Multi-BSP Programming a la ML
MBSML

Victor Allombert

Frédéric Gava - Julien Tesson

Laboratory of Algorithms, Complexity and Logic (LACL)
Université Paris Est

LACL 2015 - MBSML 1/27

Introduction Iti-BSML Conclusion

Outline

@ Introduction
e BSML: Functional BSP Programming
Q Hierarchical machines : Multi-BSP

e Conclusion

LACL 2015 - MBSML 2/27

Introduction Multi-BSML Conclusion

e0

Parallel Architectures

Network

Clusters

LACL 2015 - MBSML 3/27

Introduction Multi-BSML Conclusion

e0

Parallel Architectures

5

Network
Memory

Multi-core

Clusters

LACL 2015 - MBSML 3/27

Introduction Multi-BSML Conclusion

e0

Parallel Architectures

memory

B

Multi-core

Clusters

Memory

Memory

<

LACL 2015 - MBSML 3/27

Introduction Multi-BSML
o]]

(Parallel) Software Errors

@ Over-consumption

LACL 2015 - MBSML 4/27

Introduction Multi-BSML
o]] O [e)

(Parallel) Software Efrors

@ Over-consumption
@ Erroneous results

LACL 2015 - MBSML 4/27

Introduction

Multi-BSML
oe C)

(Parallel) Software Efrors

@ Over-consumption
@ Erroneous results

Typical bugs

Distributed Shared memory

Deadlocks:

v

LACL 2015 - MBSML 4/27

Introduction Multi-BSML Conclusion
o]]

(Parallel) Software Errors

Risks
@ Over-consumption
@ Erroneous results

Typical bugs

Distributed Shared memory

wait

Deadlocks:

wait

LACL 2015 - MBSML 4/27

Introduction Multi-BSML Conclusion
o]]

(Parallel) Software Errors

Risks
@ Over-consumption
@ Erroneous results

Typical bugs

Distributed Shared memory

wait

Deadlocks:

Race condition:

LACL 2015 - MBSML 4/27

Introduction Multi-BSML Conclusion
o]]

(Parallel) Software Errors

Risks
@ Over-consumption
@ Erroneous results

Typical bugs

Distributed Shared memory

wait

Deadlocks:

Race condition:

LACL 2015 - MBSML 4/27

Introduction
o]]

(Parallel) Software Errors

@ Over-consumption
@ Erroneous results

Considered solutions

@ Well structured parallelism

@ Design a high-level language for “hybrid architectures”

© Software-hardware bridging model = Portability, scalability
Py 5 s =

Race condition:

<

LACL 2015 - MBSML 4/27

Introduction

Outline

9 BSML: Functional BSP Programming

LACL 2015 - MBSML 5/27

Introduction BSML Conclusion
€000000 000

Bridging Model: Bulk Synchrono rallelism (=)

The computer
Defined by:
@ p pairs CPU/memory

LACL 2015 - MBSML 6/27

Introduction BSML
0o ©000000

Bridging Model: Bulk Synchron

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)

LACL 2015 - MBSML 6/27

Introduction BSML
0o ©000000

Bridging Model: Bulk Synchron

The computer

Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)

LACL 2015 - MBSML 6/27

Introduction BSML Aulti-BSML
€000000

Bridging Model: Bulk Synchronous Parallelism (

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

communication (®g)
barrier (L)
next super-step

LACL 2015 - MBSML 6/27

Introduction BSML Multi-BSML
€000000

Bridging Model: Bulk Synchronous Parallelism (

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

communication (®g)

S e

@ “Confluent” : - ¢ o nextsuper-step

LACL 2015 - MBSML 6/27

Introduction BSML Multi-BSML
€000000

Bridging Model: Bulk Synchronous Parallelism (

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

: communication (®g)
S SESEA
@ “Confluent” : - ¢ o nextsuper-step

@ “Deadlock-free”

LACL 2015 - MBSML 6/27

Introduction BSML Multi-BSML
€000000

Bridging Model: Bulk Synchronous Parallelism (

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network (g)
@ Synchronisation unit (L)
@ Super-steps execution

local .
computations

: communication (®g)
— L bamer (L)
@ “Confluent” : - ¢ o nextsuper-step
@ “Deadlock-free”
@ Predictable performances

4

LACL 2015 - MBSML 6/27

Introduction BSML
0o 0800000

Examples: broadcasting a values

Direct broadcast (one super-step)

1 ==
| (Emw| (.

