
Functional abstraction
for programming

Multi-level architectures:
Formalisation and implementation

Victor ALLOMBERT

under the supervision of:
Frédéric GAVA and Julien TESSON

Ph.D. defense

V. Allombert 7 July 2017 1 / 45

Table of Contents

1 Introduction

2 The multi-ml language

3 Type system

4 Implementation

5 Conclusion

V. Allombert 7 July 2017 1 / 45

Table of Contents

1 Introduction
The world of parallel computing
Parallel programming models

2 The multi-ml language

3 Type system

4 Implementation

5 Conclusion

V. Allombert 7 July 2017 2 / 45

The world of parallel computing

Simulations:
Fluid simulation
3D Visualisation

Big-Data:
IoT
Social Networking
Data science

Symbolic computation:
Model-Checking
Formal computing

Super-computer

V. Allombert 7 July 2017 2 / 45

Parallel computing over the years

1970-80 1990-00 2010-now

The beginning

Shared memory

Cray-1

V. Allombert 7 July 2017 3 / 45

Parallel computing over the years

1970-80 1990-00 2010-now

The beginning

Shared memory

Cray-1

V. Allombert 7 July 2017 3 / 45

Parallel computing over the years

1970-80 1990-00 2010-now

The beginning

Shared memory

Cray-1

V. Allombert 7 July 2017 3 / 45

Shared memory models
Characterised by:

• A shared memory
• Integrated network (numa)
• openmp/pthread (c, fortran)

Memory

Core

Core

Core

Core

V. Allombert 7 July 2017 4 / 45

Parallel computing over the years

1970-80 1990-00 2010-now

The beginning

Shared memory

Cray-1

Distributed memory

Clusters

V. Allombert 7 July 2017 5 / 45

Parallel computing over the years

1970-80 1990-00 2010-now

The beginning

Shared memory

Cray-1

Distributed memory

Clusters

V. Allombert 7 July 2017 5 / 45

Parallel computing over the years

1970-80 1990-00 2010-now

The beginning

Shared memory

Cray-1

Distributed memory

Clusters

V. Allombert 7 July 2017 5 / 45

Distributed computing

Characterised by:

• Interconnected units
• Distributed memory
• Communication network
• mpi/map-reduce

Core Memory Core Memory

Core Memory Core Memory

V. Allombert 7 July 2017 6 / 45

Parallel computing over the years

1970-80 1990-00 2010-now

The beginning

Shared memory

Cray-1

Distributed memory

Clusters

Hierarchical memory

Roadrunner TaihuLight

V. Allombert 7 July 2017 7 / 45

Parallel computing over the years

1970-80 1990-00 2010-now

The beginning

Shared memory

Cray-1

Distributed memory

Clusters

Hierarchical memory

Roadrunner TaihuLight

V. Allombert 7 July 2017 7 / 45

Parallel computing over the years

1970-80 1990-00 2010-now

The beginning

Shared memory

Cray-1

Distributed memory

Clusters

Hierarchical memory

Roadrunner

TaihuLight

V. Allombert 7 July 2017 7 / 45

Parallel computing over the years

1970-80 1990-00 2010-now

The beginning

Shared memory

Cray-1

Distributed memory

Clusters

Hierarchical memory

Roadrunner TaihuLight

V. Allombert 7 July 2017 7 / 45

Hierarchical architectures

Characterised by:

• Interconnected units
• Both shared and distributed memories
• Hierarchical memories

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

V. Allombert 7 July 2017 8 / 45

Parallel computing over the years

1970-80 1990-00 2010-now

The beginning

Shared memory

Cray-1

Distributed memory

Clusters

Hierarchical memory

Roadrunner TaihuLight

V. Allombert 7 July 2017 9 / 45

Parallel programming models

Parallel programming

Implicit Explicit

Automatic
Parallelisation

Skeletons
Data

Parallelism
Concurrent

Programming

Automatic Parallelisation:
+ Easy
+ Transparent
– Limited
– “Naive”

• Par4All
• Intel c++ compiler
• Vienna Fortran compiler

V. Allombert 7 July 2017 10 / 45

Parallel programming models

Parallel programming

Implicit Explicit

Automatic
Parallelisation

Skeletons

Data
Parallelism

Concurrent
Programming

Skeletons:
+ Easy
+ Structured
– Difficult to extend
– Cost model

• skml
• sketo
• Muesli

V. Allombert 7 July 2017 10 / 45

Parallel programming models

Parallel programming

Implicit Explicit

Automatic
Parallelisation

Skeletons
Data

Parallelism

Concurrent
Programming

Data Parallelism:
+ Structured
+ Patterns
– Limited
– Complex

• openmp
• sac
• cuda

V. Allombert 7 July 2017 10 / 45

Parallel programming models

Parallel programming

Implicit Explicit

Automatic
Parallelisation

Skeletons
Data

Parallelism
Concurrent

Programming

Concurrent Programming:

