Introduction

Multi-BSML, une approche a la ML
pour la programmation Multi-BSP

Victor Allombert & Frédéric Gava & Julien Tesson

Laboratory of Algorithms, Complexity and Logic (LACL)
University of Paris-East

Allombert, Gava & Tesson — Multi-BSML 1/28

Introduction v Conclusion

Outline

@ Introduction
e BSML: Functional BSP Programming
Q Multi-BSML : Syntax and semantics

e Conclusion

Allombert, Gava & Tesson — Multi-BSML 2/28

Introduction
@000

Parallel Architectures

Network

Clusters

Allombert, Gava & Tesson — Multi-BSML 3/28

Introduction Multi-BSML Conclusion
€000

Parallel Architectures

Network

L

Clusters

Multi-core

Allombert, Gava & Tesson — Multi-BSML 3/28

Introduction
@000

Parallel Architectures

memory

B

Multi-core

Clusters

Memory

Memory

v

Allombert, Gava & Tesson — Multi-BSML 3/28

Introduction V Conclusion
0000 o ofe 000

“Think Parallel or Perlsh”

Supercomputer:

Allombert, Gava & Tesson — Multi-BSML 4/28

Introduction
[e]e] e}

(Parallel) Softwa

@ Over-consumption

Allombert, Gava & Tesson — Multi-BSML 5/28

Introduction / Multi-BSML Conclusion

[e]e] Ie]

(Parallel) Software Errors

@ Over-consumption
@ Erroneous results

Allombert, Gava & Tesson — Multi-BSML 5/28

Introduction

Multi-BSML
0000 @

(Parallel) Software Errors

@ Over-consumption
@ Erroneous results

Typical bugs

Distributed Shared memory

Deadlocks:

v

Allombert, Gava & Tesson — Multi-BSML 5/28

Introduction Multi-BSML Conclusion

[e]e] Ie]

(Parallel) Software Errors

@ Over-consumption
@ Erroneous results

Typical bugs

Distributed Shared memory

wait

Deadlocks:

wait

Allombert, Gava & Tesson — Multi-BSML

5/28

Introduction Multi-BSML Conclusion

[e]e] Ie]

(Parallel) Software Errors

@ Over-consumption
@ Erroneous results

Typical bugs

Distributed Shared memory

wait

Deadlocks:

Race condition:

Allombert, Gava & Tesson — Multi-BSML

5/28

Introduction Multi-BSML Conclusion

[e]e] Ie]

(Parallel) Software Errors

@ Over-consumption
@ Erroneous results

Typical bugs

Distributed Shared memory

wait

Deadlocks:

Race condition:

Allombert, Gava & Tesson — Multi-BSML

5/28

Introduction
[e]e] e}

(Parallel) Softwa

@ Over-consumption
@ Erroneous results

Considered solutions

@ Well structured parallelism;
@ Design a high-level language for “hybrid architectures”
© Software-hardware bridging model = Portability, scalability

Race condition:

o

Allombert, Gava & Tesson — Multi-BSML 5/28

Introduction
[e]e]e]]

Why Structured Parallelism?

Safety, debugging and verification

Allombert, Gava & Tesson — Multi-BSML 6/28

Introduction
[e]e]e]]

Why Structured

v

Reasoning about cost

4

Allombert, Gava & Tesson — Multi-BSML 6/28

Introduction
[e]e]e]]

Why Structured

v

4

Allombert, Gava & Tesson — Multi-BSML 6/28

Introduction
[e]e]e]]

Why Structured

Considered solutions
“Send-receive considered harmful” (Sergei GORLATCH)
@ Distributed extension of a functional language;

4

Allombert, Gava & Tesson — Multi-BSML 6/28

Introduction
[e]e]e]]

Why Structured

Considered solutions
“Send-receive considered harmful” (Sergei GORLATCH)
@ Distributed extension of a functional language;
@ Tools for correctness; (mechanized) Semantics = Coq

4

Allombert, Gava & Tesson — Multi-BSML 6/28

Outline

9 BSML: Functional BSP Programming

Allombert, Gava & Tesson — Multi-BSML 7/28

BSML i- Conclusion
©00000 000

Bﬁdging Model: Bulk Synchrono rallelism (=)

The computer
Defined by:
@ p pairs CPU/memory

Allombert, Gava & Tesson — Multi-BSML 8/28

BSML i- Conclusion
©00000 000

Bﬁdging Model: Bulk Synchrono rallelism (=)

