An ML implementation of the MULTI-BSP model

VicTOR ALLOMBERT!, FREDERIC GAVAZ2

LLIFO - Université d'Orléans, France
2LACL - Université Paris Est, France

18 July 2018

LABORATOIRE

lacl

D'INFORMATIQUE c
FONDAMENTALE
D'ORLEANS

V. Allombert, F. Gava HPCS 2018 1/18

Table of Contents

@ Introduction
@ A generic compilation scheme

© Conclusion

V. Allombert, F. Gava HPCS 2018 1/18

Table of Contents

@ Introduction
Structured parallel computing
MULTI-BSP and MULTI-ML
Current Multi-ML implementation

V. Allombert, F. Gava HPCS 2018 2/18

The world of parallel computing

Symbolic computation:

Fluid simulation o Model-Checking
Social Networking

3D Visualisation) Formal computing
Data science

Super-computer

V. Allombert, F. Gava

i

(11t Of

HPCS 2018 2/18

Bulk Synchronous Parallelism

The BSP computer

Defined by:
= p pairs CPU/memory
= Communication network
= Synchronisation unit

= Super-steps execution

Properties:

= Deadlock-free

= Predictable performances

V. Allombert, F. Gava

o[pr [P e

HPCS 2018

local)
computations

communication

barrier
next super-step

3/18

Hierarchical architectures

Characterised by:

= [nterconnected units

= Both shared and distributed memories

= Hierarchical memories

Core Core Core Core

Memory Memory Memory | | [Memory Memory
Core Core Core Core

Memory Memory | | [Memory
Core Core Core Core

Memory — Memory | | [Memory —
Core Core Core Core

Memory Memory | | [Memory

V. Allombert, F. Gava HPCS 2018 4 /18

MULTI-BSP

@ A tree structure with nested components
® Where nodes have a storage capacity

© And leaves are processors

O With sub-synchronisation capabilities

Stage 3 Stage 2

V. Allombert, F. Gava HPCS 2018 5/18

MULTI-BSP

Stage 3: 4 nodes with a network access
Stage 2: one node has 4 chips plus RAM
Stage 1: one chip has 8 cores plus L3 cache
Stage 0: one core with L1/L2 caches

Stage 3 Stage 2

Py =4

V. Allombert, F. Gava HPCS 2018 5/18

The MULTI-BSP model

Execution model

A level i superstep is:

Level i

Level i—1

V. Allombert, F. Gava HPCS 2018 6 /18

The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independently

Level i

Level i—1

V. Allombert, F. Gava HPCS 2018 6 /18

The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independently

= Exchanges information with the m; memory

Level i

Level i—1

V. Allombert, F. Gava HPCS 2018 6 /18

The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independently
= Exchanges information with the m; memory

= Synchronises

Level i

Level i—1

V. Allombert, F. Gava HPCS 2018 6 /18

The MULTI-ML language

Basic ideas

V. Allombert, F. Gava HPCS 2018 7/18

The MULTI-ML language

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

Replicated part (BSP) H%

fo

= Ve

fi

parallel
vector

Sequential part

V. Allombert, F. Gava

HPCS 2018 7/18

The MULTI-ML language

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

= Specific syntax over ML: eases programming

Replicated part (BSP) H%

= /rfo

fi

parallel
vector

Sequential part

V. Allombert, F. Gava

HPCS 2018 7/18

The MULTI-ML language

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

= Specific syntax over ML: eases programming

= Multi-functions that recursively go through the MULTI-BSP tree

Replicated part
(MULTI-BSP)

tree

V. Allombert, F. Gava HPCS 2018 7/18

Current implementation

Current approach

= Modular
= Generic functors
= Communication routines

= Portable on shared and distributed memories

Current version

= Based on MPI
= SPMD

= One process for each nodes/leaves

= Distributed over physical cores

= Shared/Distributed memory optimisations

V. Allombert, F. Gava HPCS 2018 8 /18

Current implementation

= One process per leaf/node

= Distributed over physical cores

Network

Core0 Corel Core0

Corel

2]
RAM RAM

V. Allombert, F. Gava HPCS 2018

9/18

p0

Signal! job
Signal®? job

Current implementation

Orders/Signals {

pl p2

f = recv ()
£ 0

f = recv ()
£ 0

V. Allombert, F. Gava HPCS 2018

10/ 18

Drawback of current implementation

= Closure communication
= Unnecessary communication

- Unnecessary processes

V. Allombert, F. Gava HPCS 2018 11 /18

Table of Contents

@® A generic compilation scheme

V. Allombert, F. Gava HPCS 2018 12 /18

Why a new implementation ?

