Journée en I'honneur de Patrick Cegielski

Recursion theory, complexity and discrete
differential equations

Arnaud Durand

joint work with Olivier Bournez

June 28, 2022

QOutline

Introduction

Patrick

» The mathematician

Patrick

» The mathematician

Patrick

» The mathematician
C. R. Acad. Sci. Paris, t. 315, Série 1, p. 1431-1434, 1992 1431

Informatique théorique/Computer Science

Indécidabilité de la théorie des entiers naturels munis d’une
énumération des premiers et de la divisibilité

Patrick CeGIELSKY et Denis RiCHARD

Patrick

» The mathematician

» The colleague (and political activist)

Patrick

» The mathematician
» The colleague (and political activist)
» The mentor

Introduction

» Implicit complexity : machine independent way to talk about
complexity
» Usual means :
> (finite) model theory
P recursion
» proof complexity
» linear logic, proof theory
> rewriting

Introduction

In this talk: a Discrete Ordinary Differential Equations (ODE)
point of view of complexity classes

Pro: Natural way to express properties of many systems in
applied science

Pro: Very active field of maths, abundant literature

Pro: Have widely studied discrete counterparts based on finite
differences

Pro: Analogy between definition by recursion and finite
differences

Cons: Is there more than an analogy?

QOutline

Algebra of functions

Primitive recursive functions

letpe N, g: NP - Nand h:NPH2 5 N,
The function f = REC(g, h) : N°*1 — N is defined by primitive
recursion from g and h if:

f0,y) =g(y)
flz+1y)=h(f(z,y),2,y)

» High complexity functions

» How to restrict the recursion scheme to lower complexity?

Bounded recursion

Let g: N? - N, h: N?*2 5 Nand i: NPt! 5 N.
The function f = BR(g, h) : NP*1 — N is defined by bounded
recursion from g, h and i if

fOy) = 9(¥y)
flx+1ly) = h(f(z,y),zy)
under the condition that:

flzy) < i(zy).

O(|z|) "steps" to evaluate f(z), control of the growth by some
already known function

Key ingredient to capture elementary functions and Grzegorczyk's
hierarchy

Recursion on notation (Cobham)

Consider sp,s1 : N = N
sop(x) =2-x and s1(z) =2 -2+ 1.
Definition

Function f defined by bounded recursion on notations, i.e. BRN,
from functions g, hg, h1 et k when:

Cobham'’s approach

Zp smallest subset of primitive recursive functions
» Containing basis functions :
FunctionO, projections p¥, successor functions so(z) =2
and sy (x) =2 -z + 1, "smash" function zty = 2/*/*v!
» Closed by composition

» Closed by bounded recursion on notations

Cobham (62) : %p is equal to FP, the class of polynomial time
computable functions

Why does it capture FP?

z,y, f(x,y))

=N
5>
\l/hh -~
201 E

Why does it capture FP?

f(0,y) =g(y)

f(so(x),y) = ho(z,y, f(z,y)) for z #0
f(s1(2),y) = ha(z,y, f(z,y))

f(z,y) < k(z,y)

» f is defined from hg, h1 and k.
» If |k(z,y)| is polynomial in |z| + |y|, then so is | f(z,y)]

» Hence, inner terms do not grow too fast!

Why does it capture FP?

> Isi(x)] = Iso()] = || + 1
» Then the number of induction steps is in O(|x|).

Going further: syntactic restriction, ramified
recursion

» Cobham’s work was the starting point of numerous attempts
to capture complexity classes by recursion algebras

» Generalize to L, NC?, AC’ classes

P Alternative approaches that do not require to bound the
function a priori.

> Predicative recursion (Bellantoni, Cook)
> Ramified recurrence (Leivant, Leivant-Marion)
> .

QOutline

Discrete ODE

Discrete derivative

Definition
Let f : N — Z, the discrete derivative (a.k.a finite difference) is

defined as:
Af(z) =f(z + 1) — f(z).

When f: NP — 79, set:

of(z,y)

e flz+1,y) —f(z,y)

Sometimes use f’(z) instead of A(f(z))

Discrete integral

Definition (Discrete Integral)

we write f;’ f(z)dz as a synonym for

with the conventions: [f(x)dz = 0 and f; f(z)dx = — [, f(z)dx
when a > b.

It follows easily by the telescope formula that:
Theorem (Fundamental Theorem of Finite Calculus)

Let F(x) be some function. Then, f; F'(z)éx = F(b) — F(a).

Discrete integral and basics of integration

Not surprisingly, basic notions from the continous setting adapts
easily:

» derivation of a composition (chain rule), integration by parts,
etc

» Example of the Product rule:
(f(x)-g(x)) =f(x+1)-g'(z) + f(2) - g(x)
» Let f be some function, C some constant. Then the function

z—1
F(z)=C+ Y f(z)
=0

is such that F'(z) = f(x) and F(0) = C. As expected, F is
called a primitive of f(x).

Discrete Ordinary Differential Equation (ODE)

Discrete ODE: System of equations of the form, where h is some
function: oF

OY) _ hit(a,y),5.) (1)
With initial value £(0,y) = g(y): Initial Value Problem (IVP) or a
Cauchy Problem.

Integral form:
fa.y) = £0.y)+ [h(F(.y),2.5)00.

