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The world of parallel computing

Simulations:
Fluid simulation
3D Visualisation

Big-Data:
IoT
Social Networking
Data science

Symbolic computation:
Model-Checking
Formal computing

Super-computer
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Shared memory models
Characterised by:

• A shared memory
• Integrated network (numa)
• openmp/pthread (c, fortran)

Memory

Core

Core

Core

Core
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Distributed computing

Characterised by:

• Interconnected units
• Distributed memory
• Communication network
• mpi/map-reduce

Core Memory Core Memory

Core Memory Core Memory
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Hierarchical architectures

Characterised by:

• Interconnected units
• Both shared and distributed memories
• Hierarchical memories
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Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

V. Allombert 7 July 2017 8 / 45



Parallel computing over the years

1970-80 1990-00 2010-now

The beginning

Shared memory

Cray-1

Distributed memory

Clusters

Hierarchical memory

Roadrunner TaihuLight

V. Allombert 7 July 2017 9 / 45



Parallel programming models

Parallel programming

Implicit Explicit

Automatic
Parallelisation

Skeletons
Data

Parallelism
Concurrent

Programming

Automatic Parallelisation:
+ Easy
+ Transparent
– Limited
– “Naive”

• Par4All
• Intel c++ compiler
• Vienna Fortran compiler
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Parallel programming models

Parallel programming

Implicit Explicit

Automatic
Parallelisation

Skeletons

Data
Parallelism

Concurrent
Programming

Skeletons:
+ Easy
+ Structured
– Difficult to extend
– Cost model

• skml
• sketo
• Muesli
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Parallel programming models

Parallel programming

Implicit Explicit

Automatic
Parallelisation

Skeletons
Data

Parallelism

Concurrent
Programming

Data Parallelism:
+ Structured
+ Patterns
– Limited
– Complex

• openmp
• sac
• cuda
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Parallel programming models

Parallel programming

Implicit Explicit

Automatic
Parallelisation

Skeletons
Data

Parallelism
Concurrent

Programming

Concurrent Programming:

+ Flexible
+ Powerful
– Complex
– Error prone

• mpi
• pthread
• erlang/jocaml
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Why structured parallelism ?
st

ru
ct

ur
ed

+ →

Pieces (Data) Workers (Processes) House (Results) 

un
st

ru
ct

ur
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+ →
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A sequential bridging model

Von Neumann

SoftwareHardware

Quick Sort

Compiler X

ml

c

x86

x64

ARM

PowerPC
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A parallel bridging model

????

SoftwareHardware

Sorting algorithms

Compilers

Language

Skeletons

Multi-Core

Cluster

Super-computer

GPU

FPGA
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A parallel bridging model

bsp

SoftwareHardware

Parallel Sorting
by Regular Sampling

Heat equation

bsplib

bsml

Multi-core

Cluster

Super-computer

V. Allombert 7 July 2017 14 / 45



Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory
• Communication network
• Synchronisation unit
• Super-steps execution

Properties:

• Deadlock-free
• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step... ... ... ...
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Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach

• Based upon ml and implemented over ocaml
• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part
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A parallel bridging model

bsp

SoftwareHardware

Parallel Sorting
by Regular Sampling

Heat equation
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bsml

Multi-core
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Why ?

• Flat memories
• No sub-synchronisation



A parallel bridging model

multi-bsp

SoftwareHardware

multi-bsp sorting

State space

mpi (sub-group)

????-ml

Multi-core

Cluster

Super-computer

Hierarchical
architecture
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What is multi-bsp?

 

Stage 3

Network

RAM

P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4
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What is multi-bsp?
1 A tree structure with nested components

2 Where nodes have a storage capacity
3 And leaves are processors
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What is multi-bsp?
• Stage 3: 4 nodes with a network access
• Stage 2: one node has 4 chips plus RAM
• Stage 1: one chip has 8 cores plus L3 cache
• Stage 0: one core with L1/L2 caches

 
Stage 3

Network

RAM
P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4
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bsp vs. multi-bsp

Network

p0 p1 p2 p3

bs
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The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently
• Exchanges information with the mi memory
• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li
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The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture
• Specific syntax over ml: eases programming
• Multi-functions that recursively go through the multi-bsp tree

tree

Replicated part
(multi-bsp)
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multi-ml: Tree recursion

