Parallel Programming with OCaml:
A Tutorial

1

Victor Allombert!  Mathias Bourgoin!  Frédéric Loulergue?

g <7 NORTHERN
ARIZONA
FONDAMENTALE UNIVE RSITY ‘

D'ORLEANS

LUniversity of Orléans - The Computer Science Laboratory of Orléans
2Northern Arizona University - School of Informatics Computing and Cyber Systems

July 16,2018 - HPCS, Orléans, France

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 1/60



Outline of the Talk

@ Introduction

@ An Overview of Functional Programming with OCaml
@ Bulk Synchronous Parallelism with OCaml

@ Hierarchical Parallelism with OCaml

© GPGPU Programming with OCaml

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 2/60



OCaml

What is OCaml ?
» Functional programming language
» From the ML (Meta Language) family

Why OCaml ?
» Powerful type system
» High level features

v

Modules and object oriented approach
Embedded Garbage Collector
Byte and native code compilers

\4

\4

v

Interactive loop (toplevel)

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 3/60




OCaml code execution

Toplevel (ocaml/utop):

# 3 + 4;,;

- :int =7

# 8/ 3;;

- : int = 2

# 3.5 +. 6.;;

- : float = 9.5

# 30_000_000 / 300_000;;

- : int = 100

# sqrt 9.;;

- : float = 3. )
Compilation

» Bytecode: ocamlc —o main main.ml

» Native: ocamlopt —o main main.ml

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 4/ 60




OCaml syntax |

Variables
#let x =1

val x : int =1
#let x=1inx+2
—:int =3

Functions

#let f x =xxx

val f : int — int = <fun>
#f 10

—: int = 100

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 5/60




OCaml syntax Il

Partial application

#let f xy=x+yinf 1

val f : float — float — float = <fun>
#let g =f 13.

val g : float — float = <fun>

#g29.

—: float =42. |

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 6/60



OCaml syntax Il

Polymorphism

#let hx =x
val h: 'a — ’a
#h3

—:int =3

# h true

—: bool = true
#hf

—:int — int = <fun>

Conditional
# if true then1 else 2

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

7/60




OCaml syntax IV

Lists

# let 11 = [1;2;3]

val 11 : int list = [1;2;3]

#let 12 = 0:11

val 12 : int list [0;1;2;3]

# let 13 = 12@[4]

val I3 : int list = [0; 1; 2; 3; 4]
# List.map (funx — x +1) 13
—:int list = [1; 2; 3; 4; 5]

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 8/60




OCaml syntax V

Arrays

# let al= [|1;2;3;4]]
val al: int array = [|1; 2; 3; 4]]

# al.(0)
—:int =1
# al1.(0)«0
—: unit = ()

Imperative features
» References: let x = ref 1in x := 2
» Sequences: x := 42; print_int !x
» For loops: for i =0 to n doe done
» While loops: while bool_expr do e done

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 9/60




Simple exercises |

Write a OCaml function to compute the ratio x/y.

Write a (recursive) OCaml function to compute factorial.

Exercise 2.3

| A\

Write a OCaml function to generate a random list of integers of size n.
(Random.int v returns a random integer between O (inclusive) and v (exclusive))

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 10/ 60



Simple exercises Il

Write a function taking, as argument, a function f and a list | and returns the
mapping of the f on | such that: Imap f [1;2] = [f 1; f 2].

y

Using exercises 2.1,2.3 and 2.4, write a function taking an argument n and
divide by n all elements of a given list. Apply it on random generated lists.

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 11/60



Parallel Programming

. Concurrent &
Automatic ..
.. Distributed
Parallelization )
Programming

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 12/ 60



Parallel Programming

Structured Parallelism

v

Declarative Parallel Programming

Automati Concurrent &
u orpa I_C » Algorithmic Skeletons Distributed
Parallelization .
» Bulk Synchronous Parallelism Programming
>

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 12/ 60



Our Goal

To ease the development of correct
and verifiable parallel programs with
predictable performances

We should address:
» the easy development of correct and verifiable programs
» the easy development of parallel programs

» the easy development of parallel programs with predictable
performances

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 13/ 60



Easy Development of Correct and Verifiable Programs...

» high-level languages: expressive, modular, less error-prone

» high-level languages have simpler semantics, and could have a
complete formal semantics (e.g. Standard ML, ISO Prolog)

» therefore verification of programs is possible and easier

= a high-level parallel language with formal semantics

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 14/60



..with Predictable Performances

» assumption: the goal is to program functions

» issues: non-determinism, deadlocks, difficulty to read programs,
complex semantics and verification, portability ...