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network

Allombert, Gava & Tesson — Multi-BSML 8/28

BSML i- Conclusion
©00000 000

Bﬁdging Model: Bulk Synchrono rallelism (=)

The computer

Defined by:
@ p pairs CPU/memory
@ Communication network
@ Synchronisation unit

Allombert, Gava & Tesson — Multi-BSML 8/28

Introduction BSML Multi-BS|
©00000

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network

local .
computations

@ Synchronisation unit i
Al
@ Super-steps execution —= | 4\ .
= ;\—(»,/ T communication
ISR

barrier
next super-step

Allombert, Gava & Tesson — Multi-BSML 8/28

Introduction BSML Multi-BS|
©00000

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network

local .
computations

@ Synchronisation unit - |
@ Super-steps execution —= | 4\ o
y P communication
CECTT) barrier
@ “Confluent” : @ 1 ! nextsuper-step

v

Allombert, Gava & Tesson — Multi-BSML 8/28

Introduction BSML Multi-BS|
©00000

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network

local .
computations

@ Synchronisation unit - |
@ Super-steps execution —= | 4\ o
y P/ communication
CECTT) barrier
@ “Confluent” : I 1 ! nextsuper-step

o “Deadlock-free”

v

Allombert, Gava & Tesson — Multi-BSML 8/28

Introduction BSML Multi-BS|
©00000

The computer
Defined by:
@ p pairs CPU/memory
@ Communication network

local .
computations

@ Synchronisation unit - |
@ Super-steps execution —= | 4\ o
y P/ communication
CECTT) barrier
@ “Confluent” : I 1 ! nextsuper-step

o “Deadlock-free”

@ Predictable
performances

v

Allombert, Gava & Tesson — Multi-BSML 8/28

Introduction BSML Multi-BS| Conclusion
0®0000 © 000

The BSML Language

Allombert, Gava & Tesson — Multi-BSML 9/28

Introduction BSML Multi-BS| Conclusion
0®0000 000 000

'fhe BSML Language

@ Explicit BSP programming with a functional approach

Allombert, Gava & Tesson — Multi-BSML 9/28

BSML
00000

The BSML Language

@ Explicit BSP programming with a functional approach
@ Based upon ML; Implemented over OCaml

Allombert, Gava & Tesson — Multi-BSML 9/28

BSML
00000

The BSML Language

@ Explicit BSP programming with a functional approach
@ Based upon ML; Implemented over OCaml
@ Formal semantics (confluent) — Coq

Allombert, Gava & Tesson — Multi-BSML 9/28

Introduction BSML Multi-BS|

O@0000

The BSML Language

@ Explicit BSP programming with a functional approach
@ Based upon ML; Implemented over OCaml
@ Formal semantics (confluent) — Coq

Parallel data structure = vectors:

Allombert, Gava & Tesson — Multi-BSML 9/28

Introduction BSML Multi-BS|

O@0000

The BSML Language

@ Explicit BSP programming with a functional approach
@ Based upon ML; Implemented over OCaml
@ Formal semantics (confluent) — Coq

Parallel data structure = vectors:

Q@ (Vvo,...,Vp_1):apar=yv;onnode i

Allombert, Gava & Tesson — Multi-BSML 9/28

Introduction BSML Multi-BS|

O@0000

The BSML Language

@ Explicit BSP programming with a functional approach
@ Based upon ML; Implemented over OCaml
@ Formal semantics (confluent) — Coq

Parallel data structure = vectors:

Vo, .., Vp—1) : wpar = v; on node i

o
2]

Four primitives = simple semantics

Allombert, Gava & Tesson — Multi-BSML 9/28

Introduction BSML Multi-BS| Conclusion
[e]e] Yolole} @ 5 000

The BSML Primitives

operations

Allombert, Gava & Tesson — Multi-BSML 10/28

BSML
00®000

The BSML Primitives

operations
@ ((...)) : local execution (vector)

Allombert, Gava & Tesson — Multi-BSML 10/28

Introduction BSML V Conclusion
0000 008000 00 000

The BSML Primitives

operations
@ ((...)) : local execution (vector)
@ v: element of a parallel vector v

Allombert, Gava & Tesson — Multi-BSML 10/28

Introduction BSML V Conclusion
0000 008000 00 000

The BSML Primitives

operations
@ ((...)) : local execution (vector)
@ v: element of a parallel vector v
@ pid: id of the processor

