MvurTi-ML: PROGRAMMING
MuLTI-BSP ALGORITHMS IN ML

VICTOR ALLOMBERT, FREDERIC GAVA AND JULIEN TESSON

Laboratory of Algorithmic Complexity and Logic
Université Paris-Est

HLPP July 2015

UNIVERSITE
PARIS-EST CRETEIL
VAL DE MARNE

lacl Joec

Connaissance - Action

V. Allombert et al. HLPP 2015 1/17

@ Introduction
@ Multi-ML
© Results

@ Conclusion

Table of Contents

Table of Contents

@ Introduction
BSP
BSML
MULTI-BSP

V. Allombert et al. HLPP 2015 2/17

Bulk Synchronous Parallelism

The BSP computer

Defined by:

V. Allombert et al. HLPP 2015 2/17

Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory

V. Allombert et al. HLPP 2015 2/17

Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory

e Communication network

V. Allombert et al. HLPP 2015 2/17

Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory
e Communication network

e Synchronization unit

V. Allombert et al. HLPP 2015 2/17

Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory
e Communication network

e Synchronization unit

e Super-steps execution

V. Allombert et al.

(po| pr]p2]ps]

HLPP 2015

local)
computations

communication

barrier
next super-step

2/17

Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory
e Communication network

e Synchronization unit

e Super-steps execution

e Confluent

V. Allombert et al.

(po| pr]p2]ps]

HLPP 2015

local)
computations
communication

barrier
next super-step

2/17

Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory
e Communication network

e Synchronization unit

e Super-steps execution
e Confluent

e Deadlock-free

V. Allombert et al.

(po| pr|p2]ps]

HLPP 2015

local)
computations
communication

barrier
next super-step

2/17

Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory
e Communication network

e Synchronization unit

e Super-steps execution
e Confluent
e Deadlock-free

e Predictable performances

V. Allombert et al.

(po|pr]p2]ps]

HLPP 2015

local)
computations
communication

barrier
next super-step

2/17

Bulk Synchronous ML

What is BSML?

V. Allombert et al. HLPP 2015 3/17

Bulk Synchronous ML

e Explicit BSP programming with a functional approach

V. Allombert et al. HLPP 2015 3/17

Bulk Synchronous ML

e Explicit BSP programming with a functional approach

e Based upon ML an implemented over OCAML
22

4

4

V. Allombert et al. HLPP 2015 3/17

Bulk Synchronous ML

e Explicit BSP programming with a functional approach

e Based upon ML an implemented over OCAML

e Formal sementics — computer-assisted proofs (COQ)

Y

Al

4

V. Allombert et al. HLPP 2015 3/17

Bulk Synchronous ML
What is BSML?

e Explicit BSP programming with a functional approach
e Based upon ML an implemented over OCAML

e Formal sementics — computer-assisted proofs (COQ)

Main idea

Parallel data structure = vectors:

Replicated Tl Sequential part
part JEEERLITNPTTITTRN
D@ o

‘ -fn-1 |

V. Allombert et al. HLPP 2015

3/17

BSML primitives

Asynchronous primitives

V. Allombert et al. HLPP 2015 4 /17

BSML primitives

Asynchronous primitives

e KLe> :(e...,e)

V. Allombert et al. HLPP 2015 4 /17

BSML primitives

Asynchronous primitives

e KLe> :(e...,e)

e v : v on processor i, assumes v = (vg, ..., Vp_1)

V. Allombert et al. HLPP 2015 4 /17

BSML primitives

Asynchronous primitives

e KLe> :(e...,e)

e v : v on processor i, assumes v = (vg, ..., Vp_1)

e pid : A predefined vector: i on processor i

V. Allombert et al. HLPP 2015 4 /17

BSML primitives

Asynchronous primitives

e KLe> :(e...,e)

e v : v on processor i, assumes v = (vg, ..., Vp_1)

e pid : A predefined vector: i on processor i

Synchronous primitives

® proj : (xop,...,Xp—1) — (fun i — x;)

V. Allombert et al. HLPP 2015 4 /17

BSML primitives

Asynchronous primitives

e KLe> :(e...,e)

e v : v on processor i, assumes v = (vg, ..., Vp_1)

e pid : A predefined vector: i on processor i

Synchronous primitives

® proj : (xop,...,Xp—1) — (fun i — x;)
e put: (fy,...,fo_1)—=((fun i—=£0),...,(fun i—=f (p—1)))

V. Allombert et al. HLPP 2015 4 /17

Code example

For a BSP machine with 3 processors:

let vec = < "HLPP." > ;;

val vec : string par = <"HLPP.", "HLPP.", "HLPP." >

let vec2 = < vec”(string_of int pid) > ;;

val vec? : string par = <"HLPP_0", "HLPP_1", "HLPP_2" >
let totex v = List.map (proj v) procs;;

val totex : 'a Bsml.par — 'a list = <fun>

totex vec2;;

— : string list = ["HLPPQ"; "HLPP1"; "HLPP2"]

V. Allombert et al. HLPP 2015 5/17

The MULTI-BSP model

What is MULTI-BSP?