» itisalso very important for the programmer to be able to reason
about the performance of the programs

= astructured parallel model which allows the design of portable
parallel algorithms with a simple cost model

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 15/60



The Bulk Synchronous Parallel ML Approach

Choices

» an efficient functional programming language with formal semantics
and easy reasoning about the performance of programs (strict
evaluation):

ML (ocami fiavor)

» arestricted model of parallelism with no deadlock, very limited

cases of non-determinism, a simple cost model:
Bulk Synchronous Parallelism

The result is:

Bulk Synchronous Parallel ML (BSML)

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 16/ 60




Bulk Synchronous Parallelism (BSP)

Research on BSP
90’ by Valiant (Cambridge) and McColl (Oxford)

Three models
» abstract architecture
» execution model
» cost model

BSP Computer
» p processor / memory pairs (of speedr)
» acommunication network (of speed g)
» aglobal synchronisation unit (of speed L)

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France

17/60




Bulk Synchronous Parallelism

Execution model Cost model
T(s) = maxp<jcpWj +h x g+ 1L
@ 0 @ @ where h = maxo<j<p{h:", h: }
w; processing time
at processor i

h:" words sent
by processor i

Computation

h;” words received
by processor i

BSP SuperSteps

4

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 18/60



Bulk Synchronous Parallel ML

Design principles
Small set of parallel primitives

\4

v

Universal for bulk synchronous parallelism

v

Global view of programs

v

Simple semantics

BSML
a sequential functional language
+ aparallel data structure
+ parallel operations on this data structure

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 19/60




A Parallel Data Structure

Parallel Vectors
» An abstract polymorphic datatype: 'a par
» Fixed size p: each processor has a value of type ’a
» no nesting allowed

= Direct mapping eases the reasonning about performances

Notation

(Vo,.-’ Vp-1)

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France

20/60




BSML Primitives

Access to the BSP parameters

bsp_p: int

bsp_r: float
bsp_g: float
bsp_l: float

= Programs with performance portability

Manipulation of parallel vectors
» mkpar: (int — 'a) — 'a par
» proj: 'a par — (int — ’a)
» apply: ("a — 'b) par — ’a par — 'b par

» put: (int — ’'a) par — (int — 'a) par

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France

21/60



BSML Tools

Interative Loops (sequential simulators)
» Onthe VM:bsml
» Online:http://tesson. julien.free.fr/try-bsml

Compilation
Two modes:

» Sequential: . seq variants of the scripts

» Parallel (on top of MPI): .mpi variants of the scripts
Two targets:

» OCaml Bytecode: bsmlc

» Native code: bsmlopt

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 22/60



http://tesson.julien.free.fr/try-bsml

Creation of parallel vectors

Signature
mkpar: (int — 'a) — 'a par

Informal semantics
mkparf=(f0, f1, ..., f(p—1))

Examples

# let this = Bsml.mkpar(fun pid -> pid);;
val this : int Bsml.par = <0, 1, 2, 3, 4, 5, 6, 7>

# let plusMinus = Bsml.mkpar(fun pid ->if pid mod 2=0 then fun x->x+1
else fun x->x-1);;
val plusMinus : (int -> int) Bsml.par =
<<fun>, <fun>, <fun>, <fun>, <fun>, <fun>, <fun>, <fun>>

BSP Cost
max ||f i|| where ||e|| is the time required to evaluate e
<i<p

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 23/60




Point-wise parallel application

Signature

apply : ("a — 'b) par — 'a par — 'b par

Informal semantics
apply (fo ,--, fo—1 ) (Vo sy Vpo1) = (fovo,---s fpm1Vp_1)

Example

# let v = Bsml.apply plusMinus this;;
val v : int Bsml.par = <1, O, 3, 2, 5, 4, 7, 6>

BSP Cost

a + Vi
0r2i<xp IIfi vill

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 24/60



Exercises

Write a BSML expression that creates a parallel vector of list of numbers,
where a processor i contains the list [10 x i; ... ; 10 x (i+ 1) — 1]

v

Write a BSML function taking as argument a paralle vector of lists, and
returning a parallel vector of the lengths of these lists.