Cost=pxgxn + L

Broadcast with two super-steps

Cost=2xgxn + 2xL

LACL 2015 - MBSML 7127

Introduction BSML
0080000

'fhe BSML Language

LACL 2015 - MBSML 8/27

Introduction BSML % Conclusion
0080000 00 0 000

'fhe BSML Language

@ Explicit BSP programming with a functional approach

LACL 2015 - MBSML 8/27

Introduction BSML Multi-BSML
00 00@0000 O

'fhe BSML Language

@ Explicit BSP programming with a functional approach
@ Based upon ML; Implemented over OCaml

LACL 2015 - MBSML 8/27

Introduction BSML Multi-BSML
00 00@0000 O

'fhe BSML Language

@ Explicit BSP programming with a functional approach
@ Based upon ML; Implemented over OCaml
@ Formal semantics (confluent) — Coq

LACL 2015 - MBSML 8/27

Introduction BSML
0o 0080000

'fhe BSML Language

BSML
@ Explicit BSP programming with a functional approach
@ Based upon ML; Implemented over OCaml
@ Formal semantics (confluent) — Coq

N

Main idea
Parallel data structure = vectors:

LACL 2015 - MBSML 8/27

Introduction BSML
0o 0080000

'fhe BSML Language

BSML
@ Explicit BSP programming with a functional approach
@ Based upon ML; Implemented over OCaml
@ Formal semantics (confluent) — Coq

N

Main idea
Parallel data structure = vectors:

Q@ (Vvo,...,Vp_1):apar=v;onnode i

LACL 2015 - MBSML 8/27

Introduction BSML
0o 0080000

'fhe BSML Language

BSML
@ Explicit BSP programming with a functional approach
@ Based upon ML; Implemented over OCaml
@ Formal semantics (confluent) — Coq

N

Main idea
Parallel data structure = vectors:

Q@ (Vvo,...,Vp_1):apar=v;onnode i
© Four primitives = simple semantics

LACL 2015 - MBSML 8/27

Introduction BSML Multi-BSML Conclusion
[e]e]e] Yolole} [000

The BSML Primitives

operations

LACL 2015 - MBSML 9/27

Introduction BSML
0000000

The BSML Primitives

operations
@ ((...) :local execution (vector)

LACL 2015 - MBSML 9/27

Introduction BSML % Conclusion
0008000 000

The BSML Primitives

operations
@ ((...) :local execution (vector)
@ v: element of a parallel vector v

LACL 2015 - MBSML 9/27

Introduction BSML ulti-BSML
00 000000

The BSML Primitives

operations
@ ((...) :local execution (vector)
@ v: element of a parallel vector v
@ pid: id of the processor

LACL 2015 - MBSML 9/27

Introduction BSML Multi-BSML
00 000000

The BSML Primitives

operations
@ ((...) :local execution (vector)
@ v: element of a parallel vector v
@ pid: id of the processor

v

LACL 2015 - MBSML 9/27

Introduction BSML
0o 0000000

The BSML Primitives

operations

@ ((...) :local execution (vector)
@ v: element of a parallel vector v
@ pid: id of the processor

Xo

@ Proj: (Xo, ..., Xp—1) —

v

LACL 2015 - MBSML 9/27

In locuulon BSML Multi-BSML
000000

The BSML Primitives

operations
@ ((...) :local execution (vector)
@ v: element of a parallel vector v
@ pid: id of the processor

X0
@ Proj: (X, ..., Xp 1) >
Xp,1
f, 0 o(p—1)
oput:(fo,...,fp1>'—>< : . : >
fo10 fo-1 (P —1))

LACL 2015 - MBSML 9/27

BSML
0000000

Parallel Sorting by Regular Sampling (PSRS)

‘e ® ® o @ o ([0g 00606 ¢ _oeee o o
@® SequentalSort ® @ @ @ ® Sequential Sort g @ '@ ® Sequential Sort

