Programming MULTI-BSP Algorithms in ML

Victor ALLOMBERT

LIFO - Université d'Orléans

15 January 2018

LABORATOIRE
D'INFORMATIQUE c
FONDAMENTALE l

D'ORLEANS

V. Allombert SEMINAR - LIP 1/37

Table of Contents

@ Introduction

@® The MULTI-ML language
© Type system

O Implementation

@ Conclusion

V. Allombert SEMINAR - LIP 1/37

Table of Contents

@ Introduction
The world of parallel computing

V. Allombert SEMINAR - LIP 2/37

The world of parallel computing

Symbolic computation:

Fluid simulation o Model-Checking
Social Networking

3D Visualisation) Formal computing
Data science

Super-computer

V. Allombert

i

(11t Of

SEMINAR - LIP 2/37

Hierarchical architectures

Characterised by:

= [nterconnected units

= Both shared and distributed memories

= Hierarchical memories

Core Core Core Core

Memory| | [Memory Memory] | [Memory

emor Wemory
Core Core Core Core

Memory Memory | | [Memory

Core Core Core Core

Memory — Memory | | [Memory

Core Core Core Core

Memory Memory | | [Memory

Memory

V. Allombert SEMINAR - LIP 3/37

A sequential bridging model

x86 Quick Sort
x64 / Compiler X

ARM ML
PowerPC C
V. Allombert SEMINAR - LIP

437

A parallel bridging model

Multi-Core

Sorting algorithms
Cluster /
Compilers

Super-computer
Language
GPU
Skeletons
FPGA

V. Allombert SEMINAR - LIP 5/37

A parallel bridging model

Parallel Sorting
by Regular Sampling

Multi-core
Heat equation
Cluster q
Super-computer BSPLIB

BSML

V. Allombert SEMINAR - LIP 6 /37

Bulk Synchronous Parallelism

The BSP computer

Defined by:
= p pairs CPU/memory
= Communication network
= Synchronisation unit

= Super-steps execution

Properties:

= Deadlock-free

= Predictable performances

V. Allombert

o[pr [P e

SEMINAR - LIP

local)
computations

communication

barrier
next super-step

737

A parallel bridging model

Parallel Sorting
by Regular Sampling

Multi-core
Heat equation
Cluster q
Super-computer BSPLIB

BSML

V. Allombert SEMINAR - LIP 8 /37

Bulk Synchronous ML

= Explicit BSP programming with a functional approach

V. Allombert SEMINAR - LIP 9 /37

Bulk Synchronous ML

= Explicit BSP programming with a functional approach

= Based upon ML and implemented over OCAML

2

4

4

V. Allombert SEMINAR - LIP 9 /37

Bulk Synchronous ML

= Explicit BSP programming with a functional approach

= Based upon ML and implemented over OCAML

= Formal semantics — computer-assisted proofs (COQ)

2

Al

4

V. Allombert SEMINAR - LIP 9 /37

Bulk Synchronous ML
What is BSML?

= Explicit BSP programming with a functional approach
= Based upon ML and implemented over OCAML

= Formal semantics — computer-assisted proofs (COQ)

Main idea

Parallel data structure = parallel vector:

Replicated part (BsP) H%

% fi o1 parallel vector
- ¢

Sequential part %

V. Allombert SEMINAR - LIP 9 /37

A parallel bridging model

Parallel Sorting

Multi-core by Regular Sampling

Cluster

Heat equation

Super-computer

] BSPLIB
Hrexarchical
architeCture
BSML

V. Allombert SEMINAR - LIP 10 / 37

A parallel bridging model

Parallel Sorting

Multi-core by Regular Sampling

Cluste .
at equation

Super-comp = Flat memories

Hrerarchic ® No sub-synchronisation BSPLIB
aretfitectuge
BSML

V. Allombert SEMINAR - LIP 10 / 37

A parallel bridging model

Multi-core MULTI-BSP sorting
Cluster / State space
Super-computer MPI (sub-group)
Hierarchical 2227-ML

architecture

V. Allombert SEMINAR - LIP 11 /37

What is MULTI-BSP?

