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Bizarre facts about Probability theory

• Probabilit theory has for basic intuition that
of random objects (reals, integers, strings,...)

... but it provides no such formal notion
Random variables are formal objects which have
nothing to do with random objects:

they are just measurable functions

• An elementary result of probability theory...
nobody really believes in

if we toss an unbiaised coin 100 times then 100
heads are just as probable as any other outcome!
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The axioms of probability theory,
as developped by Kolmogorov in 1933,
do not solve all mysteries
that they are sometimes supposed to.

Peter Gàcs

In particular,

- what is a random finite string ?
- what is a random infinite sequence ?
- what is a random real ?

A quest going back to
Pierre Simon de Laplace (1749–1827)

In this talk, we shall restrain to infinitary objects
(infinite sequences, reals)
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Martin-Löf formalization of randomness,
1966

Naive approach on which it is based:

α ∈ {0,1}N is a random infinite sequence if it avoids
every set of measure zero.

Problem: any singleton set {α} has measure zero.
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Martin-Löf formalization of randomness

Martin-Löf randomness:
ask α to avoid every “constructively null set”
i.e. sets of the form ⋂n∈N Un where Un is an open set

Un = ⋃p∈N In,p where the In,p are open rational intervals and the

double indexed sequence (In,p)n,p∈N is computable and the

sequence (meas(Un)n∈N) is upper-bounded by a computable

function converging towards 0.

Schnorr randomness:
also ask that (meas(Un))n∈N is computable
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Fact. Martin-Löf random sequences α ∈ {0,1}N
1 constitute a set of measure 1

2 satisfy all usual probability laws

Same for Schnorr random sequences

Why?
1 As the complement of the union of countably many null sets

2 The set of exceptions to the law has measure 0
hence is covered by an open set with measure ≤ ε
hence is covered by a union of rational intervals (In)n∈N

with total measure ≤ ε
The proof of a usual law gives a computable such sequence (In)n∈N
hence the set of exceptions is included in a constructively null set
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Kolmogorov’s approach to randomness,
circa 1964

Even after his 1933 axiomatization of probability
theory, Kolmogorov (1903–1987) never gave up the
project to formalize the notion of random object.

(By the way, he is really the unique probabilist (up to
now) to believe that Kolmogorov’s axioms for probability
theory do not constitute the last word about formalizing
randomness...)

Approach via Descriptional complexity
built on the theory of computable functions

independently by

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

Solomonoff (1962/1964)
Kolmogorov (1963/1965)
Chaitin (1964/1966)
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Approach via “Descriptional complexity”,
also called Kolmogorov complexity

complexity of an objet
= length of the shortest descriptions

But, description in which context?

Care ! Berry’s paradox (1908):
“the smallest integer which cannot be described by
any sentence with less than twenty words”

Aie, aie, aie...this sentence has 15 words and defines an integer
which cannot be defined in less than 20 words!
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Kolmogorov complexity

complexity of an objet
= length of the shortest descriptions

Key idea for Kolmogorov complexity:
replace “description” by “computation pro-
gram” in order to enter the formal framework
of computability theory set up by Turing and
Church.

Definition. Let f ∶ {0,1}<ω → D be a partial
function (where D is N or {0,1}<ω or...)
Set, for x ∈ D,
Kf ∶ D → N , Kf (x) = min{∣p∣ ∶ f (p) = x}
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Invariance theorem

Kf ∶ D → N , Kf (x) = min{∣p∣ ∶ f (p) = x}
(where D is N or {0,1}<ω or...)

How to choose f ?

Invariance theorem. Among the Kf ’s, where f
varies in the family PCD of partial computable
function {0,1}<ω → D, there is a smallest one, up to
an additive constant:
∃ϕ ∈ PCD ∀f ∈ PCD ∃c ∀x ∈ D Kϕ(x) ≤ Kf (x) + c

Such a ϕ is called optimal.

Proof: simple application of the enumeration theorem for partial
computable functions.
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Kolmogorov complexity
Kolmogorov complexity = Kϕ for any optimal ϕ

An integer defined up to a constant. . . !... Fortunately, the

constant is uniform in x ∈ D, so asymptotically it is OK.

