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The world of parallel computing

Symbolic computation:

Fluid simulation o Model-Checking
Social Networking

3D Visualisation ) Formal computing
Data science

Super-computer
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Distributed computing

Characterised by:

= |nterconnected units

= Distributed memory

= Communication network

= MPI
Core Memory Core Memory
Core Memory Core Memory
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Bulk Synchronous Parallelism

The BSP computer

Defined by:
= p pairs CPU/memory
= Communication network
= Synchronisation unit

= Super-steps execution

Properties:

= Deadlock-free

= Predictable performances
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Bulk Synchronous ML

= Explicit BSP programming with a functional approach
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Bulk Synchronous ML

= Explicit BSP programming with a functional approach

= Based upon ML and implemented over OCAML
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Bulk Synchronous ML

= Explicit BSP programming with a functional approach

= Based upon ML and implemented over OCAML

= Formal semantics — computer-assisted proofs (COQ)
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Bulk Synchronous ML
What is BSML?

= Explicit BSP programming with a functional approach
= Based upon ML and implemented over OCAML

= Formal semantics — computer-assisted proofs (COQ)

Main idea

Parallel data structure = parallel vector:

Replicated part (BsP) H%

% fi o1 parallel vector
- ¢

Sequential part %
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Hierarchical architectures

Characterised by:

= [nterconnected units

= Both shared and distributed memories

= Hierarchical memories

Core Core Core Core

Memory Memory Memory | | [Memory Memory
Core Core Core Core

Memory Memory | | [Memory
Core Core Core Core

Memory — Memory | | [ Memory —
Core Core Core Core

Memory Memory | | [Memory
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MULTI-BSP

@ A tree structure with nested components
® Where nodes have a storage capacity

© And leaves are processors

O With sub-synchronisation capabilities

Stage 3 Stage 2
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MULTI-BSP

Stage 3: 4 nodes with a network access
Stage 2: one node has 4 chips plus RAM
Stage 1: one chip has 8 cores plus L3 cache
Stage 0: one core with L1/L2 caches

Stage 3 Stage 2

Py =4
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The MULTI-BSP model

Execution model

A level i superstep is:

Level i

Level i—1
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The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independently

Level i

Level i—1
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The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independently

= Exchanges information with the m; memory
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The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independently
= Exchanges information with the m; memory

= Synchronises

Level i

Level i—1
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The MULTI-ML language

Basic ideas
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The MULTI-ML language

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

Replicated part (BSP) H%

fo

= Ve

fi

parallel
vector

Sequential part
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The MULTI-ML language

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

= Specific syntax over ML: eases programming

Replicated part (BSP) H%

= /rfo

fi

parallel
vector

Sequential part
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The MULTI-ML language

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

= Specific syntax over ML: eases programming

= Multi-functions that recursively go through the MULTI-BSP tree

Replicated part
(MULTI-BSP)

tree
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How to compare 7 |

“Incremental programming”

@ Write a sequential OCAML code

® BSP extension using BSML
© MULTI-BSP extension using MULTI-ML
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How to compare 7 Il

Difficulty of writing a code

= Halsted Difficulty (HD)

= Halsted Effort (HE)

= McCabe Cyclomatic Complexity (CC)
= Maintainability Index (MI)

V. Allombert, F. Gava HLPP 2018 10 / 24



How to compare 7 Il

Overall performances

= Speedup (based on sequential algorithm)

= Execution time

Execution platforms

= Mirev2:
= 8 nodes with 2 quad-cores (AMD 2376 at 2.3Ghz)
= 16GB of memory per node
= 1Gbit/s network

= Mirev3:

= 4 nodes with 2 octo-cores (INTEL xeon E5 — 2650 at 2.6Ghz)
= 64GB of memory per node
= 10Gbit/s network
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Application cases

= Model-checking (Symbolic computation)
= Skeleton based FFT (Numerical computation)

= All Pairs similarity search problem (Big-data computation)
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Model-checking case

What is it ?

Exhaustively check if a model meets a given specification.

How 7

Exploring all the states accessible via a successor function from an
initial state sp

Algorithm characteristics

= Data intensive
= Task parallel
= Explicit load balancing
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Difficulty of writing the code
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Overall performances
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Skeleton based FFT case

What is it ?

Converts a signal from its original domain to a representation in
the frequency domain

How ?

ki
(FFTx); = 20— s e2mv=1/n"
Expressed using the Dlstrlbutable Homomorphism (DH) skeleton

Algorithm characteristics

= Data intensive
= Data parallel

= Balanced communication scheme
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Difficulty of writing the code
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Overall performances
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All Pairs similarity search problem case

What is it ?

Discover all the pairs of objects whose similarity is above a given
threshold

How 7

Compute local similarities of data sub-sets, then exchanges

Algorithm characteristics

= Data intensive
= Data parallel

= Balanced communication scheme
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Difficulty of writing the code
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Execution time

Overall performances
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To sum up

Model-checking

= Code complexity: OCAML < BSML < MULTI-ML

= QOverall performances: OCAML < BSML < MULTI-ML

Skeleton based FFT

= Code complexity: OCAML < BSML ~ MULTI-ML

= QOverall performances: OCAML < BSML ~ MULTI-ML

All Pairs similarity search problem

= Code complexity: OCAML < BSML < MULTI-ML

= Overall performances: OCAML < BSML < MULTI-ML

V. Allombert, F. Gava HLPP 2018 22 /24



Conclusion

Hierarchical programming: is it worth it ?

+ Performances
- Hard to program

-> Harder to write immortal algorithms

Ongoing and future work

= Write MULTI-BSP algorithms

= Comparison with BSP and MULTI-BSP cost model
= Programming experiments
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Thank you for your attention ©

Questions ?
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