PROGRAMMING IN MULTI-BSP:
MULTI-ML AND ITS TYPING SYSTEM

VICTOR ALLOMBERT, FREDERIC GAVA AND JULIEN TESSON

Laboratory of Algorithmic Complexity and Logic
Université Paris-Est

GDR LTP - LRI

lacl JPec

Connaissance Action

UNIVERSITE
PARIS-EST CRETEIL
VAL DE MARNE

V. Allombert et al. LTP - 28 NOVEMBER 2016 1/22

@ Introduction
@ Multi-ML in a nutshell
© Multi-ML type system

O Conclusion

Table of Contents

Table of Contents

@ Introduction
BSP
BSML
MULTI-BSP

V. Allombert et al. LTP - 28 NOVEMBER 2016 2/22

Bulk Synchronous Parallelism

A BSP computer:

= p pairs CPU/memory

= Communication network ’Po H p1 H p2 H Ps ‘
= Synchronization unit l J local _
—— computations
I!:\\ —
o
e RPN communication
! \(/: S ’\\:
|\ 7

C 5 barrier

next super-step

V. Allombert et al. LTP - 28 NOVEMBER 2016 2/22

Bulk Synchronous Parallelism

A BSP computer:

= p pairs CPU/memory
= Communication network

= Synchronization unit

Properties:

= Super-steps execution
= Confluent
= Deadlock-free

= Predictable performances

V. Allombert et al.

[po[pr [P ps)

l local)
—— computations

communication
ﬁ&]ﬁi} barrier

next super-step

LTP - 28 NOVEMBER 2016

2/ 22

Bulk Synchronous ML

What is BSML?

V. Allombert et al. LTP - 28 NOVEMBER 2016 3/22

Bulk Synchronous ML

= Explicit BSP programming with a functional approach

V. Allombert et al. LTP - 28 NOVEMBER 2016 3/22

Bulk Synchronous ML

= Explicit BSP programming with a functional approach

= Based upon ML an implemented over OCAML
22

4

4

V. Allombert et al. LTP - 28 NOVEMBER 2016 3/22

Bulk Synchronous ML

= Explicit BSP programming with a functional approach

= Based upon ML an implemented over OCAML

= Formal semantics — computer-assisted proofs (COQ)

2

Al

4

V. Allombert et al. LTP - 28 NOVEMBER 2016 3/22

Bulk Synchronous ML
What is BSML?

= Explicit BSP programming with a functional approach
= Based upon ML an implemented over OCAML

= Formal semantics — computer-assisted proofs (COQ)

Main idea

Parallel data structure = Vector:

Replicated e Sequential part
part -
@ o
>

V. Allombert et al. LTP - 28 NOVEMBER 2016 3/22

BSML primitives

Asynchronous primitives

V. Allombert et al. LTP - 28 NOVEMBER 2016 4 /22

BSML primitives

Asynchronous primitives

= << e >>:{e,...,e)

V. Allombert et al. LTP - 28 NOVEMBER 2016 4 /22

BSML primitives

Asynchronous primitives

= << e >>:{e,...,e)

= v: v;on processor i, assumes v = (vo,...,Vp_1)

V. Allombert et al. LTP - 28 NOVEMBER 2016 4 /22

BSML primitives

Asynchronous primitives

= << e >>:{e,...,e)

= v: v;on processor i, assumes v = (vo,...,Vp_1)

= pid: /on processor i

V. Allombert et al. LTP - 28 NOVEMBER 2016 4 /22

BSML primitives

Asynchronous primitives

= << e >>:{e,...,e)

= v: v;on processor i, assumes v = (v, ..., Vp_1)

= pid: /on processor i

Synchronous primitives

= proj: (xo,...,Xp—1) > (fun i— x;)

V. Allombert et al. LTP - 28 NOVEMBER 2016 4 /22

BSML primitives

Asynchronous primitives

= << e >>:{e,...,e)

= v: v;on processor i, assumes v = (v, ..., Vp_1)

= pid: /on processor i

Synchronous primitives

= proj: (xo,...,Xp—1) > (fun i— x;)

= put: (fo,...,fp—1)—=((fun i—=£0),...,(fun i=f; (p—1)))

V. Allombert et al. LTP - 28 NOVEMBER 2016 4 /22

Code example

For a BSP machine with 3 processors:

let vec = << "Hello" >>;;
val vec : string par = <"Hello", "Hello", "Hello">

let vec2 = << vec” (string_of_int pid) >>;;
val vec2 : string par = <"HelloO", "Hellol", "Hello2">

let totex v = List.map (proj v) procs;;
val totex : 'a par -> 'a list = <fun>

totex vec2;;
- : string list = ["HelloO"; "Hellol"; "Hello2"]

V. Allombert et al. LTP - 28 NOVEMBER 2016 5/22

The MULTI-BSP model

What is MULTI-BSP?

