MvurTi-ML: PROGRAMMING
MuLTI-BSP ALGORITHMS IN ML

VICTOR ALLOMBERT, FREDERIC GAVA AND JULIEN TESSON

Laboratory of Algorithmic Complexity and Logic
Université Paris-Est

HLPP July 2015

UNIVERSITE
PARIS-EST CRETEIL
VAL DE MARNE

lacl Joec

Connaissance - Action

V. Allombert et al. HLPP 2015 1/17



@ Introduction
@ Multi-ML
© Results

@ Conclusion

Table of Contents



Table of Contents

@ Introduction
BSP
BSML
MULTI-BSP

V. Allombert et al. HLPP 2015 2/17



Bulk Synchronous Parallelism

The BSP computer

Defined by:

V. Allombert et al. HLPP 2015 2/17



Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory

V. Allombert et al. HLPP 2015 2/17



Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory

e Communication network

V. Allombert et al. HLPP 2015 2/17



Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory
e Communication network

e Synchronization unit

V. Allombert et al. HLPP 2015 2/17



Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory
e Communication network

e Synchronization unit

e Super-steps execution

V. Allombert et al.

(po| pr]p2]ps]

HLPP 2015

local )
computations

communication

barrier
next super-step

2/17



Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory
e Communication network

e Synchronization unit

e Super-steps execution

e Confluent

V. Allombert et al.

(po| pr]p2]ps]

HLPP 2015

local )
computations
communication

barrier
next super-step

2/17



Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory
e Communication network

e Synchronization unit

e Super-steps execution
e Confluent

e Deadlock-free

V. Allombert et al.

(po| pr|p2]ps]

HLPP 2015

local )
computations
communication

barrier
next super-step

2/17



Bulk Synchronous Parallelism

The BSP computer

Defined by:
e p pairs CPU/memory
e Communication network

e Synchronization unit

e Super-steps execution
e Confluent
e Deadlock-free

e Predictable performances

V. Allombert et al.

(po|pr]p2]ps]

HLPP 2015

local )
computations
communication

barrier
next super-step

2/17



Bulk Synchronous ML

What is BSML?

V. Allombert et al. HLPP 2015 3/17



Bulk Synchronous ML

e Explicit BSP programming with a functional approach

V. Allombert et al. HLPP 2015 3/17



Bulk Synchronous ML

e Explicit BSP programming with a functional approach

e Based upon ML an implemented over OCAML
22

4

4

V. Allombert et al. HLPP 2015 3/17



Bulk Synchronous ML

e Explicit BSP programming with a functional approach

e Based upon ML an implemented over OCAML

e Formal sementics — computer-assisted proofs (COQ)

Y

Al

4

V. Allombert et al. HLPP 2015 3/17



Bulk Synchronous ML
What is BSML?

e Explicit BSP programming with a functional approach
e Based upon ML an implemented over OCAML

e Formal sementics — computer-assisted proofs (COQ)

Main idea

Parallel data structure = vectors:
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Code example

For a BSP machine with 3 processors:

# let vec = < "HLPP." > ;;

val vec : string par = <"HLPP.", "HLPP.", "HLPP." >

# let vec2 = < $vec$”(string_of int $pid$) > ;;

val vec? : string par = <"HLPP_0", "HLPP_1", "HLPP_2" >
# let totex v = List.map (proj v) procs;;

val totex : 'a Bsml.par — 'a list = <fun>

# totex vec2;;

— : string list = ["HLPPQ"; "HLPP1"; "HLPP2"]
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A level i superstep is:

e Level i — 1 executes code independantly
e Exchanges informations with the m; memory
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Recursion structure Result
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Semantics

Formal definition of a core-languge

Useful for:
e Study of properties

e Proof of programs/compiler/typing rules

Currently

e Inductive big-step: confluent

e Co-inductive: mutually exclusive
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Implementation

#let multi f n =
where node =

. . let _=<f ($pid$ + #n# + 1) > in
Sequential simulator | finally “up:() “keep:(gid~"'=>""n)

where leaf=finally “up:() “keep:(gid""=>""n);;

* OCAML-like toplevel — :val f : int—string tree = <multi-fun>
e Test and debug #(f 0)
0"0— 0"
e Tree sturcture \
——0"0.0— 1"
e Hash tables to ‘ L 70.0.0- 2"
represent memories —— "0.0.1—3"
——0"0.1- 2"
—— "0.1.0—>3"
—— "0.1.1—>4"
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Our approach

e Modular
e Generic functors
e Communication routines

Portable on shared and distributed memories

Current version

e Based on MPI
SPMD

e One process for each nodes/leaves

Distributed over physical cores
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Benchmarks
Mirev 3

Naive Eratosthenes algorithm

o /(n)th first prime numbers
e Based on scan

e Unbalanced

100000 500-000 1.000_-000
MULTI-ML | BSML | MULTI-ML | BSML | MULTI-ML | BSML
8 0.7 1.8 22.4 105.0 125.3 430.7
64 0.3 0.3 1.3 8.7 4.1 56.1
128 0.5 0.45 2.1 5.2 4.7 24.3
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e Structured nesting of BSML codes
e Big-steps formal semantics (confuent)
e Small number of primitives and little syntax extension

e Optimise MPI implementation

e Type system for MULTI-ML

e Real life benchmarks
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