorsque le signal d'erreur du lecteur est actif, c'est-àdire lorsqu'une erreur est survenue.
- WPDR (Write PRotection) est positionné lorsque la disquette est protégée en écriture.
- RDY (ReaDY) est positionné lorsque le lecteur est prêt.
- TRK0 (TRacK 0) est positionné lorsque la tête est au-dessus de la piste 0.
- DSDR ($Double\ Sided\ DRive)$ est positionné lorsque le lecteur peut lire les deux côtés d'une disquette.
- HDDR (*HeaD DRive*) indique la tête active.
- DS1–DS0 spécifie le lecteur actuellement sélectionné.

10.2.3.10 Calibration d'un lecteur de disquette (x7h)

Le format de cette commande est le suivant :

Octet \ Bit	7	6	5	4	3	2	1	0
0	0	0	0	0	0	1	1	1
1	X	X	X	X	X	0	DR1	DR0

Cette commande est utilisée pour positionner la tête de lecture-écriture sur le cylindre 0. Si une erreur de recherche survient au cours de l'accès à un secteur, la tête peut être déplacée à un cylindre absolu pour recalibrer le lecteur.

Cette commande ne renvoie pas de phase de résultat mais une interruption est émise une fois qu'elle a été effectuée.

Lorsque le contrôleur reçoit cette commande, il positionne le signal DIR à 0 et passe au lecteur jusqu'à 79 impulsions de déplacement de la tête de lecture-écriture. Après chacune de ces impulsions, le contrôleur vérifie le signal TRK0. S'il est actif (c'est-à-dire si la tête se trouve au-dessus de la piste 0), le contrôleur positionne le bit SE du registre de statut 0 et termine la commande. Si TRK0 n'est pas actif après 79 impulsions de déplacement, le contrôleur positionne les bits SE et EC du registre de statut 0 et termine la commande.

Pour recalibrer le lecteur, il se peut qu'on doive émettre plusieurs commandes de recalibration, en particulier si le lecteur a plus que 80 pistes. Après avoir effectuer cette commande, on doit toujours vérifier que la tête est correctement positionnée au-dessus de la piste 0 en utilisant la commande de vérification du statut d'interruption. Une recalibration est toujours nécessaire au démarrage, pour initialiser correctement la position de la tête.

10.2.3.11 Vérification du statut d'interruption (x8h)

Le format de cette commande est le suivant :

Octet \ Bit	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0

Cette commande est utilisée pour vérifier les informations de statut sur l'état du contrôleur dans la phase de résultats lorsque le contrôleur a émis une interruption.

Le signal d'interruption est réinitialisé par cette commande, qui détermine la source de l'interruption *via* le registre de statut ST0. Si la commande est émise alors qu'il n'y a pas d'interruption en attente, la valeur 80h est renvoyée dans ST0, correspondant au message de commande non valide.

Une interruption est émise dans les cas suivants :

- au début de la phase des résultats des commandes :
 - lecture d'un secteur;
 - lecture d'un secteur effacé;
 - écriture d'un secteur;
 - écriture sur un secteur effacé;
 - lecture d'une piste;
 - formatage d'une piste;
 - lecture d'un ID de secteur ;
 - vérification.
- après l'exécution des commandes suivantes, qui n'ont pas de phase de résultats :
 - calibration d'un lecteur;
 - recherche:
 - recherche relative.
- pour l'échange de données entre la mémoire vive et le contrôleur lorsque l'échange piloté par interruption est actif (autrement dit lorsqu'on n'utilise pas le DMA).

La phase de résultats est constituée de deux octets :

Octet \ Bit	7	6	5	4	3	2	1	0
0	ST0							
1	Cylindre en cours							

10.2.3.12 Lecture de l'ID d'un secteur (xAh)

Le format de cette commande est le suivant :

Octet \ Bit	7	6	5	4	3	2	1	0
0	0	F	0	0	1	0	1	0
1	X	X	X	X	X	HD	DR1	DR0

Cette commande est utilisée pour lire le premier identificateur de secteur ID que le contrôleur est capable de détecter. En utilisant cette commande, il est possible de déterminer la position en cours de la tête de lecture-écriture. Si on n'arrive à lire aucun ID lors d'une révolution complète de la disquette, le contrôleur émet un message d'erreur, que l'on récupère dans ST0–2.

La phase de résultats est constituée des sept octets habituels :

Octet \ Bit	7	6	5	4	3	2	1	0
0	ST0							
1	ST1							
2	ST2							
3			(Cyli	ndre	9		
4	Tête							
5	Numéro de secteur							
6	Taille du secteur							

10.2.3.13 Rechercher/ranger la tête (xFh)

Le format de cette commande est le suivant :

Octet \ Bit	7	6	5	4	3	2	1	0
0	0	0	0	0	1	1	1	1
1	X	X	X	X	X	HD	DR1	DR0
2		Cylindre						

La commande de recherche de la tête, quelquefois apelée commande de rangement de la tête, déplace la tête de lecture-écriture sur le cylindre spécifié. Lorsque le contrôleur reçoit cette commande, il compare le numéro de cylindre transmis au numéro de cylindre en cours. Le signal de direction (DIR) est alors positionné et des impulsions du moteur pas à pas sont émises jusqu'à ce que les deux numéros de cylindre coïncident.

Cette commande n'a pas de phase de résultats.

10.2.3.14 Commande non valide

Lorsqu'une commande non valide est émise, le contrôleur positionne le bit 7 de ST0. La phase de résultats est alors :

	Octet \ Bit	7	6	5	4	3	2	1	0
Ī	0				Sī	Γ0			

10.3 Cas de l'IBM PC

Sur l'IBM/XT, il peut y avoir deux contrôleurs. Ils utilisent le canal 2 de DMA pour le transfert des données, l'émission d'une requête d'interruption matérielle s'effectue *via* IRQ6 pour être servie par INT 0Eh.

	Adresse	Adresse	Écriture (W)
	primaire	secondaire	Lecture (R)
Adresse de base	3F0h	370h	
Digital Output Register DOR	3F2h	372h	W
Main Status Register	3F4h	374h	R
Data Register	3F5h	375h	R/W
Canal DMA	2	2	
IRQ	6	6	
INTR	$0\mathrm{Eh}$	$0\mathrm{Eh}$	

10.4 Commentaire du BIOS : lecteur de disquette

10.4.1 Zone de communication du BIOS concernant le lecteur de disquette

Nous avons déjà vu la description de la zone de communication du BIOS consacrée au lecteur de disquette au chapite 3. Elle débute à l'adresse 0400:3Eh et présente la structure suivante :

Adresse	Variable	Signification
3E	SEEK_STATUS	Réinitialisation
3F	MOTOR_STATUS	État du moteur
40	MOTOR_COUNT	Durée de mise en arrêt
41	DISKETTE_STATUS	Code de retour
42-48	NEC_STATUS	État du contrôleur NEC

Les quatre premiers octets sauvegardent l'état des lecteurs de disquettes pour chaque opération. Les sept octets de NEC_STATUS contiennent l'état retourné par le contrôleur de disquette après chaque opération, dont nous avons vu qu'il est constitué au plus de sept octets. Un résumé sur un octet est placé par le BIOS dans l'octet DISKETTE_STATUS.

Les octets MOTOR_STATUS et MOTOR_COUNT contrôlent la durée d'arrêt du moteur du lecteur de disquette. Le premier octet signale que l'unité de disquette est active et le second détermine la durée de rotation de la disquette après une opération. MOTOR_COUNT contient une valeur de compteur décrémentée en fonction du compteur d'impulsion. Par défaut ce temps de rotation supplémentaire est d'environ deux secondes.

EC5D 56

10.4.2 Choix de la fonction

10.4.2.1 La sous-routine principale

La routine de service des entrées-sorties sur disquette (INT 13h) commence à la ligne 2301 du listing :

```
EC52 363031
                                                  '601',13,10
                                                                        ; DISKETTE ERROR
                         2301
                                F3
                                        DB
EC55 OD
EC56 OA
                         2302
                                ;-- INT 13 ----
                         2303
                                ; DISKETTE I/O
                         2304
                                        THIS INTERFACE PROVIDES ACCESS TO THE 5 1/4 DISKETTE DRIVES
                         2305
                         2306
                                         (AH)=O RESET DISKETTE SYSTEM
                         2307
                                                HARD RESET TO NEC, PREPARE COMMAND, RECAL REQUIRED
                         2308
                         2309
                                                ON ALL DRIVES
                         2310
                                         (AH)=1 READ THE STATUS OF THE SYSTEM INTO (AL)
                                                DISKETTE_STATUS FROM LAST OPERATION IS USED
                         2311
                         2312
                         2313
                                  REGISTERS FOR READ/WRITE/VERIFY/FORMAT
                                         (DL) - DRIVE NUMBER (0-3 ALLOWED, VALUE CHECKED)
                         2314
                                         (DH) - HEAD NUMBER (0-1 ALLOWED, NOT VALUE CHECKED)
                         2315
                                         (CH) - TRACK NUMBER (0-39; NOT VALUE CHECKED)
                         2316
                                         (CL) - SECTOR NUMBER (1-8, NOT VALUE CHECKED,
NOT USED FOR FORMAT)
                         2317
                         2318
                                         (AL) - NUMBER OF SECTORS ( MAX = 8, NOT VALUE CHECKED, NOT USED
                         2319
                                                                          FOR FORMAT)
                         2320
                         2321
                                         (ES:BX) - ADDRESS OF BUFFER ( NOT REQUIRED FOR VERIFY)
                         2322
                         2323
                                         (AH)=2 READ THE DESIRED SECTORS INTO MEMORY
                                         (AH)=3 WRITE THE DESIRED SECTORS FROM MEMORY
                         2324
                                         (AH)=4 VERIFY THE DESIRED SECTORS
                         2325
                         2326
                                         (AH)=5 FORMAT THE DESIRED TRACK
                         2327
                                                FOR THE FORMAT OPERATION, THE BUFFER POINTER (ES,BX)
                         2328
                                                MUST POINT TO THE COLLECTION OF DESIRED ADDRESS FIELDS
                                                FOR THE TRACK. EACH FIELD IS COMPOSED OF 4 BYTES, (C,H,R,N), WHERE C = TRACK NUMBER, H=HEAD NUMBER,
                         2329
                         2330
                                                R = SECTOR NUMBER, N= NUMBER OF BYTES PER SECTOR
                         2331
                         2332
                                                (00=128, 01=256, 02=512, 03=1024). THERE MUST BE ONE
                         2333
                                                ENTRY FOR EVERY SECTOR OF THE TRACK. THIS INFORMATION
                         2334
                                                IS USED TO FIND THE REQUESTED SECTOR DURING READ/WRITE
                         2335
                                                ACCESS.
                         2336
                                  DATA VARIABLE -- DISK_POINTER
                         2337
                                        DOUBLE WORD POINTER TO THE CURRENT SET OF DISKETTE PARAMETERS
                         2338
                         2339
                         2340
                                         AH = STATUS OF OPERATION
                         2341
                                                 STATUS BITS ARE DEFINED IN EQUATES FOR
                         2342
                                                 DISKETTE_STATUS VARIABLE IN THE DATA SEGMENT OF THIS
                         2343
                                                 MODULE.
                                         CY = 0 SUCCESSFUL OPERATION (AH=0 ON RETURN)
                         2344
                         2345
                                         CY = 1 FAILED OPERATION (AH HAS ERROR REASON)
                         2346
                                        FOR READ/WRITE/VERIFY
                         2347
                                                 DS,BX,DX,CH,CL PRESERVED
                         2348
                                                 AL = NUMBER OF SECTORS ACTUALLY READ
                         2349
                                                 **** AL MAY NOT BE CORRECT IF TIME OUT ERROR OCCURS
                                                 IF AN ERROR IS REPORTED BY THE DISKETTE CODE, THE
                         2350
                                                 APPRPRIATE ACTION IS TO RESET THE DISKETTE, THEN RETRY
                         2351
                         2352
                                                 THE OPERATION. ON READ ACCESSES, NO MOTOR START DELAY
                         2353
                                                 IS TAKEN, SO THAT THREE RETRIES ARE REQUIRED ON READS
                         2354
                                                 TO ENSURE THAT THE PROBLEM IS NOT DUE TO MOTOR
                         2355
                                                 START-UP.
                         2356
                         2357
                                         ASSUME
                                                 CS:CODE,DS:DATA,ES:DATA
                         2358
                                         ORG
                                                 0EC59H
EC59
                         2359
                                DISKETTE_IO
                                                 PROC
                                                         FAR
EC59 FB
                         2360
                                         STI
                                                                           : INTERRUPTS BACK ON
EC5A 53
                         2361
                                        PUSH
                                                 вх
                                                                           : SAVE ADDRESS
                                        PUSH
EC5B 51
                         2362
                                                 CX
EC5C 1E
                                         PUSH
                                                                          ; SAVE ALL REGISTERS DURING OPERATION
                         2363
                                                 DS
```