Recursion structure
let multi f [args]=

where node =
(* BSML code *)
...
<< f [args] >>
... in v

where leaf =
(* OCaml code *)
... in v

f

f f

f f f f
v0.0.0 v0.0.1 v0.1.0 v0.1.1

v0.0 v0.1

Result
v0
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multi-ml: Tree construction

Tree construction
let multi tree f [args]=

where node =
(* BSML code *)
... in
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Primitives

Summary

• mktree e
• gid
• at
• <<...f...>>
• #x#
• mkpar f
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Code example

Keep the intermediate results of the sum

let multi tree sum_list l =
where node =

let v = mkpar (fun i -> split i l) in
let rc = << sum_list $v$ >> in
let s = sumSeq (flatten << at $rc$ >>)
in finally rc s

where leaf =

sumSeq l
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Parallel program safety
Parallel program safety

• Replicated coherency
 
 
 
 

Replicated coherency
if random_bool () then

multi_fct ()
else

(fun _ -> ...) ()
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Type system
Parallel program safety

• Replicated coherency
• Level (memory) compatibility

 
 
 

Level(memory) compatibility
 

<< let multi f x = ... >>
let x = #y#
let z = $v$
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Type system
Parallel program safety

• Replicated coherency
• Level (memory) compatibility
• Control parallel structure imbrication

• vector
• tree

Parallel structure imbrication
 

<< let v = << 1 >> in v >>
let v = << 1 >> in << v >>  
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Type localities

<< >>

m

b

s

c

ℓ
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Type annotations

<< >>

m

b

s

c

ℓ

Type grammar
τ ::=

απ type variable
Baseπ base type
(τ, τ)π pair
τ Parb vector
τ Treeπ tree
(τ

π−→ τ)π arrow type 
 

π ::= m | b | c | l | s
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Type annotations

Latent effect

(τ
π−→ τ)π′

Where π is the effect emitted by the evaluation
and π′ the locality of definition.

A bsp function
#let f = fun x ->

let v = << ... >> in 1
-: val f : ('a_`z -(b)-> int_b)_m

f : (′a‘z
b−→ intb)m
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Accessibility
Accessibility: ◁

m, c ◁ m
m, b ◁ b

m, l, c ◁ l
m, l, c ◁ c

m, s ◁ s

m

b c ℓ s

λ2 ◁ λ1 : « λ1 can read in λ2 memory. »

Example:

f : (′a‘z
b−→ intb)m

f 1 ⇝ b ◁ m

Error
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Definability
Definability: ◀

s, b,m ◀ m
b ◀ b

l, c ◀ c
l, c ◀ l

s ◀ s

m

b c ℓ s

λ1 ◀ λ2 : « λ1 can be defined in λ2 memory. »

Example:

<< let multi f x = ... >>  ⇝ m ◀ c

Error

V. Allombert 7 July 2017 33 / 45



Definability
Definability: ◀

s, b,m ◀ m
b ◀ b

l, c ◀ c
l, c ◀ l

s ◀ s

m

b c ℓ s

λ1 ◀ λ2 : « λ1 can be defined in λ2 memory. »

Example:

<< let multi f x = ... >>  ⇝ m ◀ c

Error

V. Allombert 7 July 2017 33 / 45



Definability
Definability: ◀

s, b,m ◀ m
b ◀ b

l, c ◀ c
l, c ◀ l

s ◀ s

m

b c ℓ s

λ1 ◀ λ2 : « λ1 can be defined in λ2 memory. »

Example:

<< let multi f x = ... >>  ⇝ m ◀ c
Error

V. Allombert 7 July 2017 33 / 45



Other relations
Propagation
This relation returns the prevailing effect among ε and ε′.

m

b cl

s

Serialisation
Is it safe to communicate τπ to locality Λ ?