What Kolmogorov said about the constant:
The different “reasonable” [above optimal
functions] will lead to “complexity estimates”
that will converge on hundreds of bits instead
of tens of thousands.
Hence, such quantities as the “complexity”
of the text of “War and Peace” can be as-
sumed to be defined with what amounts to
uniqueness.
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Kolmogorov idea to define randomness

Easy fact. There exists a constant c such that for
every word x we have K(x) ≤ ∣x ∣ + c

Kolmogorov idea: say that an infinite string α is
random if ∃d ∀n ∈ N K(α↾n) ≥ ∣x ∣ − d
where α↾n = (α(0)α(1) . . . α(n − 1))

ALAS, THIS IS FALSE FOR ALL α
Theorem (Per Martin-Löf, 1971).For any α
there exists infinitely many n’s such that
K(α↾n) ≤ n − log(n).

Can replace log(n) by f (n) where the series ∑n∈N 2−f (n) is

divergent
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Nevertheless, this idea – slightly modified –
does work

Claus Peter Schnorr’s process complexity S
consider partial computable f ∶ {0,1}<ω → {0,1}<ω
which are monotone:

p ≤prefix q ∧ p,q ∈ domain(f )
Ô⇒ f (p) ≤prefix f (q)

The invariance theorem still holds, so we can define
a Schnorr complexity S similar to the Kolmogorov
complexity

Theorem. (Schnorr, 1973) α is Martin-Löf random
if and only if ∃c ∀n ∣S(α↾n) − n∣ ≤ c
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Nevertheless, this idea – slightly modified –
does work

Levin-Chaitin complexity H
consider partial computable f ∶ {0,1}<ω → {0,1}<ω
with prefix-free domain

The invariance theorem still holds, so we can define
a Levin-Chaitin complexity H similar to the
Kolmogorov complexity

Theorem. (Levin-Chaitin, 1973) α is Martin-Löf
random if and only if ∃c ∀n H(α↾n) ≥ ∣x ∣ − c
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Nevertheless, this idea – slightly modified
in yet another way – does work

Theorem (Per Martin-Löf, 1971). If the series

∑n∈N 2−f (n) is recursively convergent then

∀α (α Martin-Löf random
Ô⇒ ∃c ∀n K(α↾n) ≥ n − f (n) − c

Theorem. (Joe Miller & Liang Yu, 2004)
There exists a computable g ∶ N→ N such that the
series ∑n∈N 2−g(n) is recursively convergent and ∀α,

∀α (α Martin-Löf random
⇐⇒ ∃c ∀n K(α↾n) ≥ n − g(n) − c)

Also, the equivalence holds with H in place of g
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Another connected notion:
sequence of reals equi-distributed modulo 1

x = ⌊x⌋ + {x} with x ∈ Z and {x} = x mod 1 ∈ [0,1)
(integral and fractional parts of x)

Definition. (Hermann Weyl, 1914)

(xn)1≤n≤N is uniformly distributed modulo 1 (ud) if
for every rational interval [a,b) ⊆ [0,1)
limN→∞

1

N
♯{n ∣ 1 ≤ n ≤ N and {xn} ∈ [a,b)} = b − a

Fact. (Bohl, Sierpinski, Weyl, 1909)

x is irrational ⇐⇒ the sequence (nx)n≥1 is ud
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A connected notion: Borel normality

We now turn towards approaches which have to do with

randomness but are really aiming at other characterizations.

• A real x is Borel absolutely normal if for every
b ∈ N, b ≥ 2, the digits in the base b representation
of α are uniformly distributed.
I.e the number of a given digit among the n first digits of x tends

to 1/b

Fact. (Niven,Zuckerman 1951)

x is absolutely normal ⇐⇒
the sequence (bnx)n≥1 is ud for all b ≥ 2, b ∈ N
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From Schnorr randomness
to a simple instance of ud

Fact. (Avigad, 2013) • If (an)n≥1 is a computable
sequence of pairwise distinct integers then

x is Schnorr random
(a fortiori if x is Martin-Löf random)

Ô⇒ the sequence (anx)n≥1 is ud

• (Avigad, 2013) It is NOT an equivalence,
there are counterexamples
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Tool of the theory of uniform distribution:
Koksma General Metric Theorem

Definition. (Koksma, 1935) Let K > 0. A sequence of
functions un ∶ [0,1] → R is K -Koksma if
• un is continuously differentiable for all n
• The difference u′n − u′p is monotonous for all n,p
• ∣u′n(x) − u′p(x)∣ ≥ K for all n ≠ p and x ∈ [0,1]
Example. If the an are pairwise distinct integers then the

(x ↦ nx)n∈N is 1-Koksma.