@ A tree structure with nested components

® Where nodes have a storage capacity

©® And leaves are processors

V. Allombert et al. LTP - 28 NOVEMBER 2016 6 /22

The MULTI-BSP model

What is MULTI-BSP?

@ A tree structure with nested components
® Where nodes have a storage capacity

©® And leaves are processors

MULTI-BSP

thO| |thl| | th2| |th3 thO| |thl| th2| th3

V. Allombert et al. LTP - 28 NOVEMBER 2016 6 /22

The MULTI-BSP model

What is MULTI-BSP?

@ A tree structure with nested components
® Where nodes have a storage capacity

©® And leaves are processors

MULTI-BSP BSP

thO| |thl||th2| th3| |th4| th5 |th6| th7

thO| |thl| | th2| |th3 thO| |thl| th2| th3

V. Allombert et al. LTP - 28 NOVEMBER 2016

6/ 22

The MULTI-BSP model

Execution model

A level i superstep is:

Level i

Level i—1

V. Allombert et al. LTP - 28 NOVEMBER 2016 7/22

The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independantly

Level i

Level i—1

V. Allombert et al. LTP - 28 NOVEMBER 2016 7/22

The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independantly

= Exchanges informations with the m; memory

Level i

Level i—1

V. Allombert et al. LTP - 28 NOVEMBER 2016 7/22

The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independantly
= Exchanges informations with the m; memory

= Synchronises

Level i

Level i—1

V. Allombert et al. LTP - 28 NOVEMBER 2016 7/22

Table of Contents

® Multi-ML in a nutshell
Overview
Primitives

V. Allombert et al. LTP - 28 NOVEMBER 2016 8 /22

MULTI-ML

Basic ideas

V. Allombert et al. LTP - 28 NOVEMBER 2016 8 /22

MULTI-ML

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

V. Allombert et al. LTP - 28 NOVEMBER 2016 8 /22

MULTI-ML

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

= Specific syntax over ML: eases programming

V. Allombert et al. LTP - 28 NOVEMBER 2016 8 /22

MULTI-ML

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

= Specific syntax over ML: eases programming
= Multi-functions that recursively go through the tree.

V. Allombert et al. LTP - 28 NOVEMBER 2016 8 /22

MULTI-ML

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

= Specific syntax over ML: eases programming
= Multi-functions that recursively go through the tree.

<Le>>

V. Allombert et al. LTP - 28 NOVEMBER 2016 8 /22

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 9 /22

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 9 /22

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node = f
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 9 /22

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node = f
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 9 /22

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >> f f
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 9 /22

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >> f f
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 9 /22

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =

(* 0OCaml code *) f f f f

in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 9 /22

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 9 /22

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>

... in v
V
where leaf = “Qvf

(* 0OCaml code *)
in v

/\VO.I.I

V. Allombert et al. LTP - 28 NOVEMBER 2016 9 /22

MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =

(* BSML code *) %gy/] &\le

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 9 /22

MULTI-ML: Tree recursion

. Result
Recursion structure Tw
0

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 9 /22

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code *)

... in

(<< £ [args] >>, v)
where leaf =

(* 0Caml code *)

in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 10 / 22

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code *)

... in

(<< £ [args] >>, v)
where leaf =

(* 0Caml code *)

in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 10 / 22

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node = f
(* BSML code *)
... in
(<< £ [args] >>, v)

where leaf =
(* 0Caml code *)

in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 10 / 22

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node = f
(* BSML code *)
... in
(<< £ [args] >>, v)

where leaf =
(* 0Caml code *)

in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 10 / 22

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=
where node =
(* BSML code *)
... in
(<< £ [args] >>, v) f f
where leaf =
(* 0Caml code *)
in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 10 / 22

