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Introduction

▶ Implicit complexity : machine independent way to talk about
complexity

▶ Usual means :
▶ (finite) model theory
▶ recursion
▶ proof complexity
▶ linear logic, proof theory
▶ rewriting



Introduction

▶ In this talk: a Discrete Ordinary Differential Equations (ODE)
point of view of complexity classes

▶ Pro: Natural way to express properties of many systems in
applied science

▶ Pro: Very active field of maths, abundant literature
▶ Pro: Have widely studied discrete counterparts based on finite

differences
▶ Pro: Analogy between definition by recursion and finite

differences
▶ Cons: Is there more than an analogy?
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Primitive recursive functions

Let p ∈ N, g : Np → N and h : Np+2 → N.
The function f = REC(g, h) : Np+1 → N is defined by primitive
recursion from g and h if:{

f(0, y) = g(y)
f(x + 1, y) = h(f(x, y), x, y)

▶ High complexity functions
▶ How to restrict the recursion scheme to lower complexity?



Bounded recursion

Let g : Np → N, h : Np+2 → N and i : Np+1 → N.
The function f = BR(g, h) : Np+1 → N is defined by bounded
recursion from g, h and i if

f(0, y) = g(y)
f(x + 1, y) = h(f(x, y), x, y)

under the condition that:
f(x, y) ≤ i(x, y).

O(|x|) "steps" to evaluate f(x), control of the growth by some
already known function
Key ingredient to capture elementary functions and Grzegorczyk’s
hierarchy



Recursion on notation (Cobham)

Consider s0, s1 : N → N

s0(x) = 2 · x and s1(x) = 2 · x + 1.

Definition
Function f defined by bounded recursion on notations, i.e. BRN,
from functions g, h0, h1 et k when:

f(0, y) = g(y)
f(s0(x), y) = h0(x, y, f(x, y)) for x ̸= 0
f(s1(x), y) = h1(x, y, f(x, y))
f(x, y) ≤ k(x, y)



Cobham’s approach

FP smallest subset of primitive recursive functions
▶ Containing basis functions :

Function0, projections pk
i , successor functions s0(x) = 2 · x

and s1(x) = 2 · x + 1, "smash" function x♯y = 2|x|×|y|

▶ Closed by composition
▶ Closed by bounded recursion on notations

Cobham (62) : FP is equal to FP, the class of polynomial time
computable functions



Why does it capture FP?


f(0, y) = g(y)
f(s0(x), y) = h0(x, y, f(x, y)) for x ̸= 0
f(s1(x), y) = h1(x, y, f(x, y))
f(x, y) ≤ k(x, y)



Why does it capture FP?


f(0, y) = g(y)
f(s0(x), y) = h0(x, y, f(x, y)) for x ̸= 0
f(s1(x), y) = h1(x, y, f(x, y))
f(x, y) ≤ k(x, y)

▶ f is defined from h0, h1 and k.
▶ If |k(x, y)| is polynomial in |x| + |y|, then so is |f(x, y)|
▶ Hence, inner terms do not grow too fast!



Why does it capture FP?


f(0, y) = g(y)
f(s0(x), y) = h0(x, y, f(x, y)) for x ̸= 0
f(s1(x), y) = h1(x, y, f(x, y))
f(x, y) ≤ k(x, y)

▶ |s1(x)| = |s0(x)| = |x| + 1
▶ Then the number of induction steps is in O(|x|).



Going further: syntactic restriction, ramified
recursion

▶ Cobham’s work was the starting point of numerous attempts
to capture complexity classes by recursion algebras

▶ Generalize to L, NCi, ACi classes
▶ Alternative approaches that do not require to bound the

function a priori.
▶ Predicative recursion (Bellantoni, Cook)
▶ Ramified recurrence (Leivant, Leivant-Marion)
▶ ....
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Discrete derivative

Definition
Let f : N → Z, the discrete derivative (a.k.a finite difference) is
defined as:

∆f(x) = f(x + 1) − f(x).