PUSH

2364

EC5E 57	2365		PUSH	DI		
EC5F 55	2366		PUSH	BP		
EC60 52	2367		PUSH	DX		
EC61 88EC	2368		MOV	BP,SP	;	SET UP POINTER TO HEAD PARM
EC63 E8F300	2369		CALL	DDS		
EC66 E81C00	2370		CALL	J1	;	CALL THE REST TO ENSURE DS RESTORED
EC69 880400	2371		MOV	BX,4	;	GET THE MOTOR WAIT PARAMETER
EC6C E8F001	2372		CALL	GET_PARM		
EC6F 88264000	2373		MOV	MOTOR_COUNT,AH		SET THE TIMER COUNT FOR THE MOTOR
EC73 8A264100	2374		MOV	AH,DISKETTE_STATUS		GET STATUS OF OPERATION
EC77 80FC01	2375		CMP	AH,1		SET THE CARRY FLAG TO INDICATE
EC7A F5	2376		CMC	AII, I		SUCCESS OR FAILURE
EC7B 5A	2377		POP	DX		
					;	RESTORE ALL REGISTERS
EC7C 50	2378		POP	BP		
EC7D 5F	2379		POP	DI		
EC7E 5E	2380		POP	SI		
EC5F 1F	2381		POP	DS		
EC80 59	2382		POP	CX		
EC81 5B	2383		POP	BX	;	RECOVER ADDRESS
EC82 CA0200	2384		RET	2	;	THROW AWAY SAVED FLAGS
	2385	DISKETT	E_IO	ENDP		
	2386					
EC85	2387	J1	PROC	NEAR		
EC85 8AF0	2388		MOV	DH,AL	:	SAVE # SECTORS IN DH
EC87 80263F007F	2389		AND	MOTOR_STATUS,07FH	:	INDICATE A READ OPERATION
EC8C OAE4	2390		OR	AH, AH		AH=O
EC8E 7427	2391		JZ	DISK_RESET	,	
EC90 FECC	2392		DEC	AH		AH=1
EC92 7473	2393		JZ	DISK_STATUS	,	
EC94 C606410000	2394		MOV	DISKETTE_STATUS,0		RESET THE STATUS INDICATOR
EC99 80FA04	2395		CMP	DL,4		TEST FOR DRIVE IN 0-3 RANGE
EC9C 7313			JAE	•		
	2396			J3		ERROR IF ABOVE
EC9E FECC	2397		DEC	AH	;	AH=2
ECAO 7469	2398		JZ	DISK_READ		
ECA2 FECC	2399		DEC	AH		AH=3
ECA4 7503	2400		JNZ	J2	;	TEST_DISK_VERF
ECA6 E99500	2401		JMP	DISK_WRITE		
ECA9	2402	J2:			;	TEST_DISK_VERF
ECA9 FECC	2403		DEC	AH	;	AH=4
ECAB 7467	2404		JZ	DISK_VERF		
ECAD FECC	2405		DEC	AH	;	AH=5
ECAF 7467	2406		JZ	DISK_FORMAT		
ECB1	2407	J3:		= - :	:	BAD_COMMAND
ECB1 C606410001	2408		MOV	DISKETTE STATUS BAD CMD		ERROR CODE, NO SECTORS TRANSFERRED
ECB6 C3	2409		RET	ZIZZIIZ_DIMIOD, DAD_OND		UNDEFINED OPERATION
1000 00	2410	J1	ENDP		,	OUDDI TUDD OF DIVITION
	2410	91	דווחנ			
	2411					

Commentaires.- 1°) L'adresse absolue du code est EC59h (ligne 2358) pourpour que celui-ci corresponde avec le vecteur d'interruption 13h. Le segment de code est celui du BIOS, le segment de données est celui de la zone de communication du BIOS (ligne 2357). On permet les interruptions masquables (ligne 2360) puisque la routine de service en aura besoin. On sauvegarde les principaux registres (lignes 2361 à 2367), que l'on restaurera à la fin (lignes 2377 à 2383). On sauvegarde le contenu de SP dans BP (ligne 2368) et on fait en sorte que DS pointe sur la zone de communication du BIOS (ligne 2369).

 -2^{o}) On fait appel à une procédure (ligne 2370) pour déterminer le numéro de fonction (contenu dans AH) et aller à la sous-routine adéquate suivant celui-ci.

On sauvegarde le nombre de secteurs (eventuel) dans DH (ligne 2388) et on indique que l'on est en train d'effectuer une opération de lecture sur la disquette (ligne 2389) dans la variable MOTOR_STATUS de la zone de communication du BIOS (définie ligne 140).

- Si AH = 0, il s'agit de la fonction 0 de réinitialisation (lignes 2390 et 2391), on fait donc appel à la sous-routine DISK_RESET, définie ligne 2414 et étudiée ci-dessous.
- Si AH=1, il s'agit de la fonction 1 de demande de statut (lignes 2392 et 2393), on fait donc appel à la sous-routine DISK_STATUS, définie ligne 2462 et étudiée ci-dessous.

- Pour les fonctions suivantes, on réinitialise l'indicateur de statut (ligne 2394). La variable DISKETTE_STATUS de la zone de communication du BIOS est définie ligne 149. Si le numéro de lecteur de disquette est supérieur à 4 (lignes 2395 et 2396), il s'agit d'une commande non valide; on le spécifie dans la variable DISKETTE_STATUS (ligne 2408) et on termine la routine de service.
- Si AH = 2, il s'agit de la fonction 2 de lecture (lignes 2397 et 2398), on fait donc appel à la sous-routine DISK_READ, définie ligne 2469 et étudiée ci-dessous.
- Si AH = 3, il s'agit de la fonction 3 d'écriture (lignes 2399 à 2401), on fait donc appel à la sous-routine DISK_WRITE, définie ligne 2505 et étudiée ci-dessous.
- Si AH = 4, il s'agit de la fonction 4 de vérification (lignes 2403 à 2404), on fait donc appel à la sous-routine DISK_VERF, définie ligne 2479 et étudiée ci-dessous.
- Si AH = 5, il s'agit de la fonction 5 de formatage (lignes 2405 à 2406), on fait donc appel à la sous-routine DISK_FORMAT, définie ligne 2486 et étudiée ci-dessous.
- Sinon il s'agit d'une commande non valide. Nous avons vu ci-dessus comment on la traite (lignes 2407 à 2409).
- 3°) Une fois la sous-routine adéquate exécutée, on récupère les paramètres d'attente du moteur (lignes 2371 et 2372), que l'on place (ligne 2373) dans la variable MOTOR_COUNT de la zone de communication du BIOS (définie ligne 146). Si DISKETTE_STATUS vaut 1, on positionne l'indicateur de retenue pour indiquer une erreur (lignes 2374 à 2376).

10.4.2.2 La sous-routine d'obtention des paramètres

La sous-routine précédente fait appel à la sous-routine GET_PARM de chargement des paramètres du lecteur de disquette. Celle-ci commence à la ligne 2737 du listing :

```
2724
                         2725
                                  GET PARM
                         2726
                                         THIS ROUTINE FETCHES THE INDEXED POINTER FROM THE DISK BASE
                                         BLOCK POINTED AT BY THE DATA VARIABLE DISK_POINTER. A BYTE FROM
                         2727
                                         THAT TABLE IS THEN MOVED INTO AH. THE INDEX OF THAT BYTE BEING
                         2728
                         2729
                                         THE PARM IN BX
                         2730
                                   ENTRY
                         2731
                                    BX = INDEX OF BYTE TO BE FETCHED * 2
                                         IF THE LOW BIT OF BX IS ON. THE BYTE IS IMMEDIATELY OUTPUT
                         2732
                                         TO THE NEC CONTROLLER
                         2733
                         2734
                                   EXIT
                                    AH = THAT BYTE FRM BLOCK
                         2735
                         2736
EE6C
                         2737
                                GET PARM
                                                 PROC
                                                          NEAR.
EE6C 1E
                                                                          ; SAVE SEGMENT
                         2738
                                         PUSH
                                                 DS
EE6D 2BC0
                                         SUB
                                                  AX.AX
                         2739
                                                                          : ZERO TO AX
EE6F 8ED8
                         2740
                                         MOV
                                                 DS, AX
                         2741
                                         ASSUME
                                                 DS:ABSO
EE71 C5367800
                         2742
                                                  SI, DISK_POINTER
                                                                          ; POINT TO BLOCK
                                         LDS
                                                 BX,1
EE75 D1EB
                         2743
                                         SHR
                                                                            DIVIDE BX BY 2, AND SET FLAG
                         2744
                                                                            FOR EXIT
EE77 8A20
                         2745
                                         MOV
                                                  AH, [SI+BX]
                                                                          : GET THE WORD
                                                                          ; RESTORE SEGMENT
EE79 1F
                         2746
                                         POP
                                                  DS
                                                 DS:DATA
                         2747
                                         ASSUME
                                                  NEC_OUTPUT
                                                                          ; IF FLAG SET, OUTPUT TO CONTROLLER
EE7A 72C5
                         2748
                                         JC
EE7C C3
                         2749
                                         RET
                               GET PARM
                                                 ENDE
                         2750
```

<u>Commentaires</u>.- 1°) Le segment des données est sauvegardé sur la pile (lignes 2738 et 2746) et on se place dans le segment commençant à zéro (lignes 2739 à 2741).

- 2°) On fait pointer SI sur le bloc des paramètres DISK_POINTER. La variable DISK_POINTER est définie ligne 55 comme se trouvant à l'emplacement mémoire 78h. Comme

nous le verrons, elle est initialisée au démarrage avec le décalage de la variable DISK_BASE (ligne 1427).

