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Outline of the Talk

@ Introduction

@ An Overview of Functional Programming with OCaml
@ Bulk Synchronous Parallelism with OCaml

@ Hierarchical Parallelism with OCaml

© GPGPU Programming with OCaml
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OCaml

What is OCaml ?
» Functional programming language
» From the ML (Meta Language) family

Why OCaml ?
» Powerful type system
» High level features

v

Modules and object oriented approach
Embedded Garbage Collector
Byte and native code compilers

\4

\4

v

Interactive loop (toplevel)
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OCaml code execution

Toplevel (ocaml/utop):

# 3 + 4;,;

- :int =7

# 8/ 3;;

- : int = 2

# 3.5 +. 6.;;

- : float = 9.5

# 30_000_000 / 300_000;;

- : int = 100

# sqrt 9.;;

- : float = 3. )
Compilation

» Bytecode: ocamlc —o main main.ml

» Native: ocamlopt —o main main.ml
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OCaml syntax |

Variables
#let x =1

val x : int =1
#let x=1inx+2
—:int =3

Functions

#let f x =xxx

val f : int — int = <fun>
#f 10

—: int = 100
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OCaml syntax Il

Partial application

#let f xy=x+yinf 1

val f : float — float — float = <fun>
#let g =f 13.

val g : float — float = <fun>

#g29.

—: float =42. |
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OCaml syntax Il

Polymorphism

#let hx =x
val h: 'a — ’a
#h3

—:int =3

# h true

—: bool = true
#hf

—:int — int = <fun>

Conditional
# if true then1 else 2
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OCaml syntax IV

Lists

# let 11 = [1;2;3]

val 11 : int list = [1;2;3]

#let 12 = 0:11

val 12 : int list [0;1;2;3]

# let 13 = 12@[4]

val I3 : int list = [0; 1; 2; 3; 4]
# List.map (funx — x +1) 13
—:int list = [1; 2; 3; 4; 5]
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OCaml syntax V

Arrays

# let al= [|1;2;3;4]]
val al: int array = [|1; 2; 3; 4]]

# al.(0)
—:int =1
# al1.(0)«0
—: unit = ()

Imperative features
» References: let x = ref 1in x := 2
» Sequences: x := 42; print_int !x
» For loops: for i =0 to n doe done
» While loops: while bool_expr do e done
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Simple exercises |

Write a OCaml function to compute the ratio x/y.

Write a (recursive) OCaml function to compute factorial.

Exercise 2.3

| A\

Write a OCaml function to generate a random list of integers of size n.
(Random.int v returns a random integer between O (inclusive) and v (exclusive))
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Simple exercises Il

Write a function taking, as argument, a function f and a list | and returns the
mapping of the f on | such that: Imap f [1;2] = [f 1; f 2].

y

Using exercises 2.1,2.3 and 2.4, write a function taking an argument n and
divide by n all elements of a given list. Apply it on random generated lists.
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Parallel Programming

. Concurrent &
Automatic ..
.. Distributed
Parallelization )
Programming
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Parallel Programming

Structured Parallelism

v

Declarative Parallel Programming

Automati Concurrent &
u orpa I_C » Algorithmic Skeletons Distributed
Parallelization .
» Bulk Synchronous Parallelism Programming
>
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Our Goal

To ease the development of correct
and verifiable parallel programs with
predictable performances

We should address:
» the easy development of correct and verifiable programs
» the easy development of parallel programs

» the easy development of parallel programs with predictable
performances
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Easy Development of Correct and Verifiable Programs...

» high-level languages: expressive, modular, less error-prone

» high-level languages have simpler semantics, and could have a
complete formal semantics (e.g. Standard ML, ISO Prolog)

» therefore verification of programs is possible and easier

= a high-level parallel language with formal semantics
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..with Predictable Performances

» assumption: the goal is to program functions

» issues: non-determinism, deadlocks, difficulty to read programs,
complex semantics and verification, portability ...

