
Programming BSP and Multi-BSP algorithms in ML

Victor ALLOMBERT1, Frédéric GAVA2

1lifo - Université d’Orléans, France
2lacl - Université Paris Est, France

13 July 2018

V. Allombert, F. Gava HLPP 2018 1 / 24



Table of Contents

1 Introduction

2 Comparison

3 Conclusion

V. Allombert, F. Gava HLPP 2018 1 / 24



Table of Contents

1 Introduction
Structured parallel computing
bsp and bsml
multi-bsp and multi-ml

2 Comparison

3 Conclusion

V. Allombert, F. Gava HLPP 2018 2 / 24



The world of parallel computing

Simulations:
Fluid simulation
3D Visualisation

Big-Data:
IoT
Social Networking
Data science

Symbolic computation:
Model-Checking
Formal computing

Super-computer

V. Allombert, F. Gava HLPP 2018 2 / 24



Distributed computing

Characterised by:

• Interconnected units
• Distributed memory
• Communication network
• mpi

Core Memory Core Memory

Core Memory Core Memory

V. Allombert, F. Gava HLPP 2018 3 / 24



Bulk Synchronous Parallelism

The bsp computer
Defined by:

• p pairs CPU/memory
• Communication network
• Synchronisation unit
• Super-steps execution

Properties:

• Deadlock-free
• Predictable performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step... ... ... ...

V. Allombert, F. Gava HLPP 2018 4 / 24



Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach

• Based upon ml and implemented over ocaml
• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part

V. Allombert, F. Gava HLPP 2018 5 / 24



Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach
• Based upon ml and implemented over ocaml

• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part

V. Allombert, F. Gava HLPP 2018 5 / 24



Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach
• Based upon ml and implemented over ocaml
• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part

V. Allombert, F. Gava HLPP 2018 5 / 24



Bulk Synchronous ml
What is bsml?

• Explicit bsp programming with a functional approach
• Based upon ml and implemented over ocaml
• Formal semantics → computer-assisted proofs (coq)

Main idea
Parallel data structure ⇒ parallel vector:

f0 f1 ... fp−1 parallel vector

Replicated part (bsp)

Sequential part

V. Allombert, F. Gava HLPP 2018 5 / 24



Hierarchical architectures

Characterised by:

• Interconnected units
• Both shared and distributed memories
• Hierarchical memories

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

Core

Memory

Core

Memory

Core

Memory

Core

Memory

Memory

V. Allombert, F. Gava HLPP 2018 6 / 24



multi-bsp
1 A tree structure with nested components
2 Where nodes have a storage capacity
3 And leaves are processors
4 With sub-synchronisation capabilities

 
Stage 3

Network

RAM
P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4

V. Allombert, F. Gava HLPP 2018 7 / 24



multi-bsp
• Stage 3: 4 nodes with a network access
• Stage 2: one node has 4 chips plus RAM
• Stage 1: one chip has 8 cores plus L3 cache
• Stage 0: one core with L1/L2 caches

 
Stage 3

Network

RAM
P3 = 4

Stage 2

RAM

L3

L2/L1

Core

P1 = 8

P2 = 4

V. Allombert, F. Gava HLPP 2018 7 / 24



The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently
• Exchanges information with the mi memory
• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li

V. Allombert, F. Gava HLPP 2018 8 / 24



The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently

• Exchanges information with the mi memory
• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li

V. Allombert, F. Gava HLPP 2018 8 / 24



The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently
• Exchanges information with the mi memory

• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li

V. Allombert, F. Gava HLPP 2018 8 / 24



The multi-bsp model
Execution model
A level i superstep is:

• Level i − 1 executes code independently
• Exchanges information with the mi memory
• Synchronises

Level i

Level i − 1

n

n.1 … … n.pi

gi

gi−1

mi

Li

V. Allombert, F. Gava HLPP 2018 8 / 24



The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture
• Specific syntax over ml: eases programming
• Multi-functions that recursively go through the multi-bsp tree

tree

Replicated part
(multi-bsp)

V. Allombert, F. Gava HLPP 2018 9 / 24



The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture

• Specific syntax over ml: eases programming
• Multi-functions that recursively go through the multi-bsp tree

e … e

let v= <<e>>

<< >>
⇒ f0 f1 ... fp−1

parallel
vector

Replicated part (bsp)

Sequential part

tree

Replicated part
(multi-bsp)

V. Allombert, F. Gava HLPP 2018 9 / 24



The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture
• Specific syntax over ml: eases programming

• Multi-functions that recursively go through the multi-bsp tree

e … e

let v= <<e>>

<< >>
⇒ f0 f1 ... fp−1

parallel
vector

Replicated part (bsp)

Sequential part

tree

Replicated part
(multi-bsp)

V. Allombert, F. Gava HLPP 2018 9 / 24



The multi-ml language
Basic ideas

• bsml-like code on every stage of the multi-bsp architecture
• Specific syntax over ml: eases programming
• Multi-functions that recursively go through the multi-bsp tree

tree

Replicated part
(multi-bsp)

V. Allombert, F. Gava HLPP 2018 9 / 24



Table of Contents

1 Introduction

2 Comparison
The methodology
Application cases

3 Conclusion

V. Allombert, F. Gava HLPP 2018 10 / 24



How to compare ? I

“Incremental programming”