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 25/60



Exercises

Exercise 3.3 (Parallel Map)

» We consider a value of type 'a list par as a distributed list
» Write a BSML function
map: (‘a—'b) — ’a list par — 'b list par
that applies f to all the elements of the distributed list

» Use map to transform the value of Exercise 3.1 into a parallel list of
strings using the sequential function string_of_int

v

Write a BSML function taking as argument a positive number n and returning
a parallel vector of lists of numbers, such that the contatenation of all the lists
is the list from O ton — 1, and such that the lists are evenly distributed
(difference between length of the smallest list and the length of the biggest list
at most 1).

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 26/60



Projection

Signature Informal semantics
proj: 'a par — (int4

function O — Vg

pl’Oj<V0,-..,Vp_1>: :
| p—1 — Vp_1

Remark

» Should not be evaluated in the context of a mkpar
» Returned function is partial: proj (mkparf) £ f

Example

# Bsml.proj (Bsml.mkpar string_of_int) 2;;
- : string = "2"

BSP Cost

maxo<i<p{|Vil, 2_ji [Vil} % § + L where [e] is the value of €'s size

o

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 27/60




Exercises

Write a function
to list : ’'a par — ’'a list

that transforms a parallel vector into a sequential list

V.

» Write a function reduce: ('a—'a—’a) — 'a — ’a list par — ’athat for
a binary associative operator op and its unit e, reduces the distributed list
given in argument

» Example (assuming bsp_p = 8):

# reduce (+) 0 (mkpar(fun i->[i]));;
- : int = 28

A

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 28/60



Exercises

Exercise 3.7 (Variance)

» For a set of equally likely values x; the variance is:
Var = 237006 — p)?
po= 52X

» Assuming x; is represented as a value of type float list par, writea
BSML program to compute the variance

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 29/60



Communication |

Signature

put: (int — 'a) par — (int — ’a) par

Informal semantics
put (fo,..., fo-1)=1(80, ., gp—1 ) Withg; = fun src— fsrc j

Remark

» function f; encodes the p messages to be sent from processor i
(fij) is the message to be sent fromitoj

» function g; encodes the p messages received by processor j (gj i) is
the message received by j from i

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 30/60




Communication I

Example

Bsml.apply (mkpar(fun _-> (fun f->List.map f Stdlib.Base.procs)))
(Bsml.put (Bsml.mkpar(fun pid dst->
if dst=(pid+1) mod Bsml.bsp_p
then Some pid
else None)));;
- : int option list Bsml.par =
< [None; None; None; None; None; None; None; Some 7],
[Some 0; None; None; None; None; None; None; None],
[None; Some 1; None; None; None; None; None; None],
[None; None; Some 2; None; None; None; None; None],
[None; None; None; Some 3; None; None; None; None],
[None; None; None; None; Some 4; None; None; None],
[None; None; None; None; None; Some 5; None; None],
[None; None; None; None; None; None; Some 6; None] >

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 31/60




Communication Il

BSP Cost

[max (ZHMII + max{ZIf.Jl DIy xg + L
#i jEi

Remark

» The first constant constructor of a sum type has size O
» Examples: None, [, ...

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 32/60




A More Complicated Example

Communication pattern to implement

S N
d, a

Implementation

let getBounds first last v = let p = Bsml.bsp_pin
let parfun f v = Bsml.apply (Bsml.mkpar(fun_— f)) v in
let lasts = parfun last v and firsts = parfun first v in
let msg = Bsml.put(Bsml.apply(Bsml.apply
(Bsml.mkpar(fun pid first last dst—
if dst=(pid+1) mod p then Some last
else if dst=(p+pid—1) mod p then Some first else None))
firsts ) lasts) in
( Bsml.apply msg (Bsml.mkpar(fun pid— (p+pid—1) mod p)),
Bsml.apply msg (Bsml.mkpar(fun pid— (pid+1) mod p)) )

4

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 33/60



Levels of Execution in BSML

Replicated execution (default)
» “sequential” ML code
» every processor does the same

Local execution
» what happens inside parallel vectors, on each of their components
» uses local data
» may be different on different processors

Global execution
» concerns the set of all processors as a whole

» example: communications

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 34/60



Alternative Syntax

Two syntaxes for BSML
» Classic BSML: impossible to use vectors in a local section

» Alternative syntax: access to local information of vector v noted
$v$, possible only in a local section, written < e >

