
Journée en l’honneur de Patrick Cegielski

Recursion theory, complexity and discrete
differential equations

Arnaud Durand
joint work with Olivier Bournez

June 28, 2022

Outline

Introduction

Algebra of functions

Discrete ODE

Discrete ODE and complexity

Patrick

▶ The mathematician

▶ The colleague (and political activist)
▶ The mentor

Patrick

▶ The mathematician

▶ The colleague (and political activist)

▶ The mentor

Patrick

▶ The mathematician

▶ The colleague (and political activist)

▶ The mentor

Patrick

▶ The mathematician
▶ The colleague (and political activist)
▶ The mentor

Patrick

▶ The mathematician
▶ The colleague (and political activist)
▶ The mentor

Introduction

▶ Implicit complexity : machine independent way to talk about
complexity

▶ Usual means :
▶ (finite) model theory
▶ recursion
▶ proof complexity
▶ linear logic, proof theory
▶ rewriting

Introduction

▶ In this talk: a Discrete Ordinary Differential Equations (ODE)
point of view of complexity classes

▶ Pro: Natural way to express properties of many systems in
applied science

▶ Pro: Very active field of maths, abundant literature
▶ Pro: Have widely studied discrete counterparts based on finite

differences
▶ Pro: Analogy between definition by recursion and finite

differences
▶ Cons: Is there more than an analogy?

Outline

Introduction

Algebra of functions

Discrete ODE

Discrete ODE and complexity

Primitive recursive functions

Let p ∈ N, g : Np → N and h : Np+2 → N.
The function f = REC(g, h) : Np+1 → N is defined by primitive
recursion from g and h if:{

f(0, y) = g(y)
f(x + 1, y) = h(f(x, y), x, y)

▶ High complexity functions
▶ How to restrict the recursion scheme to lower complexity?

Bounded recursion

Let g : Np → N, h : Np+2 → N and i : Np+1 → N.
The function f = BR(g, h) : Np+1 → N is defined by bounded
recursion from g, h and i if

f(0, y) = g(y)
f(x + 1, y) = h(f(x, y), x, y)

under the condition that:
f(x, y) ≤ i(x, y).

O(|x|) "steps" to evaluate f(x), control of the growth by some
already known function
Key ingredient to capture elementary functions and Grzegorczyk’s
hierarchy

Recursion on notation (Cobham)

Consider s0, s1 : N → N

s0(x) = 2 · x and s1(x) = 2 · x + 1.

Definition
Function f defined by bounded recursion on notations, i.e. BRN,
from functions g, h0, h1 et k when:

f(0, y) = g(y)
f(s0(x), y) = h0(x, y, f(x, y)) for x ̸= 0
f(s1(x), y) = h1(x, y, f(x, y))
f(x, y) ≤ k(x, y)

Cobham’s approach

FP smallest subset of primitive recursive functions
▶ Containing basis functions :

Function0, projections pk
i , successor functions s0(x) = 2 · x

and s1(x) = 2 · x + 1, "smash" function x♯y = 2|x|×|y|

▶ Closed by composition
▶ Closed by bounded recursion on notations

Cobham (62) : FP is equal to FP, the class of polynomial time
computable functions

Why does it capture FP?

f(0, y) = g(y)
f(s0(x), y) = h0(x, y, f(x, y)) for x ̸= 0
f(s1(x), y) = h1(x, y, f(x, y))
f(x, y) ≤ k(x, y)

Why does it capture FP?

f(0, y) = g(y)
f(s0(x), y) = h0(x, y, f(x, y)) for x ̸= 0
f(s1(x), y) = h1(x, y, f(x, y))
f(x, y) ≤ k(x, y)

▶ f is defined from h0, h1 and k.
▶ If |k(x, y)| is polynomial in |x| + |y|, then so is |f(x, y)|
▶ Hence, inner terms do not grow too fast!

Why does it capture FP?

f(0, y) = g(y)
f(s0(x), y) = h0(x, y, f(x, y)) for x ̸= 0
f(s1(x), y) = h1(x, y, f(x, y))
f(x, y) ≤ k(x, y)

▶ |s1(x)| = |s0(x)| = |x| + 1
▶ Then the number of induction steps is in O(|x|).