» itisalso very important for the programmer to be able to reason
about the performance of the programs

= astructured parallel model which allows the design of portable
parallel algorithms with a simple cost model
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The Bulk Synchronous Parallel ML Approach

Choices

» an efficient functional programming language with formal semantics
and easy reasoning about the performance of programs (strict
evaluation):

ML (ocami fiavor)

» arestricted model of parallelism with no deadlock, very limited

cases of non-determinism, a simple cost model:
Bulk Synchronous Parallelism

The result is:

Bulk Synchronous Parallel ML (BSML)
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Bulk Synchronous Parallelism (BSP)

Research on BSP
90’ by Valiant (Cambridge) and McColl (Oxford)

Three models
» abstract architecture
» execution model
» cost model

BSP Computer
» p processor / memory pairs (of speedr)
» acommunication network (of speed g)
» aglobal synchronisation unit (of speed L)
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Bulk Synchronous Parallelism

Execution model Cost model
T(s) = maxp<jcpWj +h x g+ 1L
@ 0 @ @ where h = maxo<j<p{h:", h: }
w; processing time
at processor i

h:" words sent
by processor i

Computation

h;” words received
by processor i

BSP SuperSteps

4
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Bulk Synchronous Parallel ML

Design principles
Small set of parallel primitives

\4

v

Universal for bulk synchronous parallelism

v

Global view of programs

v

Simple semantics

BSML
a sequential functional language
+ aparallel data structure
+ parallel operations on this data structure
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A Parallel Data Structure

Parallel Vectors
» An abstract polymorphic datatype: 'a par
» Fixed size p: each processor has a value of type ’a
» no nesting allowed

= Direct mapping eases the reasonning about performances

Notation

(Vo,.-’ Vp-1)
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BSML Primitives

Access to the BSP parameters

bsp_p: int

bsp_r: float
bsp_g: float
bsp_l: float

= Programs with performance portability

Manipulation of parallel vectors
» mkpar: (int — 'a) — 'a par
» proj: 'a par — (int — ’a)
» apply: ("a — 'b) par — ’a par — 'b par

» put: (int — ’'a) par — (int — 'a) par
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BSML Tools

Interative Loops (sequential simulators)
» Onthe VM:bsml
» Online:http://tesson. julien.free.fr/try-bsml

Compilation
Two modes:

» Sequential: . seq variants of the scripts

» Parallel (on top of MPI): .mpi variants of the scripts
Two targets:

» OCaml Bytecode: bsmlc

» Native code: bsmlopt
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http://tesson.julien.free.fr/try-bsml

Creation of parallel vectors

Signature
mkpar: (int — 'a) — 'a par

Informal semantics
mkparf=(f0, f1, ..., f(p—1))

Examples

# let this = Bsml.mkpar(fun pid -> pid);;
val this : int Bsml.par = <0, 1, 2, 3, 4, 5, 6, 7>

# let plusMinus = Bsml.mkpar(fun pid ->if pid mod 2=0 then fun x->x+1
else fun x->x-1);;
val plusMinus : (int -> int) Bsml.par =
<<fun>, <fun>, <fun>, <fun>, <fun>, <fun>, <fun>, <fun>>

BSP Cost
max ||f i|| where ||e|| is the time required to evaluate e
<i<p
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Point-wise parallel application

Signature

apply : ("a — 'b) par — 'a par — 'b par

Informal semantics
apply (fo ,--, fo—1 ) (Vo sy Vpo1) = (fovo,---s fpm1Vp_1)

Example

# let v = Bsml.apply plusMinus this;;
val v : int Bsml.par = <1, O, 3, 2, 5, 4, 7, 6>

BSP Cost

a + Vi
0r2i<xp IIfi vill
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Exercises

Write a BSML expression that creates a parallel vector of list of numbers,
where a processor i contains the list [10 x i; ... ; 10 x (i+ 1) — 1]

v

Write a BSML function taking as argument a paralle vector of lists, and
returning a parallel vector of the lengths of these lists.
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Exercises

Exercise 3.3 (Parallel Map)

» We consider a value of type 'a list par as a distributed list
» Write a BSML function
map: (‘a—'b) — ’a list par — 'b list par
that applies f to all the elements of the distributed list

» Use map to transform the value of Exercise 3.1 into a parallel list of
strings using the sequential function string_of_int

v

Write a BSML function taking as argument a positive number n and returning
a parallel vector of lists of numbers, such that the contatenation of all the lists
is the list from O ton — 1, and such that the lists are evenly distributed
(difference between length of the smallest list and the length of the biggest list
at most 1).
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Projection

Signature Informal semantics
proj: 'a par — (int4

function O — Vg

pl’Oj<V0,-..,Vp_1>: :
| p—1 — Vp_1

Remark

» Should not be evaluated in the context of a mkpar
» Returned function is partial: proj (mkparf) £ f

Example

# Bsml.proj (Bsml.mkpar string_of_int) 2;;
- : string = "2"

BSP Cost

maxo<i<p{|Vil, 2_ji [Vil} % § + L where [e] is the value of €'s size

o
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Exercises

Write a function
to list : ’'a par — ’'a list

that transforms a parallel vector into a sequential list

V.