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=
where node =
(* BSML code *)
... in
(<< £ [args] >>, v) f f
where leaf =
(* 0Caml code *)
in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 10 / 22

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=
where node =
(* BSML code *)
... in
(<< £ [args] >>, v)
where leaf =
(* 0Caml code *)

= f ff f

V. Allombert et al. LTP - 28 NOVEMBER 2016 10 / 22

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code *)

... in

(<< £ [args] >>, v)
where leaf =

(* 0Caml code *)

in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 10 / 22

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node =

(* BSML code *)

... in

(<< £ [args] >>, v)
where leaf =

(* 0Caml code *)

in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 10 / 22

MULTI-ML: Tree construction

Tree construction

let multi tree f [args]=

where node =
(* BSML code *) még//] K\\Ef%
... in
(<< £ [args] >>, v)

where leaf =
(* 0Caml code *)

in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 10 / 22

MULTI-ML: Tree construction

;

let multi tree f [args]=

where node =

(* BSML code *)

... in

(<< £ [args] >>, v)
where leaf =

(* 0Caml code *)

in v

V. Allombert et al. LTP - 28 NOVEMBER 2016 10 / 22

Primitives

V. Allombert et al. LTP - 28 NOVEMBER 2016 11 /22

Primitives

o
= mktree e

V. Allombert et al. LTP - 28 NOVEMBER 2016 11 /22

= mktree e

= gid

V. Allombert et al.

Primitives

0.0.0

0.0.1

LTP - 28 NOVEMBER 2016

1/ 22

Primitives

= mktree e

n
= at

V. Allombert et al. LTP - 28 NOVEMBER 2016 11 /22

Primitives

= mktree e
to.1

= at

V. Allombert et al. LTP - 28 NOVEMBER 2016 11 /22

Primitives

= mktree e

= gid

= at

m <L, L. FLL 0>

V. Allombert et al. LTP - 28 NOVEMBER 2016 11 /22

Primitives

= mktree e

= gid

= at

m <L, L. FLL 0>

V. Allombert et al. LTP - 28 NOVEMBER 2016 11 /22

Primitives

= mktree e

= gid

= at

m <L, L. FLL 0>
= #x#

V. Allombert et al. LTP - 28 NOVEMBER 2016 11 /22

Primitives

= mktree e

= gid

= at

m <L, L. FLL 0>
= #x#

V. Allombert et al. LTP - 28 NOVEMBER 2016 11 /22

Primitives

= mktree e

= gid

= at

m <L, L. FLL 0>
= #x#

V. Allombert et al. LTP - 28 NOVEMBER 2016 11 /22

Primitives

= mktree e

mkpar (fun i -> vi)

= gid

= at

LIRS QR R 32
= Hx#

= mkpar f

V. Allombert et al. LTP - 28 NOVEMBER 2016 11 /22

Primitives

£f0; £f1

= mktree e

mkpar (fun i -> vi)

= gid

= at

LIRS QR R 32
= Hx#

= mkpar f

V. Allombert et al. LTP - 28 NOVEMBER 2016 11 /22

Primitives

= mktree e

mkpar (fun i -> vi)

= gid

= at

LIRS QR R 32
= Hx#

= mkpar f

V. Allombert et al. LTP - 28 NOVEMBER 2016 11 /22

Keep the intermediate results of the sum

let multi tree sum_list 1 =

4
[\

V. Allombert et al.

N

[\

Code example

where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in (rc,s)

where leaf =

sumSeq 1

LTP - 28 NOVEMBER 2016 12 /22

Keep the intermediate results of the sum

let multi tree sum_list 1 =

4
[\

V. Allombert et al.

N

[\

Code example

where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in (rc,s)

where leaf =

sumSeq 1

LTP - 28 NOVEMBER 2016 12 /22

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =

where node =
//// \\\\ let v = mkpar (fun i -> split i 1) in

let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in (rc,s)

\ \ where leaf =

sumSeq 1

V. Allombert et al. LTP - 28 NOVEMBER 2016 12 /22

Keep the intermediate results of the sum

4

[\

V. Allombert et al.

N

[\

4;5]

6;7]