Examples

let mkparf= < f $this$ >
let apply fv v = < $fv$ $ww$ >
let parfunf v =< f $v$ >

= mkpar and apply are no longer primitives

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 35/60




A Revised More Complicated Example

Implementation

let getBounds first last v =
let p = Bsml.bsp_pin
let lasts = < last $v$>> in
let firsts = < first $v$> in
let msg=Bsmlput <« fundst — if dst=($this$ + 1) mod p
then Some $lasts$
else if dst=(p + $this$ —1) mod p
then Some $firsts$
else None > in
< $msg$ ((p+ $this$ — 1) mod p) >,
< $msg$ (($this$ + 1) mod p) >

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France

36/60




Exercise

Exercise 3.8 (1D heat-equation)

(5” 62
> 51_- '752)( =0

> u(x,t+dt)= df(’t( u(x+dx, t) + u(x—dx, t) — 2u(x, t)) + u(x,t)

» Implement a sequential version (on a list or an array), taking two values
for the bounds

» Use it to implement a parallel version

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 37/60



The Multi-BSP bridging model

A bridging model for multi-core computing
Proposed by Valiantin 2011

Approach
» Abstract multi-level model
» Execution model
» Cost model (BSP-like)

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 38/60




A Multi-BSP computer

1. Atree structure with nested components
2. Where nodes have a storage capacity

3. And leaves are processors

4. With sub-synchronisation capabilities

Stage 3 Stage 2

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 39/60



A Multi-BSP computer

Stage 3: 4 nodes with a network access
Stage 2: one node has 4 chips plus RAM
Stage 1: one chip has 8 cores plus L3 cache
Stage O: one core with L1/L2 caches

v vyYVyYyy

Stage 3 Stage 2

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 39/60



The Multi-BSP execution model

Execution model
Alevel i superstepis:

Level i

Leveli—1

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 40/ 60




The Multi-BSP execution model

Execution model
Alevel i superstepis:
» Leveli — 1 executes code independently

Level i

Leveli—1

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 40/ 60




The Multi-BSP execution model

Execution model
Alevel i superstepis:
» Leveli — 1 executes code independently
» Exchanges information with the m; memory

Level i

Leveli—1

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 40/ 60




The Multi-BSP execution model

Execution model

Alevel i superstepis:
» Leveli — 1 executes code independently
» Exchanges information with the m; memory
» Synchronises

Level i

Leveli—1

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 40/ 60




Basicideas
«O>» «Fr CEr «E)» Q>
V. Allombert, M. Bourgoin, F. Loulergue  Parallel Programming with OCaml  July 16,2018 - HPCS, Orléans, France ~ 41/60




The Multi-ML language

Basic ideas
» BSML-like code on every stage of the Multi-BSP architecture

Replicated part (BSP) H%

_ parallel
. let v=«e» — /fo f1 fo—1

$ vector
‘@@

Sequential part %

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 41/60



The Multi-ML language

Basic ideas

» BSML-like code on every stage of the Multi-BSP architecture

» Specific syntax over ML : eases programming

. let v=«e»
OO

V. Allombert, M. Bourgoin, F. Loulergue

Replicated part (BSP) H%

— /fo

f1

fp—l

Sequential part

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

parallel
vector

41/60



The Multi-ML language

Basic ideas
» BSML-like code on every stage of the Multi-BSP architecture
» Specific syntax over ML : eases programming
» Multi-functions that recursively go through the Multi-BSP tree

Replicated part
(Multi-BSP)

tree

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 41/60



Multi-ML : Tree recursion

Recursion structure
let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

42/60



Multi-ML : Tree recursion

Recursion structure
let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

42/60



Multi-ML : Tree recursion

Recursion structure
let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

42/60



Multi-ML : Tree recursion

Recursion structure
let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

42/60



Multi-ML : Tree recursion

Recursion structure
let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

42/60



Multi-ML : Tree recursion

Recursion structure
let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert, M. Bourgoin, F. Loulergue

Qog/f

Parallel Programming with OCaml

KQhol VQL?/\ ‘\{011

July 16,2018 - HPCS, Orléans, France

42/60



Multi-ML : Tree recursion

Recursion structure
let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

42/60



Multi-ML : Tree recursion

Recursion structure
let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml

Result

v

July 16,2018 - HPCS, Orléans, France

42/60



Multi-ML : Tree construction

Tree construction
let multi tree f [args]=
where node =
(* BSML code %)
... in
finally << f [args] >> v
where leaf =
(* OCaml code *)
in v

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

43/60



Multi-ML : Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code %)

... in

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

43/60



Multi-ML : Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code %)

... in

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

43/60



Multi-ML : Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code %)

... in

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

43/60



Multi-ML : Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code %)

... in

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

43/60



Multi-ML : Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code %)

... in

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

43/60



Multi-ML : Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code %)

... in

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

43/60



Multi-ML : Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code %)

... in

finally << f [args] >> v
where leaf =

(* OCaml code *)

in v

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

43/60



SUmmary

it
v

«O>» «Fr «=»r < .



