
LATEX TikZposter

Multi-ML: Programming
Multi-BSP Algorithms in ML
Victor Allombert, Frédéric Gava, Julien Tesson

LACL, Université Paris Est

Multi-ML: Programming
Multi-BSP Algorithms in ML
Victor Allombert, Frédéric Gava, Julien Tesson

LACL, Université Paris Est

The BSP Model
In the bsp model [1], a computer is a set of p uni-
form processor-memory pairs and a communication network.
A bsp program is executed as a sequence of super-steps
(Fig. 1), each one divided into three successive disjoint phases:

local
computations

p0 p1 p2 p3

communication

barrier

next super-step
...

Figure 1: A bsp super-step

1) Each processor only uses its
local data to perform sequen-
tial computations and to re-
quest data transfers to other
nodes;

2) The network delivers the re-
quested data;

3) A global synchronisation
barrier occurs, making the
transferred data available for
the next super-step.

The Multi-BSP Model
The multi-bsp model [2] is another bridging model as the original
bsp, but adapted to clusters of multicores. The multi-bsp model
introduces a vision where a hierarchical architecture is a tree structure
of nested components (sub-machines) where the lowest stage (leaf) are
processors and every other stage (node) contains memory. A node exe-
cutes some codes on its nested components (aka “children”), then waits
for results, do the communication and synchronised the sub-machine.

Multi Core

Core0

th0 th1 th2 th3

Core1

th0 th1 th2 th3
Figure 2: A multi-bsp view of a multi-core architecture

Network

th0 th1 th2 th3 th4 th5 th6 th7
Figure 3: A bsp view of a multi-core architecture

For a multicore architecture it is possible to distinguish all the level
thanks to multi-bsp (Fig. 2). On the contrary, the bsp model (Fig. 3)
flattens the architecture.

Benchmarks
Fig. 4 shows the results of our experimentations. We can see that the
efficiency on small list is poor but as the list grows, multi-ml ex-
ceeds bsml. This difference is due to the fact that bsml communicates
through the network at every super steps; while multi-ml focusing
on communications through local memories and finally communicates
through the distributed level.

100_000 1_000_000 3_000_000
multi-ml bsml multi-ml bsml multi-ml bsml

8 0.7 1.8 125.3 430.7
16 0.5 0.8 68.1 331.5 1200.0 ...
32 0.3 0.5 11.3 122.2 173.2 ...
48 0.5 0.4 5.5 88.4 69.3 ...
64 0.3 0.3 4.1 56.1 51.1 749.9
96 0.3 0.38 3.9 30.8 38.1 576.1
128 0.5 0.45 4.7 24.3 30.6 443.7

Figure 4: Execution time of Eratosthenes (naive) using multi-ml and bsml.
Fig. 5 gives the computation time of the simple scan using a summing
operator. We can see that multi-ml introduce a small overhead due

to the level management; however it is as efficient as bsml and
concord to the estimated execution times.

5_000_000
multi-ml bsml Pred_multi-ml Pred_bsml

8 2.91 2.8 3.44 1.83
16 1.42 1.4 1.72 0.92
32 0.92 0.73 0.43 0.46
48 0.84 0.75 0.28 0.31
64 0.83 0.74 0.21 0.23
Figure 5: Execution time and predictions of scan (sum of integers)

BSP Programming in ML : BSML
bsml [3] uses a small set of primitives and is currently implemented as a library for the ml programming
language ocaml. A bsml program is built as a ml one but using a specific data structure called parallel
vector. Its ml type is ’a par. A vector expresses that each of the p processors embeds a value of any type ’a.
The bsml primitives are summarized in Fig. 6 :

Primitive Level Type Informal semantics
�e� g ’a par (if e:’a) 〈e, . . . , e〉
pid g int par A predefined vector: i on processor i

v l ’a (if v: ’a par) vi on processor i, assumes v ≡ 〈v0, . . . , vp−1〉
proj g ’a par→ (int→ ’a) 〈x0, . . . , xp−1〉 7→ (fun i→ xi)
put g (int→ ’a)par→ (int→ ’a)par 〈f0, . . . , fp−1〉 7→〈(fun i→fi 0), . . . , (fun i→fi (p−1))〉