When f : Np → Zq, set:

∂f(x, y)
∂x

= f(x + 1, y) − f(x, y)

.
Sometimes use f ′(x) instead of ∆(f(x))



Discrete integral

Definition (Discrete Integral)
we write

∫ b
a f(x)δx as a synonym for

∫ b

a
f(x)δx =

x=b−1∑
x=a

f(x)

with the conventions:
∫ a

a f(x)δx = 0 and
∫ b

a f(x)δx = −
∫ a

b f(x)δx
when a > b.

It follows easily by the telescope formula that:

Theorem (Fundamental Theorem of Finite Calculus)
Let F(x) be some function. Then,

∫ b
a F′(x)δx = F(b) − F(a).



Discrete integral and basics of integration

Not surprisingly, basic notions from the continous setting adapts
easily:
▶ derivation of a composition (chain rule), integration by parts,

etc
▶ Example of the Product rule:

(f(x) · g(x))′ = f(x + 1) · g′(x) + f(x)′ · g(x)
▶ Let f be some function, C some constant. Then the function

F(x) = C +
x−1∑
x=0

f(x)

is such that F′(x) = f(x) and F(0) = C. As expected, F is
called a primitive of f(x).



Discrete Ordinary Differential Equation (ODE)

Discrete ODE: System of equations of the form, where h is some
function:

∂f(x, y)
∂x

= h(f(x, y), x, y), (1)

With initial value f(0, y) = g(y): Initial Value Problem (IVP) or a
Cauchy Problem.

Integral form:

f(x, y) = f(0, y) +
∫ x

0
h(f(x, y), x, y)δx.

▶ Hence, a discrete ODE always have a solution f : Np → Zq

▶ Not always true if one wants f : Zp → Zq



Linear system of discrete ODE

Some popular kind of equation...

Linear ODE: system of the form{
f ′(x, y) = A(x, y) · f(x, y) + B(x, y)
f(0, y) = G(y) (initial conditions)

For matrices A and vectors B and G.
▶ Well known and simple kind of system
▶ Easy to solve in the continous setting



Linear system of discrete ODE

Easy to see that solution is of the form:

f(x, y) =
(

2
∫ x

0 A(t,y)δt
)

· G(y) +
∫ x

0

(
2
∫ x

u+1 A(t,y)δt
)

· B(u, y)δu.

Or, alternatively:

f(x, y) =
x−1∑

u=−1

(
x−1∏

t=u+1
(1 + A(t, y))

)
· B(u, y)

with the conventions that
∏x−1

x κ(x) = 1 and B(−1, y) = G(y)
Computational content is clear: the solution can be computed



Examples of linear ODE: bounded sum and
product

Arithmetic is used freely below.
Let g : Np+1 → N,
▶ Let f(x, y) =

∑
z<x g(z, y) for x ̸= 0, and 0 for x = 0.

Function f is the unique solution of :{
∂f(x,y)

∂x = g(x, y)
f(0, y) = 0

▶ Let f(x, y) =
∏

z<x g(z, y) for x ̸= 0, and 1 for x = 0.
Function f is the unique solution of :{

∂f(x,y)
∂x = f(x, y) · (g(x, y) − 1)

f(0, y) = 1
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Back to primitive recursion

One can obviously rewrite p.r. schemas using discrete ODE
Main part :


f(0, y) = g(y)

f(x + 1, y) = h(f(x, y), x, y)
= f(x, y) + (−f(x, y) + h(f(x, y), x, y))

Hence, setting h0(f(x, y), x, y) = −f(x, y) + h(f(x, y), x, y),
f(x, y) is solution of

∂f(x, y)
∂x

= h0(f(x, y), x, y)

So easy. This is just rephrasing...