‘oe0o 00 00 00O EYY I 'YX
Primary Sample | Primary Sample | Primary Sample
IO XX OO0 NODORIOKX Ol

o000 o000
s, kNt

Secondary Sample i Secondary Sampl

Secondary Sam le. -.. °

LACL 2015 - MBSML 10/27

BSML
0000000

Example : PSRS

(x psrs: int par — ‘a list — ‘a list x)
let psrs Ivlengths Iv =
(x super—step 1(a): local sorting)
let locsort = < List.sort compare Iv >> in

(x super—step 1(b): selection of the primary samples x)
let regsampl = < extract_n P $lvlengths$ $locsort$ > in

(x super—step 2(a): total exchange of the primary samples;x)
let glosampl = List.sort compare (proj regsampl) in

(x super—step 2(b): selection of the secondary samples x)
let pivots = extract_n P (P«(P—1)) glosampl in

(x super—step 2(c) : building the communicated lists of values x)
let comm = < slice_p $locsort$ pivots > in

(x super—step 3: sended them and merging of the received values)

let recv = put < List.nth $comm$ >> in
< p_merge P (List.map $recv$ procs_list) >

LACL 2015 - MBSML 11/27

Introduction BSML Multi-BSML
00 000000@ [J

Advantages and Drawbacks

Advantages
@ Easy tolearn
@ “All” OCaml codes can be used
@ Easy to get a BSML code from a BSP algorithm
@ Pure functional semantics — Coq

LACL 2015 - MBSML 12/27

Introduction BSML Multi-BSML

000000e

Advantages and Drawbacks

Advantages

@ Easy to learn
@ “All” OCaml codes can be used
@ Easy to get a BSML code from a BSP algorithm

@ Pure functional semantics — Coq

v

@ Complex type system to forbid

e Nested vectors (let v=< ...> in < v>)
e Replicated inconsistency (if rnd() then sync();0 else 0)
e Data-race using side effects (< if pid=0 then v:=2>>)

@ Hierarchical architecture as a flat one
@ Congestion using network

<

LACL 2015 - MBSML 12/27

Introduction Conclusion

Outline

Q Hierarchical machines : Multi-BSP

LACL 2015 - MBSML 13/27

Introduction Multi-BSML

Multi-BSP Model (1)

9000000000

? (Valiant)

LACL 2015 - MBSML 14/27

Introduction Multi-BSML

Multi-BSP Model (1)

9000000000

? (Valiant)

@ A tree structure with nested components

LACL 2015 - MBSML 14/27

Introduction Multi-BSML

Multi-BSP Model (1)

9000000000

? (Valiant)
@ A tree structure with nested components
©@ Where nodes have a storage capacity

LACL 2015 - MBSML 14/27

Introduction BSML Multi-BSML

Multi-BSP Model (1)

9000000000

? (Valiant)
@ A tree structure with nested components
©@ Where nodes have a storage capacity
© And leaf are homogenous processors

LACL 2015 - MBSML 14/27

Introduction Multi-BSML

Multi-BSP Model (1)

9000000000

? (Valiant)
@ A tree structure with nested components
©@ Where nodes have a storage capacity
© And leaf are homogenous processors

Multi-BSP

&
))

thO th1 th2 th3 thO th1 th2. th3

LACL 2015 - MBSML 14/27

Introduction Multi-BSML Conclusion

Multi-BSP Model (1)

9000000000

? (Valiant)
@ A tree structure with nested components
©@ Where nodes have a storage capacity
© And leaf are homogenous processors

Multi-BSP BSP

@ @ th0| th1| th2| th3| th4 thS thé |th7

thO th1 th2 th3 thO th1 th2. th3

LACL 2015 - MBSML 14/27

Introduction Multi-BSML
0o 0®00000000

Multi-BSP Model

Cost model

A d depth tree is specified by 4 x d parameters:
p : Number of sub-components
m : Available memory at a level
g : Bandwidth with the upper level
L : Synchronisation

LACL 2015 - MBSML 15/27

Introduction BSML Multi-BSML
00 00 > 0®00000000

Multi-BSP Model (2

Cost model

A d depth tree is specified by 4 x d parameters:
p : Number of sub-components
m : Available memory at a level
g : Bandwidth with the upper level
L : Synchronisation