Going further: syntactic restriction, ramified
recursion

▶ Cobham’s work was the starting point of numerous attempts
to capture complexity classes by recursion algebras

▶ Generalize to L, NCi, ACi classes
▶ Alternative approaches that do not require to bound the

function a priori.
▶ Predicative recursion (Bellantoni, Cook)
▶ Ramified recurrence (Leivant, Leivant-Marion)
▶

Outline

Introduction

Algebra of functions

Discrete ODE

Discrete ODE and complexity

Discrete derivative

Definition
Let f : N → Z, the discrete derivative (a.k.a finite difference) is
defined as:

∆f(x) = f(x + 1) − f(x).

When f : Np → Zq, set:

∂f(x, y)
∂x

= f(x + 1, y) − f(x, y)

.
Sometimes use f ′(x) instead of ∆(f(x))

Discrete integral

Definition (Discrete Integral)
we write

∫ b
a f(x)δx as a synonym for

∫ b

a
f(x)δx =

x=b−1∑
x=a

f(x)

with the conventions:
∫ a

a f(x)δx = 0 and
∫ b

a f(x)δx = −
∫ a

b f(x)δx
when a > b.

It follows easily by the telescope formula that:

Theorem (Fundamental Theorem of Finite Calculus)
Let F(x) be some function. Then,

∫ b
a F′(x)δx = F(b) − F(a).

Discrete integral and basics of integration

Not surprisingly, basic notions from the continous setting adapts
easily:
▶ derivation of a composition (chain rule), integration by parts,

etc
▶ Example of the Product rule:

(f(x) · g(x))′ = f(x + 1) · g′(x) + f(x)′ · g(x)
▶ Let f be some function, C some constant. Then the function

F(x) = C +
x−1∑
x=0

f(x)

is such that F′(x) = f(x) and F(0) = C. As expected, F is
called a primitive of f(x).

Discrete Ordinary Differential Equation (ODE)

Discrete ODE: System of equations of the form, where h is some
function:

∂f(x, y)
∂x

= h(f(x, y), x, y), (1)

With initial value f(0, y) = g(y): Initial Value Problem (IVP) or a
Cauchy Problem.

Integral form:

f(x, y) = f(0, y) +
∫ x

0
h(f(x, y), x, y)δx.

▶ Hence, a discrete ODE always have a solution f : Np → Zq

▶ Not always true if one wants f : Zp → Zq

Linear system of discrete ODE

Some popular kind of equation...

Linear ODE: system of the form{
f ′(x, y) = A(x, y) · f(x, y) + B(x, y)
f(0, y) = G(y) (initial conditions)

For matrices A and vectors B and G.
▶ Well known and simple kind of system
▶ Easy to solve in the continous setting

Linear system of discrete ODE

Easy to see that solution is of the form:

f(x, y) =
(

2
∫ x

0 A(t,y)δt
)

· G(y) +
∫ x

0

(
2
∫ x

u+1 A(t,y)δt
)

· B(u, y)δu.

Or, alternatively:

f(x, y) =
x−1∑

u=−1

(
x−1∏

t=u+1
(1 + A(t, y))

)
· B(u, y)

with the conventions that
∏x−1

x κ(x) = 1 and B(−1, y) = G(y)
Computational content is clear: the solution can be computed

Examples of linear ODE: bounded sum and
product

Arithmetic is used freely below.
Let g : Np+1 → N,
▶ Let f(x, y) =

∑
z<x g(z, y) for x ̸= 0, and 0 for x = 0.

Function f is the unique solution of :{
∂f(x,y)

∂x = g(x, y)
f(0, y) = 0

▶ Let f(x, y) =
∏

z<x g(z, y) for x ̸= 0, and 1 for x = 0.
Function f is the unique solution of :{

∂f(x,y)
∂x = f(x, y) · (g(x, y) − 1)

f(0, y) = 1

Outline

Introduction

Algebra of functions

Discrete ODE

Discrete ODE and complexity

Back to primitive recursion

One can obviously rewrite p.r. schemas using discrete ODE
Main part :

f(0, y) = g(y)

f(x + 1, y) = h(f(x, y), x, y)
= f(x, y) + (−f(x, y) + h(f(x, y), x, y))

Hence, setting h0(f(x, y), x, y) = −f(x, y) + h(f(x, y), x, y),
f(x, y) is solution of

∂f(x, y)
∂x

= h0(f(x, y), x, y)

So easy. This is just rephrasing...