V. Allombert et al. HLPP 2015 6 /17

The MULTI-BSP model

What is MULTI-BSP?

@ A tree structure with nested components

V. Allombert et al. HLPP 2015 6 /17

The MULTI-BSP model

What is MULTI-BSP?

@ A tree structure with nested components

® Where nodes have a storage capacity

V. Allombert et al. HLPP 2015 6 /17

The MULTI-BSP model

What is MULTI-BSP?

@ A tree structure with nested components
® Where nodes have a storage capacity

©® And leaves are processors

V. Allombert et al. HLPP 2015 6 /17

The MULTI-BSP model

What is MULTI-BSP?

@ A tree structure with nested components
® Where nodes have a storage capacity

©® And leaves are processors

MULTI-BSP

thO |thl| | th2||th3 thO| |thl| th2| th3

V. Allombert et al. HLPP 2015 6 /17

The MULTI-BSP model

What is MULTI-BSP?

@ A tree structure with nested components
® Where nodes have a storage capacity

©® And leaves are processors

MULTI-BSP BSP

thO| thl| th2| th3| |th4||th5 |th6 |th7

thO |thl| | th2||th3 thO| |thl| th2| th3

V. Allombert et al. HLPP 2015 6 /17

The MULTI-BSP model

Execution model

A level i superstep is:

Level /

Level i — 1

V. Allombert et al. HLPP 2015 7/17

The MULTI-BSP model

Execution model

A level i superstep is:

e Level i — 1 executes code independantly

Level /

Level i — 1

V. Allombert et al. HLPP 2015 7/17

The MULTI-BSP model

Execution model

A level i superstep is:

e Level i — 1 executes code independantly

e Exchanges informations with the m; memory

Level /

Level i — 1

V. Allombert et al. HLPP 2015 7/17

The MULTI-BSP model

Execution model

A level i superstep is:

e Level i — 1 executes code independantly
e Exchanges informations with the m; memory

e Synchronises

Level /

Level i — 1

V. Allombert et al. HLPP 2015 7/17

Table of Contents

® Multi-ML
Overview
Primitives
Semantics
Implementation

V. Allombert et al. HLPP 2015 8 /17

MULTI-ML

Basic ideas:

V. Allombert et al. HLPP 2015 8 /17

MULTI-ML

Basic ideas:

e BSML-like code on every stage of the MULTI-BSP architecture

V. Allombert et al. HLPP 2015 8 /17

MULTI-ML

Basic ideas:

e BSML-like code on every stage of the MULTI-BSP architecture

e Specific syntax over ML: eases programming

V. Allombert et al. HLPP 2015 8 /17

MULTI-ML

Basic ideas:

e BSML-like code on every stage of the MULTI-BSP architecture

e Specific syntax over ML: eases programming

e Multi-functions that recursively go through the tree.

V. Allombert et al. HLPP 2015 8 /17

MULTI-ML

Basic ideas:

e BSML-like code on every stage of the MULTI-BSP architecture

e Specific syntax over ML: eases programming

e Multi-functions that recursively go through the tree.

‘ let v= < e>

V. Allombert et al. HLPP 2015 8 /17

MULTI-ML

Recursion structure

let multi f [args] =
where node =

(* BSML code *)
< f [args] >

where leaf =
(* OCAML code %)

V. Allombert et al. HLPP 2015 9 /17

MULTI-ML

Recursion structure

let multi f [args] =
where node =

(* BSML code *)
< f [args] >

where leaf =
(* OCAML code %)

V. Allombert et al. HLPP 2015 9 /17

MULTI-ML

Recursion structure

let multi f [args] = f
where node =
(* BSML code *)
< f [args] >

where leaf =
(* OCAML code %)

V. Allombert et al. HLPP 2015 9 /17

MULTI-ML

Recursion structure

let multi f [args] = f
where node =
(* BSML code *)
< f [args] >

where leaf =
(* OCAML code %)

V. Allombert et al. HLPP 2015 9 /17

MULTI-ML

Recursion structure

let multi f [args] = f
where node =
(* BSML code *)

ﬂ\
ﬂ\

< f [args] >

where leaf =
(* OCAML code %)