<

Example: 16 with

@ Level 4 (p=16,9=00,L=1000,m=16Tb) (RAM/IO)
@ Level 3 (p=4,9=150,L =100, m = 64Gb) (RAM)
@ Level2(p=8,9=>5L=10,m = 2Mb) (L2 cache)

@ Level1(p=1,9=1,L=1,m =8Kb) (L1 cache)

4

LACL 2015 - MBSML 15/27

Introduction Multi-BSML
0o 0080000000

Multi-BSP Model

Execution model

At a level /, a super-step is:
@ Each component at level i — 1 does its own super-steps
@ Then each copies some data to the memory at level i
@ Then synchronisation
@ Finaly copy of some data from level j to i — 1

LACL 2015 - MBSML 16/27

Introduction Multi-BSML
00 o 0080000000

Multi-BSP Model (3

Execution model

At a level /, a super-step is:
@ Each component at level i — 1 does its own super-steps
@ Then each copies some data to the memory at level i
@ Then synchronisation
@ Finaly copy of some data from level j to i — 1

4

Advantages and drawbacks

@ Implicit subgroup synchronisation
@ Recursive decomposition of problems
@ Harder to design/cost some algorithms

LACL 2015 - MBSML 16/27

Multi-BSML
000®000000

Multi-BSML Language (1)

Syntaxic construction

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...
< fargs >
... CodeBSML
where leaf [args] = CodeOCaml
inf..

LACL 2015 - MBSML 17/27

Multi-BSML
000®000000

Multi-BSML Language (1)

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...
< fargs >
... CodeBSML
where leaf [args] = CodeOCaml
inf..

2)Calcul

LACL 2015 - MBSML

17/27

Introduction Multi-BSML Conclusion

Multi-BSML Language (1)

000@000000

Syntaxic construction

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...
< fargs >
... CodeBSML
where leaf [args] = CodeOCaml
inf..

2)Calcul

Limitations and differences

@ Nodes are implicit computation units
@ Horizontal communications between level components

@ Garbage collector = no L1, L2 caches.

LACL 2015 - MBSML 17/27

Introduction Multi-BSML

Multi-BSML Language (2)

0000800000

Semantics of multi
@ BSML code to distribute values
@ ((...)) and proj; level changing
@ Mutual recursive functions of standard OCaml values
@ (Formal) Big-steps <= small-steps for a mini-Multi-BSML

LACL 2015 - MBSML 18/27

Introduction Multi-BSML

Multi-BSML Language (2)

0000800000

Semantics of multi
@ BSML code to distribute values
@ ((...)) and proj; level changing
@ Mutual recursive functions of standard OCaml values
@ (Formal) Big-steps <= small-steps for a mini-Multi-BSML

Copy memory values and distribution of values

@ letx=1in<#x#+1> let vect = mkpar (fun i -> v)
@ mkpar (funi — e)
Vo, ooy Vo1)
where (e i) — v;

LACL 2015 - MBSML 18/27

Multi-BSML
[oloTeYele] Yololole}

Example : Sum Of The Elements Of A List

let multi sum_list | =

where node | =
let v = mkpar (funi — splitil) in
sumSeq (flatten < sum_list v >) (x flatten uses a proj *)
(x sumSeq is List.fold_left x)
where leaf | = sumSeq |

in ... (sum_list Ist) ...

LACL 2015 - MBSML 19/27

Introduction BSML Multi-BSML

Multi With Tree Construction

0000008000

@ Keep values on each node and leaf
@ To program multiple phases of multi

LACL 2015 - MBSML 20/27

Introduction Multi-BSML

0000008000

Multi With Tree Construction

Goals

@ Keep values on each node and leaf
@ To program multiple phases of multi

Extension
@ finally; pushes up a value and keeps a value

| \

@ If the recursive calls generates partial trees = to raise
exceptions “a la BSML”

A\

LACL 2015 - MBSML 20/27

Multi-BSML
0000000800

Example

Keep the intermediate results of the sum

@ @ let multi sum_list | =

where node | =
let v = mkpar (funi — splitil) in
ol 1 3 B let s = sumSeq (flatten < sum_list v >) in
finally ~up:s ~keep:s

where leaf | =
let s = sumSeq | in
finally ~up:s ~keep:s

LACL 2015 - MBSML 21/27

Introduction Multi-BSML Conclusion

0000000080

Semantics

Useful semantics

|l Big step semantic (with costs)