Primitives

Summary e

» mktreee

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 44/ 60



Primitives

Summary
» mktreee
» gid

0.0.0

0.0.1

0.1.0

0.1.1

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

44/ 60



Primitives

Summary
» mktreee
» gid
> at

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

44/ 60



Primitives

Summary
» mktreee
» gid
> at

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

44/ 60



Primitives

Summary

» mktreee

» gid
» at

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

44/ 60



Primitives

Summary

» mktreee

» gid
» at

V. Allombert, M. Bourgoin, F. Loulergue

Parallel Programming with OCaml

July 16,2018 - HPCS, Orléans, France

44/ 60



Primitives

Summary
» mktreee
» gid
> at

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 44/ 60



Primitives

Summary
» mktreee
» gid
> at

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 44/ 60



Primitives

Summary
mktree e

v

» gid

> at

> << foo>>
> Hx#

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 44/ 60



Primitives

Summary
mkpar (funi->vi)
» mktreee

» gid

» at

<< ..fo.>>

> Hx#

v

v

mkpar f

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 44/ 60



Primitives

fo;f1

Summary
mkpar (funi->vi)
» mktreee

» gid

» at

> << . fo.o>>
> Hx#H

» mkpar f

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 44/ 60



Primitives

Summary
mkpar (funi->vi)
» mktreee

» gid

» at

> << . fo.o>>
> Hx#H

» mkpar f

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 44/ 60



Multi-ML code execution

Implementation
» Generic communication module (currently over MPI)
» Shared and distributed memory

Compilation
» mmlopt.mpi-o main main.mml

Toplevel (Beta version)
» multiml

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 45/ 60




Exercises |

Write a (multi-)function which display the global identifier of each
components of the Multi-BSP architecture.

V.

Write a code to build a tree of randomly generated values.

Write a multi-functions taking as argument a tree of values and returning a list
which is the concatenation of every lists of the given tree.

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 46/ 60



Exercises Il

Exercise 4.4 (Data distribution)

Write a multi-function which distribute a given list of values toward the leaves
and returns a tree with empty lists on nodes and lists on values on leaves.

4

Exercise 4.5 (Reduce)

Write a multi-function taking as argument a tree with lists of values on leaves,
an associative operator and reduces the list toward the root node.

Exercise 4.6 (1-D heat equation)

Based on the heat equation implemented in 3.8, write a code using Multi-ML.

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 47/ 60



Heterogeneous computing

Multiple types of processing elements
» Multicore CPUs
» GPUs
» FPGAs
» Cell
» Other co-processors

Each with its own (specific) programming environment
» Programming languages (often subsets of C/C++ or assembly
language)
» Compilers
» Libraries
» Debuggers and profilers

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 48/ 60




GPGPU Programming

Two main frameworks

» Cuda (NVidia)
» OpenCL (Consortium OpenCL)

Different languages

» Towrite kernels

» Assembly (PTX,SPIR, IL,...)
» Subsets of C/C++

» To manage kernels from the host
» C/C++/Objective-C
» Bindings: Fortran, Python, Java,...

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 49/60



SPOC framework

Composed of
» SPOC: An OCaml runtime library

» Sarek: A DSL dedicated to GPGPU kernels
» Multiple experimental libraries

» (Maybe incomplete) Bindings to C/C++ GPGPU libraries (CUBLAS,
MAGMA, CUFFT)
Pure OCaml (without using Sarek) parallel skeletons libraries
Hybrid (using Sarek) parallel skeleton libraries
Samples
A (deprecated - thanks to WebCL demise) JavaScript port of SPOC
and Sarek

vV vy VvYyy

Open Source distribution: http://mathiasbourgoin.github.io/SPOC/

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 50/ 60



http://mathiasbourgoin.github.io/SPOC/

SPOC framework

Runtime Library: Host (CPU) code
» Not a “simple” CUDA/OpenCL OCaml binding
» Detects compatible devices at runtime
» Handles memory transfers between CPU-GPGPU accelerators
automatically
» Can launch native (CUDA/OpenCL) or Sarek (DSL) kernels