V. Allombert et al. HLPP 2015 9 /17

MULTI-ML

Recursion structure

let multi f [args] = f
where node =
(* BSML code *)

ﬂ\
ﬂ\

< f [args] >

where leaf =
(* OCAML code %)

V. Allombert et al. HLPP 2015 9 /17

Recursion structure

let multi f [args] =
where node =

(* BSML code *)
< f [args] >

where leaf =
(* OCAML code %)

V. Allombert et al.

MULTI-ML

f ff f

HLPP 2015 9 /17

MULTI-ML

Recursion structure

let multi f [args] =
where node =
(* BSML code *)

< f [args] >

where leaf =
(* OCAML code %)

V. Allombert et al. HLPP 2015 9 /17

MULTI-ML

Recursion structure

let multi f [args] = f
where node =
(* BSML code *)

ﬂ\
ﬂ\

< f [args] >

where leaf =
(* OCAML code %)

V. Allombert et al. HLPP 2015 9 /17

MULTI-ML

Recursion structure

let multi f [args] = f
where node =
(* BSML code *)
< f [args] >

where leaf =
(* OCAML code %)

V. Allombert et al. HLPP 2015 9 /17

MULTI-ML

Recursion structure Result

let multi f [args] =
where node =

(* BSML code *)
< f [args] >

where leaf =
(* OCAML code %)

V. Allombert et al. HLPP 2015 9 /17

Primitives

V. Allombert et al. HLPP 2015 10 / 17

Primitives

©

V. Allombert et al. HLPP 2015 10 / 17

* Se§
e gid

V. Allombert et al.

Primitives

0.0.0

0.0.1

HLPP 2015

10 /17

Primitives

* Se§
e gid

V. Allombert et al. HLPP 2015 10 / 17

Primitives

* Se§
e gid
Vo.1

o at

V. Allombert et al. HLPP 2015 10 / 17

Primitives

* §e§
e gid
e at
o L. .f.>

V. Allombert et al. HLPP 2015 10 / 17

Primitives

* Se§
e gid

°at f f

e L. .f.>

V. Allombert et al. HLPP 2015 10 / 17

Primitives

* Se§
e gid
e at
<. . f.>

o #x#

V. Allombert et al. HLPP 2015 10 / 17

Primitives

* Se§
e gid
e at
<. . f.>

o #x#

V. Allombert et al. HLPP 2015 10 / 17

Primitives

§e§
e gid

e at
<. f.>
o #Hx#

V. Allombert et al. HLPP 2015 10 / 17

Primitives

* §ef mkpar (funi — v;)
e gid

e at

<..f.>

o #x#

mkpar f

V. Allombert et al. HLPP 2015 10 / 17

Primitives

* Se§
e gid

mkpar (funi — v;)

e at
<. . f.>
o Fx#
mkpar f

V. Allombert et al. HLPP 2015 10 / 17

Primitives

* Se§
e gid

mkpar (funi — v;)

e at
<. . f.>
o Fx#
mkpar f

V. Allombert et al. HLPP 2015 10 / 17

Primitives

* Se§

e gid

e at
<. . f.>
o fxh
mkpar f

finally Vi1 Vo

V. Allombert et al. HLPP 2015 10 / 17

Primitives

* Se§

e gid

e at
<. . f.>
o fxh
mkpar f

finally Vi1 Vo

V. Allombert et al. HLPP 2015 10 / 17

Primitives

§e§
e gid

e at
<. . f.>
o Fx#
mkpar f

finally Vi1 Vo

V. Allombert et al. HLPP 2015 10 / 17

Primitives

§e§ PR
gid . N

at ! 1 ! \|

< o> ~-y ~=
HxH) .)

mkpar f \ \ \

finally Vi1 Vo
this

V. Allombert et al. HLPP 2015

10 /17

Code example

Keep the intermediate results of the sum:

let multi tree sum_list | =
where node =
let v = mkpar (fun i — splitil) in
let s = sumSeq (flatten < sum_list v>>) in
finally “up:s “keep:s
where leaf =
let s = sumSeq | in

/ \ / \ finally “up:s “keep:s

V. Allombert et al. HLPP 2015 11 /17

Code example

Keep the intermediate results of the sum:

let multi tree sum_list | =
where node =
let v = mkpar (fun i — splitil) in
let s = sumSeq (flatten < sum_list v>>) in
finally “up:s “keep:s

where leaf =
let s = sumSeq | in
/ \ finally “up:s “keep:s

V. Allombert et al. HLPP 2015 11 /17

Code example

Keep the intermediate results of the sum:

let multi tree sum_list | =
where node =
let v = mkpar (fun i — splitil) in
let s = sumSeq (flatten < sum_list v>>) in
finally “up:s “keep:s
where leaf =
let s = sumSeq | in

finally “up:s “keep:s

V. Allombert et al. HLPP 2015 11 /17

Code example

Keep the intermediate results of the sum:

let multi tree sum_list | =
where node =
let v = mkpar (fun i — splitil) in
let s = sumSeq (flatten < sum_list v>>) in
finally “up:s “keep:s
where leaf =
let s = sumSeq | in