Code example

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in (rc,s)
where leaf =

sumSeq 1

LTP - 28 NOVEMBER 2016 12 /22

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =

where node =
//// \\\\ let v = mkpar (fun i -> split i 1) in

let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in (rc,s)

/ \ / \ where leaf =

sumSeq 1

V. Allombert et al. LTP - 28 NOVEMBER 2016 12 /22

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =
//// \\\\ let v = mkpar (fun i -> split i 1) in

let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in (rc,s)

/ \ / \ where leaf =

sumSeq 1

V. Allombert et al. LTP - 28 NOVEMBER 2016 12 /22

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =

where node =
//// \\\\ let v = mkpar (fun i -> split i 1) in

let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in (rc,s)

/ \ / \ where leaf =

sumSeq 1

V. Allombert et al. LTP - 28 NOVEMBER 2016 12 /22

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =

//// \\\\ let v = mkpar (fun i -> split i 1) in

let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in (rc,s)

/ \ / \ where leaf =

sumSeq 1

V. Allombert et al. LTP - 28 NOVEMBER 2016 12 /22

Code example

Keep the intermediate results of the sum

let multi tree sum_list 1 =
where node =

//// \\\\ let v = mkpar (fun i -> split i 1) in

let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in (rc,s)

/ \ / \ where leaf =

sumSeq 1

V. Allombert et al. LTP - 28 NOVEMBER 2016 12 /22

Keep the intermediate results of the sum

N

4

[\

[

9]

(13]

Implementation

Code example

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list v >> in
let s = sumSeq (flatten << at rc >>)
in (rc,s)
where leaf =

sumSeq 1

Run on multi-core clusters using MPI.

V. Allombert et al.

LTP - 28 NOVEMBER 2016 12 /22

Table of Contents

© Multi-ML type system

V. Allombert et al. LTP - 28 NOVEMBER 2016 13 /22

Typing system

Parallel program safety

= Replicated coherency

Replicated coherency

if random bool () then
proj v
else

V. Allombert et al. LTP - 28 NOVEMBER 2016 13 /22

Typing system

Parallel program safety

= Replicated coherency

= Level (memory) compatibility

Level(memory) compatibility

<< let multi £f x = ... >>

V. Allombert et al. LTP - 28 NOVEMBER 2016 13 /22

Typing system

Parallel program safety

= Replicated coherency

= Level (memory) compatibility
= Control parallel structure imbrication

= vector
= tree

Parallel structure imbrication

let v = << ... >> in <K v >>

V. Allombert et al. LTP - 28 NOVEMBER 2016 13 /22

Type localities

V. Allombert et al. LTP - 28 NOVEMBER 2016 14 / 22

Type localities

V. Allombert et al. LTP - 28 NOVEMBER 2016 14 / 22

Type localities

Multi \

bsp

V. Allombert et al. LTP - 28 NOVEMBER 2016 14 / 22

Type localities

Multi \

bsp

Sequential

V. Allombert et al. LTP - 28 NOVEMBER 2016 14 / 22

Type localities

Multi \

bsp

Sequential

V. Allombert et al. LTP - 28 NOVEMBER 2016 14 / 22

Type localities

Multi \

/Comm

bsp

Sequential

V. Allombert et al. LTP - 28 NOVEMBER 2016 14 / 22

Type localities

Multi \

bsp

Sequential

V. Allombert et al. LTP - 28 NOVEMBER 2016 14 / 22

Type annotations

— Type annotation

N € T L=
\ r type variable
‘) Base, base type
’ (T, T)n pairs
T Pary vector
/S\ < T Tree, tree

e (1 5 7)), arrow type

7 uw=m|b|lc|l]|s

V. Allombert et al. LTP - 28 NOVEMBER 2016 15 / 22

Type annotation

Latent effect

(1 5 T)

Where 7 is the effect emmited by the evaluation
and 7’ the locality of definition.