 $DISK_BASE$ est défini ligne 3065:

```
3057
                           3058
                                   ; DISK_BASE
                           3059
                                            THIS IS THE SET OF PARAMETERS REQUIRED FOR DISKETTE OPERATION.
                           3060
                                            THEY ARE POINTED AT BY THE DATA VARIABLE DISK_POINTER. TO
                                            MODIFY THE PARAMETERS, BUILD ANOTHER BLOCK AND POINT
                           3061
                           3062
                                            DISK_POINTER TO IT.
                           3063
EFC7
                                                       OEFC7H
                           3064
EFC7
                           3065
                                   DISK_BASE
                                                       LABEL
                                                               BYTE
                                                                        ; SRT=C, HD UNLOAD=OF - 1ST SPECIFY BYTE
; HD LOAD=1, MODE=DMA - 2ND SPECIFY BYTE
; WAIT AFTER OPN TIL MOTOR OFF
EFC7 CF
                           3066
                                            DB
                                                       11001111B
EFC8 02
                           3067
                                            DB
EFC9 25
                                                       MOTOR_WAIT
                           3068
                                            DB
EFCA 02
                           3069
                                            DB
                                                                          512 BYTES/SECTOR
EFCB 08
                           3070
                                            DB
                                                       8
                                                                        ; EOT ( LAST SECTOR ON TRACK)
EFCC 2A
                           3071
                                                       02AH
                                                                          GAP LENGTH
EFCD FF
                           3072
                                            DB
                                                       OFFH
                                                                          DTL
                                                                        ; GAP LENGTH FOR FORMAT
EFCE 50
                           3073
                                            DB
                                                       050H
                                                                        ; FILL BYTE FOR FORMAT
EFCF F6
                           3074
                                            DB
                                                       OF6H
                                                                        ; HEAD SETTLE TIME (MILLISECONDS)
EFD0 19
                           3075
                                            DB
                                                       25
EFD1 04
                           3076
                                                                          MOTOR WAIT TIME (1/8 SECONDS)
```

La constante MOTOR_WAIT est définie à propos de la zone de communication du BIOS, ligne 147, égale à 37, ce qui correspond à deux secondes.

- -3^{o}) On divise par deux (ligne 2743) puisque BX contient le double de l'index. On place le paramètre voulu dans le registre AH (ligne 2745), ce qui était recherché.
- -4^{o}) On revient au segment des données de la zone de communication du BIOS (lignes 2747 et 2748). Si l'indicateur de retenue est positionné, on envoie au contrôleur (ligne 2748), grâce à la sous-routine NEC_OUTPUT étudiée ci-dessous.

10.4.2.3 Sous-routine d'envoi au contrôleur

La sous-routine NEC_OUTPUT commence ligne 2691:

```
2674
                          2675
                                   NEC_OUTPUT
                                          THIS ROUTINE SENDS A BYTE TO THE NEC CONTROLLER AFTER TESTING
                          2676
                                          FOR CORRECT DIRECTION AND CONTROLLER READY THIS ROUTINE WILL
                          2677
                          3678
                                          TIME OUT IF THE BYTE IS NOT ACCEPTED WITHIN A REASONABLE
                          2679
                                          AMOUNT OF TIME. SETTING THE DISKETTE STATUS ON COMPLETION.
                          2680
                                    INPUT
                          2681
                                                    BYTE TO BE OUTPUT
                                          (AH)
                          2682
                                   UILLALIUU
                                          CY = 0
                          2683
                                                    SUCCESS
                          2684
                                          CY = 1
                                                    FAILURE -- DISKETTE STATUS UPDATED
                                                    IF A FAILURE HAS OCCURED, THE RETURN IS MADE ONE LEVEL
                          2685
                                                    HIGHER THAN THE CALLER OF NEC_OUTPUT
                          2686
                          2687
                                                    THIS REMOVES THE REQUIREMENT OF TESTING AFTER EVERY
                          2688
                                                    CALL OF NEC_OUTPUT.
                                          (AL) DESTROYED
                          2689
                          2690
                          2691
                                 NEC_OUTPUT
                                                    PROC
                                                            NEAR
EE41 52
                          2692
                                          PUSH
                                                    \mathtt{DX}
                                                                              ; SAVE REGISTERS
EE42 51
                          2693
                                          PUSH
                                                    CX
                                                                              ; STATUS PORT
EE43 BAF403
                          2694
                                          MOV
                                                    DX,03F4H
EE46 33C9
                          2695
                                          XOR
                                                    CX.CX
                                                                              : COUNT FOR TIME OUT
EE48
                          2696
                                 J23:
EE48 EC
                          2697
                                          IN
                                                    AL.DX
                                                                                GET STATUS
EE49 A84D
                                          TEST
                                                                                TEST DIRECTION BIT
                          2698
                                                    AL,040H
EE4B 7400
                          2699
                                                    J25
                                                                              ; DIRECTION OK
EE4D E2F9
                          2700
                                          T.OOP
                                                    .123
EE4F
                          2701
                                 J24:
                                                                               TIME ERROR
                                                    DISKETTE_STATUS, TIME_OUT
EE4F 800E410080
                                          OR
                          2702
EE54 59
                          2703
                                          POP
                                                    CX
EE55 5A
                          2704
                                          POP
                                                    DX
                                                                              ; SET ERROR CODE AND RESTORE REGS
EE56 58
                          2705
                                                                              ; DISCARD THE RETURN ADDRESS
                                          POP
                                                    AX
EE57 F9
                          2706
                                          STC
                                                                              : INDICATE ERROR TO CALLER
EE58 C3
                          2707
                                          RET
EE59
                          2708
                                 J25:
EE59 33C9
                          2709
                                          XOR
                                                    CX,CX
                                                                              ; RESET THE COUNT
EE5B
                          2710
EE5B EC
                          2711
                                          ΤN
                                                    AL,DX
                                                                                GET THE STATUS
EE5C A880
                          2712
                                          TEST
                                                    AL,080H
                                                                                IS IT READY
EE5E 7504
                          2713
                                          JNZ
                                                    J27
                                                                               YES, GO OUTPUT
EE60 E2F9
                                                                                COUNT DOWN AND TRY AGAIN
                          2714
                                          LOOP
                                                    J26
EE62 EBEB
                          2715
                                                                                ERROR CONDITION
                                                    J24
                                          JMP
                          2716
EE64
                                 J27:
                                                                                OUTPUT
EE64 8AC4
                          2717
                                          MOV
                                                    AL,AH
                                                                                GET BYTE TO OUTPUT
EE66 B2F5
                          2718
                                          MOV
                                                    DL,OF5H
                                                                                DATA PORT (3F5)
EE68 EE
                          2719
                                          UILL
                                                    DX . AT.
                                                                                OUTPUT THE BYTE
EE69 59
                          2720
                                          POP
                                                                              : RECOVER REGISTERS
                                                    CX
EE6A 5A
                                          POP
                          2721
                                                    DX
EE6B C3
                          2722
                                          RET
                                                                              : CY = O FROM TEST INSTRUCTION
                                 NEC_OUTPUT
                                                    ENDE
                          2723
```

Commentaires.- 1°) On sauvegarde les registres utilisés DX et CX (lignes 2692, 2693, 2720 et 2721). Le registre DX prend la valeur du port de statut du contrôleur de disquette (ligne 2694), celle-ci apparaissant comme nombre magique et non comme constante. Le registre de compteur est initialisé à zéro (ligne 2695). On attend que le registre des données du contrôleur soit disponible (lignes 2696 à 2700). S'il ne l'est pas au bout d'un temps raisonnable, on place une erreur de « non réponse dans le temps imparti » dans la variable DISKETTE_STATUS (lignes 2701 et 2702), on positionne l'indicateur de retenue pour signaler une erreur (ligne 2706) et on retourne (ligne 2707) en ayant enlevé l'adresse de retour de la pile (ligne 2705).

 -2^{o}) On attend que le registre de données soit disponible (lignes 2708 à 2715) et on lui envoie l'octet contenu dans AH (lignes 2716 à 2719). Puis on termine la sous-routine (lignes 2720 à 2722).

10.4.3 Réinitialisation

10.4.3.1 La sous-routine principale

La fonction 0 de réinitialisation de INT 13h commence à la ligne 2414 du listing :

	2412	; RESET TH	E DISKETTE SYSTEM	
	2413			
ECB7	2414	DISK_RESET	PROC NEAR	
ECB7 BAF203	2415	VOM	DX,03F2H	; ADAPTER CONTROL PORT
ECBA FA	2416	CLI		; NO INTERRUPTS
ECBB A03F00	2417	VOM	AL, MOTOR_STATUS	; WHICH MOTOR IS ON
ECBE B104	2418	VOM	CL,4	; SHIFT COUNT
ECCO D204	2419	SAL	AL,CL	; MOVE MOTOR VALUE TO HIGH NYBBLE
ECC2 A820	2420	TEST	AL, 20H	; SELECT CORRESPONDING DRIVE
ECC4 750C	2421	JNZ	J5	; JUMP IF MOTOR ONE IS ON
ECC6 A840	2422	TEST	AL, 40H	
ECC8 7506	2423	JNZ	J4	; JUMP IF MOTOR TWO IS ON
ECCA A880	2424	TESTL	AL, 80H	
ECCC 7406	2425	JZ	J6	; JUMP IF MOTOR ZERO IS ON
ECCE FECO	2426	INC	AL	
ECD0	2427	J4:		
ECDO FECO	2428	INC	AL	
ECD2	2429	J5:		
ECD2 FECO	2430	INC	AL	
ECD4	2431	J6:		
ECD4 OCD8	2432	OR	AL,8	; TURN ON INTERRUPT ENABLE
ECD6 EE	2433	OUT	DX AT.	; RESET THE ADAPTER
ECD7 C6063E0000	2434	MOV		; SET RECAL REQUIRED ON ALL DRIVES
ECDC C606410000	2435	MOV	DISKETTE_STATUS,0	; SET OK STATUS FOR DISKETTE
ECE1 OCO4	2436	OR		; TURN OFF RESET
ECE3 EE	2437	OUT	DX,AL	; TURN OFF THE RESET
ECE4 FB	2438	STI	•	; REENABLE THE INTERRUPTS
ECE5 E82A02	2439	CALL	CHK_STAT_2	; DO SENSE INTERRUPT STATUS
ECES ECZAUZ	2439	CALL		; FOLLOWING RESET
ECE8 A04200	2440	MOV		; IGNORE ERROR RETURN AND DO OWN TEST
ECEB 3CCO	2441	CMP		; TEST FOR DRIVE READY TRANSITION
			•	•
ECED 7406	2443	JZ	J7	; EVERYTHING OK
ECEF 800E410020 ECF4 C3	2444	OR	DISKETTE_STATUS, BAD_NEC	; SEI ERRUR CUDE
ECF4 C3	2445	RET		
	2446	anun ann	ACTON CONNELVE MO VEG	
	2447	; SEND SPE	CIFY COMMAND TO NEC	
	2448			
ECF5	2449	J7:		; DRIVE_READY
ECF5 B403	2450	MOV	AH,O3H	; SPECIFY COMMAND
ECF7 E84701	2451	CALL	NEC_OUTPUT	; OUTPUT THE COMMAND
ECFA B80100	2452	MOV	•	; FIRST BYTE PARM IN BLOCK
ECFD E86C01	2453	CALL		; TO THE NEC CONTROLLER
ED00 BB0300	2454	MOV	•	; SECOND BYTE PARM IN BLOCK
ED03 E86601	2455	CALL	GET_PARM	; TO THE NEC CONTROLLER
ED06	2456	J8:		; RESET_RET
ED06 C3	2457	RET		; RETURN TO CALLER
	2458	DISK_RESET	ENDP	
	2459			

<u>Commentaires</u>.- 1^o) On place le port de contrôle du contrôleur de lecteur de disquette dans le registre DX (ligne 2415). Remarquez que celui-ci apparaît, une fois encore, comme un nombre magique. On ne permet pas les interruptions masquables (ligne 2416).

- $-2^o)$ On place le numéro de lecteur de disquette actif, sous forme codée, dans le registre AL (ligne 2417). La variable MOTOR_STATUS est définie dans la zone de communication du BIOS (ligne 140). On place ce code dans le demi-octet de poids fort de AL (lignes 2418 et 2419). La faute d'orthographe « NYBBLE » apparaît bien dans le code. Le numéro de lecteur est placé, sous forme non codée, dans le demi-octet de poids faible de AL (lignes 2420 à 2431).
- $\,$ $3^o)$ Le bit 7 de MOTOR. STATUS est positionné lorsqu'il s'agit d'une opération d'écriture (qui exige un délai). On le positionne (ligne 2432).
- $4^o)$ On réinitialise le contrôleur en envoyant l'octet adéquat au port de contrôle (ligne 2433).

