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The world of parallel computing

Simulations:
Fluid simulation
3D Visualisation

Big-Data:
IoT
Social Networking
Data science

Symbolic computation:
Model-Checking
Formal computing

Super-computer
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Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory
• Communication network
• Synchronisation unit
• Super-steps execution

Properties:

• Deadlock-free
• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step... ... ... ...
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Hierarchical architectures

Characterised by:

• Interconnected units
• Both shared and distributed memories
• Hierarchical memories
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multi-bsp
1 A tree structure with nested components
2 Where nodes have a storage capacity
3 And leaves are processors
4 With sub-synchronisation capabilities

 
Stage 3

Network

RAM
P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8
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multi-bsp
• Stage 3: 4 nodes with a network access
• Stage 2: one node has 4 chips plus RAM
• Stage 1: one chip has 8 cores plus L3 cache
• Stage 0: one core with L1/L2 caches
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RAM
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The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently
• Exchanges information with the mi memory
• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi
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gi−1
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The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture
• Specific syntax over ml: eases programming
• Multi-functions that recursively go through the multi-bsp tree

tree

Replicated part
(multi-bsp)
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The multi-ml language
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e … e

let v= <<e>>

<< >>
⇒ f0 f1 ... fp−1

parallel
vector

Replicated part (bsp)
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The multi-ml language
Basic ideas
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Current implementation
Current approach

• Modular
• Generic functors
• Communication routines
• Portable on shared and distributed memories

Current version

• Based on mpi
• SPMD
• One process for each nodes/leaves
• Distributed over physical cores
• Shared/Distributed memory optimisations
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Current implementation

• One process per leaf/node
• Distributed over physical cores

1

2

A B

3

C D

⇒
1 A 2 B 3 C D

RAM RAM

Network

Core0 Core1 Core0 Core1
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Current implementation

p0

p1 p2

Master

Slaves

Orders/Signals

Signal1 job
Signal2 job

f = recv ()
f ()

f = recv ()
f ()

. . . . . . . . . . . .

p0 p1 p2
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Drawback of current implementation

• Closure communication
• Unnecessary communication
• Unnecessary processes
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Why a new implementation ?

• Minimise the number of daemons
• Abstract compilation scheme
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Execution scheme
The execution scheme

• The code is duplicated on each cores

• multi-bsp code is executed sequentially everywhere
• A multi-function is, basically, a scheduler
• Schedulers receives ”continue (and daemon spawn)” or ”end”

execution
• Schedulers waits primitives instructions
• Leaves are running sequential code

1

2

A B

3

C D
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Primitive abstraction

Low level routines

• Signal and rcv: asynchronous communications
• up: communicate upward
• run: spawn daemon
• WakeUpChildren and WakeUpAll: broadcast values
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Correctness
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Performances

Execution platform
Mirev3:

• 4 nodes with 2 octo-cores (INTEL xeon E5 − 2650 at 2.6Ghz)
• 64GB of memory per node
• 10Gbit/s network

Algorithm i7 mirev31 mirev3 mirev3ht
TDS 690 2070 8625 16100
FFT 972 2916 12150 22680

Functions closures overhead (in Bytes)
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Conclusion

Presented work

• Abstracts implementation
• Gives greater confidence on the compilation
• Reduces runtime overhead
• Reduces communications

Future work

• Prove the compilation scheme using the coq proof assistant
• Extend approach to all ocaml features
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Thank you for your attention ⌣

Questions ?
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