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Why Structured

Considered solutions
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The BSML Language

@ Explicit BSP programming with a functional approach
@ Based upon ML; Implemented over OCaml
@ Formal semantics (confluent) — Coq

Parallel data structure = vectors:

Vo, .., Vp—1 ) : wpar = v; on node i
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Four primitives = simple semantics
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Extensions

@ Exception mechanism and pattern matching: implemented
using a modification of the source code
@ Superposition using:
@ System threads = slowdown if there is too many threads
@ A CPS (Continuation Passing Style) transformation

Inspire:

@ Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
@ Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)
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Example : BSP Sampling Sort

(x psrs: int par — ‘a list — ‘a list x)
let psrs Ivlengths Iv =
(x super—step 1(a): local sorting )
let locsort = < List.sort compare $Iv$ >> in

(x super—step 1(b): selection of the primary samples x)
let regsampl = < extract_n P $lvlengths$ $locsort$ > in

(x super—step 2(a): total exchange of the primary samples;x)
let glosampl = List.sort compare (proj regsampl) in

(x super—step 2(b): selection of the secondary samples x)
let pivots = extract_n P (P«(P—1)) glosampl in

(x super—step 2(c) : building the communicated lists of values x)
let comm = < slice_p $locsort$ pivots > in

(x super—step 3: sended them and merging of the received values )

let recv = put < List.nth $comm$ >> in
< p_merge P (List.map $recv$ procs_list) >
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Advantages and Drawbacks

Advantages

@ Easytolearn
@ “All” OCaml codes can be used
@ Easy to get a BSML code from a BSP algorithm

v

@ Hierarchical architecture as a flat one

@ Congestion using network

Allombert, Gava & Tesson — Multi-BSML 13/28



Multi-BSML Conclusion

Outline

Q Multi-BSML : Syntax and semantics

Allombert, Gava & Tesson — Multi-BSML 14/28



Multi-BSML
©000000000

Multi-BSP Model (1)

What is ? (Valiant)

Allombert, Gava & Tesson — Multi-BSML 15/28



Multi-BSML
©000000000

Multi-BSP Model (1)

What is ? (Valiant)
@ A tree structure with nested components

Allombert, Gava & Tesson — Multi-BSML 15/28



Introduction Multi-BSML Conclusion

Multi-BSP Model (1)

9000000000

What is ? (Valiant)
@ A tree structure with nested components
© Where nodes have a storage capacity

Allombert, Gava & Tesson — Multi-BSML 15/28



Introduction Multi-BSML Conclusion

Multi-BSP Model (1)

9000000000

What is ? (Valiant)
@ A tree structure with nested components
© Where nodes have a storage capacity
© And leaf are homogenous processors

Allombert, Gava & Tesson — Multi-BSML 15/28



Introduction Multi-BSML Conclusion

Multi-BSP Model (1)

9000000000

What is ? (Valiant)
@ A tree structure with nested components
© Where nodes have a storage capacity
© And leaf are homogenous processors

Multi-BSP

S
) )

thO th1 th2 th3 thO th1 th2. th3

Allombert, Gava & Tesson — Multi-BSML 15/28



Introduction Multi-BSML Conclusion

Multi-BSP Model (1)

9000000000

What is ? (Valiant)
@ A tree structure with nested components
© Where nodes have a storage capacity
© And leaf are homogenous processors

Multi-BSP BSP

@ @ thO th1 th2  th3 th4| th5 thé |th7

thO th1 th2 th3 thO th1 th2. th3

Allombert, Gava & Tesson — Multi-BSML 15/28



Multi-BSML

O®00000000

Cost model
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p : Number of sub-components
m : Available memory at a level
g : Bandwidth with the upper level
L : Synchronisation
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Multi-BSP Model (2

Cost model

A d depth tree is specified by 4 x d parameters:
p : Number of sub-components
m : Available memory at a level
g : Bandwidth with the upper level
L : Synchronisation

.