- 5^o) On initialise les variables SEEK_STATUS et DISKETTE_STATUS de la zone de communication du BIOS (lignes 2434 et 2435).
- 6^o) On active le contrôleur (lignes 2436 et 2437). On permet à nouveau les interruptions masquables (ligne 2438).
- $\,$ $7^o)$ On fait appel à la sous-routine CHK_STAT_2 (définie ligne 2885 et étudiée ci-dessous) pour intercepter l'interruption reçue après un recalibrage (lignes 2439 et 2440), qui positionne l'indicateur CF à 1 en cas d'erreur. Si une erreur se produit lors de l'exécution de cette sous-routine, on spécifie sa nature dans la variable DISKETTE_STATUS et on retourne à l'appelant (lignes 2441 à 2445).
- -8^{o}) Si le lecteur est prêt, on envoie la commande de réinitialisation au contrôleur de disquette (lignes 2449 à 2451), on récupère les octets 0 et 1 de la phase de résultats (lignes 2452 à 2455), dont on ne fait rien, et on retourne à l'appelant (ligne 2457).

10.4.3.2 La sous-routine d'attente d'une interruption

Nous avons vu, lors de la description des commandes du contrôleur de disquette, que certaines commandes lèvent une interruption pour indiquer que celle-ci a été exécutée. La sous-routine WAIT_IN d'attente d'une telle interruption commence à la ligne 2916 du listing :

```
2904
                         2905
                                 ; WAIT_IN
                         2906
                                         THIS ROUTINE WAITS FOR AN INTERRUPT TO OCCUR. A TIME OUT
                                         ROUTINE TAKE PLACE DURING THE WAIT, SO THAT AN ERROR MAY BE
                         2907
                         2908
                                         RETURNED IF THE DRIVE IS NOT READY.
                         2909
                         2910
                                         NONE
                         2911
                                  OUTPUT
                                         CY = 0 SUCCESS
                         2912
                                         CY = 1 FAILURE
                         2913
                                                        -- DISKETTE STATUS IS SET ACCORDINGLY
                         2914
                                         (AX) DESTROYED
                         2915
EF33
                         2916
                                WAIT_IN
                                                 PROC
                                                         NEAR
EF33 FB
                         2917
                                         STI
                                                                            ; TURN ON INTERRUPT, JUST IN CASE
EF34 53
                         2918
                                         PUSH
                                                 ВX
EF35 51
                         2919
                                                                           ; SAVE REGISTERS
                                         PUSH
                                                 CX
                                                 BL,2
EF36 B302
                         2920
                                         MOV
                                                                           ; CLEAR THE COUNTERS
                                                                           ; FOR 2 SECOND WAIT
EF38 33C9
                         2921
                                         XOR
                                                 CX,CX
EF3A
                         2922
                                J36:
EF3A F6063E0080
                         2923
                                         TEST
                                                 SEEK STATUS.INT FLAG
                                                                            ; TEST FOR INTERRUPT OCCURING
EF3F 750C
                         2924
                                         JNZ
                                                 .137
                                                                            : COUNT DOWN WHILE WAITING
EF41 E2F7
                         2925
                                         LOOP
                                                 J36
EF43 FECB
                         2926
                                         DEC
                                                 BL
                                                                           ; SECOND LEVEL COUNTER
EF45 75F3
                         2927
                                         JNZ
EF47 800E410080
                                                 DISKETTE_STATUS, TIME_OUT ; NOTHING HAPPENED
                         2928
                                         OR
                                                                            ; ERROR RETURN
EF4C F9
                         2929
                                         STC
EF4D
                         2930
                                J37:
EF4D 9C
                         2931
                                         PUSHE
                                                                            : SAVE CURRENT CARRY
EF4E B0263E007F
                                         AND
                                                 SEEK_STATUS, NOT INT_FLAG
                                                                                    ; TURN OFF INTERRUPT FLAG
                         2932
                                                                           ; RECOVER CARRY
EF53 90
                         2933
                                         POPF
EF54 59
                         2934
                                                 CX
                                         POP
EF55 5B
                                                                            ; RECOVER REGISTERS
                         2935
                                         POP
EF56 C3
                         2936
                                         RET
                                                                             GOOD RETURN CODE COMES
                         2937
                                                                             FROM TEST INST
                                WAIT_INT
                                                 ENDP
                         2938
```

Commentaires.- 1°) On permet les interruptions masquables, si cela n'avait pas été fait (ligne 2917), on sauvegarde les contenus des registres BX et CX, puisqu'on va les utiliser (lignes 2918, 2919, 2934 et 2945). On initialise les registres BX et CX pour une attente d'au plus 2 secondes (ligne 2921) et on attend que l'interruption se manifeste durant ce temps (lignes 2922 à 2927).

 $-2^o)$ Si aucune interruption n'est survenue durant ce temps, on positionne l'indicateur CF (ligne 2929). Dans tous les cas on change le bit INT_FLAG de la variable SEEK_STATUS et on retourne à l'appelant (lignes 2931 à 2936).

10.4.3.3 La sous-routine de lecture des résultats d'une commande

La sous-routine de lecture des résultats après une commande effectuée au contrôleur de disquette RESULTS commence à la ligne 2972 du listing :

```
2960
                                ; RESULTS
                         2961
                                         THIS ROUTINE WILL READ ANYTHING THAT THE NEC CONTROLLER HAS
                         2962
                                         TO SAY FOLLOWING AN INTERRUPT.
                         2963
                         2964
                                  INPUT
                         2965
                         2966
                                  OUTPUT
                                         CY = 0 SUCCESSFUL TRANSFER
                         2967
                                         CY = 1 FAILURE -- TIME OUT IN WAITING FOR STATUS
                         2968
                                         NEC_STATUS AREA HAS STATUS BYTE LOADED INTO IT
                         2969
                         2970
                                         (AH) DESTROYED
                         2971
                                                 NEAR
EF69
                         2972
                                RESULTS PROC
EF69 FC
                         2973
                                         CLD
                                                                           ; POINTER TO DATA AREA
EF6A BF4200
                         2974
                                         MOV
                                                 DI,OFFSET NEC_STATUS
EF6D 51
                         2975
                                         PUSH
                                                                            : SAVE COUNTER
                                                 CX
EF6E 52
                                         PUSH
                         2976
                                                 DX
EF6F 53
                         2977
                                         PUSH
                                                 вх
EF70 B307
                         2978
                                         MOV
                                                                            ; MAX STATUS BYTES
                                                 BL,7
                         2979
                                ;---- WAIT FOR REQUEST FOR MASTER
                         2980
                         2981
EF72
                         2982
                                J38:
                                                                            ; INPUT_LOOP
EF72 33C9
                         2983
                                         XOR
                                                 CX,CX
                                                                            ; COUNTER
EF74 BAF403
                                                 DX,03F4H
                                                                            ; STATUS PORT
                         2984
                                         MOV
EF77
                         2985
                                J39:
                                                                             WAIT FOR MASTER
EF77 EC
                         2986
                                         IN
                                                 AL,DX
                                                                             GET STATUS
                                                                            ; MASTER READY
EF78 A880
                         2987
                                         TEST
                                                 AL., 080H
EF7A 750C
                         2988
                                         JNZ
                                                 J40A
                                                                              TEST DIR
EF7C E2F9
                         2989
                                         LOOF
                                                 J39
                                                                              WAIT_MASTER
EF7E 800E410080
                         2990
                                         OR
                                                 DISKETTE_STATUS, TIME_OUT
EF83
                         2991
                                J40:
                                                                            ; RESULTS_ERROR
EF83 F9
                         2992
                                         STC
                                                                            ; SET ERROR RETURN
EF84 5B
                         2993
                                         PNP
                                                 ВX
EF85 5A
                                         POP
                         2994
                                                 DX
EF86 59
                                         POP
                         2995
                                                 CX
EF87 C3
                         2996
                         2997
                         2998
                                        TEST THE DIRECTION BIT
                         2999
EF88
                         3000
                                J40A:
EF88 EC
                         3001
                                                 AL,DX
                                                                            ; GET STATUS REG AGAIN
                                         IN
EF89 A840
                                                                            ; TEST DIRECTION BIT
                         3002
                                         TEST
                                                 AL,040H
EF8B 7507
                                                                            ; OK TO READ STATUS
                         3003
                                         JNZ
EF8D
                         3004
                                J41:
                                                                            ; NEC_FAIL
EF8D 800E410020
                         3005
                                         ΠR
                                                 DISKETTE_STATUS, BAD_NEC
                                                                            ; RESULTS_ERROR
EF92 EBEF
                         3006
                                         JMP
                                                 J40
                         3007
                         3008
                                       READ IN THE STATUS
                         3009
EF94
                         3010
                                J42:
                                                                            ; INPUT_STAT
EF94 42
                         3011
                                         INC
                                                                            ; POINT AT DATA PORT
                                                                            ; GET THE DATA
EF95 EC
                         3012
                                         ΤN
                                                 AT.. DX
                                                                            ; STORE THE BYTE
EF96 8805
                         3013
                                         MOV
                                                 [DI],AL
EF98 47
                                                                             INCREMENT THE POINTER
                         3014
                                         INC
                                                 DΙ
EF99 B90A00
                                                 CX,10
                                                                            ; LOOP TO KILL TIME FOR NEC
                         3015
                                         MOV
EF9C E2FE
                         3016
                                J43:
                                         LOOP
                                                                            ; POINT AT STATUS PORT
EF9E 4A
                         3017
                                         DEC
                                                 DΧ
EF9F EC
                         3018
                                         TN
                                                 AL.DX
                                                                            ; GET STATUS
                                                 AL,010H
J44
                                                                             TEST FOR NEC STILL BUSY
EFAO A810
                         3019
                                         TEST
                                                                            ; RESULTS DONE
EFA2 7406
                         3020
                                         JZ
                                         DEC
                                                                            ; DECREMENT THE STATUS COUNTER
EFA4 FECB
                         3021
                                                 BL
EFA6 75CA
                         3022
                                         JNZ
                                                                             GO BACK FOR MORE
EFA8 EBE3
                         3023
                                         JMP
                                                 J41
                                                                            ; CHIP HAS FAILED
                         3024
                                ;---- RESULT OPERATION IS DONE
                         3025
                         3026
EFAA
                         3027
                                J44:
EFAA 5B
                         3028
                                         POP
                                                 вх
```

EFAB 5A EFAC 59 EFAD C3	0000	POP POP RET	DX		; RECOVER REGISTERS : GOOD RETURN CODE FROM TEST INST
	3032				
	3033	; NUM_TRANS			:
	3034	; THIS ROU	UTINE CALCULATES THE NUM	IBEF	R OF SECTORS THAT :
	3035	; WERE ACT	TUALLY TRANSFERRED TO/FF	MO	THE DISKETTE :
	3036	; INPUT			:
	3037	; (CH) = (CYLINDER OF OPERATION		:
	3038	; $(CL) = S$	START SECTOR OF OPERATION	N	:
	3039	; OUTPUT			:
	3040	$; \qquad (AL) = 1$	NUMBER ACTUALLY TRANSFER	REI	:
	3041	,	R REGISTERS MODIFIED		:
	3042	,			
EFAE	3043	NUM_TRANS			
EFAE A04500	3044				GET CYLINDER ENDED UP ON
EFB1 3AC5	3045	CMP	AL,CH	,	SAME AS WE STARTED
EFB3 A04700	3046		AL, NEC_STATUS+5		GET ENDING SECTOR
EFB6 7AOA	3047	JZ		;	IF ON SAME CYL, THEN NO ADJUST
EFB8 BB0800	3048	VOM	BX,8		
EFBB E8AEFE	3049	CALL	GET_PARM	,	GET EOT VALUE
EFBE 8AC4		VOM	AL,AH	,	INTO AL
EFCO FECO	3051	INC	AL	;	USE EOT+1 FOR CALCULATION
EFC2	3052	J45:			
EFC2 2AC1	3053	SUB	AL,CL	;	SUBSTRACT START FROM END
EFC4 C3	3054	RET			
	3055	NUM_TRANS	ENDP		
	3056	RESULTS ENDP			

<u>Commentaires.</u>- 1^o) On positionne le drapeau de direction à zéro (ligne 2973) et on fait pointer le registre DI sur la zone de communication du BIOS concernant le lecteur de disquette (ligne 2974). On sauvegarde les registres (lignes 2975 à 2977 et 3028 à 3030; bien entendu « SAVE COUNTER » est une bévue). On place le nombre maximum d'octets de statut dans BL.