A BsP function
#let £ = fun x ->
let v = << ... >> in 1
-: val f : ("a_"z -(b)-> int_b)_m

Fi('ay 2 inty)m

V. Allombert et al. LTP - 28 NOVEMBER 2016 16 / 22

Accessibility

Accessibility: <

mc < m

mb < b m

m,lc < | /»/ \\
m,,c < ¢ b ce>t s
ms <1 s

Ao < A1 : « A1 can read in Ay memory. »

V. Allombert et al. LTP - 28 NOVEMBER 2016 17 / 22

Accessibility

Accessibility: <

mc < m

mb < b m

m,lc < | //4 \\
m,,c < ¢ b ce>t s
ms <1 s

Ao < A1 : « A1 can read in Ay memory. »

fFs (’a‘zg intp) m
fl~b<m

V. Allombert et al. LTP - 28 NOVEMBER 2016 17 / 22

Accessibility

Accessibility: <

mc < m

mb < b m

m,lc < | //4 \\
m,,c < ¢ b ce>t s
ms <1 s

Ao < A1 : « A1 can read in Ay memory. »

f:('a, LN intp) m
fl~b<m
Error

V. Allombert et al. LTP - 28 NOVEMBER 2016 17 / 22

Definability

Definability: «

s,sbbm <4 m m
b «4 b
lLc 4 ¢ \\
IC < / b CHE S
s 4 s

A1 € A2 « A1 can be defined in Ao memory. »

V. Allombert et al. LTP - 28 NOVEMBER 2016 18 / 22

Definability

Definability: «

s,sbbm <4 m m
b <« b
Lc 4 ¢ \\
IC < / b CHE S
s 4 S

A1 € A2 « A1 can be defined in Ao memory. »

<<let multi f x = .>>> m<4b

V. Allombert et al. LTP - 28 NOVEMBER 2016 18 / 22

Definability

Definability: «

s,sbbm <4 m m
b <« b
Lc 4 ¢ \\
IC < / b CHE S
s 4 S

A1 € A2 « A1 can be defined in Ao memory. »

<<let multi f x = .>>> m<4b
Error

V. Allombert et al. LTP - 28 NOVEMBER 2016 18 / 22

Propagation

Propagation: Propgt(e, €')

This relation returns the prevailing effect amongst ¢ and ¢’.

Propgt | m | b | | | ¢ | s
m m|m| m|m|m

b m|b| b|b| b

/ m|b| | []|L

c m| b| [| c|L

S m| b | L|L|s

V. Allombert et al. LTP - 28 NOVEMBER 2016 19 / 22

Propagation

Propagation: Propgt(e, €')

This relation returns the prevailing effect amongst ¢ and ¢’.

Propgt | m | b | | | ¢ | s
m m|m| m|m|m

b m|b| b|b| b

/ m|b| | []|L

c m| b| [| c|L

S m| b | L|L|s

Constraint generation

H el egiTA/‘y]]A:

V. Allombert et al. LTP - 28 NOVEMBER 2016 19 / 22

Propagation
Propagation: Propgt(e, €')

This relation returns the prevailing effect amongst ¢ and ¢’.

Propgt | m | b | | | ¢ | s
m m|m| m|m|m

b m|b| b|b| b

/ m|b| | []|L

c m| b| [| c|L

S m| b | L|L|s

Constraint generation

[erer:ma/¥] =] er: (an = 7w)s/e’ I*

V. Allombert et al. LTP - 28 NOVEMBER 2016 19 / 22

Propagation
Propagation: Propgt(e, €')

This relation returns the prevailing effect amongst ¢ and ¢’.

Propgt | m | b | | | ¢ | s
m m|m| m|m|m

b m|b| b|b| b

/ m|b| | []|L

c m| b| [| c|L

S m| b | L|L|s

Constraint generation

H € e : TA/‘P]]A = [[e : (a’ﬂ N TW/)(;/S/]]A /\II € : aw///ﬁ//]]A

V. Allombert et al. LTP - 28 NOVEMBER 2016 19 / 22

Propagation

Propagation: Propgt(e, €')

This relation returns the prevailing effect amongst ¢ and ¢’.

Propgt | m | b | | | ¢ | s
m m|m| m|m|m

b m|b| b|b| b

/ m|b| | []|L

c m| b| [| c|L

S m| b | L|L|s

Constraint generation

[ee: /Y] =] e : (= 7)s/€ J* N[& : /e’ [A
A<

V. Allombert et al. LTP - 28 NOVEMBER 2016 19 / 22

Propagation

Propagation: Propgt(e, €')

This relation returns the prevailing effect amongst ¢ and ¢’.