Koksma General Metric Theorem. (1935)

If (un)n≥1 is Koksma then for almost all x ∈ [0,1]
the sequence (un(x))n∈N is ud.

19 / 25



Extension of Avigad’s result to effective
Koksma sequences

Definition. A Koksma sequence of functions
un ∶ [0,1] → R is effective Koksma if the sequences
(un)n∈N and (u′n)n∈N are computable

Theorem. (V.Becher & SG, 2022) If x is Schnorr
random then the sequence (un(x))n∈N is ud for every
effective Koksma sequence of functions 0,1] → R
This extends Avigad since (x ↦ anx)n∈N is Koksma if the an’s are

distinct integers and (an)n∈N is computable

What about a reciprocal? Still open
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Towards a reciprocal via Σ0
1-uniform

distribution and Lipshitz functions
Σ0

1 subset of [0,1] = ⋃p∈N Ip where (Ip)p∈N is a
computable sequence of rational intervals of [0,1]

A sequence of reals (xn)n∈N is Σ0
1-ud if for every

Σ0
1 set U limN→∞

1

N
♯{n ∣ 1 ≤ n ≤ N and {xn} ∈ U} =meas(U)

Schnorr-Σ0
1-ud : ask meas(U) to be computable

A function f ∶ [0,1] → R is `-Lipschitz if
∣f (x) − f (y)∣ ≤ `∣x − y ∣ for all x , y ∈ [0,1]
A computable sequence (un)n∈N is computably
Lipschitz if for some computable sequence (`n)n∈N,
for every n the function un is `n-Lipschitz
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A reciprocal via Σ0
1-uniform distribution and

Lipshitz functions

Theorem. (V.Becher & SG, 2022)

If { (un)n∈N is computably Lipschitz
the sequence (un(x))n∈N is Σ0

1-ud
then x is Martin-Löf random

If { (un)n∈N is computably Lipschitz
and the sequence (un(x))n∈N is Schnorr-Σ0

1-ud
then x is Schnorr random

So,

x random Ô⇒ and (un(x))n∈N ud for effective Koksma (un)n∈N
x random ⇐Ô (un(x))n∈N Σ0

1-ud for comput. Lipschitz (un)n∈N
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The characterization uses ergodic theory

Let T ∶ [0,1) → [0,1). A set A ⊆ [0,1) is almost
invariant if T −1(A) and A coincide up to a null set

A measure preserving T (i.e. meas(T−1
(A)) =meas(A)) is

ergodic if every almost invariant set has measure 0 or 1

Examples: x ↦ x + na mod 1, x ↦ 2nx mod 1

Ergodic Theorem. (Birkhoff, Khinchine, 1931)

If T is measure preserving and ergodic
and A is Lebesgue measurable then
for almost all x

limN→∞
1

N
♯{n ∣ 1 ≤ n ≤ N and T n

(x) ∈ A} =meas(A)
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The characterization uses ergodic theory
Theorem. (V.Becher & SG, 2022)

Equivalent conditions

1 x is Martin-Löf random 1⇒ 2 effective ergodic theorem

2 (T n(x))n≥1 is Σ0
1-ud for every T which is

computable, measure preserving and ergodic
2⇒ 3,4 since 2 applies to x ↦ x + a mod 1 and x ↦ 2x mod 1

3 (x + na)n≥1 is Σ0
1-ud for some irrational a

4 the sequence (2nx)n≥1 is Σ0
1-ud

3,4⇒ 5 since x ↦ x + a mod 1 and x ↦ 2x mod 1 are Lipschitz

5 for some computably Lipschitz sequence (un)n∈N
the sequence (un(x))n∈N is Σ0

1-ud
5⇒ 1 our previous theorem
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Thank you for your attention
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