Programming BSP and Multi-BSP algorithms in ML

VicTOR ALLOMBERT!, FREDERIC GAVAZ2

LLIFO - Université d'Orléans, France
2LACL - Université Paris Est, France

13 July 2018

LABORATOIRE

{ald!

D'INFORMATIQUE c
FONDAMENTALE
D'ORLEANS

V. Allombert, F. Gava HLPP 2018 1/24

Table of Contents

@ Introduction
@® Comparison

© Conclusion

V. Allombert, F. Gava HLPP 2018 1/24

Table of Contents

@ Introduction
Structured parallel computing
BSP and BSML
MULTI-BSP and MULTI-ML

V. Allombert, F. Gava HLPP 2018 2 /24

The world of parallel computing

Symbolic computation:

Fluid simulation o Model-Checking
Social Networking

3D Visualisation) Formal computing
Data science

Super-computer

V. Allombert, F. Gava

i

(11t Of

HLPP 2018 2 /24

y

/A

(1101 gl1irr
</// i(/// /4

V. Allombert, F. Gava

Distributed computing

Characterised by:

= |nterconnected units

= Distributed memory

= Communication network

= MPI
Core Memory Core Memory
Core Memory Core Memory

HLPP 2018

3/24

Bulk Synchronous Parallelism

The BSP computer

Defined by:
= p pairs CPU/memory
= Communication network
= Synchronisation unit

= Super-steps execution

Properties:

= Deadlock-free

= Predictable performances

V. Allombert, F. Gava

o[pr [P e

HLPP 2018

local)
computations

communication

barrier
next super-step

4/ 24

Bulk Synchronous ML

= Explicit BSP programming with a functional approach

V. Allombert, F. Gava HLPP 2018 5/24

Bulk Synchronous ML

= Explicit BSP programming with a functional approach

= Based upon ML and implemented over OCAML

2

4

4

V. Allombert, F. Gava HLPP 2018 5/24

Bulk Synchronous ML

= Explicit BSP programming with a functional approach

= Based upon ML and implemented over OCAML

= Formal semantics — computer-assisted proofs (COQ)

2

Al

4

V. Allombert, F. Gava HLPP 2018 5/24

Bulk Synchronous ML
What is BSML?

= Explicit BSP programming with a functional approach
= Based upon ML and implemented over OCAML

= Formal semantics — computer-assisted proofs (COQ)

Main idea

Parallel data structure = parallel vector:

Replicated part (BsP) H%

% fi o1 parallel vector
- ¢

Sequential part %

V. Allombert, F. Gava HLPP 2018 5/24

Hierarchical architectures

Characterised by:

= [nterconnected units

= Both shared and distributed memories

= Hierarchical memories

Core Core Core Core

Memory Memory Memory | | [Memory Memory
Core Core Core Core

Memory Memory | | [Memory
Core Core Core Core

Memory — Memory | | [Memory —
Core Core Core Core

Memory Memory | | [Memory

V. Allombert, F. Gava HLPP 2018 6 /24

MULTI-BSP

@ A tree structure with nested components
® Where nodes have a storage capacity

© And leaves are processors

O With sub-synchronisation capabilities

Stage 3 Stage 2

V. Allombert, F. Gava HLPP 2018 7/ 24

MULTI-BSP

Stage 3: 4 nodes with a network access
Stage 2: one node has 4 chips plus RAM
Stage 1: one chip has 8 cores plus L3 cache
Stage 0: one core with L1/L2 caches

Stage 3 Stage 2

Py =4

V. Allombert, F. Gava HLPP 2018 7/ 24

The MULTI-BSP model

Execution model

A level i superstep is:

Level i

Level i—1

V. Allombert, F. Gava HLPP 2018 8 /24

The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independently

Level i

Level i—1

V. Allombert, F. Gava HLPP 2018 8 /24

The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independently

= Exchanges information with the m; memory

Level i

Level i—1

V. Allombert, F. Gava HLPP 2018 8 /24

The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independently
= Exchanges information with the m; memory

= Synchronises

Level i

Level i—1

V. Allombert, F. Gava HLPP 2018 8 /24

The MULTI-ML language

Basic ideas

V. Allombert, F. Gava HLPP 2018 9 /24

The MULTI-ML language

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

Replicated part (BSP) H%

fo

= Ve

fi

parallel
vector

Sequential part

V. Allombert, F. Gava

HLPP 2018 9 /24

The MULTI-ML language

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

= Specific syntax over ML: eases programming

Replicated part (BSP) H%

= /rfo

fi

parallel
vector

Sequential part

V. Allombert, F. Gava

HLPP 2018 9 /24

The MULTI-ML language

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

= Specific syntax over ML: eases programming

= Multi-functions that recursively go through the MULTI-BSP tree

Replicated part
(MULTI-BSP)

tree

V. Allombert, F. Gava HLPP 2018 9 /24

Table of Contents

@® Comparison
The methodology
Application cases

V. Allombert, F. Gava HLPP 2018 10 / 24

How to compare 7 |

“Incremental programming”

@ Write a sequential OCAML code

® BSP extension using BSML
© MULTI-BSP extension using MULTI-ML

V. Allombert, F. Gava HLPP 2018 9 /24

How to compare 7 Il

Difficulty of writing a code

= Halsted Difficulty (HD)