DSL: Kernel (GPU) code
» Built as a syntax extension
» Static type checking
» Translated into an AST that is embedded into the OCaml host code

» Comes with a dedicated library to
» Compile the AST to actual CUDA/OpenCL C code
» Use the SPOC library to launch kernels on GPUs

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 51/60



First contact with SPOC

Launch SPOC and detect compatible devices

Devices.init : unit — device array

Device

type generalinfo = {
name: string;
totalGlobalMem :int;
localMemSize: int;
clockRate : int;
totalConstMem :int;
multiProcessorCount : int;

type device = {
general_info : generallnfo;
specific_info : specificinfo ;
gc_info : gclnfo;
events: events;

} eccEnabled: bool;
id : int;
ctx : context;
}

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 52/60




Exercise

Write an OCaml program that prints info on the GPGPU-compatible
accelerators present on your system.

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 53/60



Sharing data using SPOC vectors

Vector creation example

(+ create a vector of 1024 32—btsints )1

let v_ints = Vector.create Vector.int32 1024 in
Mem.set v_ints i Ol;

let a = Mem.getv_ints42in

(+ create a vector of n 64—bit floats (C doubles) )
let v_doubles = Vector.create Vector.float64 n
Mem.set v_floats i 32.

SPOC vectors are
» Automatically transferred between Host and GPGPU memory.
» Managed by the OCaml garbage collector
» Automatically freed from either (Host/GPGPU) memory

» Once created your good to go

v

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 54/60



How to launch a kernel

First, let’s go back to classic GPGPU programming
» Frameworks demand to describe a 3D grid of blocks of threads
» Inthis grid, each thread runs an instance of the kernel code.

Example of a kernel launch

let n = 1000000
let block =
{blockX = 1024; blockY = 1; blockZ = 1} in
let grid =
{gridX=(n+1024—1)/1024; gridY=1; gridZ=1}in
Kirc.run kernel args (block,grid) O device;

Here, 1 000 000 threads are launched, grouped into blocks of 1024 threads,
using only the first dimension of the grid

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 55/60



Kernel launch arguments

Kernel launch

Kirc.run kernel args (block,grid) stream device;

Arguments

» kernel : name of a kernel described using the DSL (see next slide)

» args: tuple containing kernel arguments : example
let v1 = Vector.create ... in
let v2 = Vector.create ... in
let n = 1000000 in
let args = (v1,v2,n)

» (block,grid) : see previous slide
» stream: used for concurrent kernel launches (for this tutorial use 0)
» device: device (returned previously by Devices.init ())

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 56/60




Generating CUDA/OpenCL code

Kircisa DSL

Actual CUDA/OpenCL code has to be generated prior to launching the
kernel:
Kirc.gen kernel;

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 57/60



Host programming is easy, let’s write kernels

Sarek DSL (not really OCaml)
» No recursion
No functions*

v

v

No complex data-structures*
No pattern matching*

Only basic imperative code, with OCaml-like syntax, type inference
and static checking

v

v

A small example

let multiply = kernabc —
let open Stdin
let idx = global_thread_id in
b.[<idx>] + a.[<idx>] % c

*Available in experimental versions of SPOC/Sarek

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 58/60



Small kernel example

Std

The Std module contains all the necessary variables to know thread ids
and locations in the grid :
module Std :
sig
val thread_idx x : Int32.t
val thread_idx_y : Int32.t
val thread_idx_z : Int32.t
val block_idx_x : Int32.t

val block_dim_x: Int32.t
val grid_dim_x : Int32.t

val global_thread_id : Int32.t

end

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 59/60




Exercises

Exercise 5.2 (Vector Addition)

Write a program adding 2 vectors of 1 000 000 floats on the GPGPU
accelerator using SPOC and Sarek.

v

Exercise 5.3 (Heat Equation)

Use the sequential version of the heat equation implemented in exercise 3.8 to
implement a GPGPU version computing on SPOC vectors using a Sarek kernel.

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 60/ 60



	Introduction
	An Overview of Functional Programming with OCaml
	Bulk Synchronous Parallelism with OCaml
	Motivations and Background
	BSML: Bulk Synchronous Parallel ML
	The BSP Model
	Overview of the BSML Language
	BSML Primitives
	Alternative Syntax

	Hierarchical Parallelism with OCaml
	GPGPU Programming with OCaml