LACL 2015 - MBSML 22/27

Introduction Multi-BSML Conclusion

0000000080

Semantics

Useful semantics

|l Big step semantic (with costs)
11¢° Coinductive big step semantic

LACL 2015 - MBSML 22/27

Introduction Multi-BSML

0000000080

Semantics

Useful semantics

|l Big step semantic (with costs)
11¢° Coinductive big step semantic
— Small step semantic with explicit substitutions (and costs)

LACL 2015 - MBSML 22/27

Introduction Multi-BSML

00 0000000080

Semantics

Useful semantics

|l Big step semantic (with costs)

11¢° Coinductive big step semantic
— Small step semantic with explicit substitutions (and costs)
EI} Distributed semantic

LACL 2015 - MBSML 22/27

ntroduction Multi-BSML
00 0000000080

Semantics

Useful semantics

|l Big step semantic (with costs)
11¢° Coinductive big step semantic

— Small step semantic with explicit substitutions (and costs)
EI} Distributed semantic

— Distributed semantic with continuations

LACL 2015 - MBSML 22/27

ntroduction Multi-BSML
00 0000000080

Semantics

Useful semantics

|l Big step semantic (with costs)
11¢° Coinductive big step semantic
Small step semantic with explicit substitutions (and costs)
Distributed semantic

Distributed semantic with continuations
“Compiled” semantic

Inl 2] |

LACL 2015 - MBSML 22/27

Introduction BSM Multi-BSML
0000000008

Implementation (currently test phase)

For debugging and toplevel
@ iree structure of data
@ A global tree of Hashtables to represent the memories

LACL 2015 - MBSML 23/27

Introduction Multi-BSML
0o 0000000008

Implementation (currently test phase)

For debugging and toplevel
@ iree structure of data
@ A global tree of Hashtables to represent the memories

Modular (MPI, TCP/IP, etc.) and based on formal semantics.

V.

LACL 2015 - MBSML 23/27

Introduction BSM Multi-BSML
0000000008

Implementation (currently test phase)

For debugging and toplevel
@ iree structure of data
@ A global tree of Hashtables to represent the memories
Modular (MPI, TCP/IP, etc.) and based on formal semantics.
Shared memory

letx =fy
in replicate x

fy

V.

LACL 2015 - MBSML 23/27

Introduction Multi-BSML
0000000008

Implementation rently test phase)

For debugging and toplevel
@ iree structure of data
@ A global tree of Hashtables to represent the memories

Modular (MPI, TCP/IP, etc.) and based on formal semantics.
Shared memory Distributed

letx =fy
in replicate x letx=fy
in replicate x

fy

x fy fy

(5
V
LACL 2015 - MBSML 23/27

Introduction - Conclusion

Outline

0 Conclusion

LACL 2015 - MBSML 24 /27

Introduction BSML - Conclusion
. ;) ®00

Conclusion

LACL 2015 - MBSML 25/27

Introduction BSML Multi-BSML Conclusion
0000000 0o 00 000

Conclusion

@ Multi-BSP extension of BSP for hierarchical architectures

LACL 2015 - MBSML 25/27

Introduction Y Conclusion
00 0o 0 000

Conclusion

@ Multi-BSP extension of BSP for hierarchical architectures
@ BSP = BSML

LACL 2015 - MBSML 25/27

Introduction BSML ulti-BSML Conclusion
00 o ®00

Conclusion

@ Multi-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Mulii-BSP = Multi-BSML

LACL 2015 - MBSML 25/27

Introduction BSML Multi-BSML Conclusion
00 o ®00

Conclusion

@ Multi-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Mulii-BSP = Multi-BSML

v

Multi-BSML

A

LACL 2015 - MBSML 25/27

Introduction BSML Multi-BSML Conclusion
00 o ®00

Conclusion

@ Multi-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Mulii-BSP = Multi-BSML

v

Multi-BSML

@ Recursive functions on different memories of chips

A

LACL 2015 - MBSML 25/27

Introduction BSML Multi-BSML Conclusion
00 o ®00

Conclusion

@ Multi-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Mulii-BSP = Multi-BSML

v

Multi-BSML

@ Recursive functions on different memories of chips
@ Structured nesting of BSML codes