/ \ / \ finally “up:s “keep:s

[0 1] || [2:3] [4:51||16: 7]

V. Allombert et al. HLPP 2015 11 /17

Code example

Keep the intermediate results of the sum:

let multi tree sum_list | =
where node =
let v = mkpar (fun i — splitil) in
let s = sumSeq (flatten < sum_list v>>) in
finally “up:s “keep:s
where leaf =
let s = sumSeq | in

/ \ / \ finally “up:s “keep:s

(1 || Bl [9] || [13]

V. Allombert et al. HLPP 2015 11 /17

Code example

Keep the intermediate results of the sum:

[1

(3]

V. Allombert et al.

[

(13]

let multi tree sum_list | =
where node =
let v = mkpar (fun i — splitil) in

let s = sumSeq (flatten < sum_list v>>) in

finally “up:s “keep:s
where leaf =
let s = sumSeq | in

finally “up:s “keep:s

HLPP 2015

11/17

Code example

Keep the intermediate results of the sum:

[1

(3]

V. Allombert et al.

[

[

(13]

let multi tree sum_list | =
where node =
let v = mkpar (fun i — splitil) in

let s = sumSeq (flatten < sum_list v>>) in

finally “up:s “keep:s
where leaf =
let s = sumSeq | in

finally “up:s “keep:s

HLPP 2015

11/17

Code example

Keep the intermediate results of the sum:

[1

(3]

V. Allombert et al.

[

[

(13]

let multi tree sum_list | =
where node =
let v = mkpar (fun i — splitil) in

let s = sumSeq (flatten < sum_list v>>) in

finally “up:s “keep:s
where leaf =
let s = sumSeq | in

finally “up:s “keep:s

HLPP 2015

11/17

Code example

Keep the intermediate results of the sum:

[1

(3]

V. Allombert et al.

[

[

(13]

let multi tree sum_list | =
where node =
let v = mkpar (fun i — splitil) in

let s = sumSeq (flatten < sum_list v>>) in

finally “up:s “keep:s
where leaf =
let s = sumSeq | in

finally “up:s “keep:s

HLPP 2015

11/17

Code example

Keep the intermediate results of the sum:

28]

[1

(3]

V. Allombert et al.

[

[

(13]

let multi tree sum_list | =
where node =
let v = mkpar (fun i — splitil) in

let s = sumSeq (flatten < sum_list v>>) in

finally “up:s “keep:s
where leaf =
let s = sumSeq | in

finally “up:s “keep:s

HLPP 2015

11/17

Semantics

Formal definition of a core-languge

Useful for:

V. Allombert et al. HLPP 2015 12 /17

Semantics

Formal definition of a core-languge

Useful for:
e Study of properties

V. Allombert et al. HLPP 2015 12 /17

Semantics

Formal definition of a core-languge

Useful for:
e Study of properties

e Proof of programs/compiler/typing rules

V. Allombert et al. HLPP 2015 12 /17

Semantics

Formal definition of a core-languge

Useful for:
e Study of properties

e Proof of programs/compiler/typing rules

Currently

e Inductive big-step: confluent

e Co-inductive: mutually exclusive

V. Allombert et al. HLPP 2015 12 /17

Implementation

#let multi f n =
where node =

. . let _=<f (pid + #n# + 1) > in
Sequential simulator | finally “up:() “keep:(gid~"'=>""n)

where leaf=finally “up:() “keep:(gid""=>""n);;

* OCAML-like toplevel — :val f : int—string tree = <multi-fun>
e Test and debug #(f 0)
0"0— 0"
e Tree sturcture \
——0"0.0— 1"
e Hash tables to ‘ L 70.0.0- 2"
represent memories —— "0.0.1—3"
——0"0.1- 2"
—— "0.1.0—>3"
—— "0.1.1—>4"