Recursion on notation (Cobham)

What about complexity classes? Recall Cobham:
f(0, y) = g(y)
f(s0(x), y) = h0(x, y, f(x, y)) for x ̸= 0
f(s1(x), y) = h1(x, y, f(x, y))
f(x, y) ≤ k(x, y)

▶ Two successors do not fit well with a derivation approach
▶ bounding by function k is not very natural either

Objective: get rid of these two features and replace them by more
ODE friendly restrictions

Derivation along a function

Given function L, consider the equation:

f(x + 1, y) = f(x, y) + (L(x + 1, y) − L(x, y)) · h(f(x, y), x, y)

The value of f changes only when the value of L changes.

Consequence: only as many values to consider to compute
f(x, y) as the number of times L(t, y) changes between t = 0 and
t = x...

Application: if L(x, y) is the logarithm function ℓ(x) then only a
logarithmic in x number of values

Derivation along a function
f(x + 1, y) = f(x, y) + (L(x + 1, y) − L(x, y)) · h(f(x, y), x, y)
means :

∂f(x, y)
∂x

= ∂L(x, y)
∂x

· h(f(x, y), x, y)

Definition (L-ODE)
Let L : Np+1 → Z. The open equation will be written as:

∂f(x, y)
∂L

= ∂f(x, y)
∂x

∂x

∂L(x, y) = h(f(x, y), x, y) (2)

Inspired by the classical formula:

δf(x, y)
δx

= δf(x, y)
δL(x, y) · δL(x, y)

δx
.

Discrete ℓ()-ODE schemas

What about the smallest classes of functions
▶ that contains 0, 1, projections πp

i , the length ℓ(x), functions
x+y, x−y, x × y, the sign function sg(x)

▶ that is closed under composition and ℓ()-ODE schemata.
▶ Good: the number of step to compute the solution of a

ℓ()-ODE is bounded linearly in the length of x

▶ Bad: It is easily seen that the solution of

∂f(x)
∂ℓ(x) = f(x) · (f(x) − 1) (3)

is a fast growing function (output is exponential in size)
So we know how to control the number of steps but not the size of
objects

Back to linear systems

Linear ODE: system of the form{
f ′(x, y) = A(x, y) · f(x, y) + B(x, y)
f(0, y) = G(y) (initial conditions)

For matrices A and vectors B and G. Recall that:

f(x, y) =
x−1∑

u=−1

(
x−1∏

t=u+1
(1 + A(t, y))

)
· B(u, y)

Using convention:
∏x−1

x κ(x) = 1 and B(−1, y) = G(y)

Linear system alone are also too powerful.... But if one reduces the
number of steps drastically then the size of the output may
become controlable

Towards capturing FP

▶ Idea: combine linearity and derivation along some particular
function L i.e. systems :

∂f(x, y)
∂L

= h(f(x, y), x, y), (4)

where
▶ h is "linear"
▶ L has a polylogarithmic number of values (such has the ℓ()

function)

DL

Definition (DL)
Let DL be the smallest subset of functions,
▶ that contains 0, 1, projections πp

i , the length ℓ(x), functions
x+y, x−y, x × y, the sign function sg(x)

▶ closed under composition (when defined) and linear
length-ODE scheme:

∂f(x, y)
∂ℓ

= u(f(x, y), x, y) and f(0, y) = g(y)

where u is essentially linear in f(x, y).

A characterization of FP

Theorem
DL = FP

Proof of (⊆): Roughly speaking
▶ The derivation along ℓ(x) (or any L with polylog "jumps")

permits to control the number of steps
▶ Linearity of the system permits to control the size of the

output
Proof of (⊇): By a direct expression of a polynomial
computation of a register machine.

Conclusion, questions and work in progress

▶ Short tour on the expressive and computational power of
discrete ODE

▶ Appears
▶ to be a convenient tool for algorithm design
▶ to elegantly capture complexity notions

▶ Extend the work to other classes (FPSPACE, NP, circuit
classes)

▶ Smaller derivation steps and allowing errors
▶ Generalize to the continuous setting

	Introduction
	Algebra of functions
	Discrete ODE
	Discrete ODE and complexity