= Minimise the number of daemons

= Abstract compilation scheme

V. Allombert, F. Gava HPCS 2018 12 /18

Execution scheme

The execution scheme

= The code is duplicated on each cores

BO|EO

@‘ (0] ‘ Scattered

A | EO®)| [

DI(3) ‘ Gathered

V. Allombert, F. Gava HPCS 2018 13 /18

Execution scheme

The execution scheme

= The code is duplicated on each cores

= MULTI-BSP code is executed sequentially everywhere

V. Allombert, F. Gava HPCS 2018 13 /18

Execution scheme

The execution scheme

= The code is duplicated on each cores
= MULTI-BSP code is executed sequentially everywhere

= A multi-function is, basically, a scheduler

V. Allombert, F. Gava HPCS 2018 13 /18

Execution scheme

The execution scheme

= The code is duplicated on each cores

= MULTI-BSP code is executed sequentially everywhere
= A multi-function is, basically, a scheduler

= Schedulers receives "continue (and daemon spawn)” or "end”
execution

V. Allombert, F. Gava HPCS 2018 13 /18

Execution scheme

The execution scheme

= The code is duplicated on each cores

= MULTI-BSP code is executed sequentially everywhere
= A multi-function is, basically, a scheduler

= Schedulers receives "continue (and daemon spawn)” or "end”
execution

= Schedulers waits primitives instructions

V. Allombert, F. Gava HPCS 2018 13 /18

Execution scheme

The execution scheme

= The code is duplicated on each cores

= MULTI-BSP code is executed sequentially everywhere
= A multi-function is, basically, a scheduler

= Schedulers receives "continue (and daemon spawn)” or "end”
execution

= Schedulers waits primitives instructions

= Leaves are running sequential code

V. Allombert, F. Gava HPCS 2018 13 /18

Primitive abstraction

Low level routines

= Signal and rcv: asynchronous communications

= up: communicate upward

= run: spawn daemon

= WakeUpChildren and WakeUpAll: broadcast values

V. Allombert, F. Gava HPCS 2018 14 /18

Correctness

Theorem 1. For a program P = eq;;---;;e, and if
W]:_(ei),
o If M F e M,: v; for each e; then:
(({€0, <[P}, oG, <[P],>1) =7
{({€0, <wor}. {Ep,, Qup, > 1)
o If M F ¢ Uf,: oo for one e; then:

{({&0, <lPL,>}s - - 4G, <AlPL>}) =
Then, we get ((e, ..., €)) =sqafe, Where =g,50 = =" U=

V. Allombert, F. Gava HPCS 2018 15 /18

Mirev3:

= 4 nodes with 2 octo-cores (INTEL xeon E5 — 2650 at 2.6Ghz)

= 64GB of memory per node

= 10Gbit/s network

Performances

Execution platform

Algorithm | i7 | mirev3; | mirev3 | mirev3p;
TDS 690 2070 8625 16100
FFT 972 2916 12150 22680

Functions closures overhead (in Bytes)

V. Allombert, F. Gava

HPCS 2018

16 / 18

Table of Contents

© Conclusion

V. Allombert, F. Gava HPCS 2018 17 / 18

Conclusion

Presented work

= Abstracts implementation

= Gives greater confidence on the compilation
= Reduces runtime overhead

= Reduces communications

= Prove the compilation scheme using the COQ proof assistant

= Extend approach to all ocaML features

V. Allombert, F. Gava HPCS 2018 17 /18

Thank you for your attention ©

Questions ?

V. Allombert, F. Gava HPCS 2018 18 / 18

	Introduction
	Structured parallel computing
	multi-bsp and multi-ml
	Current Multi-ML implementation

	A generic compilation scheme
	Conclusion