+ Flexible
+ Powerful
– Complex
– Error prone

• mpi
• pthread
• erlang/jocaml

V. Allombert 7 July 2017 10 / 45

Why structured parallelism ?
st

ru
ct

ur
ed

+ →

Pieces (Data) Workers (Processes) House (Results)

un
st

ru
ct

ur
ed

+ →

V. Allombert 7 July 2017 11 / 45

Why structured parallelism ?
st

ru
ct

ur
ed

+

→

Pieces (Data) Workers (Processes) House (Results)

un
st

ru
ct

ur
ed

+ →

V. Allombert 7 July 2017 11 / 45

Why structured parallelism ?
st

ru
ct

ur
ed

+ →

Pieces (Data) Workers (Processes) House (Results)

un
st

ru
ct

ur
ed

+ →

V. Allombert 7 July 2017 11 / 45

Why structured parallelism ?
st

ru
ct

ur
ed

+ →

Pieces (Data) Workers (Processes) House (Results)

un
st

ru
ct

ur
ed

+ →

V. Allombert 7 July 2017 11 / 45

Why structured parallelism ?
st

ru
ct

ur
ed

+ →

Pieces (Data) Workers (Processes) House (Results)

un
st

ru
ct

ur
ed

+ →

V. Allombert 7 July 2017 11 / 45

Why structured parallelism ?
st

ru
ct

ur
ed

+ →

Pieces (Data) Workers (Processes) House (Results)

un
st

ru
ct

ur
ed

+ →

V. Allombert 7 July 2017 11 / 45

Why structured parallelism ?
st

ru
ct

ur
ed

+ →

Pieces (Data) Workers (Processes) House (Results)

un
st

ru
ct

ur
ed

+

→

V. Allombert 7 July 2017 11 / 45

Why structured parallelism ?
st

ru
ct

ur
ed

+ →

Pieces (Data) Workers (Processes) House (Results)

un
st

ru
ct

ur
ed

+ →

V. Allombert 7 July 2017 11 / 45

Why structured parallelism ?
st

ru
ct

ur
ed

+ →

Pieces (Data) Workers (Processes) House (Results)

un
st

ru
ct

ur
ed

+ →

V. Allombert 7 July 2017 11 / 45

Why structured parallelism ?
st

ru
ct

ur
ed

+ →

Pieces (Data) Workers (Processes) House (Results)

un
st

ru
ct

ur
ed

+ →

V. Allombert 7 July 2017 11 / 45

A sequential bridging model

Von Neumann

SoftwareHardware

Quick Sort

Compiler X

ml

c

x86

x64

ARM

PowerPC

V. Allombert 7 July 2017 12 / 45

A parallel bridging model

????

SoftwareHardware

Sorting algorithms

Compilers

Language

Skeletons

Multi-Core

Cluster

Super-computer

GPU

FPGA

V. Allombert 7 July 2017 13 / 45

A parallel bridging model

bsp

SoftwareHardware

Parallel Sorting
by Regular Sampling

Heat equation

bsplib

bsml

Multi-core

Cluster

Super-computer

V. Allombert 7 July 2017 14 / 45

Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory
• Communication network
• Synchronisation unit
• Super-steps execution

Properties:

• Deadlock-free
• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step...

V. Allombert 7 July 2017 15 / 45

Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory

• Communication network
• Synchronisation unit
• Super-steps execution

Properties:

• Deadlock-free
• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step...

V. Allombert 7 July 2017 15 / 45

Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory
• Communication network

• Synchronisation unit
• Super-steps execution

Properties:

• Deadlock-free
• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step...

V. Allombert 7 July 2017 15 / 45

Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory
• Communication network
• Synchronisation unit

• Super-steps execution

Properties:

• Deadlock-free
• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step...

V. Allombert 7 July 2017 15 / 45

Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory
• Communication network
• Synchronisation unit
• Super-steps execution

Properties:

• Deadlock-free
• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step...

V. Allombert 7 July 2017 15 / 45

Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory
• Communication network
• Synchronisation unit
• Super-steps execution

Properties:

• Deadlock-free
• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step...

V. Allombert 7 July 2017 15 / 45

Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory
• Communication network
• Synchronisation unit
• Super-steps execution

Properties:

• Deadlock-free

• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step...

