
An ML implementation of the MULTI-BSP model

Victor ALLOMBERT1, Frédéric GAVA2

1lifo - Université d’Orléans, France
2lacl - Université Paris Est, France

18 July 2018

V. Allombert, F. Gava HPCS 2018 1 / 18

Table of Contents

1 Introduction

2 A generic compilation scheme

3 Conclusion

V. Allombert, F. Gava HPCS 2018 1 / 18

Table of Contents

1 Introduction
Structured parallel computing
multi-bsp and multi-ml
Current Multi-ML implementation

2 A generic compilation scheme

3 Conclusion

V. Allombert, F. Gava HPCS 2018 2 / 18

The world of parallel computing

Simulations:
Fluid simulation
3D Visualisation

Big-Data:
IoT
Social Networking
Data science

Symbolic computation:
Model-Checking
Formal computing

Super-computer

V. Allombert, F. Gava HPCS 2018 2 / 18

Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory
• Communication network
• Synchronisation unit
• Super-steps execution

Properties:

• Deadlock-free
• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step...

V. Allombert, F. Gava HPCS 2018 3 / 18

Hierarchical architectures

Characterised by:

• Interconnected units
• Both shared and distributed memories
• Hierarchical memories

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

V. Allombert, F. Gava HPCS 2018 4 / 18

multi-bsp
1 A tree structure with nested components
2 Where nodes have a storage capacity
3 And leaves are processors
4 With sub-synchronisation capabilities

Stage 3

Network

RAM
P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4

V. Allombert, F. Gava HPCS 2018 5 / 18

multi-bsp
• Stage 3: 4 nodes with a network access
• Stage 2: one node has 4 chips plus RAM
• Stage 1: one chip has 8 cores plus L3 cache
• Stage 0: one core with L1/L2 caches

Stage 3

Network

RAM
P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4

V. Allombert, F. Gava HPCS 2018 5 / 18

The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently
• Exchanges information with the mi memory
• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li

V. Allombert, F. Gava HPCS 2018 6 / 18

The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently

• Exchanges information with the mi memory
• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li

V. Allombert, F. Gava HPCS 2018 6 / 18

The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently
• Exchanges information with the mi memory

• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li

V. Allombert, F. Gava HPCS 2018 6 / 18

The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently
• Exchanges information with the mi memory
• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li

V. Allombert, F. Gava HPCS 2018 6 / 18

The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture
• Specific syntax over ml: eases programming
• Multi-functions that recursively go through the multi-bsp tree

tree

Replicated part
(multi-bsp)

V. Allombert, F. Gava HPCS 2018 7 / 18

The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture

• Specific syntax over ml: eases programming
• Multi-functions that recursively go through the multi-bsp tree

e … e

let v= <<e>>

<< >>
⇒ f0 f1 ... fp−1

parallel
vector

Replicated part (bsp)

Sequential part

tree

Replicated part
(multi-bsp)

V. Allombert, F. Gava HPCS 2018 7 / 18

The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture
• Specific syntax over ml: eases programming

• Multi-functions that recursively go through the multi-bsp tree

e … e

let v= <<e>>

<< >>
⇒ f0 f1 ... fp−1

parallel
vector

Replicated part (bsp)

Sequential part

tree

Replicated part
(multi-bsp)

V. Allombert, F. Gava HPCS 2018 7 / 18

The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture
• Specific syntax over ml: eases programming
• Multi-functions that recursively go through the multi-bsp tree

tree

Replicated part
(multi-bsp)

V. Allombert, F. Gava HPCS 2018 7 / 18

Current implementation
Current approach

• Modular
• Generic functors
• Communication routines
• Portable on shared and distributed memories

Current version

• Based on mpi
• SPMD
• One process for each nodes/leaves
• Distributed over physical cores
• Shared/Distributed memory optimisations

V. Allombert, F. Gava HPCS 2018 8 / 18

Current implementation

• One process per leaf/node
• Distributed over physical cores

1

2

A B

3

C D

⇒
1 A 2 B 3 C D

RAM RAM

Network

Core0 Core1 Core0 Core1

V. Allombert, F. Gava HPCS 2018 9 / 18

Current implementation

p0

p1 p2

Master

Slaves

Orders/Signals

Signal1 job
Signal2 job

f = recv ()
f ()

f = recv ()
f ()

.

p0 p1 p2

V. Allombert, F. Gava HPCS 2018 10 / 18

Drawback of current implementation

• Closure communication
• Unnecessary communication
• Unnecessary processes

V. Allombert, F. Gava HPCS 2018 11 / 18

Table of Contents

1 Introduction

2 A generic compilation scheme

3 Conclusion

V. Allombert, F. Gava HPCS 2018 12 / 18

Why a new implementation ?

