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(Parallel) Software Errors

@ Over-consumption
@ Erroneous results

Considered solutions

@ Well structured parallelism

@ Design a high-level language for “hybrid architectures”

© Software-hardware bridging model = Portability, scalability
Py 5 s =

Race condition:

<
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The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

: communication (®g)
— L bamer (L)
@ “Confluent” : - ¢ o nextsuper-step
@ “Deadlock-free”
@ Predictable performances
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Examples: broadcasting a values

Direct broadcast (one super-step)

1 ==
| (Emw| (.

Cost=pxgxn + L

Broadcast with two super-steps

Cost=2xgxn + 2xL
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'fhe BSML Language

BSML
@ Explicit BSP programming with a functional approach
@ Based upon ML; Implemented over OCaml
@ Formal semantics (confluent) — Coq

N

Main idea
Parallel data structure = vectors:

Q@ (Vvo,...,Vp_1):apar=v;onnode i
© Four primitives = simple semantics
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operations
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@ $v$: element of a parallel vector v
@ $pid$: id of the processor
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The BSML Primitives

operations
@ ((...) :local execution (vector)
@ $v$: element of a parallel vector v
@ $pid$: id of the processor

X0
@ Proj: (X, ..., Xp 1) >
Xp,1
f, 0 o(p—1)
oput:(fo,...,fp1>'—>< : . : >
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Parallel Sorting by Regular Sampling (PSRS)

‘e ® ® o @ o ([0g 00606 ¢ _oeee o o
@® SequentalSort ® @ @ @ ® Sequential Sort g @ '@ ®  Sequential Sort
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Example : PSRS

(x psrs: int par — ‘a list — ‘a list x)
let psrs Ivlengths Iv =
(x super—step 1(a): local sorting )
let locsort = < List.sort compare $Iv$ >> in

(x super—step 1(b): selection of the primary samples x)
let regsampl = < extract_n P $lvlengths$ $locsort$ > in

(x super—step 2(a): total exchange of the primary samples;x)
let glosampl = List.sort compare (proj regsampl) in

(x super—step 2(b): selection of the secondary samples x)
let pivots = extract_n P (P«(P—1)) glosampl in

(x super—step 2(c) : building the communicated lists of values x)
let comm = < slice_p $locsort$ pivots > in

(x super—step 3: sended them and merging of the received values )

let recv = put < List.nth $comm$ >> in
< p_merge P (List.map $recv$ procs_list) >

LACL 2015 - MBSML 11/27



Introduction BSML Multi-BSML
00 000000@ [ J

Advantages and Drawbacks

Advantages
@ Easy tolearn
@ “All” OCaml codes can be used
@ Easy to get a BSML code from a BSP algorithm
@ Pure functional semantics — Coq

LACL 2015 - MBSML 12/27



Introduction BSML Multi-BSML

000000e

Advantages and Drawbacks

Advantages

@ Easy to learn
@ “All” OCaml codes can be used
@ Easy to get a BSML code from a BSP algorithm

@ Pure functional semantics — Coq

v

@ Complex type system to forbid

e Nested vectors (let v=< ...> in < v>)
e Replicated inconsistency (if rnd() then sync();0 else 0)
e Data-race using side effects (< if $pid$=0 then v:=2>>)

@ Hierarchical architecture as a flat one
@ Congestion using network

<
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Multi-BSP Model (2

Cost model

A d depth tree is specified by 4 x d parameters:
p : Number of sub-components
m : Available memory at a level
g : Bandwidth with the upper level
L : Synchronisation

<

Example: 16 with

@ Level 4 (p=16,9=00,L=1000,m=16Tb) (RAM/IO)
@ Level 3 (p=4,9=150,L =100, m = 64Gb) (RAM)
@ Level2(p=8,9=>5L=10,m = 2Mb) (L2 cache)

@ Level1(p=1,9=1,L=1,m =8Kb) (L1 cache)

4
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Multi-BSP Model

Execution model

At a level /, a super-step is:
@ Each component at level i — 1 does its own super-steps
@ Then each copies some data to the memory at level i
@ Then synchronisation
@ Finaly copy of some data from level j to i — 1
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Multi-BSP Model (3

Execution model

At a level /, a super-step is:
@ Each component at level i — 1 does its own super-steps
@ Then each copies some data to the memory at level i
@ Then synchronisation
@ Finaly copy of some data from level j to i — 1

4

Advantages and drawbacks

@ Implicit subgroup synchronisation
@ Recursive decomposition of problems
@ Harder to design/cost some algorithms
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Multi-BSML Language (1)

Syntaxic construction

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...
< fargs >
... CodeBSML
where leaf [args] = CodeOCaml
inf..
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Syntaxic construction

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...
< fargs >
... CodeBSML
where leaf [args] = CodeOCaml
inf..

2)Calcul

Limitations and differences

@ Nodes are implicit computation units
@ Horizontal communications between level components

@ Garbage collector = no L1, L2 caches.
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Semantics of multi
@ BSML code to distribute values
@ ((...)) and proj; level changing
@ Mutual recursive functions of standard OCaml values
@ (Formal) Big-steps <= small-steps for a mini-Multi-BSML

Copy memory values and distribution of values

@ letx=1in<#x#+1> let vect = mkpar (fun i -> v)
@ mkpar (funi — e)
Vo, ooy Vo1 )
where (e i) — v;
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Example : Sum Of The Elements Of A List

let multi sum_list | =

where node | =
let v = mkpar (funi — splitil) in
sumSeq (flatten < sum_list $v$ > ) (x flatten uses a proj *)
(x sumSeq is List.fold_left x)
where leaf | = sumSeq |

in ... (sum_list Ist) ...

LACL 2015 - MBSML 19/27
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@ Keep values on each node and leaf
@ To program multiple phases of multi
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Multi With Tree Construction

Goals

@ Keep values on each node and leaf
@ To program multiple phases of multi

Extension
@ finally; pushes up a value and keeps a value

| \

@ If the recursive calls generates partial trees = to raise
exceptions “a la BSML”

A\
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Example

Keep the intermediate results of the sum

@ @ let multi sum_list | =

where node | =
let v = mkpar (funi — splitil) in
ol 1 3 B let s = sumSeq (flatten < sum_list $v$ > ) in
finally ~up:s ~keep:s

where leaf | =
let s = sumSeq | in
finally ~up:s ~keep:s

LACL 2015 - MBSML 21/27
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Semantics

Useful semantics

|l Big step semantic (with costs)
11¢° Coinductive big step semantic
Small step semantic with explicit substitutions (and costs)
Distributed semantic

Distributed semantic with continuations
“Compiled” semantic

Inl 2] |
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Implementation rently test phase)

For debugging and toplevel
@ iree structure of data
@ A global tree of Hashtables to represent the memories

Modular (MPI, TCP/IP, etc.) and based on formal semantics.
Shared memory Distributed

letx =fy
in replicate x letx=fy
in replicate x

fy

x fy fy

(5
V
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Multi-BSML

@ Recursive functions on different memories of chips

@ Structured nesting of BSML codes
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Conclusion

@ Multi-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Mulii-BSP = Multi-BSML

v

Multi-BSML

@ Recursive functions on different memories of chips

@ Structured nesting of BSML codes

@ Big-steps and small-steps formal semantics (confuent)
@ A skeleton for Coq

@ Small number of primitives and little syntax extension

A
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ﬁerspectives (Ongoing/Future Work)

Short term

@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data
o Bad use of the parallel operators

@ Mechanized semantics in Coq

@ Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

@ where kernel = GPU embed in multi-BSML
@ Examples and libraries

v
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