V. Allombert 7 July 2017 15 / 45

Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory
• Communication network
• Synchronisation unit
• Super-steps execution

Properties:

• Deadlock-free
• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step...

V. Allombert 7 July 2017 15 / 45

A parallel bridging model

bsp

SoftwareHardware

Parallel Sorting
by Regular Sampling

Heat equation

bsplib

bsml

Multi-core

Cluster

Super-computer

V. Allombert 7 July 2017 16 / 45

Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach

• Based upon ml and implemented over ocaml
• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part

V. Allombert 7 July 2017 17 / 45

Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach
• Based upon ml and implemented over ocaml

• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part

V. Allombert 7 July 2017 17 / 45

Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach
• Based upon ml and implemented over ocaml
• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part

V. Allombert 7 July 2017 17 / 45

Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach
• Based upon ml and implemented over ocaml
• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part

V. Allombert 7 July 2017 17 / 45

A parallel bridging model

bsp

SoftwareHardware

Parallel Sorting
by Regular Sampling

Heat equation

bsplib

bsml

Multi-core

Cluster

Super-computer

Hierarchical
architecture

V. Allombert 7 July 2017 18 / 45

A parallel bridging model

bsp

SoftwareHardware

Parallel Sorting
by Regular Sampling

Heat equation

bsplib

bsml

Multi-core

Cluster

Super-computer

Hierarchical
architecture

V. Allombert 7 July 2017 18 / 45

Why ?

• Flat memories
• No sub-synchronisation

A parallel bridging model

multi-bsp

SoftwareHardware

multi-bsp sorting

State space

mpi (sub-group)

????-ml

Multi-core

Cluster

Super-computer

Hierarchical
architecture

V. Allombert 7 July 2017 19 / 45

What is multi-bsp?

Stage 3

Network

RAM

P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4

V. Allombert 7 July 2017 20 / 45

What is multi-bsp?
1 A tree structure with nested components

2 Where nodes have a storage capacity
3 And leaves are processors
4 With sub-synchronisation capabilities

Stage 3

Network

RAM
P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4

V. Allombert 7 July 2017 20 / 45

What is multi-bsp?
1 A tree structure with nested components
2 Where nodes have a storage capacity

3 And leaves are processors
4 With sub-synchronisation capabilities

Stage 3

Network

RAM

P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4

V. Allombert 7 July 2017 20 / 45

What is multi-bsp?
1 A tree structure with nested components
2 Where nodes have a storage capacity
3 And leaves are processors

4 With sub-synchronisation capabilities

Stage 3

Network

RAM

P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4

V. Allombert 7 July 2017 20 / 45

What is multi-bsp?
1 A tree structure with nested components
2 Where nodes have a storage capacity
3 And leaves are processors
4 With sub-synchronisation capabilities

Stage 3

Network

RAM
P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4

V. Allombert 7 July 2017 20 / 45

What is multi-bsp?
• Stage 3: 4 nodes with a network access
• Stage 2: one node has 4 chips plus RAM
• Stage 1: one chip has 8 cores plus L3 cache
• Stage 0: one core with L1/L2 caches

Stage 3

Network

RAM
P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4

V. Allombert 7 July 2017 20 / 45

bsp vs. multi-bsp

Network

p0 p1 p2 p3

bs
p

p0
p1

p2
p3

Co
re

Time

Multi_Core

core0

p0 p1

core1

p2 p3

m
ul

ti
-b

sp

p0
p1

p2
p3

Co
re

V. Allombert 7 July 2017 21 / 45

bsp vs. multi-bsp

Network

p0 p1 p2 p3

bs
p

p0
p1

p2
p3

Co
re

Time

Multi_Core

core0

p0 p1

core1

p2 p3

m
ul

ti
-b

sp

p0
p1

p2
p3

Co
re

V. Allombert 7 July 2017 21 / 45

The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently
• Exchanges information with the mi memory
• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li

V. Allombert 7 July 2017 22 / 45

The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently

• Exchanges information with the mi memory
• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li

V. Allombert 7 July 2017 22 / 45

The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently
• Exchanges information with the mi memory

• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li

V. Allombert 7 July 2017 22 / 45

The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently
• Exchanges information with the mi memory
• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li

V. Allombert 7 July 2017 22 / 45

Table of Contents

1 Introduction

2 The multi-ml language
multi-ml overview
The multi-ml primitives
A code example

3 Type system

4 Implementation

5 Conclusion

V. Allombert 7 July 2017 23 / 45

The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture
• Specific syntax over ml: eases programming
• Multi-functions that recursively go through the multi-bsp tree

tree

Replicated part
(multi-bsp)