V. Allombert SEMINAR - LIP 12 /37

What is MULTI-BSP?

@ A tree structure with nested components

Stage 3 Stage 2

V. Allombert SEMINAR - LIP 12 /37

What is MULTI-BSP?

@ A tree structure with nested components
® Where nodes have a storage capacity

Stage 3 Stage 2

V. Allombert SEMINAR - LIP 12 /37

What is MULTI-BSP?

@ A tree structure with nested components
® Where nodes have a storage capacity
© And leaves are processors

Stage 3 Stage 2

V. Allombert SEMINAR - LIP 12 /37

What is MULTI-BSP?

@ A tree structure with nested components
® Where nodes have a storage capacity

© And leaves are processors

O With sub-synchronisation capabilities

Stage 3 Stage 2

V. Allombert SEMINAR - LIP 12 /37

What is MULTI-BSP?

Stage 3: 4 nodes with a network access
Stage 2: one node has 4 chips plus RAM
Stage 1: one chip has 8 cores plus L3 cache
Stage 0: one core with L1/L2 caches

Stage 3 Stage 2

Py =4

V. Allombert SEMINAR - LIP 12 /37

The MULTI-BSP model

Execution model

A level i superstep is:

Level i

Level i—1

V. Allombert SEMINAR - LIP 13 /37

The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independently

Level i

Level i—1

V. Allombert SEMINAR - LIP 13 /37

The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independently

= Exchanges information with the m; memory

Level i

Level i—1

V. Allombert SEMINAR - LIP 13 /37

The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independently
= Exchanges information with the m; memory

= Synchronises

Level i

Level i—1

V. Allombert SEMINAR - LIP 13 /37

Table of Contents

@® The MULTI-ML language
MULTI-ML overview
The MULTI-ML primitives
A code example

V. Allombert SEMINAR - LIP 14 / 37

The MULTI-ML language

Basic ideas

V. Allombert SEMINAR - LIP 14 / 37

The MULTI-ML language

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

Replicated part (BSP) H%

llel
f; f for para
= | 0 ! p$! vector

Sequential part %

V. Allombert SEMINAR - LIP 14 /37

The MULTI-ML language

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

= Specific syntax over ML: eases programming

Replicated part (BSP) H%

llel
f; f for para
= | 0 ! p$! vector

Sequential part %

V. Allombert SEMINAR - LIP 14 /37

The MULTI-ML language

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

= Specific syntax over ML: eases programming

= Multi-functions that recursively go through the MULTI-BSP tree

Replicated part
(MULTI-BSP)

tree

V. Allombert SEMINAR - LIP 14 /37

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert SEMINAR - LIP 15 / 37

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert SEMINAR - LIP 15 / 37

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert SEMINAR - LIP 15 / 37

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert SEMINAR - LIP 15 / 37

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert

MULTI-ML: Tree recursion

SEMINAR - LIP

15 / 37

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>

in v
where leaf = mu?f N\@OJ ml?f N\@JJ
(* OCaml code *)
in v
V. Allombert SEMINAR - LIP

15 / 37

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =

(* BSML code *) ////” &\\\
V0.0, Vo.1

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert SEMINAR - LIP 15 / 37

MULTI-ML: Tree recursion

Recursion structure Result

let multi f [args]= Tw
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert SEMINAR - LIP 15 / 37

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code *)

000 Al

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert SEMINAR - LIP

16 / 37

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code *)

000 Al

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert SEMINAR - LIP 16 / 37

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code *)

000 Al

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert SEMINAR - LIP 16 / 37

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code *)

000 Al

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert SEMINAR - LIP 16 / 37

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=
where node =
(* BSML code *)
000 Al
finally << f [args] >> v
where leaf =
(* OCaml code *)
in v f f

V. Allombert SEMINAR - LIP 16 / 37

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code *)

000 Al

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert SEMINAR - LIP 16 / 37

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code *)

000 Al

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert SEMINAR - LIP 16 / 37

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code *)