- -2^{o}) On attend de pouvoir lire les résultats de la commande. Pour cela, on initialise le compteur à zéro (ligne 2983), DX avec le port du registre de statut du contrôleur de lecteur de disquette (ligne 2984), on lit l'octet de statut (ligne 2986), on teste si le registre des données est prêt (ligne 2987) et on recommence jusqu'à ce qu'il le soit (ligne 2989) ou que le temps imparti soit dépassé. Dans ce dernier cas, on l'indique dans la variable adéquate (ligne 2990), on positionne l'indicateur CF (ligne 2992) et on retourne à l'appelant (lignes 2993 à 2996).
- -3^{o}) Lorsque le registre des données est disponible (ligne 2988), on teste le bit de direction. Pour cela on lit à nouveau le registre de données (ligne 3001), on teste si le bit de direction est présent (ligne 3002). Si ce n'est pas le cas, on l'indique dans la variable adéquate (ligne 3005), on positionne l'indicateur CF et on retourne à l'appelant (ligne 3006).
- $-4^o)$ Si le bit de direction est positionné (ligne 3003), on lit le premier octet de résultat. Pour cela, on fait pointer DX sur le port du registre des données du contrôleur de lecteur de disquette (ligne 3011) et on lit le premier octet des résultats de la commande (ligne 3012), que l'on place dans la zone de communication du BIOS à l'endroit adéquat (ligne 3013).
- 5°) On incrémente le pointeur (ligne 3014) de façon à se trouver à l'emplacement du deuxième octet de la zone de communication, on effectue une boucle pour laisser le temps au contrôleur de présenter le deuxième octet (lignes 3015 et 3016), on fait pointer DX sur le port de statut du contrôleur de disquette (ligne 3017) et on lit le statut (ligne 3018). Si tous les octets de résultat ont été lus (lignes 3019 et 3020), on restaure les valeurs des registres et on retourne à l'appelant (lignes 3027 à 3031).
- -6^{o}) Si tous les octets de résultat n'ont pas été lus, on décrémente le compteur du nombre maximum d'octets de résultats restant à lire (ligne 3021) et on recommence pour lire le suivant (ligne 3022). Si on en a lu le nombre maximum mais qu'il en reste encore à lire, il y a un problème avec le contrôleur que l'on indique (ligne 3023).

10.4.3.4 La sous-routine de vérification

La sous-routine CHK_STAT_2 commence à la ligne 2885 du listing :

```
2872
                         2873
                                 ; CHK_STAT_2
                                         THIS ROUTINE HANDLES THE INTERRUPT RECEIVED AFTER A
                         2874
                         2875
                                         RECALIBRATE, SEEK, OR RESET TO THE ADAPTER.
                         2876
                                         THE INTERRUPT IS WAITED FOR, THE INTERRUPT STATUS SENSED,
                         2877
                                         AND THE RESULT RETURNED TO CALLER.
                         2878
                                   INPUT
                         2879
                                         NONE
                         2880
                                  OUTPUT
                                         CY = 0 SUCCESS
                         2881
                         2882
                                         CY = 1 FAILURE
                                                           - ERROR IS IN DISKETTE_STATUS
                         2883
                                         (AX) DESTROYED
                         2884
EF12
                         2885
                                 CHK_STAT_2
                                                  PROC
                                                          NEAR.
EF12 E81E00
                         2886
                                         CALL
                                                  WAIT_IN
                                                                             : WAIT FOR THE INTERRUPT
EF15 7214
                                                                            : IF ERROR, RETURN IT
                         2887
                                         JC
                                                  J34
                                         MOV
                                                                            ; SENSE INTERRUPT STATUS COMMAND
EF17 B408
                         2888
                                                  AH.08H
                                                  NEC_OUTPUT
EF19 E825FF
                         2889
                                         CALL
EF1C E84A00
                         2890
                                         CALL
                                                  RESULTS
                                                                            ; READ IN THE RESULTS
EF1F 7204
                         2891
                                         JC
                                                                              CHK2_RETURN
                                                  J34
                                                  AL, NEC_STATUS
EF21 A04200
                         2892
                                         MOV
                                                                              GET THE FIRST STATUS BYTE
EF24 2460
                         2893
                                         AND
                                                  AL,060H
                                                                              ISOLATE THE BITS
                                                                             ; TEST FOR CORRECT VALUE
EF26 3C60
                         2894
                                         CMP
                                                  AL,060H
EF28 7402
                         2895
                                         JZ
                                                  J35
                                                                              IF ERROR, GO MARK IT
EF2A F8
                         2896
                                         CLC
                                                                             ; GOOD RETURN
EF2B
                         2897
                                 J34:
EF2B C3
                         2898
                                         RET
                                                                             : RETURN TO CALLER
EF2C
                         2899
                                 J35:
EF2C 800E410040
                                         OR.
                         2900
                                                  DISKETTE STATUS, BAD SEEK
                                         STC
                                                                             ; ERROR RETURN CODE
EF31 F9
                         2901
EF32 C3
                         2902
                                         RET
                                 CHK_STAT_2
                                                  ENDP
                         2903
```

<u>Commentaires.</u>- 1^{o}) On attend une interruption pendant au plus 2 secondes (ligne 2886). Si celleci ne survient pas, on retourne à l'appelant (lignes 2887, 2897 et 2898) en le lui l'indiquant en positionnant l'indicateur CF.

- 2°) Lorsque l'interruption survient, on envoie la commande de statut d'interruption au contrôleur de lecteur de disquette (lignes 2888 et 2889). On essaie de lire les résultats (ligne 2890). Si on n'y parvient pas, on retourne à l'appelant en le spécifiant en positionnant l'indicateur CF (ligne 2891).
- 3°) Sinon on regarde sur le premier octet de résultat s'il y a eu une erreur (lignes 2892 à 2894). Si c'est le cas, on l'indique dans la variable DISKETTE_STATUS (lignes 2895 et 2896), on positionne l'indicateur CF (ligne 2901) et on retourne à l'appelant (ligne 2902). Sinon on efface l'indicateur CF (ligne 2896) et on retourne à l'appelant (ligne 2898).

10.4.4 Statut

La fonction 1 de demande de statut de INT 13h commence à la ligne 2462 du listing :

```
2460
                                      -- DISKETTE STATUS ROUTINE
                          2461
ED07
                          2462
                                 DISK_STATUS
                                                   PROC
                                                           NEAR
ED07 A04100
                          2463
                                          MOV
                                                   AL, DISKETTE_STATUS
EDOA C3
                          2464
                                          RET
                          2465
                                 DISK_STATUS
                                                   ENDP
                          2466
```

Elle consiste tout simplement à placer le contenu de la variable DISKETTE_STATUS de la zone de communication du BIOS dans le registre AL.

10.4.5 Lecture

10.4.5.1 La sous-routine principale

La fonction 2 de lecture de secteurs de INT 13h commence à la ligne 2469 du listing :

	2467 2468	; DISKETTE	E READ	
EDOB	2469	DISK READ	PROC NEAR	
EDOB BO46	2470	MOV	AL,046H	; READ COMMAND FOR DMA
EDOD	2471	J9:		; DISK_READ_CONT
EDOD E88801	2472	CALL	DMA_SETUP	; SET UP THE DMA
ED10 B4E6	2473	MOV	AH,OE6H	; SET UP RD COMMAND FOR NEC CONTROLLER
ED12 EB36	2474	JMP	SHORT RW_OPN	; GO TO THE OPERATION
	2475	DISK_READ	ENDP	
	2476			

<u>Commentaires</u>.- 1^o) On envoie la commande de DMA adéquate (lignes 2470 à 2472) en faisant appel à la sous-routine DMA_SETUP, définie ligne 2821 et étudiée ci-après.

- 2^o) On envoie la commande de lecture (lignes 2473 et 2474) en faisant appel à la sous-routine RW_OPN, définie ligne 2518 et étudiée ci-après.

10.4.5.2 La sous-routine de préparation du DMA

La sous-routine DMA_SETUP commence à la ligne $2821~\mathrm{du}$ listing :

	2812	;		
	2813	; DMA_SETUP		:
	2814	; THIS R	OUTINE SETS UP	THE DMA FOR READ/WRITE/VERIFY OPERATIONS. :
	2815	; INPUT		:
	2816	; (AL) =	MODE BYTE FOR	THE DMA :
	2817	; (ES:BX) - ADDRESS TO	READ/WRITE THE DATA :
	2818	; OUTPUT		:
	2819	; (AX) D	ESTROYED	:
	2820			
EEC8	2821	DMA_SETUP	PROC NEAR	
EEC8 51	2822	PUSH	CX	; SAVE THE REGISTER
EEC9 FA	2023	ULI		; NO MORE INTERRUPTS
EECA E60C	2824	OUT	DMA+12,AL	; SET THE FIRST/LAST F/F
EECC 50		PUSH		,
EECD 58	2826			
EECE E608	2827	POP OUT	DMA+11,AL	; OUTPUT THE MODE BYTE
EEDO 8CCO	2828	MOV	AX,ES	; GET THE ES VALUE
EED2 8104	2829	MOV	CL,4	; SHIFT COUNT
EED4 03C3	2830	ROL	AX,CL	; ROTATE LEFT
EED6 8AE8	2831	MOV ROL MOV	CH.AL	; GET HIGHEST NYBLE OF ES TO CH
EED8 24F0	2832	AND	AL.OFOH	; ZERO THE LOW NYBBLE FROM SEGMENT
EEDA 03C3	2833	ADD	AX,BX	; TEST FOR CARRY FROM ADDITION
EEDC 7302	2834	JNC	J33	,
	2835	INC	CH	; CARRY MEANS HIGH 4 BITS MUST BE INC
EEEO	2836	J33:		·
EEEO 50	2837	пісн	AX	; SAVE START ADDRESS
EEE1 E604	2838	PUSH OUT	DMA+4,AL	; OUTPUT LOW ADDRESS
EEE3 8AC4	2839	MOV		,
EEE5 E604	2840	OUT MOV AND	DMA+4,AL	; OUTPUT HIGH ADDRESS
EEE7 8AC5	2841	MOV	AL. CH	; GET HIGH 4 BITS
EEE9 240F	2842	AND	AL.OFH	,
EEEB E681		OUT		; OUTPUT THE HIGH 4 BITS TO
	2844		,	; THE PAGE REGISTER
	2845			,
		; DETERMI	NE COUNT	
	2847	•		
EEED 8AE6	2848	MOV	AH, DH	; NUMBER OF SECTORS
EEEF 2ACO	2849	SUB	AL,AL	; TIMES 256 INTO AX
EEF1 D1E6	2850	SHR	AX,1	; SECTORS * 128 INTO AX
EEF3 50	2851			• • • • • • • •
EEF4 880600	2002	PIU V	BX,6	; GET THE BYTES/SECTOR PARM
EEF7 E872FF	2853	CALL	GET PARM	,
EEFA 8ACC	2854		CL, AH	; USE AS SHIFT COUNT (0=128, 1=256 ETC)
			- ,	, (, 1 200 210)