Figure 6: The bsml primitives

An example of a parallel vector construction using the bsml toplevel :
#let vec = � "GDR"� in � vec^",␣proc␣"^(string_of_int pid) � ;;

val vec : string par = <"GDR,␣proc␣0", "GDR,␣proc␣1", "GDR,␣proc␣2">

The Multi-ML language

Parent

Child . . . Child2) Computations

1) Data
3) Results

Figure 7: Code propagation

multi-ml is based on the idea of executing a bsml-like code
on every stage of the multi-bsp architecture, that is on ev-
ery sub-machine. For this, we add a specific syntax to
ml in order to code special functions, called multi-functions,
that recursively go through the multi-bsp tree. At each
stage, a multi-function allows the execution of any bsml code.
The main idea of multi-ml is to structure parallel codes to con-
trol all the stage of a tree: we generate the parallelism by allowing
a node to call recursively a code on each of its sub-machines
(children). When leaves are reached, they will execute their own
codes and produce values, accessible by the top node using a
vector. The data are distributed on the stages (toward leaves) and results are gathered on nodes toward the root
node as shown in Fig. 7. Let us consider a code where, on a node,� e� is executed. As shown in Fig. 8, the
node creates a vector containing, for each sub-machine i, the expression e. As the code is run asynchronously,
the execution of the node code will continue until reaching a barrier.

e . . . e

let v= � e�

� �

Figure 8: Data distribution

Fig. 9 shows the multi-ml primitives (without recall the bsml ones);
their authorised level of execution and their informal semantics.

Primitive Level Type Informal semantics
§e§ m ’a tree Build oeo, a tree of e
t s ’a In a §e§ code, tn on node/leaf n of the tree oto
v (if v: ’a tree) b ’a vn on node n of tree ovo,
v l ’a In the ith component of a vector, vn.i on node/leaf n of the tree ovo
gid m id The predefined tree of nodes and leaves ids
�...f...� l ’a In a component of a vector, recursive call of the multi-function
#x# l ’a In a component of a vector, reading the value x at upper stage (id)
mkpar f b ’a par 〈v0, . . . , vpn

〉, where ∀i, f i = vi, at id n of the tree
finally v1 v2 b,s ’a Return value v1 to upper stage (id) and keep v2 in the tree
this b,l,s ’a option Current value of the tree if exists, None otherwise

Figure 9: The multi-ml primitives

An example of a tree construction using the multi-ml toplevel :
#let multi f n =

where node =
let _=�f (pid+ #n#+ 1)� in
finally ~up:() ~keep:(gid^"=>"^n)

where leaf=finally ~up:() ~keep:(gid^"=>"^n);;
val f : int→string tree = <multi-fun>

#f 0
o "0→ 0"∣∣∣∣∣∣
o "0.0→ 1"∣∣∣∣∣∣

∣∣∣∣∣∣ → "0.0.0→ 2"∣∣∣∣∣∣
∣∣∣∣∣∣ → "0.0.1→ 3"

o "0.1→ 2"∣∣∣∣∣∣
∣∣∣∣∣∣ → "0.1.0→ 3"∣∣∣∣∣∣
∣∣∣∣∣∣ → "0.1.1→ 4"

References
[1] L. G. Valiant. “A Bridging Model for Parallel Computation”. In: Comm. of the ACM 33.8 (1990), pp. 103–111.
[2] L. G. Valiant. “A bridging model for multi-core computing”. In: J. Comput. Syst. Sci. 77.1 (2011), pp. 154–166.
[3] Louis Gesbert et al. “Bulk Synchronous Parallel ml with Exceptions”. In: Future Generation Computer Systems 26 (2010),
pp. 486–490.