Allombert, Gava & Tesson — Multi-BSML 10/28

Introduction BSML Multi-BSML Conclusion
00000 C

The BSML Primitives

operations

@ ((...)) : local execution (vector)
@ v: element of a parallel vector v
@ pid: id of the processor

<
v

Allombert, Gava & Tesson — Multi-BSML 10/28

Introduction BSML Multi-BSML Conclusion
00000 C

The BSML Primitives

operations

@ ((...)) : local execution (vector)
@ v: element of a parallel vector v
@ pid: id of the processor

Xo

@ Proj: (Xo, ..., Xp_1) —

v

Allombert, Gava & Tesson — Multi-BSML 10/28

BSML
00®000

The BSML Primitives

operations

@ ((...)) : local execution (vector)
@ v: element of a parallel vector v
@ pid: id of the processor

Xo

@ Proj: (Xo, ..., Xp_1) —

fo 0 fo(p—1)
oput:(fo,...,fp_1>»—>< : o : >
fo1 0 foor (P—1)

v

Allombert, Gava & Tesson — Multi-BSML 10/28

BSML
00®000

e BSML Primitives

operations

@ ((...)) : local execution (vector)
@ v: element of a parallel vector v
@ pid: id of the processor

Xo

@ Proj: (Xp, ..., Xp—1)+
Xp 1
fy 0 fo(p—1)
oput:(fo,...,fp_1>%< S, : >
fo10 fo-1 (P —1)

@ super: evaluation of two expressions into super-threads

Allombert, Gava & Tesson — Multi-BSML 10/28

Introduction BSML Multi-BS| Conclusion
00000 © 000

Implementation

Allombert, Gava & Tesson — Multi-BSML 11/28

Introduction BSML
000800

Implementation

@ Based on a semantic study:
BSML = px ML + 2 BSP instructions (SPMD style)

Allombert, Gava & Tesson — Multi-BSML 11/28

BSML
000800

Implementation

@ Based on a semantic study:
BSML = px ML + 2 BSP instructions (SPMD style)

@ Different implementations: TCP/IP, MPI, PUB, - - -

Allombert, Gava & Tesson — Multi-BSML 11/28

BSML
000800

Implementation

@ Based on a semantic study:
BSML = px ML + 2 BSP instructions (SPMD style)

@ Different implementations: TCP/IP, MPI, PUB, - - -

V.

Extensions

Allombert, Gava & Tesson — Multi-BSML 11/28

BSML
000800

Implementation

@ Based on a semantic study:
BSML = px ML + 2 BSP instructions (SPMD style)

@ Different implementations: TCP/IP, MPI, PUB, - - -

V.

Extensions

@ Exception mechanism and pattern matching: implemented
using a modification of the source code

Allombert, Gava & Tesson — Multi-BSML 11/28

BSML
000800

Implementation

@ Based on a semantic study:
BSML = px ML + 2 BSP instructions (SPMD style)

@ Different implementations: TCP/IP, MPI, PUB, - - -

V.

Extensions

@ Exception mechanism and pattern matching: implemented
using a modification of the source code

@ Superposition using:

Allombert, Gava & Tesson — Multi-BSML 11/28

BSML
000800

Implementation

@ Based on a semantic study:
BSML = px ML + 2 BSP instructions (SPMD style)

@ Different implementations: TCP/IP, MPI, PUB, - - -

V.

Extensions

@ Exception mechanism and pattern matching: implemented
using a modification of the source code
@ Superposition using:
@ System threads = slowdown if there is too many threads

Allombert, Gava & Tesson — Multi-BSML 11/28

ction BSML Multi-BSML
000800 ©

Implementation

@ Based on a semantic study:
BSML = px ML + 2 BSP instructions (SPMD style)

@ Different implementations: TCP/IP, MPI, PUB, - - -

V.