EEFC	58	2855	POP	AX		
EEFD	D3E0	2856	SHL	AX,CL	;	MULTIPLY BY CORRECT AMOUNT
EEFF	48	2857	DEC	AX	;	-1 FOR DMA VALUE
EF00	50	2858	PUSH	AX	;	SAVE COUNT VALUE
EF01	E605	2859	OUT	DMA+5,AL	;	LOW BYTE OF COUNT
EF03	8AC4	2860	VOM	AL,AH		
EF05	E605	2861	OUT	DMA+5,AL	;	HIGH BYTE OF COUNT
EF07	FB	2862	STI		;	INTERRUPTS BACK ON
EF08	59	2863	POP	CX	;	RECOVER COUNT VALUE
EF09	58	2864	POP	AX	;	RECOVER ADDRESS VALUE
EFOA	03C1	2865	ADD	AX,CX	;	ADD, TEST FOR 64K OVERFLOW
EFOC	59	2866	POP	CX	;	RECOVER REGISTER
EFOD	B002	2867	MOV	AL,2	;	MODE FOR 8237
EFOF	E60A	2868	OUT	DMA+10,AL	;	INITIALIZE THE DISKETTE CHANNEL
EF11	C3	2869	RET		;	RETURN TO CALLER,
		2870			;	CFL SET BY ABOVE IF ERROR
		2971 DMA CE	TIID	ENDD		

<u>Commentaires.</u>- 1°) On sauvegarde le registre CX (ligne 2822) et on ne permet pas les interruptions masquables (ligne 2823). On envoie l'octet de mode pour le DMA (ligne 2824), on attend un peu (lignes 2825 et 2826) et on l'envoie à nouveau (ligne 2827).

- 2°) Puisque l'adresse de début du DMA est constituée d'un déclage et d'une page de registre, on calcule ceux-ci. Pour cela on place l'adresse de segment de lecture-écriture dans le registre AX (ligne 2828), on initialise le compteur de décalage à 4 (ligne 2829) et on effectue une rotation à gauche (ligne 2830). On sauvegarde le demi-octet de poids fort de ES dans le registre CH (ligne 2831) et on initialise à zéro le demi-octet de poids faible (ligne 2832). On lui ajoute le contenu de BX pour obtenir l'adresse (ligne 2833). S'il y a une retenue, on en tient compte dans CH (lignes 2834 et 2835). On sauvegarde l'adresse de début ainsi déterminée (ligne 2837).
- 3°) On envoie l'octet de poids faible du décalage de l'adresse de début au contrôleur DMA (ligne 2838) puis son octet de poids fort (lignes 2839 et 2840) et enfin le demi-octet au registre de page (lignes 2841 à 2842).
- -4^{o}) On détermine le nombre d'octets à transférer. Pour cela, on place le nombre de secteurs (passé en paramètre via le registre DH) dans AX et on le muliplie par 128 (lignes 2848 à 2850). On en sauvegarde la valeur (ligne 2851). On récupère le nombre d'octets par secteur dans le registre AH (lignes 2852 à 2853) et on le place dans CL (ligne 2854). On récupère le nombre obtenu dans AX (ligne 2855), que l'on multiplie par ce que l'on vient d'obtenir (ligne 2856) pour avoir le nombre d'octets. On décrémente le résultat de 1 pour le DMA (ligne 2857) puisqu'on commence à zéro. On sauvegarde (ligne 2858).
- 5°) On envoie l'octet de poids faible au contrôleur de DMA (ligne 2859) puis l'octet de poids fort (lignes 2860 et 2861). On permet à nouveau les interruptions masquables (ligne 2862), on récupère le nombre d'octets (ligne 2863), la valeur de l'adresse de début (ligne 2864), on les ajoute (ligne 2865), on récupère la valeur de CX (ligne 2866) et on envoie le mode au contrôleur de DMA (lignes 2867 et 2868).

10.4.5.3 La sous-routine de positionnement sur une piste

La sous-routine SEEK de positionnement sur une piste donnée d'un lecteur de disquette donnée commence à la ligne 2764 du listing :

```
2751
                         2752
                                : SEEK
                         2753
                                         THIS ROUTINE WILL MOVE THE HEAD ON THE NAMED DRIVE TO THHE
                         2754
                                         NAMED TRACK. IF THE DRIVE HAS NOT BEEN ACCESSED SINCE THE
                         2755
                                         DRIVE RESET COMMAND WAS ISSUED, THE DRIVE WILL BE RECALUBRATED.
                         2756
                                  INPUT
                                         (DL) = DRIVE TO SEEK ON
                         2757
                                         (CH) = TRACK TO SEEK TO
                         2758
                         2759
                                  OUTPUT
                                         CY = 0 SUCCESS
                         2760
                         2761
                                         CY = 1 FAILURE -- DISKETTE_STATUS SET ACCORDINGLY
                         2762
                                         (AX) DESTROYED
                         2763
EE7D
                         2764
                                SEEK
                                        PROC
                                                 NEAR.
EE7D B001
                         2765
                                         MOV
                                                                         ; ESTABLISH MASK FOR RECAL TEST
                                                 AL.1
EE7F 51
                                                                         ; SAVE INPUT VALUES
                         2766
                                         PUSH
                                                 CX
                                                                         ; GET DRIVE VALUE INTO CL
EE80 8ACA
                                                 CL,DL
                         2767
                                         MOV
EE82 D2C0
                         2768
                                         ROL
                                                 AL,CL
                                                                           SHIFT IT BY THE DRIVE VALUE
                                                                         ; RECOVER TRACK VALUE
EE84 59
                         2769
                                         POP
                                                 CX
EE85 84063E00
                                         TEST
                                                 AL, SEEK_STATUS
                                                                         ; TEST FOR RECAL REQUIRED
                         2770
                                                                         ; NO_RECAL
EE89 7513
                         2771
                                         JNZ
                                                 J28
EE8B 08063E00
                         2772
                                         OR
                                                 SEEK_STATUS, AL
                                                                           TURN ON THE NO RECAL BIT IN FLAG
EE8F B407
                         2773
                                         MOV
                                                 AH,07H
                                                                         ; RECALIBRATE COMMAND
EE91 EBADFF
                         2774
                                         CALL
                                                 NEC_OUTPUT
EE94 8AE2
                         2775
                                         MOV
                                                 AH,DL
                                                                         ; OUTPUT THE DRIVE NUMBER
                                                 NEC OUTPUT
EE96 E8A8FF
                         2776
                                         CALL
                                                                         ; GET THE INTERRUPT AND SENSE INT STATUS
EE99 E87600
                                         CALL
                                                 CHK_STAT_2
                         2777
EE9C 7229
                         2778
                         2779
                         2780
                                       DRIVE IS IN SYNCH WITH CONTROLLER, SEEK TO TRACK
                         2781
EE9E
                         2782
                                .128:
EE9E B40F
                                         MOV
                                                                         : SEEK COMMAND TO NEC
                         2783
                                                 AH, OFH
EEAO E89EFF
                         2784
                                         CALL
                                                 NEC_OUTPUT
EEA3 8AE2
                         2785
                                                                         ; DRIVE NUMBER
EEA5 E899FF
                         2786
                                         CALL
                                                 NEC_OUTPUT
EEA8 8AE5
                         2787
                                         MOV
                                                 AH, CH
                                                                         : TRACK NUMBER
                                                 NEC_OUTPUT
EEAA E894FF
                         2788
                                         CALL
                                                                         ; GET ENDING INTERRUPT AND
EEAD E86200
                                                 XHK STAT 2
                         2789
                                         CALL
                         2790
                                                                         : SENSE STATUS
                         2791
                         2792
                                ;---- WAIT FOR HEAD SETTLE
                         2793
                                                                         ; SAVE STATUS FLAGS
EEBO 9C
                         2794
                                         PHSHE
EEB1 BB1200
                         2795
                                                 BX.16
                                                                         : GET HEAD SETTLE PARAMETER
                                         MOV
EEB4 E8B5FF
                         2796
                                         CALL
                                                 GET_PARM
                                                                         ; SAVE REGISTER
                         2797
                                         PUSH
EEB8
                         2798
                                J29:
EEB8 892602
                         2799
                                         MOV
                                                 CX,550
                                                                         ; 1 MS LOOP
EEBB OAE4
                         2800
                                         ΩR.
                                                 AH.AH
                                                                         ; TEST FOR TIME EXPIRED
EEBD 7406
                         2801
                                         .17.
                                                 .131
EEBF
                         2802
                                J30:
EEBF E2FE
                         2803
                                         LOOP
                                                 J30
                                                                         ; DELAY FOR 1 MS
                                                                         ; DECREMENT THE COUNT
EEC1 FECC
                         2804
EEC3 EBF3
                         2805
                                         JMP
                                                 J29
                                                                         : DO IT SOME MORE
EEC5
                         2806
                                J31:
                                         POP
                                                                         ; RECOVER STATE
EEC5 59
                         2807
                                                 CX
EEC6 90
                         2808
                                         POPF
EEC7
                         2809
                                J32:
                                                                         ; SEEK_ERRORE
EEC7 C3
                         2810
                                         RET
                                                                         ; RETURN TO CALLER
                                SEEK
                                         ENDP
```

<u>Commentaires</u>.- 1°) On place un masque dans le registre AL (ligne 2765), on sauvegarde les paramètres entrés (ligne 2766), on place la valeur du disque dans CL (ligne 2767), que l'on place dans AL avec le codage adéquat (ligne 2768) et on restaure la valeur de CX (ligne 2769).

- -2^{o}) Si un recalibrage est nécessaire (lignes 2770 et 2771), on spécifie que le recalibrage ne sera plus nécessaire (ligne 2772), on envoie la commande de recalibrage au contrôleur de lecteur de disquette (lignes 2773 à 2776) et on attend l'interruption indiquant que cela a bien été effectué (ligne 2777). Si une erreur est survenue lors du recalibrage (ligne 2778), on retourne à l'appelant (l'erreur étant spécifiée par la valeur de l'indicateur CF).
- -3^{o}) On envoie la commande de positionnement sur la piste désirée du disque désiré au contrôleur de lecteur de disquette (lignes 2783 à 2788) et on attend l'interruption indiquant que cela a bien été effectué (ligne 2789).
- -4^{o}) On laisse le temps à la tête de lecture de se positionner. Pour cela, on sauvegarde le registre des indicateurs (ligne 2794), on récupère le paramètre de positionnement (lignes 2795 et 2796), on sauvegarde les paramètres entrés (ligne 2797), on attend pendant 1 ms (lignes 2798 à 2805), on restaure les valeurs du registre CX et du registre des indicateurs (lignes 2807 et 2808) et on retourne à l'appelant (ligne 2810).