V. Allombert 7 July 2017 23 / 45

The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture

• Specific syntax over ml: eases programming
• Multi-functions that recursively go through the multi-bsp tree

e … e

let v= <<e>>

<< >>
⇒ f0 f1 ... fp−1

parallel
vector

Replicated part (bsp)

Sequential part

tree

Replicated part
(multi-bsp)

V. Allombert 7 July 2017 23 / 45

The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture
• Specific syntax over ml: eases programming

• Multi-functions that recursively go through the multi-bsp tree

e … e

let v= <<e>>

<< >>
⇒ f0 f1 ... fp−1

parallel
vector

Replicated part (bsp)

Sequential part

tree

Replicated part
(multi-bsp)

V. Allombert 7 July 2017 23 / 45

The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture
• Specific syntax over ml: eases programming
• Multi-functions that recursively go through the multi-bsp tree

tree

Replicated part
(multi-bsp)

V. Allombert 7 July 2017 23 / 45

multi-ml: Tree recursion

Recursion structure
let multi f [args]=

where node =
(* BSML code *)
...
<< f [args] >>
... in v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f
v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

Result
v0

V. Allombert 7 July 2017 24 / 45

multi-ml: Tree recursion

Recursion structure
let multi f [args]=

where node =
(* BSML code *)
...
<< f [args] >>
... in v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f
v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

Result
v0

V. Allombert 7 July 2017 24 / 45

multi-ml: Tree recursion

Recursion structure
let multi f [args]=

where node =
(* BSML code *)
...
<< f [args] >>
... in v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f
v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

Result
v0

V. Allombert 7 July 2017 24 / 45

multi-ml: Tree recursion

Recursion structure
let multi f [args]=

where node =
(* BSML code *)
...
<< f [args] >>
... in v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f
v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

Result
v0

V. Allombert 7 July 2017 24 / 45

multi-ml: Tree recursion

Recursion structure
let multi f [args]=

where node =
(* BSML code *)
...
<< f [args] >>
... in v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f

v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

Result
v0

V. Allombert 7 July 2017 24 / 45

multi-ml: Tree recursion

Recursion structure
let multi f [args]=

where node =
(* BSML code *)
...
<< f [args] >>
... in v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f

v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

Result
v0

V. Allombert 7 July 2017 24 / 45

multi-ml: Tree recursion

Recursion structure
let multi f [args]=

where node =
(* BSML code *)
...
<< f [args] >>
... in v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f
v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

Result
v0

V. Allombert 7 July 2017 24 / 45

multi-ml: Tree recursion

Recursion structure
let multi f [args]=

where node =
(* BSML code *)
...
<< f [args] >>
... in v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f
v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

Result
v0

V. Allombert 7 July 2017 24 / 45

multi-ml: Tree construction

Tree construction
let multi tree f [args]=

where node =
(* BSML code *)
... in
finally << f [args] >> v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f fv0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

v0

V. Allombert 7 July 2017 25 / 45

multi-ml: Tree construction

Tree construction
let multi tree f [args]=

where node =
(* BSML code *)
... in
finally << f [args] >> v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f fv0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

v0

V. Allombert 7 July 2017 25 / 45

multi-ml: Tree construction

Tree construction
let multi tree f [args]=

where node =
(* BSML code *)
... in
finally << f [args] >> v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f fv0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

v0

V. Allombert 7 July 2017 25 / 45

multi-ml: Tree construction

Tree construction
let multi tree f [args]=

where node =
(* BSML code *)
... in
finally << f [args] >> v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f fv0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

v0

V. Allombert 7 July 2017 25 / 45

multi-ml: Tree construction

Tree construction
let multi tree f [args]=

where node =
(* BSML code *)
... in
finally << f [args] >> v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f

v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

v0

V. Allombert 7 July 2017 25 / 45

multi-ml: Tree construction

Tree construction
let multi tree f [args]=

where node =
(* BSML code *)
... in
finally << f [args] >> v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f

v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

v0

V. Allombert 7 July 2017 25 / 45

multi-ml: Tree construction

Tree construction
let multi tree f [args]=

where node =
(* BSML code *)
... in
finally << f [args] >> v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f

v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

v0

V. Allombert 7 July 2017 25 / 45

multi-ml: Tree construction

Tree construction
let multi tree f [args]=

where node =
(* BSML code *)
... in
finally << f [args] >> v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f