A

LACL 2015 - MBSML 25/27

Introduction Multi-BSML Conclusion
00 o C) ®00

Conclusion

@ Multi-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Mulii-BSP = Multi-BSML

v

Multi-BSML

@ Recursive functions on different memories of chips
@ Structured nesting of BSML codes
@ Big-steps and small-steps formal semantics (confuent)

A

LACL 2015 - MBSML 25/27

Introduction Multi-BSML Conclusion
00 o C) ®00

Conclusion

@ Multi-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Mulii-BSP = Multi-BSML

v

Multi-BSML

@ Recursive functions on different memories of chips

@ Structured nesting of BSML codes

@ Big-steps and small-steps formal semantics (confuent)
@ A skeleton for Coq

A

LACL 2015 - MBSML 25/27

Introduction Multi-BSML Conclusion
00 o C) ®00

Conclusion

@ Multi-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Mulii-BSP = Multi-BSML

v

Multi-BSML

@ Recursive functions on different memories of chips

@ Structured nesting of BSML codes

@ Big-steps and small-steps formal semantics (confuent)
@ A skeleton for Coq

@ Small number of primitives and little syntax extension

A

LACL 2015 - MBSML 25/27

Introduction - Conclusion
00 ceo

Perspeotives (Ongoin

Short term

LACL 2015 - MBSML 26/27

Introduction BSM Aulti-BSML Conclusion
oceo

Perspeotives (Ongoing/Future Work)

@ Implementation using MPI

LACL 2015 - MBSML 26/27

Introduction BSM Aulti-BSML Conclusion
oceo

Perspeotives (Ongoing/Future Work)

@ Implementation using MPI

@ Examples and benchmarks

LACL 2015 - MBSML 26/27

Introduction BSM Aulti-BSML Conclusion
oceo

Perspeotives (Ongoing/Future Work)

@ Implementation using MPI

@ Examples and benchmarks
@ Type system for a subpart of OCaml again

LACL 2015 - MBSML 26/27

Introduction BSM Multi-BSML Conclusion
oceo

Perspeotives (Ongoing/Future Work)

@ Implementation using MPI

@ Examples and benchmarks
@ Type system for a subpart of OCaml again
e Bad nesting of parallelism

LACL 2015 - MBSML 26/27

Introduction BSM Multi-BSML Conclusion
oceo

Perspeotives (Ongoing/Future Work)

@ Implementation using MPI

@ Examples and benchmarks
@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data

LACL 2015 - MBSML 26/27

Introduction Multi-BSML Conclusion
00 e) oo

Perspeotives (Ongoing/Future Work)

Short term

@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data
o Bad use of the parallel operators

LACL 2015 - MBSML 26/27

Introduction Multi-BSML Conclusion
00 e) oo

ﬁerspectives (Ongoing/Future Work)

Short term

@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data
o Bad use of the parallel operators

-~ LAcL20i5-MBSML 2827

LACL 2015 - MBSML 26/27

Introduction Multi-BSML Conclusion
00 e) oo

ﬁerspectives (Ongoing/Future Work)

Short term

@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data
o Bad use of the parallel operators

@ Mechanized semantics in Coq

v

LACL 2015 - MBSML 26/27

Introduction Multi-BSML Conclusion
00 e) oo

ﬁerspectives (Ongoing/Future Work)

Short term

@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data
o Bad use of the parallel operators

@ Mechanized semantics in Coq

@ Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

v

LACL 2015 - MBSML 26/27

Introduction Multi-BSML Conclusion
00 e) oo

ﬁerspectives (Ongoing/Future Work)

Short term

@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data
o Bad use of the parallel operators

@ Mechanized semantics in Coq

@ Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

@ where kernel = GPU embed in multi-BSML

v

LACL 2015 - MBSML 26/27

Introduction Multi-BSML Conclusion
00 e) oo

ﬁerspectives (Ongoing/Future Work)

Short term

@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data
o Bad use of the parallel operators

@ Mechanized semantics in Coq

@ Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

@ where kernel = GPU embed in multi-BSML
@ Examples and libraries

v

LACL 2015 - MBSML 26/27

Des questions ?

	Introduction
	BSML: Functional BSP Programming
	Hierarchical machines : Multi-BSP
	Conclusion