10.4.5.4 La sous-routine de lecture-écriture

La sous-routine RW_OPN commence à la ligne 2518 du listing :

	2513	312 ; ALLOW WRITE ROUTINE TO FALL INTO RW_OPN 313					
	2514 ; 2515 ; RW_O 2516 ;	PN	OUTINE PERFORMS THE READ/WRITE		:		
ED4A	2518 RW_OPN		NEAR				
ED4A 7308	2519	JNC	J11		TEST FOR DMA ERROR		
ED4C C606410009	2520	MOV	DISKETTE_STATUS, DMA_BOUNDARY				
ED51 B000		MOV	AL,O		NO SECTORS TRANSFERRED		
ED53 C3	2522	RET			RETURN TO MAIN ROUTINE		
ED54	2523 J11:	Dirair	477		DO_RW_OPN		
ED54 50		PUSH	AX	;	SAVE THE COMMAND		
	2525	m 011	THE VOTES AND STREET THE DETAIL				
		TURN UN	THE MOTOR AND SELECT THE DRIV	E			
PDEE E4	2527 2528	DUGU	CV.		CAME THE T/G DADMG		
ED55 51 ED56 8AC4		PUSH MOV	CX CL,DL		SAVE THE T/S PARMS GET DRIVE NUMBER AS SHIFT COUNT		
ED58 B001	2529 2530 2531	MOV	AT 1		MASK FOR DETERMINING MOTOR BIT		
ED58 B001 ED5A 02E0	2531	CAT	•		SHIFT THE MASK BIT		
ED5A 02E0 ED5C FA	2532	CLI	AL,CL	,	NO INTERRUPTS WHILE DETERMINING		
EDSC FA	2533				MOTOR STATUS		
ED5D C6064000FF	2533	мол	MOTOR_COUNT,OFFH AL,MOTOR_STATUS J14 MOTOR_STATUS,OFOH MOTOR_STATUS,AL		SET LARGE COUNT DURING OPERATION		
ED62 84063F00	2534	TEST	AI MOTOR STATUS		TEST THAT MOTOR FOR OPERATION		
ED66 7531	2536	IN7	11A		IF RUNNING, SKIP THE WAIT		
ED68 80263F00F0	2537	AND	MOTOR STATUS OFOH		TURN OFF ALL MOTOR BITS		
ED6D 08063F00	2538	UB	MOTOR STATUS AL		TURN ON THE CURRENT MOTOR		
ED71 FB	2539	STI	HOTOIL_BINIOD, NE		INTERRUPTS BACK ON		
ED72 B010	2539 2540		AL,10H		MASK BIT		
ED74 D2E0	2541	SAT.	AI. CI.		DEVELOP BIT MASK FOR MOTOR ENABLE		
ED76 0AC2	2542	OR.	•		GET DRIVE SELECT BITS IN		
ED78 OCOC	2543	OR	AL,OCH		NO RESET, ENABLE DMA/INT		
ED7A 52	2544	PUSH	DX		SAVE REG		
ED7B BAF203	2545	MOV	DX,03F2H		CONTROL PORT ADDRESS		
ED7E EE	2546	OR PUSH MOV OUT	DX,AL	,			
ED7F 5A	2547	POP	DX	:	RECOVER REGISTERS		
	2548			,			
	2549 ;	WAIT FOR	R MOTOR IF WRITE OPERATION				
	2550						
ED80 F6063F0080	2551	TEST	MOTOR_STATUS,80H	;	IS THIS A WRITE		
ED85 7412	2552	JZ	J14	;	NO, CONTINUE WITHOUT WAIT		
ED87 BB1400	2553	MOV	BX,20	;	GET THE MOTOR WAIT		
ED8A E8DF00	2554	CALL		;	PARAMETER		
ED8D OAE4	2555	OR	AL,AH	;	TEST FOR NO WAIT		
ED8F	2556 J12:			;	TEST_WAIT_TIME		
ED8F 7408	2557	JZ	J14	;	EXIT WITH TIME EXPIRED		
ED91 2BC9	2558	SUB	CX,CX	;	SET UP 1/8 SECOND LOOP TIME		

ED93	2559	J13:	710	WATER TOO THE DECUTED THE
ED93 E2FE	2560	LOOP	J13	; WAIT FOR THE REQUIRED TIME
ED95 FECC ED97 EBF6	2561	DEC	AH	; DECREMENT TIME VALUE : ARE WE DONE YET
ED97 EBF6	2562 2563	JMP J14:	J12	; ARE WE DONE TET ; MOTOR RUNNING
ED99 FB	2564	STI		; INTERRUPTS BACK ON FOR BYPASS WAIT
ED9A 59	2565	POP	CX	, INTERROFTS DACK ON FOR BIFASS WATT
LDJR 00	2566	101	OA .	
		; DO THE S	EEK OPERATION	
	2568	,		
ED9B E8DF00	2569	CALL	SEEK	; MOVE TO CORRECT TRACK
ED9E 58	2570	POP	AX	; RECOVER COMMAND
ED9F 8AFC	2571	VOM	BH, AH	; SAVE COMMAND IN BH
EDA1 B600	2572	MOV	DH,O	; SET NO SECTORS READ IN CASE OF ERROR
EDA3 724B	2573	JC		; IF ERROR, THEN EXIT AFTER MOTOR OFF
EDA5 BEFOED90	2574	MOV	SI,OFFSET J17	; DUMMY RETURN ON STACK FOR NEC_OUTPUT
EDA9 56	2575	PUSH	SI	; SO THAT IT WILL RETURN TO MOTOR OFF
	2576 2577			; LOCATION
		CEND OUT	THE PARAMETERS TO THE CONTROL	IIED
	2579	, SEND UUI	THE PARAMETERS TO THE CONTROL	LLEIT
EDAA E89400	2580	CALL	NEC_OUTPUT	; OUTPUT THE OPERATION COMMAND
EDAD 8A6601	2581	MOV	AH, [BP+1]	; GET THE CURRENT HEAD NUMBER
EDBO DOE4	2582	SAL	AH,1	; MOVE IT TO BIT 2
EDB2 D0E4	2583	SAL	AH,1	,
EDB4 80E404	2584	AND	AH,4	; ISOLATE THAT BIT
EDB7 OAE2	2585	OR	AH,DL	; OR IN THE DRIVE NUMBER
EDB9 E88500	2586	CALL	NEC_OUTPUT	
	2587			
		; TEST FOR	FORMAT COMMAND	
	2589			
EDBC 80FF40	2590	CMP	ВН,040Н	; IS THIS A FORMAT OPERATION
EDBF 7503 EDC1 E962FF	2591	JNE JMP		; NO. CONTINUE WITH R/W/V ; IF SO, HANDLE SPECIAL
EDC1 E962FF EDC4	2592 2593	JMP J15:	J10	; IF SU, HANDLE SPECIAL
EDC4 8AE5	2593 2594	MOV	AH, CH	; CYLINDER NUMBER
EDC6 E87800	2595	CALL	NEC_OUTPUT	, CILINDER NORDER
EDC9 8A6601	2596	MOV	AH, [BP+1]	; HEAD NUMBER FROM STACK
EDCC E87200	2597	CALL	NEC_OUTPUT	,
EDCF 8AE1	2598	MOV	AH,CL	; SECTOR NUMBER
EDD1 E86D00	2599	CALL	NEC_OUTPUT	
EDD4 B80700	2600	VOM	BX,7	; BYTES/SECTOR PARM FROM BLOCK
EDD7 E89200	2601	CALL	GET_PARM	; TO THE NEC
EDDA B80900	2602	VOM	BX,9	; EOT PARM FROM BLOCK
EDDD E88C00	2603	CALL	GET_PARM	; TO THE NEC
EDEO B80B00	2604	MOV	BX,11	; GAP LENGTH PARM FROM BLOCK
EDE3 E88600	2605	CALL	GET_PARM	; TO THE NEC
EDE6 B80D00 EDE9	2606 2607	MOV J16:	BX,13	; DTL PARM FROM BLOCK ; RW_OPN_FINISH
EDE9 E88000	2608	CALL	GET_PARM	; TO THE NEC
EDEC 5E	2609	POP	SI	; CAN NOW DISCARD THAT DUMMY
LDEO OL	2610	101	51	; RETURN ADDRESS
	2611			,
	2612	; LET THE	OPERATION HAPPEN	
	2613			
EDED E84301	2614	CALL	WAIT_IN	; WAIT FOR THE INTERRUPT
EDF0	2615	J17:		; MOTOR_OFF
EDF0 7245	2616	JC	J21	; LOOK FOR ERROR
EDF2 E87401	2617	CALL	RESULTS	; GET THE NEC STATUS
EDF5 723F	2618	JC	J20	; LOOK FOR ERROR
	2619	annan mi		TROLL TR
		; CHECK TH	E RESULTS RETURNED BY THE CON	TRULLER
EDF7 FC	2621 2622	CLD		; SET THE CORRECT DIRECTION
EDF8 BE4200	2623	MOV		; POINT TO STATUS FIELD
EDFB AC	2624	LODS	_	: GET STO
EDFC 24C0	2625	AND	· = · · · · · · · · · · · · · · · · · ·	; TEST FOR NORMAL TERMINATION
EDFE 743B	2626	JZ		; OPN_OK
EE00 3C40	2627	CMP		; TEST FOR ABNORMAL TERMINATION
EE02 7529	2628	JNZ		; NOT ABNORMAL, BAD NEC
	2629			
	2630	; ABNORMAL	TERMINATION, FIND OUT WHY	
	2631			
EE04 AC	2632	LODS	NEC_STATUS	; GET ST1

EE05 D0E0	2633		SAL	AL,1	;	TEST FOR EOT FOUND
EE07 B404	2634		VOM	AH, RECORD_NOT_FND		
EE09 7224	2635		JC	J19	;	RW_FAIL
EEOB DOEO	2636		SAL	AL,1		
EEOD DOEO	2637		SAL	AL,1	;	TEST FOR CRC ERROR
EEOF B410	2638		MOV	AH, BAD_CRC		
EE11 721C	2639		JC	J19	;	RW_FAIL
EE13 DDE0	2640		SAL	AL,1	;	TEST FOR DAM OVERRUN
EE15 B40B	2641		MOV	AH; BAD_DMA		
EE17 7216	2642		JC	J19	;	RW_FAIL
EE19 DOE0	2643		SAL	AL,1	,	··· -
EE1B DOEO	2644		SAL	AL,1	:	TEST FOR RECORD NOT FOUND
EE1D 8404	2645		MOV		,	
EE1F 720E	2646		JC	J19	:	RW_FAIL
EE21 DOE0	2647		SAL	AL,1	,	
EE23 B403	2648		MOV			TEST FOR WRITE_PROTECT
EE25 7208	2649		JC	J19		RW_FAIL
EE27 D0E0	2650					TEST MISSING ADDRESS MARK
EE29 B402	2651		SAL MOV	AH,BAD_ADDR_MARK	,	THE THEORY ADDITION THAT
EE2B 7202	2652		JC	J19		RW_FAIL
DDZD 1202	2653		50	010	,	10W_1 M1D
			NEC MUS	T HAVE FAILED		
	2655	,	NEO HOD	I IIIVU I KIUUD		
EE2D	2656	J18:				RW-NEC-FAIL
EE2D B420	2657	010.	MOV	AH,BAD_NEC	,	III NEO INIE
EE2F	2658	J19:	110 •	MII, DND_NEO		RW-NEC
EE2F 08264100	2659	010.	OR	DISKETTE_STATUS,AH	,	III NEO
EE33 E87801	2660		CALL	NUM_TRANS		HOW MANY WERE REALLY TRANSFERRED
EE36	2661	J20:	CALL	NON_IRANS		RW_ERR
EE36 C3	2662	320.	RET			RETURN TO CALLER
EE37	2663	J21:	1615-1			RW_ERR_RES
EE37 E82F01	2664	321.	CALL	RESULTS		FLUSH THE RESULTS BUFFER
EE3A C3	2665		RET	RESUL15	;	FLUSH THE RESULTS BUFFER
EESA CS	2666		RE I			
	2667			ON THE GUIGGEGGER		
	2668	;	UPERAII	ON WAS SUCCESSFUL		
FEOD		700				ODM OK
EE3B	2669	J22:	CATT	NUM TRANC		OPN_OK
EE3B E87001	2670		CALL			HOW MANY GOT MOVED
EE3E 32E4	2671		XOR	AH, AH	;	NO ERRORS
EE40 C3	2672		RET			
	2673	RW_OPN	ENDP			

Commentaires.- 1°) Si la sous-routine de préparation du DMA a échouée (ligne 2519), on spécifie ce type d'erreur dans la variable adéquate de la zone de communication du BIOS consacrée au lecteur de disquette (ligne 2520), on spécifie qu'aucun secteur n'a été transféré (ligne 2521) et on retourne à l'appelant (ligne 2522).