v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

v0

V. Allombert 7 July 2017 25 / 45

Primitives

Summary

• mktree e
• gid
• at
• <<...f...>>
• #x#
• mkpar f

V. Allombert 7 July 2017 26 / 45

Primitives

Summary

• mktree e

• gid
• at
• <<...f...>>
• #x#
• mkpar f

e

e

e e

e

e e

V. Allombert 7 July 2017 26 / 45

Primitives

Summary

• mktree e
• gid

• at
• <<...f...>>
• #x#
• mkpar f

0

0.0

0.0.0 0.0.1

0.1

0.1.0 0.1.1

V. Allombert 7 July 2017 26 / 45

Primitives

Summary

• mktree e
• gid
• at

• <<...f...>>
• #x#
• mkpar f

at t

v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

v0

V. Allombert 7 July 2017 26 / 45

Primitives

Summary

• mktree e
• gid
• at

• <<...f...>>
• #x#
• mkpar f

at t
v0.1

v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

v0

V. Allombert 7 July 2017 26 / 45

Primitives

Summary

• mktree e
• gid
• at
• <<...f...>>

• #x#
• mkpar f

N

f f

V. Allombert 7 July 2017 26 / 45

Primitives

Summary

• mktree e
• gid
• at
• <<...f...>>

• #x#
• mkpar f

N

f f

V. Allombert 7 July 2017 26 / 45

Primitives

Summary

• mktree e
• gid
• at
• <<...f...>>
• #x#

• mkpar f

let x = ...x

#x##x#<< >>

V. Allombert 7 July 2017 26 / 45

Primitives

Summary

• mktree e
• gid
• at
• <<...f...>>
• #x#

• mkpar f

let x = ...x

#x##x#<< >>

V. Allombert 7 July 2017 26 / 45

Primitives

Summary

• mktree e
• gid
• at
• <<...f...>>
• #x#

• mkpar f

let x = ...x

#x##x#<< >>

V. Allombert 7 July 2017 26 / 45

Primitives

Summary

• mktree e
• gid
• at
• <<...f...>>
• #x#
• mkpar f

mkpar (fun i -> vi)

f 0; f 1

v0 v1

V. Allombert 7 July 2017 26 / 45

Primitives

Summary

• mktree e
• gid
• at
• <<...f...>>
• #x#
• mkpar f

mkpar (fun i -> vi)

f 0; f 1

v0 v1

V. Allombert 7 July 2017 26 / 45

Primitives

Summary

• mktree e
• gid
• at
• <<...f...>>
• #x#
• mkpar f

mkpar (fun i -> vi)

f 0; f 1

v0 v1

V. Allombert 7 July 2017 26 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l

V. Allombert 7 July 2017 27 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l

[0...7]

V. Allombert 7 July 2017 27 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l

[0...3] [4...7]

V. Allombert 7 July 2017 27 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l

[0...3] [4...7]

V. Allombert 7 July 2017 27 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l [0; 1] [2; 3] [4; 5] [6; 7]

V. Allombert 7 July 2017 27 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l [0; 1] [2; 3] [4; 5] [6; 7]

V. Allombert 7 July 2017 27 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l [1] [5] [9] [13]

V. Allombert 7 July 2017 27 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l [1] [5] [9] [13]

[1; 5] [9; 13]

V. Allombert 7 July 2017 27 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l [1] [5] [9] [13]

[6] [22]

V. Allombert 7 July 2017 27 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l [1] [5] [9] [13]

[6] [22]

V. Allombert 7 July 2017 27 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l [1] [5] [9] [13]

[6] [22]

[6; 22]

V. Allombert 7 July 2017 27 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l [1] [5] [9] [13]

[6] [22]

[28]

V. Allombert 7 July 2017 27 / 45

Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s

where leaf =

sumSeq l [1] [5] [9] [13]

[6] [22]

[28]

V. Allombert 7 July 2017 27 / 45

Table of Contents

1 Introduction

2 The multi-ml language

3 Type system
Parallel program safety
The multi-ml typing system

4 Implementation

5 Conclusion

V. Allombert 7 July 2017 28 / 45

Parallel program safety
Parallel program safety

• Replicated coherency

Replicated coherency
if random_bool () then

multi_fct ()
else

(fun _ -> ...) ()

V. Allombert 7 July 2017 28 / 45

Parallel program safety
Parallel program safety

• Replicated coherency

Replicated coherency
if random_bool () then

multi_fct ()
else

(fun _ -> ...) ()

V. Allombert 7 July 2017 28 / 45

Why ?