000 Al

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert SEMINAR - LIP 16 / 37

Primitives

V. Allombert SEMINAR - LIP 17 / 37

Primitives

o
= mktree e

V. Allombert SEMINAR - LIP 17 / 37

= mktree e

= gid

V. Allombert

Primitives

0.0.0

0.0.1

SEMINAR - LIP

17 /37

Primitives

= mktree e
= gid

= at

V. Allombert SEMINAR - LIP 17 / 37

Primitives

= mktree e
= gid

= at

V. Allombert SEMINAR - LIP 17 / 37

Primitives

= mktree e

= gid

= at

m <L, L. FLL 0>

V. Allombert SEMINAR - LIP 17 / 37

Primitives

= mktree e

= gid

= at

m <L, L. FLL 0>

V. Allombert SEMINAR - LIP 17 / 37

Primitives

= mktree e

= gid

= at

m <L, L. FLL 0>
= #x#

V. Allombert SEMINAR - LIP 17 / 37

Primitives

= mktree e

= gid

= at

m <L, L. FLL 0>
= #x#

V. Allombert SEMINAR - LIP 17 / 37

Primitives

= mktree e

= gid

= at

m <L, L. FLL 0>
= #x#

V. Allombert SEMINAR - LIP 17 / 37

mktree e
gid

at
<L...f...>>
#x#

mkpar f

V. Allombert

Primitives

SEMINAR - LIP

mkpar (fun i -> vi)

17 /37

mktree e
gid

at
<L...f...>>
#x#

mkpar f

V. Allombert

Primitives

SEMINAR - LIP

£f0; £f1

mkpar (fun i -> vi)

17 /37

Primitives

= mktree e

mkpar (fun i -> vi)

= gid

= at

LIRS QR R 32
= Hx#

= mkpar f

V. Allombert SEMINAR - LIP 17 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)

in finally rc s
where leaf = / \ / \

sumSeq 1

V. Allombert SEMINAR - LIP 18 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)

in finally rc s
where leaf = / \ / \

sumSeq 1

V. Allombert SEMINAR - LIP 18 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s
where leaf = / \

sumSeq 1

V. Allombert SEMINAR - LIP 18 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s
where leaf = / \

sumSeq 1

V. Allombert SEMINAR - LIP 18 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
=3 where node =
=—3let v = mkpar (fun i -> split i 1) in
——3p-let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s
where leaf = / \

sumSeq 1 (0; 1] [2; 3] [4;5]|{[6;7]

V. Allombert SEMINAR - LIP 18 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s
where leaf = / \

sumSeq 1 (0; 1] [2; 3] [4;5]|{[6;7]

V. Allombert SEMINAR - LIP 18 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)

in finally rc s
where leaf = / \ /

sumSeq 1 [1] (5] 9] || [

&9

V. Allombert SEMINAR - LIP 18 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s
where leaf = /

sumSeq 1 [1] (5] 9] || [

&9

V. Allombert SEMINAR - LIP 18 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s
where leaf = /

sumSeq 1 [1] (5] 9] || [

&9

V. Allombert SEMINAR - LIP 18 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s
where leaf = /

sumSeq 1 [1] (5] 9] || [

&9

V. Allombert SEMINAR - LIP 18 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s
where leaf = /

sumSeq 1 [1] (5] 9] || [

&9

V. Allombert SEMINAR - LIP 18 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s
where leaf = /

sumSeq 1 [1] (5] 9] || [

&9

V. Allombert SEMINAR - LIP 18 / 37

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in finally rc s
where leaf = /

sumSeq 1 [1] (5] 9] || [

&9

V. Allombert SEMINAR - LIP 18 / 37

Table of Contents

© Type system
Parallel program safety
The MULTI-ML typing system

V. Allombert SEMINAR - LIP 19 / 37

Parallel program safety

Parallel program safety

= Replicated coherency

Replicated coherency

if random bool () then
multi_fct ()