Recursion on notation (Cobham)

What about complexity classes? Recall Cobham:
f(0, y) = g(y)
f(s0(x), y) = h0(x, y, f(x, y)) for x ̸= 0
f(s1(x), y) = h1(x, y, f(x, y))
f(x, y) ≤ k(x, y)

▶ Two successors do not fit well with a derivation approach
▶ bounding by function k is not very natural either

Objective: get rid of these two features and replace them by more
ODE friendly restrictions



Derivation along a function

Given function L, consider the equation:

f(x + 1, y) = f(x, y) + (L(x + 1, y) − L(x, y)) · h(f(x, y), x, y)

The value of f changes only when the value of L changes.

Consequence: only as many values to consider to compute
f(x, y) as the number of times L(t, y) changes between t = 0 and
t = x...

Application: if L(x, y) is the logarithm function ℓ(x) then only a
logarithmic in x number of values



Derivation along a function
f(x + 1, y) = f(x, y) + (L(x + 1, y) − L(x, y)) · h(f(x, y), x, y)
means :

∂f(x, y)
∂x

= ∂L(x, y)
∂x

· h(f(x, y), x, y)

Definition (L-ODE)
Let L : Np+1 → Z. The open equation will be written as:

∂f(x, y)
∂L

= ∂f(x, y)
∂x

∂x

∂L(x, y) = h(f(x, y), x, y) (2)

Inspired by the classical formula:

δf(x, y)
δx

= δf(x, y)
δL(x, y) · δL(x, y)

δx
.



Discrete ℓ()-ODE schemas

What about the smallest classes of functions
▶ that contains 0, 1, projections πp

i , the length ℓ(x), functions
x+y, x−y, x × y, the sign function sg(x)

▶ that is closed under composition and ℓ()-ODE schemata.
▶ Good: the number of step to compute the solution of a

ℓ()-ODE is bounded linearly in the length of x

▶ Bad: It is easily seen that the solution of

∂f(x)
∂ℓ(x) = f(x) · (f(x) − 1) (3)

is a fast growing function (output is exponential in size)
So we know how to control the number of steps but not the size of
objects



Back to linear systems

Linear ODE: system of the form{
f ′(x, y) = A(x, y) · f(x, y) + B(x, y)
f(0, y) = G(y) (initial conditions)

For matrices A and vectors B and G. Recall that:

f(x, y) =
x−1∑

u=−1

(
x−1∏

t=u+1
(1 + A(t, y))

)
· B(u, y)

Using convention:
∏x−1

x κ(x) = 1 and B(−1, y) = G(y)

Linear system alone are also too powerful.... But if one reduces the
number of steps drastically then the size of the output may
become controlable



Towards capturing FP

▶ Idea: combine linearity and derivation along some particular
function L i.e. systems :

∂f(x, y)
∂L

= h(f(x, y), x, y), (4)

where
▶ h is "linear"
▶ L has a polylogarithmic number of values (such has the ℓ()

function)



DL

Definition (DL)
Let DL be the smallest subset of functions,
▶ that contains 0, 1, projections πp

i , the length ℓ(x), functions
x+y, x−y, x × y, the sign function sg(x)

▶ closed under composition (when defined) and linear
length-ODE scheme:

∂f(x, y)
∂ℓ

= u(f(x, y), x, y) and f(0, y) = g(y)

where u is essentially linear in f(x, y).



A characterization of FP

Theorem
DL = FP

Proof of (⊆): Roughly speaking
▶ The derivation along ℓ(x) (or any L with polylog "jumps")

permits to control the number of steps
▶ Linearity of the system permits to control the size of the

output
Proof of (⊇): By a direct expression of a polynomial
computation of a register machine.



Conclusion, questions and work in progress

▶ Short tour on the expressive and computational power of
discrete ODE

▶ Appears
▶ to be a convenient tool for algorithm design
▶ to elegantly capture complexity notions

▶ Extend the work to other classes (FPSPACE, NP, circuit
classes)

▶ Smaller derivation steps and allowing errors
▶ Generalize to the continuous setting
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