A B C D

or

A B C D

Type system
Parallel program safety

• Replicated coherency
• Level (memory) compatibility

Level(memory) compatibility

<< let multi f x = ... >>
let x = #y#
let z = v

V. Allombert 7 July 2017 28 / 45

Type system
Parallel program safety

• Replicated coherency
• Level (memory) compatibility
• Control parallel structure imbrication

• vector
• tree

Parallel structure imbrication

<< let v = << 1 >> in v >>
let v = << 1 >> in << v >>

V. Allombert 7 July 2017 28 / 45

Type localities

<< >>

m

b

s

c

ℓ

V. Allombert 7 July 2017 29 / 45

Type localities

<< >>

m

b

s

c

ℓ

V. Allombert 7 July 2017 29 / 45

Type localities

<< >>

m

b

s

c

ℓ

V. Allombert 7 July 2017 29 / 45

Type localities

<< >>

m

b

s

c

ℓ

V. Allombert 7 July 2017 29 / 45

Type localities

<< >>

m

b

s

c

ℓ

V. Allombert 7 July 2017 29 / 45

Type localities

<< >>

m

b

s

c

ℓ

V. Allombert 7 July 2017 29 / 45

Type localities

<< >>

m

b

s

c

ℓ

V. Allombert 7 July 2017 29 / 45

Type annotations

<< >>

m

b

s

c

ℓ

Type grammar
τ ::=

απ type variable
Baseπ base type
(τ, τ)π pair
τ Parb vector
τ Treeπ tree
(τ

π−→ τ)π arrow type

π ::= m | b | c | l | s

V. Allombert 7 July 2017 30 / 45

Type annotations

Latent effect

(τ
π−→ τ)π′

Where π is the effect emitted by the evaluation
and π′ the locality of definition.

A bsp function
#let f = fun x ->

let v = << ... >> in 1
-: val f : ('a_`z -(b)-> int_b)_m

f : (′a‘z
b−→ intb)m

V. Allombert 7 July 2017 31 / 45

Accessibility
Accessibility: ◁

m, c ◁ m
m, b ◁ b

m, l, c ◁ l
m, l, c ◁ c

m, s ◁ s

m

b c ℓ s

λ2 ◁ λ1 : « λ1 can read in λ2 memory. »

Example:

f : (′a‘z
b−→ intb)m

f 1 ⇝ b ◁ m

Error

V. Allombert 7 July 2017 32 / 45

Accessibility
Accessibility: ◁

m, c ◁ m
m, b ◁ b

m, l, c ◁ l
m, l, c ◁ c

m, s ◁ s

m

b c ℓ s

λ2 ◁ λ1 : « λ1 can read in λ2 memory. »

Example:

f : (′a‘z
b−→ intb)m

f 1 ⇝ b ◁ m

Error

V. Allombert 7 July 2017 32 / 45

Accessibility
Accessibility: ◁

m, c ◁ m
m, b ◁ b

m, l, c ◁ l
m, l, c ◁ c

m, s ◁ s

m

b c ℓ s

λ2 ◁ λ1 : « λ1 can read in λ2 memory. »

Example:

f : (′a‘z
b−→ intb)m

f 1 ⇝ b ◁ m
Error

V. Allombert 7 July 2017 32 / 45

Definability
Definability: ◀

s, b,m ◀ m
b ◀ b

l, c ◀ c
l, c ◀ l

s ◀ s

m

b c ℓ s

λ1 ◀ λ2 : « λ1 can be defined in λ2 memory. »

Example:

<< let multi f x = ... >> ⇝ m ◀ c

Error

V. Allombert 7 July 2017 33 / 45

Definability
Definability: ◀

s, b,m ◀ m
b ◀ b

l, c ◀ c
l, c ◀ l

s ◀ s

m

b c ℓ s

λ1 ◀ λ2 : « λ1 can be defined in λ2 memory. »

Example:

<< let multi f x = ... >> ⇝ m ◀ c

Error

V. Allombert 7 July 2017 33 / 45

Definability
Definability: ◀

s, b,m ◀ m
b ◀ b

l, c ◀ c
l, c ◀ l

s ◀ s

m

b c ℓ s

λ1 ◀ λ2 : « λ1 can be defined in λ2 memory. »

Example:

<< let multi f x = ... >> ⇝ m ◀ c
Error

V. Allombert 7 July 2017 33 / 45

Other relations
Propagation
This relation returns the prevailing effect among ε and ε′.

m

b cl

s

Serialisation
Is it safe to communicate τπ to locality Λ ?