else
(fun _ -> ...) O

V. Allombert SEMINAR - LIP 19 / 37

Parallel program safety

Parallel program safety

= Replicated coherency

V. Allombert SEMINAR - LIP 19 / 37

Type system

Parallel program safety

= Replicated coherency

= Level (memory) compatibility

Level(memory) compatibility

<< let multi f x = ... >>
let x = #y#
let z = v

V. Allombert SEMINAR - LIP 19 / 37

Type system

Parallel program safety

= Replicated coherency

= Level (memory) compatibility
= Control parallel structure nesting

= vector
= tree

Parallel structure nesting

<< let v = << 1 >> in v >>
let v = << 1 >> in <K v >>

V. Allombert SEMINAR - LIP 19 / 37

Type localities

V. Allombert SEMINAR - LIP 20 / 37

Type localities

V. Allombert SEMINAR - LIP 20 / 37

Type localities

V. Allombert SEMINAR - LIP 20 / 37

Type localities

V. Allombert SEMINAR - LIP 20 / 37

Type localities

e N

V. Allombert SEMINAR - LIP 20 / 37

Type localities

e N

V. Allombert SEMINAR - LIP 20 / 37

Type localities

e N

V. Allombert SEMINAR - LIP 20 / 37

Type annotations

Type grammar

T %=
Qi type variable
l Base, base type
(7,7 pair
T Pary vector
/ T Tree, tree
—_— (1 5 7)), arrow type
T w=m|b|lc|l]|s

V. Allombert SEMINAR - LIP 21 /37

Type annotations

Latent effect

Where 7 is the effect emitted by the evaluation
and 7’ the locality of definition.

A BsP function
#let £ = fun x ->
let v = << ... >> in 1
-:val f : ("a_"z -(b)-> int_b)_m

Fi('ay 2 inty)m

V. Allombert SEMINAR - LIP 22 /37

Accessibility

Accessibility: <

mc < m

mb < b m

m,lc < | /»/ \\
m,,c < ¢ b ce>t s
ms <1 s

Ao < A1 : « A1 can read in Ay memory. »

V. Allombert SEMINAR - LIP 23 /37

Accessibility

Accessibility: <

mc < m

mb < b m

m,lc < | //4 \\
m,,c < ¢ b ce>t s
ms <1 s

Ao < A1 : « A1 can read in Ay memory. »

fFs (’a‘zg intp) m
f1 ~b<dm

V. Allombert SEMINAR - LIP 23 /37

Accessibility

Accessibility: <

mc < m

mb < b m

m,lc < | //4 \\
m,,c < ¢ b ce>t s
ms <1 s

Ao < A1 : « A1 can read in Ay memory. »

f:('a, LN intp) m
f1 ~~b<dm
Error

V. Allombert SEMINAR - LIP 23 /37

Definability

Definability: «

s,sbbm <4 m m
b «4 b
lLc 4 ¢ \\
IC < / b CHE S
s 4 s

A1 € Az « A1 can be defined in A\ memory. »

V. Allombert SEMINAR - LIP 24 /37

Definability

Definability: «

s,sbbm <4 m m
b <« b
Lc 4 ¢ \\
s 4 S

A1 € Az « A1 can be defined in A\ memory. »

<< let multi f x = ... > ~~>mdcC

V. Allombert SEMINAR - LIP 24 /37

Definability

Definability: «

s,sbbm <4 m m
b «4 b
Lc 4 ¢ \\
Lc 4 | b C<>/ S
s 4 s

A1 € Az « A1 can be defined in A\ memory. »

<< let multi f x = ... > ~~>mdcC
Error

V. Allombert SEMINAR - LIP 24 /37

Other relations

This relation returns the prevailing effect among ¢ and ¢'.

I

T <+«

%

C

Serialisation

| <

Is it safe to communicate 7,; to locality A ?

Seria (Baser) = Base, If Base = int,string, float,Bool, ..
Seriap (Baser) = Fail if Base =1ijo,..
TA, ifT<aA
Seriap (7x) = .
Fail, otherwise
Seriaj (7 par,) = Fail

V. Allombert SEMINAR - LIP 25 /37

Formal properties

Operational semantics

V. Allombert SEMINAR - LIP 26 / 37

Formal properties

Operational semantics

= Big Step semantics (deterministic)

V. Allombert SEMINAR - LIP 26 / 37

Formal properties

Operational semantics

= Big Step semantics (deterministic)

= Big Step semantics for diverging terms (mutually exclusive)