» Write a function reduce: ('a—'a—’a) — 'a — ’a list par — ’athat for
a binary associative operator op and its unit e, reduces the distributed list
given in argument

» Example (assuming bsp_p = 8):

# reduce (+) 0 (mkpar(fun i->[i]));;
- : int = 28

A
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Exercises

Exercise 3.7 (Variance)

» For a set of equally likely values x; the variance is:
Var = 237006 — p)?
po= 52X

» Assuming x; is represented as a value of type float list par, writea
BSML program to compute the variance
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Communication |

Signature

put: (int — 'a) par — (int — ’a) par

Informal semantics
put (fo,..., fo-1)=1(80, ., gp—1 ) Withg; = fun src— fsrc j

Remark

» function f; encodes the p messages to be sent from processor i
(fij) is the message to be sent fromitoj

» function g; encodes the p messages received by processor j (gj i) is
the message received by j from i
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Communication I

Example

Bsml.apply (mkpar(fun _-> (fun f->List.map f Stdlib.Base.procs)))
(Bsml.put (Bsml.mkpar(fun pid dst->
if dst=(pid+1) mod Bsml.bsp_p
then Some pid
else None)));;
- : int option list Bsml.par =
< [None; None; None; None; None; None; None; Some 7],
[Some 0; None; None; None; None; None; None; None],
[None; Some 1; None; None; None; None; None; None],
[None; None; Some 2; None; None; None; None; None],
[None; None; None; Some 3; None; None; None; None],
[None; None; None; None; Some 4; None; None; None],
[None; None; None; None; None; Some 5; None; None],
[None; None; None; None; None; None; Some 6; None] >
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Communication Il

BSP Cost

[max (ZHMII + max{ZIf.Jl DIy xg + L
#i jEi

Remark

» The first constant constructor of a sum type has size O
» Examples: None, [, ...
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A More Complicated Example

Communication pattern to implement

S N
d, a

Implementation

let getBounds first last v = let p = Bsml.bsp_pin
let parfun f v = Bsml.apply (Bsml.mkpar(fun_— f)) v in
let lasts = parfun last v and firsts = parfun first v in
let msg = Bsml.put(Bsml.apply(Bsml.apply
(Bsml.mkpar(fun pid first last dst—
if dst=(pid+1) mod p then Some last
else if dst=(p+pid—1) mod p then Some first else None))
firsts ) lasts) in
( Bsml.apply msg (Bsml.mkpar(fun pid— (p+pid—1) mod p)),
Bsml.apply msg (Bsml.mkpar(fun pid— (pid+1) mod p)) )

4
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Levels of Execution in BSML

Replicated execution (default)
» “sequential” ML code
» every processor does the same

Local execution
» what happens inside parallel vectors, on each of their components
» uses local data
» may be different on different processors

Global execution
» concerns the set of all processors as a whole

» example: communications
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Alternative Syntax

Two syntaxes for BSML
» Classic BSML: impossible to use vectors in a local section

» Alternative syntax: access to local information of vector v noted
$v$, possible only in a local section, written < e >

Examples

let mkparf= < f $this$ >
let apply fv v = < $fv$ $ww$ >
let parfunf v =< f $v$ >

= mkpar and apply are no longer primitives
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A Revised More Complicated Example

Implementation

let getBounds first last v =
let p = Bsml.bsp_pin
let lasts = < last $v$>> in
let firsts = < first $v$> in
let msg=Bsmlput <« fundst — if dst=($this$ + 1) mod p
then Some $lasts$
else if dst=(p + $this$ —1) mod p
then Some $firsts$
else None > in
< $msg$ ((p+ $this$ — 1) mod p) >,
< $msg$ (($this$ + 1) mod p) >
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Exercise

Exercise 3.8 (1D heat-equation)

(5” 62
> 51_- '752)( =0

> u(x,t+dt)= df(’t( u(x+dx, t) + u(x—dx, t) — 2u(x, t)) + u(x,t)

» Implement a sequential version (on a list or an array), taking two values
for the bounds

» Use it to implement a parallel version
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The Multi-BSP bridging model

