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The world of parallel computing

Simulations:
Fluid simulation
3D Visualisation

Big-Data:
IoT
Social Networking
Data science

Symbolic computation:
Model-Checking
Formal computing

Super-computer

V. Allombert, F. Gava HLPP 2018 2 / 24



Distributed computing

Characterised by:

• Interconnected units
• Distributed memory
• Communication network
• mpi

Core Memory Core Memory

Core Memory Core Memory
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Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory
• Communication network
• Synchronisation unit
• Super-steps execution

Properties:

• Deadlock-free
• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step... ... ... ...
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Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach

• Based upon ml and implemented over ocaml
• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part

V. Allombert, F. Gava HLPP 2018 5 / 24



Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach
• Based upon ml and implemented over ocaml

• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part

V. Allombert, F. Gava HLPP 2018 5 / 24



Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach
• Based upon ml and implemented over ocaml
• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part

V. Allombert, F. Gava HLPP 2018 5 / 24



Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach
• Based upon ml and implemented over ocaml
• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part

V. Allombert, F. Gava HLPP 2018 5 / 24



Hierarchical architectures

Characterised by:

• Interconnected units
• Both shared and distributed memories
• Hierarchical memories

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core
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multi-bsp
1 A tree structure with nested components
2 Where nodes have a storage capacity
3 And leaves are processors
4 With sub-synchronisation capabilities

 
Stage 3

Network

RAM
P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4
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multi-bsp
• Stage 3: 4 nodes with a network access
• Stage 2: one node has 4 chips plus RAM
• Stage 1: one chip has 8 cores plus L3 cache
• Stage 0: one core with L1/L2 caches

 
Stage 3

Network

RAM
P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4
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The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently
• Exchanges information with the mi memory
• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li
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The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture
• Specific syntax over ml: eases programming
• Multi-functions that recursively go through the multi-bsp tree

tree

Replicated part
(multi-bsp)
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The multi-ml language
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How to compare ? I

“Incremental programming”

1 Write a sequential ocaml code
2 bsp extension using bsml
3 multi-bsp extension using multi-ml
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How to compare ? II

Difficulty of writing a code

• Halsted Difficulty (HD)
• Halsted Effort (HE)
• McCabe Cyclomatic Complexity (CC)
• Maintainability Index (MI)
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How to compare ? III
Overall performances

• Speedup (based on sequential algorithm)
• Execution time

Execution platforms

• Mirev2:
• 8 nodes with 2 quad-cores (AMD 2376 at 2.3Ghz)
• 16GB of memory per node
• 1Gbit/s network

• Mirev3:
• 4 nodes with 2 octo-cores (INTEL xeon E5 − 2650 at 2.6Ghz)
• 64GB of memory per node
• 10Gbit/s network
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Application cases

• Model-checking (Symbolic computation)
• Skeleton based FFT (Numerical computation)
• All Pairs similarity search problem (Big-data computation)
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Model-checking case

What is it ?
Exhaustively check if a model meets a given specification.

How ?
Exploring all the states accessible via a successor function from an
initial state s0

Algorithm characteristics

• Data intensive
• Task parallel
• Explicit load balancing
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Difficulty of writing the code

HE HD CC MI
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Overall performances
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Skeleton based FFT case

What is it ?
Converts a signal from its original domain to a representation in
the frequency domain

How ?
(FFT x)i =

∑n−1
k=0 xk.e2π

√
−1/nki

n
Expressed using the Distributable Homomorphism (DH) skeleton

Algorithm characteristics

• Data intensive
• Data parallel
• Balanced communication scheme
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Difficulty of writing the code
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All Pairs similarity search problem case

What is it ?
Discover all the pairs of objects whose similarity is above a given
threshold

How ?
Compute local similarities of data sub-sets, then exchanges

Algorithm characteristics

• Data intensive
• Data parallel
• Balanced communication scheme
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Difficulty of writing the code

HE HD CC MI
0

500

1,000

47 38 10

203
128 68 19

424

250 224

33

1,100
ocaml bsml multi-ml

V. Allombert, F. Gava HLPP 2018 20 / 24



Overall performances
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To sum up
Model-checking

• Code complexity: ocaml < bsml < multi-ml
• Overall performances: ocaml < bsml ≤ multi-ml

Skeleton based FFT

• Code complexity: ocaml < bsml ≃ multi-ml
• Overall performances: ocaml < bsml ≃ multi-ml

All Pairs similarity search problem

• Code complexity: ocaml < bsml < multi-ml
• Overall performances: ocaml < bsml < multi-ml
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Conclusion

Hierarchical programming: is it worth it ?

+ Performances
- Hard to program

-> Harder to write immortal algorithms

Ongoing and future work

• Write multi-bsp algorithms
• Comparison with bsp and multi-bsp cost model
• Programming experiments
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Thank you for your attention ⌣

Questions ?
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