V. Allombert SEMINAR - LIP 26 / 37

Formal properties

Operational semantics

= Big Step semantics (deterministic)

= Big Step semantics for diverging terms (mutually exclusive)

= Programs that “do not go wrong” : (3v. Uﬁ v) or (Uﬁ 00)

V. Allombert SEMINAR - LIP 26 / 37

Formal properties

Operational semantics

= Big Step semantics (deterministic)

= Big Step semantics for diverging terms (mutually exclusive)

= Programs that “do not go wrong” : (3v. Uﬁ v) or (Uﬁ 00)

Type safety of a MULTI-ML program

= Let e be an expression,

= I' a typing environment,

= and c a set of constraint.

Then: T' - e: 7, /€[c] implies that e “does not go wrong” (e = safe)

V. Allombert SEMINAR - LIP 26 / 37

Table of Contents

O Implementation
Execution scheme
Parallel and sequential implementations
Benchmarks

V. Allombert SEMINAR - LIP 27 / 37

Execution scheme

= One process per leaf/node

= Distributed over physical cores

Network

Core0 Corel Core0 Corel

2]
RAM RAM

V. Allombert SEMINAR - LIP 27 / 37

p0

Signall job
Signal? job

V. Allombert

Orders/Signals {

pl

f = recv ()

£ 0

Execution scheme

f = recv ()
£ 0

SEMINAR - LIP

28 / 37

Formal properties

Correctness of a MULTI-ML program

If e =care and WF (e) we have : (([€] ,..,[€],)) =sate

M

V. Allombert SEMINAR - LIP 29 / 37

Cost model

Big step semantics with costs

P P
MF el /G, and T elb &/C/ < Cpi >

V. Allombert SEMINAR - LIP 30 / 37

Cost model

Big step semantics with costs
P P

MF el /G, and T elb &/C/ < Cpi >

Cost algebra

C =
| 1 Arbitrary unit cost
| s g parameter _
|1 | parameter gl g 22 _ ? g gl
| CcocC Addition pe2 = e
| C®C Multiplication I?:%X(Ci) = mazimum(Co, ..., Cn)
| mhx(CG) Maximum L. —
=0 (@) = Go.eG
n i=0
| >(G) Sum
i=0
| Se(v) Data size

V. Allombert SEMINAR - LIP 30 /37

Distributed implementation

Current implementation

= MPI processes

i

= Shared/Distributed memory
= Communication library

= Based on operational Future implementations

semantics
= TCP/IP
= PTHREAD

V. Allombert SEMINAR - LIP 31 /37

Sequential implementation

#let multi tree f n =
where node =
let r =<<f (pid + #n# + 1) >> in
finally r (gid~"=>""n)
where leaf=
(gid~"=>""n);;

Sequential simulator

= OCAML-like toplevel

: val £ : int -> string tree = <multi-fun>

= Test and debug # (£ 0)
o "0->0"
= Tree structure |
--0 "0.0->1"
= Hash tables to . T G ok
represent memories | |--> "0.0.1-> 3"
--0 "0.1->2"

| |--> "0.1.0-> 3"
| |-->"0.1.1-> 4"

V. Allombert SEMINAR - LIP 32 /37

Benchmarks

Naive Eratosthenes sieve

= /(n)th first prime numbers
= Based on scan

= Unbalanced

V. Allombert SEMINAR - LIP 33 /37

Benchmarks

Mirev 3

Naive Eratosthenes sieve

= /(n)th first prime numbers
= Based on scan

= Unbalanced

V. Allombert SEMINAR - LIP 33 /37

Benchmarks

Eratosthenes on Mirev3 with 64 th

BSML 64 ——
MultivL 64 ——

Naive Eratosthenes sieve

= /(n)th first prime numbers

= Based on scan

Execution time (s)

= Unbalanced

0 /r/
100 200 300 400 500 600 700 800 900 1000 1100
Input size (K elements)

100_000 500_000 1_000_000
| MULTI-ML | BSML | MULTI-ML | BSML | MULTI-ML | BSML
8 0.7 1.8 22.4 105.0 125.3 430.7
64| 0.3 0.3 | 1.3 8.7 | 4.1 56.1 |

V. Allombert SEMINAR - LIP 33 /37

Table of Contents

@ Conclusion

V. Allombert SEMINAR - LIP 34 /37

Before ...