= Halsted Effort (HE)

= McCabe Cyclomatic Complexity (CC)
= Maintainability Index (MI)

V. Allombert, F. Gava HLPP 2018 10 / 24

How to compare 7 Il

Overall performances

= Speedup (based on sequential algorithm)

= Execution time

Execution platforms

= Mirev2:
= 8 nodes with 2 quad-cores (AMD 2376 at 2.3Ghz)
= 16GB of memory per node
= 1Gbit/s network

= Mirev3:

= 4 nodes with 2 octo-cores (INTEL xeon E5 — 2650 at 2.6Ghz)
= 64GB of memory per node
= 10Gbit/s network

V. Allombert, F. Gava HLPP 2018 11/ 24

Application cases

= Model-checking (Symbolic computation)
= Skeleton based FFT (Numerical computation)

= All Pairs similarity search problem (Big-data computation)

V. Allombert, F. Gava HLPP 2018 12 / 24

Model-checking case

What is it ?

Exhaustively check if a model meets a given specification.

How 7

Exploring all the states accessible via a successor function from an
initial state sp

Algorithm characteristics

= Data intensive
= Task parallel
= Explicit load balancing

V. Allombert, F. Gava HLPP 2018 13/ 24

Difficulty of writing the code

1,000 \ ! !
lnocamrlnssmLlomuLTI-ML | gah
800 T
600 |
420
400 |- 346
200 208
B 110 78
9 17 25 96 6 15 ﬂ
2L —em -~ — ‘
HE HD CC MI

V. Allombert, F. Gava

HLPP 2018

14 / 24

Overall performances

| | |
20| ’DDBSMLDDMULTI-ML ‘ i
o 15f 14.7 i
= |
2 10
& 53 o 19 5.4 - 0.6
9
5032 3 4.3 4 .
] DRE(SEE
0 —
Q N N N N N
& & & ¢
N N N N N N
) Y & Y 8 &

V. Allombert, F. Gava HLPP 2018 15 / 24

Skeleton based FFT case

What is it ?

Converts a signal from its original domain to a representation in
the frequency domain

How ?

ki
(FFTx); = 20— s e2mv=1/n"
Expressed using the Dlstrlbutable Homomorphism (DH) skeleton

Algorithm characteristics

= Data intensive
= Data parallel

= Balanced communication scheme

V. Allombert, F. Gava HLPP 2018 16 / 24

Difficulty of writing the code

O | |
80 ‘DDOCAMLDDBSMLDDMULTI—ML ‘
60
600 —
400 304
200 118 31 158139 149
62
1 2
NES S 12917 B ‘
HE HD CC Ml

V. Allombert, F. Gava

HLPP 2018

17 / 24

Overall performances

’ loBsMLIMULTI-ML ‘

18 / 24

3.8 3.9{1“1

il

4.5

3.9

i i s

3.7

10
8,

6,
4,

dn paads

HLPP 2018

2
0

V. Allombert, F. Gava

All Pairs similarity search problem case

What is it ?

Discover all the pairs of objects whose similarity is above a given
threshold

How 7

Compute local similarities of data sub-sets, then exchanges

Algorithm characteristics

= Data intensive
= Data parallel

= Balanced communication scheme

V. Allombert, F. Gava HLPP 2018 19 / 24

Difficulty of writing the code

‘ ‘ 440
‘DDOCAMLDDBSMLDDMULTI—ML ‘ ik
1,000 |-
500 |- 424
250 224 203
128 s v [
i - 10
o = e 1927 ‘
HE HD CC M

V. Allombert, F. Gava HLPP 2018 20 / 24

Execution time

Overall performances

400 . .
’ loBsMmL I MULTI-ML ‘
300 - 269953 l
100 | 96 90 87 79 |
O | N
AN A A AN
o o oS oS
S & W W
k) X X X
‘W/\('o "\:ov ’b(g/ "'3(0v
3 3 3 S

V. Allombert, F. Gava

HLPP 2018

21/ 24

Table of Contents

© Conclusion

V. Allombert, F. Gava HLPP 2018 22 /24

To sum up

Model-checking

= Code complexity: OCAML < BSML < MULTI-ML

= QOverall performances: OCAML < BSML < MULTI-ML

Skeleton based FFT

= Code complexity: OCAML < BSML ~ MULTI-ML

= QOverall performances: OCAML < BSML ~ MULTI-ML

All Pairs similarity search problem

= Code complexity: OCAML < BSML < MULTI-ML

= Overall performances: OCAML < BSML < MULTI-ML

V. Allombert, F. Gava HLPP 2018 22 /24

Conclusion

Hierarchical programming: is it worth it ?

+ Performances
- Hard to program

-> Harder to write immortal algorithms

Ongoing and future work

= Write MULTI-BSP algorithms

= Comparison with BSP and MULTI-BSP cost model
= Programming experiments

V. Allombert, F. Gava HLPP 2018 23 /24

Thank you for your attention ©

Questions ?

V. Allombert, F. Gava HLPP 2018 24 /24

	Introduction
	Structured parallel computing
	bsp and bsml
	multi-bsp and multi-ml

	Comparison
	The methodology
	Application cases

	Conclusion