1 Write a sequential ocaml code
2 bsp extension using bsml
3 multi-bsp extension using multi-ml

V. Allombert, F. Gava HLPP 2018 9 / 24



How to compare ? II

Difficulty of writing a code

• Halsted Difficulty (HD)
• Halsted Effort (HE)
• McCabe Cyclomatic Complexity (CC)
• Maintainability Index (MI)

V. Allombert, F. Gava HLPP 2018 10 / 24



How to compare ? III
Overall performances

• Speedup (based on sequential algorithm)
• Execution time

Execution platforms

• Mirev2:
• 8 nodes with 2 quad-cores (AMD 2376 at 2.3Ghz)
• 16GB of memory per node
• 1Gbit/s network

• Mirev3:
• 4 nodes with 2 octo-cores (INTEL xeon E5 − 2650 at 2.6Ghz)
• 64GB of memory per node
• 10Gbit/s network

V. Allombert, F. Gava HLPP 2018 11 / 24



Application cases

• Model-checking (Symbolic computation)
• Skeleton based FFT (Numerical computation)
• All Pairs similarity search problem (Big-data computation)

V. Allombert, F. Gava HLPP 2018 12 / 24



Model-checking case

What is it ?
Exhaustively check if a model meets a given specification.

How ?
Exploring all the states accessible via a successor function from an
initial state s0

Algorithm characteristics

• Data intensive
• Task parallel
• Explicit load balancing

V. Allombert, F. Gava HLPP 2018 13 / 24



Difficulty of writing the code

HE HD CC MI
0

200

400

600

800

1,000

2 25 6

208

17 56 15

420

110

346

78

845ocaml bsml multi-ml

V. Allombert, F. Gava HLPP 2018 14 / 24



Overall performances

Mire
v2

8th
(2m

)
Mire

v2
8th

(4m
)

Mire
v2

64
th(

8m
)

Mire
v3

8th
(2m

)
Mire

v3
16

th(
2m

)
Mire

v3
64

th(
2m

)

0

5

10

15

20

3.2 4.3
7

4
5.4

0.9
3

5.3

14.7

4.9

8
6.7sp

ee
d

up

bsml multi-ml

V. Allombert, F. Gava HLPP 2018 15 / 24



Skeleton based FFT case

What is it ?
Converts a signal from its original domain to a representation in
the frequency domain

How ?
(FFT x)i =

∑n−1
k=0 xk.e2π

√
−1/nki

n
Expressed using the Distributable Homomorphism (DH) skeleton

Algorithm characteristics

• Data intensive
• Data parallel
• Balanced communication scheme

V. Allombert, F. Gava HLPP 2018 16 / 24



Difficulty of writing the code

HE HD CC MI
0

200

400

600

800

1
62

11

149118 158

29

304

81
139

17

607
ocaml bsml multi-ml

V. Allombert, F. Gava HLPP 2018 17 / 24



Overall performances

Mire
v2

8th
(2m

)
Mire

v2
8th

(4m
)

Mire
v2

64
th(

8m
)

Mire
v3

8th
(2m

)
Mire

v3
16

th(
2m

)
Mire

v3
64

th(
2m

)

0

2

4

6

8

10

3.7 4.2 3.9
4.5 4.3 3.9

2.7 3.2 2.9 3.3 3.8
4.5

sp
ee

d
up

bsml multi-ml

V. Allombert, F. Gava HLPP 2018 18 / 24



All Pairs similarity search problem case

What is it ?
Discover all the pairs of objects whose similarity is above a given
threshold

How ?
Compute local similarities of data sub-sets, then exchanges

Algorithm characteristics

• Data intensive
• Data parallel
• Balanced communication scheme

V. Allombert, F. Gava HLPP 2018 19 / 24



Difficulty of writing the code

HE HD CC MI
0

500

1,000

47 38 10

203
128 68 19

424

250 224

33

1,100
ocaml bsml multi-ml

V. Allombert, F. Gava HLPP 2018 20 / 24



Overall performances

Mire
v2

16
th(

8m
)

Mire
v2

64
th(

8m
)

Mire
v3

32
th(

2m
)

Mire
v3

64
th(

2m
)

0

100

200

300

400

155

269

96 87

143

253

90 72Ex
ec

ut
io

n
tim

e

bsml multi-ml

V. Allombert, F. Gava HLPP 2018 21 / 24



Table of Contents

1 Introduction

2 Comparison

3 Conclusion

V. Allombert, F. Gava HLPP 2018 22 / 24



To sum up
Model-checking

• Code complexity: ocaml < bsml < multi-ml
• Overall performances: ocaml < bsml ≤ multi-ml

Skeleton based FFT

• Code complexity: ocaml < bsml ≃ multi-ml
• Overall performances: ocaml < bsml ≃ multi-ml

All Pairs similarity search problem

• Code complexity: ocaml < bsml < multi-ml
• Overall performances: ocaml < bsml < multi-ml

V. Allombert, F. Gava HLPP 2018 22 / 24



Conclusion

Hierarchical programming: is it worth it ?

+ Performances
- Hard to program

-> Harder to write immortal algorithms

Ongoing and future work

• Write multi-bsp algorithms
• Comparison with bsp and multi-bsp cost model
• Programming experiments

V. Allombert, F. Gava HLPP 2018 23 / 24



Thank you for your attention ⌣

Questions ?

V. Allombert, F. Gava HLPP 2018 24 / 24


	Introduction
	Structured parallel computing
	bsp and bsml
	multi-bsp and multi-ml

	Comparison
	The methodology
	Application cases

	Conclusion