= BSP # Hierarchical architecture
= BSML — BSP a la ML
= No language dedicated to MULTI-BSP

Multi Parallel Sorting
ulti-core / by Regular Sampling

Cluster
——— Heat equation

Super-computer
) BSPLIB
Hierarghical
aretfitecture
BSML

V. Allombert SEMINAR - LIP 34 /37

. Now

MULTI-BSP extension of ML

= Recursive multi-functions let multi f x =
= BSML like code where node = << f ... >>
= Small syntax extension #,$,at,mkpar,finally,mktree,...

Type system

= Constraints
= Effects

Operational semantics (even for diverging terms)
Compilation scheme

= Type safety from programs to abstract machines

V. Allombert SEMINAR - LIP 35 /37

Before ...

Multi-core MULTI-BSP sorting
Cluster / State space
Super-computer MPI (sub-group)
Hierarchical 2227-ML

architecture

V. Allombert SEMINAR - LIP 35 /37

. Now

Multi-core MULTI-BSP sorting
Cluster / State space
Super-computer MPI (sub-group)
Hierarchical MULTI-ML

architecture

V. Allombert SEMINAR - LIP 35 /37

Future Work

Ongoing work
= Code examples

= FFT, TDS, PPP, Sort, Nbody, State-Space, MM, ..

= Extensions
= Language
= Type system

= MULTI-ML + GPU = Hybrid architectures

= Automatic cost analysis

= Certified parallel programming

V. Allombert SEMINAR - LIP 36 /37

Thank you for your attention ©

Questions ?

V. Allombert SEMINAR - LIP 37 /37

Fusion Sort

2 and 64 threads

Fusion Sort on Mirev3 with 32 th Fusion Sort on Mirev3 with 64 th

v3 wi

0
BSML —— BSML ——
MutiML —— MutiML ——

Execution time (s)
Execution time (s)

0 L . L L L L s . 0 L . . L L L L s L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Input size (K elements) Input size (K elements)

V. Allombert SEMINAR - LIP 38 /37

Fast Fourier Transform

FET on Mirev2 with 64 th FFT on Mirev2 with 128 th
140 T T T T T 140 T T T T T
BSML —— BSML ——
MutiML —— MutiML ——
£ £
< < J
s s
3 3
% £ 4
i i
20 L L . 20 L L .
10 12 14 16 18 20 22 10 12 14 16 18 20 22
Input size (2" elements) Input size (2" elements)

V. Allombert SEMINAR - LIP 39 /37

Fast Fourier Transform

FFT

Mirev2 (6 machines) and Mirev3 (2 machines) with 64 and 128 threads

FFT on Mirev2 and Mirev3 (8 machines) with 64 th FFT on Mirev2 and Mirev3 (8 machines) with 128 th
500 v T T T T 700 v T T T T
BSML —— BSML ——
450 |- MUtME —— MultiML ——
600 |-
400 -
350 500
o o
T 300 F e
£ g 400
S 250 s
3 3 300 -
¢ 200 g
i o
150 200 |-
100
100 -
50
0 0
10 12 14 10
Input size (2" elements) Input size (2" elements)

V. Allombert SEMINAR - LIP 40 / 37

Typing rules

A,F = (ST 7‘7%1/81 [Cl]
AT x: Weak(rr ,e1) ey : 72 /e [c)]
c3 = [¥ = Propgt(ei, €2), c1, 2

LET IN _
ATHlet x=-e in e : 72 /¥ [c3]

<< fun _ -> let x = at t in x >>

<< let x = at t in fun _ -> x >>

V. Allombert SEMINAR - LIP

41/ 37

	Introduction
	The world of parallel computing

	The multi-ml language
	multi-ml overview
	The multi-ml primitives
	A code example

	Type system
	Parallel program safety
	The multi-ml typing system

	Implementation
	Execution scheme
	Parallel and sequential implementations
	Benchmarks

	Conclusion
	Appendix