SeriaΛ(Baseπ) = BaseΛ if Base = int, string, float, Bool,…
SeriaΛ(Baseπ) = Fail if Base = i/o,…

SeriaΛ(τπ) =

{
τΛ, if π ◁ Λ

Fail, otherwise
SeriaΛ(τπ parb) = Fail

V. Allombert 7 July 2017 34 / 45

Formal properties

Operational semantics

• Big Step semantics (deterministic)
• Big Step semantics for diverging terms (mutually exclusive)
• Programs that “do not go wrong” : (∃v. ⇓L

p v) or (⇓L
p ∞)

Type safety of a multi-ml program

• Let e be an expression,
• Γ a typing environment,
• and c a set of constraint.

Then: Γ ⊢ e : τπ/ε[c] implies that e “does not go wrong” (e ⇒safe)

V. Allombert 7 July 2017 35 / 45

Formal properties

Operational semantics

• Big Step semantics (deterministic)

• Big Step semantics for diverging terms (mutually exclusive)
• Programs that “do not go wrong” : (∃v. ⇓L

p v) or (⇓L
p ∞)

Type safety of a multi-ml program

• Let e be an expression,
• Γ a typing environment,
• and c a set of constraint.

Then: Γ ⊢ e : τπ/ε[c] implies that e “does not go wrong” (e ⇒safe)

V. Allombert 7 July 2017 35 / 45

Formal properties

Operational semantics

• Big Step semantics (deterministic)
• Big Step semantics for diverging terms (mutually exclusive)

• Programs that “do not go wrong” : (∃v. ⇓L
p v) or (⇓L

p ∞)

Type safety of a multi-ml program

• Let e be an expression,
• Γ a typing environment,
• and c a set of constraint.

Then: Γ ⊢ e : τπ/ε[c] implies that e “does not go wrong” (e ⇒safe)

V. Allombert 7 July 2017 35 / 45

Formal properties

Operational semantics

• Big Step semantics (deterministic)
• Big Step semantics for diverging terms (mutually exclusive)
• Programs that “do not go wrong” : (∃v. ⇓L

p v) or (⇓L
p ∞)

Type safety of a multi-ml program

• Let e be an expression,
• Γ a typing environment,
• and c a set of constraint.

Then: Γ ⊢ e : τπ/ε[c] implies that e “does not go wrong” (e ⇒safe)

V. Allombert 7 July 2017 35 / 45

Formal properties

Operational semantics

• Big Step semantics (deterministic)
• Big Step semantics for diverging terms (mutually exclusive)
• Programs that “do not go wrong” : (∃v. ⇓L

p v) or (⇓L
p ∞)

Type safety of a multi-ml program

• Let e be an expression,
• Γ a typing environment,
• and c a set of constraint.

Then: Γ ⊢ e : τπ/ε[c] implies that e “does not go wrong” (e ⇒safe)

V. Allombert 7 July 2017 35 / 45

Table of Contents

1 Introduction

2 The multi-ml language

3 Type system

4 Implementation
Execution scheme
Parallel and sequential implementations
Benchmarks

5 Conclusion

V. Allombert 7 July 2017 36 / 45

Execution scheme

• One process per leaf/node
• Distributed over physical cores

1

2

A B

3

C D

⇒
1 A 2 B 3 C D

RAM RAM

Network

Core0 Core1 Core0 Core1

V. Allombert 7 July 2017 36 / 45

Execution scheme

p0

p1 p2

Master

Slaves

Orders/Signals

Signal1 job
Signal2 job

f = recv ()
f ()

f = recv ()
f ()

.

p0 p1 p2

V. Allombert 7 July 2017 37 / 45

Formal properties

Correctness of a multi-ml program
If e ⇒safe and WF (e) we have : ⟨⟨[[e]]m ,…, [[e]]m⟩⟩ ⇒safe

V. Allombert 7 July 2017 38 / 45

Distributed implementation

Module

• Communication library
• Based on operational

semantics

Current implementation

• mpi processes
• Distributed over physical cores
• Shared/Distributed memory

Future implementations

• tcp/ip
• pthread
• …

V. Allombert 7 July 2017 39 / 45

Sequential implementation

Sequential simulator

• ocaml-like toplevel
• Test and debug
• Tree structure
• Hash tables to

represent memories

#let multi tree f n =
where node =

let r =<<f (pid + #n# + 1) >> in
finally r (gid^"=>"^n)

where leaf=
(gid^"=>"^n);;

- : val f : int -> string tree = <multi-fun>
(f 0)
o "0->0"
|
--o "0.0->1"
| |--> "0.0.0-> 2"
| |--> "0.0.1-> 3"
--o "0.1->2"
| |--> "0.1.0-> 3"
| |--> "0.1.1-> 4"