Example: 16 with

@ Level 4 (p=16,9=00,L=1000,m=16Tb) (RAM/IO)
@ Level 3 (p=4,9=150,L =100, m = 64Gb) (RAM)
@ Level2(p=8,9=>5L=10,m=2Mb) (L2 cache)
@ Level1 (p=1,9=1,L=1,m =8Kb) (L1 cache)

V.
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Multi-BSP Model (3)

Execution model

At a level i, a super-step is:
@ Each component at level i — 1 does its own super-steps
@ Then each copies some data to the memory at level j
@ Then synchronisation

@ Finaly copy of some data from level jto j — 1
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Execution model

At a level i, a super-step is:
@ Each component at level i — 1 does its own super-steps
@ Then each copies some data to the memory at level j
@ Then synchronisation
@ Finaly copy of some data from level jto j — 1

v

Advantages and drawbacks

@ Implicit subgroup synchronisation
@ Recursive decomposition of problems
@ Harder to design/cost some algorithms
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Multi-BSML Language (1)

Syntaxic construction

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...
< fargs >
... CodeBSML
where leaf [args] = CodeOCaml
inf..
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Multi-BSML Language (1)

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...
< fargs >
... CodeBSML
where leaf [args] = CodeOCaml
inf..

Limitations and differences

@ Nodes are implicit computation units
@ Horizontal communications between level components

@ Garbage collector = no L1, L2 caches.
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Semantics of multi
@ BSML code to distribute values
@ ((...) and proj; level changing
@ Mutual recursive functions of standard OCaml values
@ (Formal) Big-steps <= small-steps for a mini-Multi-BSML
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Multi-BSML Language (2)

0O000@00000

Semantics of multi
@ BSML code to distribute values
@ ((...) and proj; level changing
@ Mutual recursive functions of standard OCaml values
@ (Formal) Big-steps <= small-steps for a mini-Multi-BSML

Copy memory values and distribution of values

@ letx=1in<#x#+1> let vect = mkpar (fun i -> v)
@ mkpar (funi — e)
Vo, oov s Vpo1)
where (e i) — v;
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Example : Sum Of The Elements Of A List

let multi sum_list | =

where node | =
let v = mkpar (funi — splitil) in
sumSeq (flatten < sum_list $v$ > ) (x flatten uses a proj *)
(x sumSeq is List.fold_left x)
where leaf | = sumSeq |

in ... (sum_list Ist) ...

Allombert, Gava & Tesson — Multi-BSML 20/28
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@ To program multiple phases of multi

Allombert, Gava & Tesson — Multi-BSML 21/28



Introduction Y Multi-BSML

Multi With Tree Construction

0O00000e000

@ Keep values on each node and leaf
@ To program multiple phases of multi

Extension

Two new keywords:

@ finally; pushes up a value and keeps a value

@ where default; keeps a value even if the recursive calls
generates partial trees; Optional if the language allows to
raise exceptions
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Multi-BSML
0000000800

Example

Keep the intermediate results of the sum

let multi sum_list | =

@ @ where node | =

let v = mkpar (funi — splitil) in
let s = sumSeq (flatten < sum_list $v$ >> ) in
finally ~up:s ~keep:s

where leaf | =
let s = sumSeq | in
finally ~up:s ~keep:s

where default = 0 (x not used )

Allombert, Gava & Tesson — Multi-BSML 22/28
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Implementation

(currently test phase)
For debugging and toplevel
@ iree structure of data
@ A global tree of Hashtables to represent the memories

(ongoing work)

Modular (MPI, TCP/IP, etc.) and based on formal semantics.
Shared memory Distributed

letx =fy
in replicate x letx =fy
in replicate x

fy

x fy £y

(G
v
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eleton (For Coq) Example

Embed Multi in Coq:
@ Syntax extensions not friendly in Coq
@ finally too close to a monad (side effect)
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Embed Multi in Coq:
@ Syntax extensions not friendly in Coq
@ finally too close to a monad (side effect)

V.

The multi skeleton

mkiree :’a tree — b — ‘e tree — down — leaff — up — control — (’cx’e tree)
where

down:’a — b — b par

leaf:'’e —-’a— b — ('cx’e)

up:'dpar —-’e —-’'a—'b— (cx’e)

control: ’c par— ’e— ’a— 'b— UP of ('d par = ’e) | DOWN of (b * ’e) )
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Multi-BSML

@ Recursive functions on different memories of chips

@ Structured nesting of BSML codes

@ Big-steps and small-steps formal semantics (confuent)
@ A skeleton for Coq

@ Small number of primitives and little syntax extension
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Long term (team)
@ Mechanized semantics in Coq

@ Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

@ Examples and libraries
@ Same work for other languages (C++, Java)
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