SeriaΛ(Baseπ) = BaseΛ if Base = int, string, float, Bool,…
SeriaΛ(Baseπ) = Fail if Base = i/o,…

SeriaΛ(τπ) =

{
τΛ, if π ◁ Λ

Fail, otherwise
SeriaΛ(τπ parb) = Fail
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Formal properties

Operational semantics

• Big Step semantics (deterministic)
• Big Step semantics for diverging terms (mutually exclusive)
• Programs that “do not go wrong” : (∃v. ⇓L

p v) or (⇓L
p ∞)

Type safety of a multi-ml program

• Let e be an expression,
• Γ a typing environment,
• and c a set of constraint.

Then: Γ ⊢ e : τπ/ε[c] implies that e “does not go wrong” (e ⇒safe)
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Execution scheme

• One process per leaf/node
• Distributed over physical cores

1

2

A B

3

C D

⇒
1 A 2 B 3 C D

RAM RAM

Network

Core0 Core1 Core0 Core1
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Execution scheme

p0

p1 p2

Master

Slaves

Orders/Signals

Signal1 job
Signal2 job

f = recv ()
f ()

f = recv ()
f ()

. . . . . . . . . . . .

p0 p1 p2
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Formal properties

Correctness of a multi-ml program
If e ⇒safe and WF (e) we have : ⟨⟨[[e]]m ,…, [[e]]m⟩⟩ ⇒safe
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Distributed implementation

Module

• Communication library
• Based on operational

semantics

Current implementation

• mpi processes
• Distributed over physical cores
• Shared/Distributed memory

Future implementations

• tcp/ip
• pthread
• …
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Sequential implementation

Sequential simulator

• ocaml-like toplevel
• Test and debug
• Tree structure
• Hash tables to

represent memories

#let multi tree f n =
where node =

let r =<<f ($pid$ + #n# + 1) >> in
finally r (gid^"=>"^n)

where leaf=
(gid^"=>"^n);;

- : val f : int -> string tree = <multi-fun>
# (f 0)
o "0->0"
|
--o "0.0->1"
| |--> "0.0.0-> 2"
| |--> "0.0.1-> 3"
--o "0.1->2"
| |--> "0.1.0-> 3"
| |--> "0.1.1-> 4"
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Benchmarks

Naive Eratosthenes sieve
• √

(n)th first prime numbers
• Based on scan
• Unbalanced

Results

100_000 500_000 1_000_000
multi-ml bsml multi-ml bsml multi-ml bsml

8 0.7 1.8 22.4 105.0 125.3 430.7
64 0.3 0.3 1.3 8.7 4.1 56.1
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Before …

• bsp ̸= Hierarchical architecture
• bsml → bsp à la ml
• No language dedicated to multi-bsp

bsp

SoftwareHardware

Parallel Sorting
by Regular Sampling

Heat equation

bsplib

bsml

Multi-core

Cluster

Super-computer

Hierarchical
architecture
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… Now

• multi-bsp extension of ml
• Recursive multi-functions let multi f x = ...
• bsml like code   where node = << f ... >>
• Small syntax extension \#,$,at,mkpar,finally,mktree,...

• Type system
• Constraints
• Effects

• Operational semantics (even for diverging terms)
• Compilation scheme
• ⇒ Type safety from programs to abstract machines
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Future Work

Ongoing work

• Code examples
• Extensions

• Language
• Type system

Future work

• multi-ml + gpu ⇒ Hybrid architectures
• Cost analysis
• Certified parallel programming
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Thank you for your attention ⌣

Questions ?
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Fusion Sort

Fusion Sort on Mirev3 with 32 and 64 threads

V. Allombert 7 July 2017 46 / 45



Fast Fourier Transform

FFT on Mirev2 (8 machines) with 64 and 128 threads
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Fast Fourier Transform

FFT on Mirev2 (6 machines) and Mirev3 (2 machines) with 64 and 128 threads
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Typing rules

let in

Λ,Γ ⊢ e1 : τ1π1
/ε1 [c1]

Λ,Γ; x : Weak(τ1π1
, ε1) ⊢ e2 : τ2π2

/ε2 [c2]
c3 ≡ [Ψ = Propgt(ε1, ε2), c1, c2]
Λ,Γ ⊢ let x = e1 in e2 : τ2π2

/Ψ [c3]
 

<< fun _ -> let x = at t in x >>
<< let x = at t in fun _ -> x >>
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