V. Allombert et al. HLPP 2015 13 /17

Distributed implementation

Our approach

V. Allombert et al. HLPP 2015 14 /17

Distributed implementation

Our approach

e Modular

V. Allombert et al. HLPP 2015 14 /17

Distributed implementation

Our approach

e Modular

e Generic functors

V. Allombert et al. HLPP 2015 14 /17

Distributed implementation

Our approach

e Modular

e Generic functors

e Communication routines

V. Allombert et al. HLPP 2015 14 /17

Distributed implementation

Our approach

Modular

Generic functors

e Communication routines

Portable on shared and distributed memories

V. Allombert et al. HLPP 2015 14 /17

Distributed implementation

Our approach

e Modular
e Generic functors

e Communication routines

Portable on shared and distributed memories

Current version

e Based on MPI

V. Allombert et al. HLPP 2015 14 /17

Distributed implementation

Our approach

e Modular
e Generic functors
e Communication routines

Portable on shared and distributed memories

Current version

e Based on MPI
e SPMD

V. Allombert et al. HLPP 2015 14 /17

Distributed implementation

Our approach

e Modular
e Generic functors

e Communication routines

Portable on shared and distributed memories

Current version

e Based on MPI
e SPMD

e One process for each nodes/leaves

V. Allombert et al. HLPP 2015 14 /17

Distributed implementation

Our approach

e Modular
e Generic functors

e Communication routines

Portable on shared and distributed memories

Current version

e Based on MPI
SPMD

e One process for each nodes/leaves

Distributed over physical cores

V. Allombert et al. HLPP 2015 14 /17

Distributed implementation

Our approach

e Modular
e Generic functors
e Communication routines

Portable on shared and distributed memories

Current version

e Based on MPI
SPMD

e One process for each nodes/leaves

Distributed over physical cores

Shared/Distributed memory optimisations

V. Allombert et al. HLPP 2015 14 /17

Table of Contents

© Results

V. Allombert et al. HLPP 2015 15 /17

Benchmarks

Naive Eratosthenes algorithm

o /(n)th first prime numbers
e Based on scan

e Unbalanced

V. Allombert et al. HLPP 2015 15 /17

Benchmarks
Mirev 3

Naive Eratosthenes algorithm

o /(n)th first prime numbers
e Based on scan

e Unbalanced

V. Allombert et al. HLPP 2015 15 /17

Benchmarks
Mirev 3

Naive Eratosthenes algorithm

o /(n)th first prime numbers
e Based on scan

e Unbalanced

100000 500-000 1.000_-000
MULTI-ML | BSML | MULTI-ML | BSML | MULTI-ML | BSML
8 0.7 1.8 22.4 105.0 125.3 430.7
64 0.3 0.3 1.3 8.7 4.1 56.1
128 0.5 0.45 2.1 5.2 4.7 24.3

V. Allombert et al. HLPP 2015 15 /17

Table of Contents

O Conclusion

V. Allombert et al. HLPP 2015 16 / 17

Conclusion

MULTI-ML

V. Allombert et al. HLPP 2015 16 / 17

Conclusion

MULTI-ML

e Recursive multi-functions

V. Allombert et al. HLPP 2015 16 / 17

Conclusion

MULTI-ML

e Recursive multi-functions

e Structured nesting of BSML codes

V. Allombert et al. HLPP 2015 16 / 17

Conclusion

MULTI-ML

e Recursive multi-functions

e Structured nesting of BSML codes

e Big-steps formal semantics (confuent)

V. Allombert et al. HLPP 2015 16 / 17

Conclusion

MULTI-ML

e Recursive multi-functions

e Structured nesting of BSML codes
e Big-steps formal semantics (confuent)
e Small number of primitives and little syntax extension

V. Allombert et al. HLPP 2015 16 / 17

Conclusion

MULTI-ML

e Recursive multi-functions

e Structured nesting of BSML codes
e Big-steps formal semantics (confuent)
e Small number of primitives and little syntax extension

e Optimise MPI implementation

V. Allombert et al. HLPP 2015 16 / 17

Conclusion

MULTI-ML

e Recursive multi-functions

e Structured nesting of BSML codes
e Big-steps formal semantics (confuent)
e Small number of primitives and little syntax extension

e Optimise MPI implementation

e Type system for MULTI-ML

V. Allombert et al. HLPP 2015 16 / 17

Conclusion

MULTI-ML

e Recursive multi-functions

e Structured nesting of BSML codes
e Big-steps formal semantics (confuent)
e Small number of primitives and little syntax extension

e Optimise MPI implementation

e Type system for MULTI-ML

e Real life benchmarks

V. Allombert et al. HLPP 2015 16 / 17

Thank you for your attention !

Any questions 7

V. Allombert et al. HLPP 2015 17 /17

	Introduction
	bsp
	bsml
	multi-bsp

	Multi-ML
	Overview
	Primitives
	Semantics
	Implementation

	Results
	Conclusion