A bridging model for multi-core computing
Proposed by Valiantin 2011

Approach
» Abstract multi-level model
» Execution model
» Cost model (BSP-like)
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A Multi-BSP computer

1. Atree structure with nested components
2. Where nodes have a storage capacity

3. And leaves are processors

4. With sub-synchronisation capabilities

Stage 3 Stage 2
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A Multi-BSP computer

Stage 3: 4 nodes with a network access
Stage 2: one node has 4 chips plus RAM
Stage 1: one chip has 8 cores plus L3 cache
Stage O: one core with L1/L2 caches

v vyYVyYyy

Stage 3 Stage 2

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 39/60



The Multi-BSP execution model

Execution model
Alevel i superstepis:

Level i

Leveli—1
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The Multi-BSP execution model

Execution model
Alevel i superstepis:
» Leveli — 1 executes code independently

Level i

Leveli—1
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The Multi-BSP execution model

Execution model
Alevel i superstepis:
» Leveli — 1 executes code independently
» Exchanges information with the m; memory

Level i

Leveli—1
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The Multi-BSP execution model

Execution model

Alevel i superstepis:
» Leveli — 1 executes code independently
» Exchanges information with the m; memory
» Synchronises

Level i

Leveli—1
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The Multi-ML language

Basic ideas
» BSML-like code on every stage of the Multi-BSP architecture

Replicated part (BSP) H%

_ parallel
. let v=«e» — /fo f1 fo—1

$ vector
‘@@

Sequential part %

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 41/60



The Multi-ML language

Basic ideas

» BSML-like code on every stage of the Multi-BSP architecture

» Specific syntax over ML : eases programming

. let v=«e»
OO
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The Multi-ML language

Basic ideas
» BSML-like code on every stage of the Multi-BSP architecture
» Specific syntax over ML : eases programming
» Multi-functions that recursively go through the Multi-BSP tree

Replicated part
(Multi-BSP)

tree
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Multi-ML : Tree recursion

Recursion structure
let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v
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Multi-ML : Tree recursion

Recursion structure
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Multi-ML : Tree construction

Tree construction
let multi tree f [args]=
where node =
(* BSML code %)
... in
finally << f [args] >> v
where leaf =
(* OCaml code *)
in v
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Multi-ML code execution

Implementation
» Generic communication module (currently over MPI)
» Shared and distributed memory

Compilation
» mmlopt.mpi-o main main.mml

Toplevel (Beta version)
» multiml
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Exercises |

Write a (multi-)function which display the global identifier of each
components of the Multi-BSP architecture.

V.

Write a code to build a tree of randomly generated values.

Write a multi-functions taking as argument a tree of values and returning a list
which is the concatenation of every lists of the given tree.
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Exercises Il

Exercise 4.4 (Data distribution)

Write a multi-function which distribute a given list of values toward the leaves
and returns a tree with empty lists on nodes and lists on values on leaves.

4

Exercise 4.5 (Reduce)

Write a multi-function taking as argument a tree with lists of values on leaves,
an associative operator and reduces the list toward the root node.

Exercise 4.6 (1-D heat equation)

Based on the heat equation implemented in 3.8, write a code using Multi-ML.
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Heterogeneous computing

Multiple types of processing elements
» Multicore CPUs
» GPUs
» FPGAs
» Cell
» Other co-processors

Each with its own (specific) programming environment
» Programming languages (often subsets of C/C++ or assembly
language)
» Compilers
» Libraries
» Debuggers and profilers
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GPGPU Programming

Two main frameworks

» Cuda (NVidia)
» OpenCL (Consortium OpenCL)

Different languages

» Towrite kernels

» Assembly (PTX,SPIR, IL,...)
» Subsets of C/C++

» To manage kernels from the host
» C/C++/Objective-C
» Bindings: Fortran, Python, Java,...
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SPOC framework