Propgt | m | b | | | ¢ | s
m m|m| m|m|m

b m|b| b|b| b

/ m|b| | []|L

c m| b| [| c|L

S m| b | L|L|s

Constraint generation

[ee: /Y] =] e : (= 7)s/€ J* N[& : /e’ [A
AT <am ANe <A

V. Allombert et al. LTP - 28 NOVEMBER 2016 19 / 22

Propagation

Propagation: Propgt(e, €')

This relation returns the prevailing effect amongst ¢ and ¢’.

Propgt | m | b | | | ¢ | s
m m|m| m|m|m

b m|b| b|b| b

/ m|b| | []|L

c m| b| [| c|L

S m| b | L|L|s

Constraint generation

[ee: /Y] =] e : (= 7)s/€ J* N[& : /e’ [A
A" <Qm Ae A Ae €A

V. Allombert et al. LTP - 28 NOVEMBER 2016 19 / 22

Propagation

Propagation: Propgt(e, €')

This relation returns the prevailing effect amongst ¢ and ¢’.

Propgt | m | b | | | ¢ | s
m m|m| m|m|m

b m|b| b|b| b

/ m|b| | []|L

c m| b| [| c|L

S m| b | L|L|s

Constraint generation

[ee: /Y] =] e : (= 7)s/€ J* N[& : /e’ [A
A" <9 Ae QA Ne 4« A AY = Propgt(e, ¢’ €”)

V. Allombert et al. LTP - 28 NOVEMBER 2016 19 / 22

Serialisation: Seriay (7,)

Serialisation

Is it safe to communicate 7, to locality A ?

Seriag (Tr)

Seria, (Baser)

Seria, (Basey)

Seriaq (T pary)

Seriag, (treeﬂ)
(—

Seria,

-)

Seriaq (T} 5 72)s5)

V. Allombert et al.

{Tﬂ—, if m<1a
Base, if Base = int,Bool, ..
Fail if Base =i/o, ..
Fail
Fail
Fail
(. 5 7.2)s, if edtm, b,s, |
and 7.' = Seriaq (7))

"2 _ Capia (2
and 75 = Seriao(77/)

LTP - 28 NOVEMBER 2016 20 / 22

Table of Contents

O Conclusion

V. Allombert et al. LTP - 28 NOVEMBER 2016 21 /22

Conclusion

MULTI-ML

V. Allombert et al. LTP - 28 NOVEMBER 2016 21 /22

Conclusion
MULTI-ML

= Recursive multi-functions

V. Allombert et al. LTP - 28 NOVEMBER 2016 21 /22

Conclusion
MULTI-ML

= Recursive multi-functions

= Structured nesting of BSML codes

V. Allombert et al. LTP - 28 NOVEMBER 2016 21 /22

Conclusion
MULTI-ML

= Recursive multi-functions

= Structured nesting of BSML codes

= Small number of primitives and little syntax extension

V. Allombert et al. LTP - 28 NOVEMBER 2016 21 /22

Conclusion
MULTI-ML

= Recursive multi-functions

= Structured nesting of BSML codes
= Small number of primitives and little syntax extension

= Big-steps formal semantics (confuent)

V. Allombert et al. LTP - 28 NOVEMBER 2016 21 /22

Conclusion
MULTI-ML

= Recursive multi-functions

= Structured nesting of BSML codes

= Small number of primitives and little syntax extension
= Big-steps formal semantics (confuent)

= Type system (safety and inference using HM(X) like)

V. Allombert et al. LTP - 28 NOVEMBER 2016 21 /22

Conclusion
MULTI-ML

= Recursive multi-functions

= Structured nesting of BSML codes
= Small number of primitives and little syntax extension
= Big-steps formal semantics (confuent)

= Type system (safety and inference using HM(X) like)

Current/Future work

= Full implementation (record, tuples, ..

= Variants
= Modules and other OCAML features

= Error tracking

V. Allombert et al. LTP - 28 NOVEMBER 2016 21 /22

Merci |

Any questions 7

V. Allombert et al. LTP - 28 NOVEMBER 2016 22 /22

	Introduction
	bsp
	bsml
	multi-bsp

	Multi-ML in a nutshell
	Overview
	Primitives

	Multi-ML type system
	Conclusion