» Hence, a discrete ODE always have a solution f: NP — 74

> Not always true if one wants f : ZP — Z4

Linear system of discrete ODE

Some popular kind of equation...

Linear ODE: system of the form
£(0,y) = G(y) (initial conditions)

For matrices A and vectors B and G.
» Well known and simple kind of system

> Easy to solve in the continous setting

Linear system of discrete ODE

Easy to see that solution is of the form:

f(z,y) = <2f0”” A(t,y)6t> -G(y) + /x (2]:—&-1 A(t,y)5t> “B(u,y)du.
0
Or, alternatively:

Fey)= 3 (ﬁ <1+A<t,y>>> B(u,y)

u=—1 \t=u+1

with the conventions that [[* ! k(z) = 1 and B(—1,y) = G(y)
Computational content is clear: the solution can be computed

Examples of linear ODE: bounded sum and
product

Arithmetic is used freely below.
Let g : NPT1 5 N,

> Let f(z,y) =3 .., 9(%y) forz #0, and 0 for z = 0.
Function f is the unique solution of :

{ W = g(x,y)
f(0,y)=0

> Let f(z,y) =11, 9(2,y) for # 0, and 1 for z = 0.
Function f is the unique solution of :

{ 21E0) = f(a,y) - (gl y) — 1)
f0y) =1

QOutline

Discrete ODE and complexity

Back to primitive recursion

One can obviously rewrite p.r. schemas using discrete ODE
Main part :

fO0,y)= g(y)
flz+1y)= h(f(z,y),z,y)
= f(x7y)+(_f(x7y)+h(f(an)7$7Y))

Hence, setting ho(f(z,y), 2,y) = —f(2,y) + h(f(z,¥),2,y),
f(x,y) is solution of

of(x,y)
ox

= ho(f(z,y),z,y)

So easy. This is just rephrasing...

Recursion on notation (Cobham)

What about complexity classes? Recall Cobham:

» Two successors do not fit well with a derivation approach

» bounding by function k is not very natural either

Objective: get rid of these two features and replace them by more
ODE friendly restrictions

Derivation along a function

Given function L, consider the equation:

f(x + 1,}’) - f(x7Y) + (E(IE + 1,}’) - E(x,y)) ’ h(f(an)amv}I)

The value of f changes only when the value of £ changes.

Consequence: only as many values to consider to compute
f(z,y) as the number of times L(t,y) changes between ¢t = 0 and
t=ux...

Application: if £(xz,y) is the logarithm function /(z) then only a
logarithmic in = number of values

Derivation along a function

flx+1,y) =f(z,y) + (L(z + 1,y) — L(z,y)) - h(f(z,y),2,y)

Of(z,y) 0L(z,y)
8.%' - a'/l: h(f($7y)7x7y)

Definition (£-ODE)
Let £ : NPt — Z. The open equation will be written as:

Bilmsy) Bimy) 0o
oL~ ox 0Ly PE@y.ey) o ()

Inspired by the classical formula:

0f(x,y) d0f(zy) 6L(z,y)

sz 0L(z,y) dr

Discrete /()-ODE schemas

What about the smallest classes of functions

> that contains 0, 1, projections 7?, the length ¢(x), functions
x4y, z—y, x X y, the sign function sg(x)

» that is closed under composition and ¢()-ODE schemata.

» Good: the number of step to compute the solution of a
¢()-ODE is bounded linearly in the length of x

» Bad: It is easily seen that the solution of

0f(x) _
i) = /@) @) =) 3)

is a fast growing function (output is exponential in size)

So we know how to control the number of steps but not the size of
objects

Back to linear systems

Linear ODE: system of the form
£(0,y) = G(y) (initial conditions)

For matrices A and vectors B and G. Recall that:

x—1 x—1
flz,y)=) (11 (1+A(t,y))) -B(u,y)

u=—1 \t=u+1
Using convention: [[% ! s(z) =1 and B(—1,y) = G(y)

Linear system alone are also too powerful.... But if one reduces the
number of steps drastically then the size of the output may
become controlable

Towards capturing FP

P Idea: combine linearity and derivation along some particular
function L i.e. systems :

afgzw = h(f(z,y),2,y), (4)
where
» his "linear"
» £ has a polylogarithmic number of values (such has the ¢()
function)

DL

Definition (DL)
Let DL be the smallest subset of functions,

> that contains 0, 1, projections ¥, the length ¢(x), functions
x4y, x—y, x X y, the sign function sg(x)

» closed under composition (when defined) and linear
length-ODE scheme:

8f(§é y) =u(f(z,y),z,y) andf(0,y) =g(y)

where u is essentially linear in f(x,y).

A characterization of FP

Theorem
DL = FP

Proof of (C): Roughly speaking
» The derivation along ¢(x) (or any £ with polylog "jumps")
permits to control the number of steps

> Linearity of the system permits to control the size of the
output

Proof of (2): By a direct expression of a polynomial
computation of a register machine.

Conclusion, questions and work in progress

» Short tour on the expressive and computational power of
discrete ODE

> Appears
> to be a convenient tool for algorithm design
P to elegantly capture complexity notions

» Extend the work to other classes (FPSPACE, NP, circuit
classes)
» Smaller derivation steps and allowing errors

» Generalize to the continuous setting

	Introduction
	Algebra of functions
	Discrete ODE
	Discrete ODE and complexity