V. Allombert 7 July 2017 40 / 45

Benchmarks

Naive Eratosthenes sieve
• √

(n)th first prime numbers
• Based on scan
• Unbalanced

Results

100_000 500_000 1_000_000
multi-ml bsml multi-ml bsml multi-ml bsml

8 0.7 1.8 22.4 105.0 125.3 430.7
64 0.3 0.3 1.3 8.7 4.1 56.1

V. Allombert 7 July 2017 41 / 45

Benchmarks

Naive Eratosthenes sieve
• √

(n)th first prime numbers
• Based on scan
• Unbalanced

0 ... 7 56 ... 63

Mirev 3
Network

Machine

Multi-core

Thread

Results

100_000 500_000 1_000_000
multi-ml bsml multi-ml bsml multi-ml bsml

8 0.7 1.8 22.4 105.0 125.3 430.7
64 0.3 0.3 1.3 8.7 4.1 56.1

V. Allombert 7 July 2017 41 / 45

Benchmarks

Naive Eratosthenes sieve
• √

(n)th first prime numbers
• Based on scan
• Unbalanced

Results

100_000 500_000 1_000_000
multi-ml bsml multi-ml bsml multi-ml bsml

8 0.7 1.8 22.4 105.0 125.3 430.7
64 0.3 0.3 1.3 8.7 4.1 56.1

V. Allombert 7 July 2017 41 / 45

Table of Contents

1 Introduction

2 The multi-ml language

3 Type system

4 Implementation

5 Conclusion

V. Allombert 7 July 2017 42 / 45

Before …

• bsp ̸= Hierarchical architecture
• bsml → bsp à la ml
• No language dedicated to multi-bsp

bsp

SoftwareHardware

Parallel Sorting
by Regular Sampling

Heat equation

bsplib

bsml

Multi-core

Cluster

Super-computer

Hierarchical
architecture

V. Allombert 7 July 2017 42 / 45

… Now

• multi-bsp extension of ml
• Recursive multi-functions let multi f x = ...
• bsml like code where node = << f ... >>
• Small syntax extension \#,$,at,mkpar,finally,mktree,...

• Type system
• Constraints
• Effects

• Operational semantics (even for diverging terms)
• Compilation scheme
• ⇒ Type safety from programs to abstract machines

V. Allombert 7 July 2017 43 / 45

Before …

multi-bsp

SoftwareHardware

multi-bsp sorting

State space

mpi (sub-group)

????-ml

Multi-core

Cluster

Super-computer

Hierarchical
architecture

V. Allombert 7 July 2017 43 / 45

… Now

multi-bsp

SoftwareHardware

multi-bsp sorting

State space

mpi (sub-group)

multi-ml

Multi-core

Cluster

Super-computer

Hierarchical
architecture

V. Allombert 7 July 2017 43 / 45

Future Work

Ongoing work

• Code examples
• Extensions

• Language
• Type system

Future work

• multi-ml + gpu ⇒ Hybrid architectures
• Cost analysis
• Certified parallel programming

V. Allombert 7 July 2017 44 / 45

Thank you for your attention ⌣

Questions ?

V. Allombert 7 July 2017 45 / 45

Fusion Sort

Fusion Sort on Mirev3 with 32 and 64 threads

V. Allombert 7 July 2017 46 / 45

Fast Fourier Transform

FFT on Mirev2 (8 machines) with 64 and 128 threads

V. Allombert 7 July 2017 47 / 45

Fast Fourier Transform

FFT on Mirev2 (6 machines) and Mirev3 (2 machines) with 64 and 128 threads

V. Allombert 7 July 2017 48 / 45

Typing rules

let in

Λ,Γ ⊢ e1 : τ1π1
/ε1 [c1]

Λ,Γ; x : Weak(τ1π1
, ε1) ⊢ e2 : τ2π2

/ε2 [c2]
c3 ≡ [Ψ = Propgt(ε1, ε2), c1, c2]
Λ,Γ ⊢ let x = e1 in e2 : τ2π2

/Ψ [c3]

<< fun _ -> let x = at t in x >>
<< let x = at t in fun _ -> x >>

V. Allombert 7 July 2017 49 / 45

	Introduction
	The world of parallel computing
	Parallel programming models

	The multi-ml language
	multi-ml overview
	The multi-ml primitives
	A code example

	Type system
	Parallel program safety
	The multi-ml typing system

	Implementation
	Execution scheme
	Parallel and sequential implementations
	Benchmarks

	Conclusion
	Appendix