- 2°) Sinon on sauvegarde la commande (ligne 2524) et on démarre le moteur. Pour cela, on sauvegarde les paramètres concernant la piste et le secteur (ligne 2528), on place le numéro de lecteur comme compteur de décalage (ligne 2529), on place un 1 à titre de masque dans le registre AL (ligne 2530), que l'on déplace pour spécifier le lecteur de disquette désiré (ligne 2531), on inhibe les interruptions masquables (lignes 2532 et 2533) et on indique une durée assez longue pour l'opération (ligne 2534). Si le moteur tourne déjà, on passe cette phase de démarrage du moteur (lignes 2535 et 2536). Sinon on indique que tous les moteurs sont à l'arrêt (ligne 2537) et que le moteur choisi est en fonctionnement (ligne 2538), on permet à nouveau les interruptions masquables (ligne 2539), on spécifie le moteur qui doit tourner (lignes 2540 à 2542), qu'il ne faut pas réinitialiser mais qu'il faut utiliser le DMA (ligne 2543), on sauvegarde la valeur du registre DX (ligne 2544) que l'on va utiliser, on transmet l'octet de commande au port de contrôle du contrôleur de lecteur de disquette (lignes 2545 et 2546) et on restaure la valeur du registre DX (ligne 2547).

- 3°) S'il s'agit d'une opération de lecture, on attend que le moteur ait bien démarré. Pour cela, on teste s'il s'agit d'une opération d'écriture (ligne 2551) et on passe cette phase si ce n'est pas le cas (ligne 2552). Sinon, on récupère dans AH les paramètres de démarrage du moteur (lignes 2553 et 2554) et on passe également cette phase si on n'a pas besoin d'attendre

(lignes 255 à 2557). Sinon on attend durant 1/8 de seconde (lignes 2558 à 2560) et on recommence autant de fois que le spécifie le paramètre (lignes 2561 et 2562).

On permet à nouveau les interruptions masquables (ligne 2564) et on restaure la valeur de CX (ligne 2565).

- $^{-}4^{o})$ On se déplace sur la piste demandée. Pour cela on fait appel à la sous-routine SEEK (ligne 2569). On récupère la commande (ligne 2570) et on la place dans le registre BH (ligne 2571). On place 0 secteur lu dans le registre DH (ligne 2572) en cas d'erreur. Si une erreur est survenue, on sort après avoir arrêté le moteur (ligne 2573). Sinon, on place une adresse de retour sur la pile (lignes 2574 et 2575).
 - 5°) On envoie les paramètres au contrôleur (lignes 2578 à 2586).
- -6^{o}) Dans le cas d'une commande de formatage, on procède un peu autrement. On teste s'il s'agit d'une commande de formatage (ligne 2590) et si c'est le cas, on renvoie vers le traitement de celle-ci (ligne 2592), partie de la sous-routine DISK_FORMAT, qui commence ligne 2486.
- 7°) S'il ne s'agit pas d'une commande de formatage, on continue en envoyant les octets de commande au contrôleur : numéro de cylindre (lignes 2594 et 2595), numéro de tête de lecture-écriture (lignes 2596 et 2597), numéro de secteur (lignes 2598 et 2599), nombre d'octets par secteur (lignes 2600 et 2601), paramètre de fin de piste (lignes 2602 et 2603), longueur du GAP (lignes 2604 et 2605), paramètre DTL (lignes 2606 à 2608). On peut ne pas tenir compte de l'adresse de retour, on la retire donc de la pile (lignes 2609 et 2610).
- 8°) On attend que l'opération soit effectuée. Pour cela, on attend l'interruption indiquant qu'il en est ainsi (ligne 2614). Si une erreur est survenue (ligne 2616), on récupère les résultats (ligne 2664), que l'on n'utilise pas, et on retourne à l'appelant (ligne 2665), l'erreur étant indiquée par la valeur de l'indicateur CF. Sinon on récupère les résultats (ligne 2617) et on retourne à l'appelant si une erreur est survenue (lignes 2618, 2661 et 2662).
- 9°) On vérifie les résultats renvoyés par le contrôleur. Pour cela, on se place dans la direction adéquate (ligne 2622), on récupère le contenu du registre ST0 du contrôleur de disquette (lignes 2623 et 2624). Si l'opération ne s'est pas terminée normalement (lignes 2625 et 2626), si le contrôleur n'était pas prêt, on recommence (lignes 2627 et 2628), sinon on recupère le contenu du registre ST1 du contrôleur de disquette (ligne 2632), on recherche la cause de l'échec que l'on place dans le registre AH (lignes 2633 à 2657), on l'indique dans la variable DISKETTE_STATUS (ligne 2660), on détermine combien de secteurs ont été transferrés (ligne 2660) et on retourne à l'appelant (ligne 2662).
- 10°) Pour déterminer combien de secteurs ont été transférés, on fait appel à la sous-routine NUM_TRANS, définie curieusement ligne 3043 au milieu de la sous-routine RESULTS.

Les paramètres sont le numéro cylindre, passé *via* le registre CH, et le numéro de secteur de début, passé *via* le registre CL. On renvoie le nombre de secteurs transférés *via* le registre AL.

Pour cela on utilise la variable NEC_STATUS de la zone de communication du BIOS pour déterminer le numéro de cylindre de fin (lignes 3044 et 3045) et le numéro de secteur de fin (ligne 3046). S'il s'agit du même cylindre (ligne 3047), il suffit de soustraire le numéro de secteur de fin de celui de début (lignes 3052 et 3053) et de retourner à l'appelant (ligne 3054). Sinon, on récupère le nombre de secteurs d'une piste (lignes 3048 à 3051) et on effectue également la soustration.

 $\,$ - $11^o)$ Si tout s'est bien déroulé, on place également dans AL le nombre de secteurs transférés (lignes 2669 et 2670), on met l'indicateur CF à 0 (ligne 2671) pour indiquer qu'il n'y a pas d'erreur et on retourne à l'appelant (ligne 2672).

10.4.6 Vérification

La fonction 4 de vérification de INT 13h commence à la ligne 2479 du listing :

	2477 2478	; DISKETTE	VERIFY	
ED14	2479	DISK VERF	PROC NEAR	
ED14 B042	2480	MOV MOV	AL,042H	: VERIFY COMMAND FOR DMA
ED14 B042	2460	MUV	AL,U42H	; VERIFI CUMMAND FOR DMA
ED16 EBF5	2481	JMP	J9	; DO AS IF DISK READ
	2482	DISK_VERF	ENDP	
	2483			

Autrement dit on prépare la commande de vérification (ligne 2480) et on fait comme pour la lecture (ligne 2481) en renvoyant à la ligne 2471 de la sous-routine pour la lecture.

10.4.7 Formatage

La fonction 5 de formatage de INT 13h commence à la ligne 2486 du listing :

	2484	; DISKETTE	FORMAT	
	2485			
ED18	2486	DISK_FORMAT	PROC NEAR	
ED18 800E3F0080	2487	OR	MOTOR_STATUS,80H	; INDICATE WRITE OPERATION
ED1D B04A	2488	MOV	AL,04AH	; WILL WRITE TO THE DISKETTE
ED1F E8A601	2489	CALL	DMA_SETUP	; SET UP THE DMA
ED22 B440	2490	MOV	AH,040H	; ESTABLISH THE FORMAT COMMAND
ED24 EB24	2491	JMP	SHORT RW_OPN	; DO THE OPERATION
ED26	2492	J10:		; CONTINUATION OF RW_OPN FOR FMT
ED26 BB0700	2493	MOV	BX,7	; GET THE
ED29 E84001	2494	CALL	GET_PARM	; BYTES/SECTOR VALUE TO NEC
ED2C BB0900	2495	MOV	BX,9	; GET THE
ED2F E83A01	2496	CALL	GET_PARM	; SECTORS/TRACK VALUE TO NEC
ED32 BB0F00	2497	MOV	BX,15	; GET THE
ED35 E83401	2498	CALL	GET_PARM	; GAP LENGTH VALUE TO NEC
ED38 BB1100	2499	MOV	BX,17	; GET THE FILLER BYTE
ED3B E9AB00	2500	JMP	J16	; TO THE CONTROLLER
	2501	DISK_FORMAT	ENDP	
	2502			

Commentaires.- 1°) On indique à la variable MOTOR_STATUS de la zone de communication du BIOS que l'on va effectuer une opération d'écriture (ligne 2487), ainsi que pour le DMA (lignes 2488 et 2489), on choisit la commande de formatage du contrôleur de lecteur de disquette (ligne 2490) et on effectue l'opération en faisant appel à la sous-routine RW_OPN (ligne 2491).

 $-2^o)$ Nous avons vu, lors de l'étude de la sous-routine RW_OPN, que, dans le cas d'un formatage, la ligne 2592 renvoie à J10 (c'est-à-dire à la ligne 2492). On envoie au contrôleur le nombre d'octets par secteur (lignes 2493 et 2494), le nombre de secteurs par pistes (lignes 2495 et 2496), la taille du « gap » (lignes 2497 et 2498), on place l'octet de remplissage dans le registre BX (ligne 2499) et on retourne à la sous-routine RW_OPN (ligne 2500, renvoyant à la ligne 2607).

10.5. HISTORIQUE 341

10.4.8 Écriture

La fonction 3 d'écriture de INT 13h commence à la ligne 2505 du listing :

	2503	; DISKETTE	WRITE ROUTINE	
	2504			
ED3E	2505	DISK_WRITE	PROC NEAR	
ED3E 800E3F0080	2506	OR	MOTOR_STATUS,80H	; INDICATE WRITE OPERATION
ED43 B04A	2507	MOV	AL,04AH	; DMA WRITE COMMAND
ED45 E88001	2508	CALL	DMA_SETUP	
ED48 B4C5	2509	MOV	AH,OC5H	; NEC COMMAND TO WRITE TO DISKETTE
	2510	DISK_WRITE	ENDP	
	2511			

Autrement dit, on indique à la variable MOTOR_STATUS de la zone de communication du BIOS que l'on va effectuer une opération d'écriture (ligne 2506), ainsi que pour le DMA (lignes 2507 et 2508), on choisit la commande d'écriture du contrôleur de lecteur de disquette (ligne 2509) et on effectue l'opération en faisant appel à la sous-routine RW_OPN (non indiqué explicitement mais c'est la sous-routine qui suit celle en cours).

10.5 Historique

Le lecteur de disquette (FDD) est inventé chez IBM par Alan Shugart en 1967. La disquette a alors une taille de 8 pouces (200 mm) de diamètre et une capacité de un MiO. Elle est commercialisée en 1971. Les disquettes et les lecteurs de disquette sont produits et améliorés par IBM, *Memorex, Shugart Associates* et *Burroughs Corporation*. Le terme « floppy disk » apparaît sous forme imprimée en 1970 et, bien qu'IBM annonce en 1973 son premier produit en tant que « Type 1 Diskette », l'industrie continue à utiliser les termes « floppy disk » ou « floppy ».

En 1976, *Shugart Associates* introduit le lecteur de disquette 5 pouce 1/4 d'une capacité de 160 KiO. Il est utilisé sur le premier IBM PC en août 1981 avec une capacité de 360 KiO.

10.6 Bibliographie

[MES-02] MESSMER, Hans-Peter, **The Indispensable PC Hardware Book**, Addison-Wesley, fourth edition, 2002, xx + 1273 p.