• Minimise the number of daemons
• Abstract compilation scheme

V. Allombert, F. Gava HPCS 2018 12 / 18

Execution scheme
The execution scheme

• The code is duplicated on each cores

• multi-bsp code is executed sequentially everywhere
• A multi-function is, basically, a scheduler
• Schedulers receives ”continue (and daemon spawn)” or ”end”

execution
• Schedulers waits primitives instructions
• Leaves are running sequential code

1

2

A B

3

C D

A 1 B 2 C 3 D Scattered

A B 1 2 C D 3 Gathered

V. Allombert, F. Gava HPCS 2018 13 / 18

Execution scheme
The execution scheme

• The code is duplicated on each cores
• multi-bsp code is executed sequentially everywhere

• A multi-function is, basically, a scheduler
• Schedulers receives ”continue (and daemon spawn)” or ”end”

execution
• Schedulers waits primitives instructions
• Leaves are running sequential code

1

2

A B

3

C D

A 1 B 2 C 3 D Scattered

A B 1 2 C D 3 Gathered

V. Allombert, F. Gava HPCS 2018 13 / 18

Execution scheme
The execution scheme

• The code is duplicated on each cores
• multi-bsp code is executed sequentially everywhere
• A multi-function is, basically, a scheduler

• Schedulers receives ”continue (and daemon spawn)” or ”end”
execution

• Schedulers waits primitives instructions
• Leaves are running sequential code

1

2

A B

3

C D

A 1 B 2 C 3 D Scattered

A B 1 2 C D 3 Gathered

V. Allombert, F. Gava HPCS 2018 13 / 18

Execution scheme
The execution scheme

• The code is duplicated on each cores
• multi-bsp code is executed sequentially everywhere
• A multi-function is, basically, a scheduler
• Schedulers receives ”continue (and daemon spawn)” or ”end”

execution

• Schedulers waits primitives instructions
• Leaves are running sequential code

1

2

A B

3

C D

A 1 B 2 C 3 D Scattered

A B 1 2 C D 3 Gathered

V. Allombert, F. Gava HPCS 2018 13 / 18

Execution scheme
The execution scheme

• The code is duplicated on each cores
• multi-bsp code is executed sequentially everywhere
• A multi-function is, basically, a scheduler
• Schedulers receives ”continue (and daemon spawn)” or ”end”

execution
• Schedulers waits primitives instructions

• Leaves are running sequential code

1

2

A B

3

C D

A 1 B 2 C 3 D Scattered

A B 1 2 C D 3 Gathered

V. Allombert, F. Gava HPCS 2018 13 / 18

Execution scheme
The execution scheme

• The code is duplicated on each cores
• multi-bsp code is executed sequentially everywhere
• A multi-function is, basically, a scheduler
• Schedulers receives ”continue (and daemon spawn)” or ”end”

execution
• Schedulers waits primitives instructions
• Leaves are running sequential code

1

2

A B

3

C D

A 1 B 2 C 3 D Scattered

A B 1 2 C D 3 Gathered

V. Allombert, F. Gava HPCS 2018 13 / 18

Primitive abstraction

Low level routines

• Signal and rcv: asynchronous communications
• up: communicate upward
• run: spawn daemon
• WakeUpChildren and WakeUpAll: broadcast values

V. Allombert, F. Gava HPCS 2018 14 / 18

Correctness

V. Allombert, F. Gava HPCS 2018 15 / 18

Performances

Execution platform
Mirev3:

• 4 nodes with 2 octo-cores (INTEL xeon E5 − 2650 at 2.6Ghz)
• 64GB of memory per node
• 10Gbit/s network

Algorithm i7 mirev31 mirev3 mirev3ht
TDS 690 2070 8625 16100
FFT 972 2916 12150 22680

Functions closures overhead (in Bytes)

V. Allombert, F. Gava HPCS 2018 16 / 18

Table of Contents

1 Introduction

2 A generic compilation scheme

3 Conclusion

V. Allombert, F. Gava HPCS 2018 17 / 18

Conclusion

Presented work

• Abstracts implementation
• Gives greater confidence on the compilation
• Reduces runtime overhead
• Reduces communications

Future work

• Prove the compilation scheme using the coq proof assistant
• Extend approach to all ocaml features

V. Allombert, F. Gava HPCS 2018 17 / 18

Thank you for your attention ⌣

Questions ?

V. Allombert, F. Gava HPCS 2018 18 / 18

	Introduction
	Structured parallel computing
	multi-bsp and multi-ml
	Current Multi-ML implementation

	A generic compilation scheme
	Conclusion

