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Bulk Synchronous Parallelism

A BSP computer:

= p pairs CPU/memory
= Communication network

= Synchronization unit

Properties:

= Super-steps execution
= Confluent
= Deadlock-free

= Predictable performances
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Bulk Synchronous ML
What is BSML?

= Explicit BSP programming with a functional approach
= Based upon ML an implemented over OCAML

= Formal semantics — computer-assisted proofs (COQ)

Main idea
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Code example

For a BSP machine with 3 processors:

# let vec = << "Hello" >>;;
val vec : string par = <"Hello", "Hello", "Hello">

# let vec2 = << $vec$” (string_of_int $pid$) >>;;
val vec2 : string par = <"HelloO", "Hellol", "Hello2">

# let totex v = List.map (proj v) procs;;
val totex : 'a par -> 'a list = <fun>

# totex vec2;;
- : string list = ["HelloO"; "Hellol"; "Hello2"]
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What is MULTI-BSP?

@ A tree structure with nested components

® Where nodes have a storage capacity

©® And leaves are processors
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The MULTI-BSP model

Execution model

A level i superstep is:

Level i

Level i—1
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The MULTI-BSP model

Execution model

A level i superstep is:

= Level i — 1 executes code independantly
= Exchanges informations with the m; memory

= Synchronises

Level i

Level i—1
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MULTI-ML

Basic ideas

= BSML-like code on every stage of the MULTI-BSP architecture

= Specific syntax over ML: eases programming
= Multi-functions that recursively go through the tree.
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MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
(* BSML code *)

<< f [args] >>
in v
where leaf =
(* 0Caml code *)
in v
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MULTI-ML: Tree recursion

Recursion structure

let multi f [args]=
where node =
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V
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MULTI-ML: Tree recursion

. Result
Recursion structure Tw
0

let multi f [args]=
where node =
(* BSML code *)
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MULTI-ML: Tree construction

Tree construction
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MULTI-ML: Tree construction

;
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= mktree e

= gid
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Primitives

= mktree e

mkpar (fun i -> vi)

= gid

= at

LIRS QR R 32
= Hx#

= mkpar f
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Keep the intermediate results of the sum

let multi tree sum_list 1 =

4
[\

V. Allombert et al.

N

[\

Code example

where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list $v$ >> in
let s = sumSeq (flatten << at $rc$ >>)
in (rc,s)

where leaf =

sumSeq 1
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Keep the intermediate results of the sum

N

4

[\

[

9]

(13]

Implementation

Code example

let multi tree sum_list 1 =
where node =
let v = mkpar (fun i -> split i 1) in
let rc = << sum_list $v$ >> in
let s = sumSeq (flatten << at $rc$ >>)
in (rc,s)
where leaf =

sumSeq 1

Run on multi-core clusters using MPI.
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Typing system

Parallel program safety

= Replicated coherency

Replicated coherency

if random bool () then
proj v
else
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Typing system

Parallel program safety

= Replicated coherency

= Level (memory) compatibility
= Control parallel structure imbrication

= vector
= tree

Parallel structure imbrication

let v = << ... >> in <K v >>
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Type annotations

— Type annotation

N € T L=
\ r type variable
‘ ) Base, base type
’ (T, T)n pairs
T Pary vector
/S\ < T Tree, tree

e (1 5 7)), arrow type

7 uw=m|b|lc|l]|s
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Type annotation

Latent effect

(1 5 T)

Where 7 is the effect emmited by the evaluation
and 7’ the locality of definition.

A BsP function
#let £ = fun x ->
let v = << ... >> in 1
-: val f : ("a_"z -(b)-> int_b)_m

Fi('ay 2 inty)m
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Accessibility

Accessibility: <

mc < m

mb < b m

m,lc < | /»/ \\
m,,c < ¢ b ce>t s
ms <1 s

Ao < A1 : « A1 can read in Ay memory. »
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Definability

Definability: «
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Propagation

Propagation: Propgt(e, €')

This relation returns the prevailing effect amongst ¢ and ¢’.

Propgt | m | b | | | ¢ | s
m m|m| m|m|m

b m|b| b|b| b

/ m|b| | []|L

c m| b| [ | c|L

S m| b | L|L|s
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Propagation: Propgt(e, €')

This relation returns the prevailing effect amongst ¢ and ¢’.

Propgt | m | b | | | ¢ | s
m m|m| m|m|m

b m|b| b|b| b

/ m|b| | []|L

c m| b| [ | c|L

S m| b | L|L|s

Constraint generation
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Serialisation: Seriay (7, )

Serialisation

Is it safe to communicate 7, to locality A ?

Seriag (Tr)

Seria, (Baser)

Seria, (Basey)

Seriaq (T pary)

Seriag, (treeﬂ)
(—

Seria,

-)

Seriaq (T} 5 72)s5)

V. Allombert et al.

{Tﬂ—, if m<1a
Base, if Base = int,Bool, ..
Fail if Base =i/o, ..
Fail
Fail
Fail
(. 5 7.2)s, if edtm, b,s, |
and 7.' = Seriaq (7))

"2 _ Capia (2
and 75 = Seriao(77/)

LTP - 28 NOVEMBER 2016 20 / 22
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Conclusion
MULTI-ML

= Recursive multi-functions

= Structured nesting of BSML codes
= Small number of primitives and little syntax extension
= Big-steps formal semantics (confuent)

= Type system (safety and inference using HM(X) like)

Current/Future work

= Full implementation (record, tuples, ..

= Variants
= Modules and other OCAML features

= Error tracking
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Merci |

Any questions 7
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