Composed of
» SPOC: An OCaml runtime library

» Sarek: A DSL dedicated to GPGPU kernels
» Multiple experimental libraries

» (Maybe incomplete) Bindings to C/C++ GPGPU libraries (CUBLAS,
MAGMA, CUFFT)
Pure OCaml (without using Sarek) parallel skeletons libraries
Hybrid (using Sarek) parallel skeleton libraries
Samples
A (deprecated - thanks to WebCL demise) JavaScript port of SPOC
and Sarek

vV vy VvYyy

Open Source distribution: http://mathiasbourgoin.github.io/SPOC/

V. Allombert, M. Bourgoin, F. Loulergue Parallel Programming with OCaml July 16,2018 - HPCS, Orléans, France 50/ 60



http://mathiasbourgoin.github.io/SPOC/

SPOC framework

Runtime Library: Host (CPU) code
» Not a “simple” CUDA/OpenCL OCaml binding
» Detects compatible devices at runtime
» Handles memory transfers between CPU-GPGPU accelerators
automatically
» Can launch native (CUDA/OpenCL) or Sarek (DSL) kernels

DSL: Kernel (GPU) code
» Built as a syntax extension
» Static type checking
» Translated into an AST that is embedded into the OCaml host code

» Comes with a dedicated library to
» Compile the AST to actual CUDA/OpenCL C code
» Use the SPOC library to launch kernels on GPUs
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First contact with SPOC

Launch SPOC and detect compatible devices

Devices.init : unit — device array

Device

type generalinfo = {
name: string;
totalGlobalMem :int;
localMemSize: int;
clockRate : int;
totalConstMem :int;
multiProcessorCount : int;

type device = {
general_info : generallnfo;
specific_info : specificinfo ;
gc_info : gclnfo;
events: events;

} eccEnabled: bool;
id : int;
ctx : context;
}
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Exercise

Write an OCaml program that prints info on the GPGPU-compatible
accelerators present on your system.
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Sharing data using SPOC vectors

Vector creation example

(+ create a vector of 1024 32—btsints )1

let v_ints = Vector.create Vector.int32 1024 in
Mem.set v_ints i Ol;

let a = Mem.getv_ints42in

(+ create a vector of n 64—bit floats (C doubles) )
let v_doubles = Vector.create Vector.float64 n
Mem.set v_floats i 32.

SPOC vectors are
» Automatically transferred between Host and GPGPU memory.
» Managed by the OCaml garbage collector
» Automatically freed from either (Host/GPGPU) memory

» Once created your good to go

v
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How to launch a kernel

First, let’s go back to classic GPGPU programming
» Frameworks demand to describe a 3D grid of blocks of threads
» Inthis grid, each thread runs an instance of the kernel code.

Example of a kernel launch

let n = 1000000
let block =
{blockX = 1024; blockY = 1; blockZ = 1} in
let grid =
{gridX=(n+1024—1)/1024; gridY=1; gridZ=1}in
Kirc.run kernel args (block,grid) O device;

Here, 1 000 000 threads are launched, grouped into blocks of 1024 threads,
using only the first dimension of the grid
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Kernel launch arguments

Kernel launch

Kirc.run kernel args (block,grid) stream device;

Arguments

» kernel : name of a kernel described using the DSL (see next slide)

» args: tuple containing kernel arguments : example
let v1 = Vector.create ... in
let v2 = Vector.create ... in
let n = 1000000 in
let args = (v1,v2,n)

» (block,grid) : see previous slide
» stream: used for concurrent kernel launches (for this tutorial use 0)
» device: device (returned previously by Devices.init ())
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Generating CUDA/OpenCL code

Kircisa DSL

Actual CUDA/OpenCL code has to be generated prior to launching the
kernel:
Kirc.gen kernel;
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Host programming is easy, let’s write kernels

Sarek DSL (not really OCaml)
» No recursion
No functions*

v

v

No complex data-structures*
No pattern matching*

Only basic imperative code, with OCaml-like syntax, type inference
and static checking

v

v

A small example

let multiply = kernabc —
let open Stdin
let idx = global_thread_id in
b.[<idx>] + a.[<idx>] % c

*Available in experimental versions of SPOC/Sarek
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Small kernel example

Std

The Std module contains all the necessary variables to know thread ids
and locations in the grid :
module Std :
sig
val thread_idx x : Int32.t
val thread_idx_y : Int32.t
val thread_idx_z : Int32.t
val block_idx_x : Int32.t

val block_dim_x: Int32.t
val grid_dim_x : Int32.t

val global_thread_id : Int32.t

end
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Exercises

Exercise 5.2 (Vector Addition)

Write a program adding 2 vectors of 1 000 000 floats on the GPGPU
accelerator using SPOC and Sarek.

v

Exercise 5.3 (Heat Equation)

Use the sequential version of the heat equation implemented in exercise 3.8 to
implement a GPGPU version computing on SPOC vectors using a Sarek kernel.
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