Extensions

@ Exception mechanism and pattern matching: implemented
using a modification of the source code
@ Superposition using:
@ System threads = slowdown if there is too many threads
@ A CPS (Continuation Passing Style) transformation

Allombert, Gava & Tesson — Multi-BSML 11/28

ction BSML Multi-BSML

000800

Implementation

@ Based on a semantic study:
BSML = px ML + 2 BSP instructions (SPMD style)

@ Different implementations: TCP/IP, MPI, PUB, - - -

Extensions

@ Exception mechanism and pattern matching: implemented
using a modification of the source code
@ Superposition using:
@ System threads = slowdown if there is too many threads
@ A CPS (Continuation Passing Style) transformation

Inspire:

Allombert, Gava & Tesson — Multi-BSML 11/28

BSML
000800

Implementation

@ Based on a semantic study:
BSML = px ML + 2 BSP instructions (SPMD style)

@ Different implementations: TCP/IP, MPI, PUB, - - -

Extensions

@ Exception mechanism and pattern matching: implemented
using a modification of the source code
@ Superposition using:
@ System threads = slowdown if there is too many threads
@ A CPS (Continuation Passing Style) transformation

Inspire:

@ Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)

Allombert, Gava & Tesson — Multi-BSML 11/28

BSML
000800

Implementation

@ Based on a semantic study:
BSML = px ML + 2 BSP instructions (SPMD style)

@ Different implementations: TCP/IP, MPI, PUB, - - -

Extensions

@ Exception mechanism and pattern matching: implemented
using a modification of the source code
@ Superposition using:
@ System threads = slowdown if there is too many threads
@ A CPS (Continuation Passing Style) transformation

Inspire:

@ Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
@ Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)

v

Allombert, Gava & Tesson — Multi-BSML 11/28

BSML
000000

Example : BSP Sampling Sort

(x psrs: int par — ‘a list — ‘a list x)
let psrs Ivlengths Iv =
(x super—step 1(a): local sorting)
let locsort = < List.sort compare Iv >> in

(x super—step 1(b): selection of the primary samples x)
let regsampl = < extract_n P $lvlengths$ $locsort$ > in

(x super—step 2(a): total exchange of the primary samples;x)
let glosampl = List.sort compare (proj regsampl) in

(x super—step 2(b): selection of the secondary samples x)
let pivots = extract_n P (P«(P—1)) glosampl in

(x super—step 2(c) : building the communicated lists of values x)
let comm = < slice_p $locsort$ pivots > in

(x super—step 3: sended them and merging of the received values)

let recv = put < List.nth $comm$ >> in
< p_merge P (List.map $recv$ procs_list) >

Allombert, Gava & Tesson — Multi-BSML 12/28

Introduction BSML Multi-BSN Conclusion
00000e C

Advantages and Drawbacks

Advantages

Allombert, Gava & Tesson — Multi-BSML 13/28

BSML
00000@

Advantages and Drawbacks

Advantages
@ Easytolearn

Allombert, Gava & Tesson — Multi-BSML 13/28

Introduction BSML Multi-BS|
00000e ©

Advantages and Drawbacks

Advantages
@ Easytolearn
@ “All” OCaml codes can be used

Allombert, Gava & Tesson — Multi-BSML 13/28

Introduction BSML Multi-BS|
00000e ©

Advantages and Drawbacks

Advantages
@ Easytolearn
@ “All” OCaml codes can be used
@ Easy to get a BSML code from a BSP algorithm

Allombert, Gava & Tesson — Multi-BSML 13/28

Introduction BSML Multi-BS|

O0000e

Advantages and Drawbacks

Advantages

@ Easytolearn
@ “All” OCaml codes can be used
@ Easy to get a BSML code from a BSP algorithm

v

Allombert, Gava & Tesson — Multi-BSML 13/28

Introduction BSML Multi-BS|

O0000e

Advantages and Drawbacks

Advantages

@ Easytolearn
@ “All” OCaml codes can be used
@ Easy to get a BSML code from a BSP algorithm

v

@ Hierarchical architecture as a flat one

Allombert, Gava & Tesson — Multi-BSML 13/28

Introduction BSML Multi-BS|

O0000e

Advantages and Drawbacks

Advantages

@ Easytolearn
@ “All” OCaml codes can be used
@ Easy to get a BSML code from a BSP algorithm

v

@ Hierarchical architecture as a flat one

@ Congestion using network

Allombert, Gava & Tesson — Multi-BSML 13/28

Multi-BSML Conclusion

Outline

Q Multi-BSML : Syntax and semantics

Allombert, Gava & Tesson — Multi-BSML 14/28

Multi-BSML
©000000000

Multi-BSP Model (1)

What is ? (Valiant)

Allombert, Gava & Tesson — Multi-BSML 15/28

Multi-BSML
©000000000

Multi-BSP Model (1)

What is ? (Valiant)
@ A tree structure with nested components

Allombert, Gava & Tesson — Multi-BSML 15/28

Introduction Multi-BSML Conclusion

Multi-BSP Model (1)

9000000000

What is ? (Valiant)
@ A tree structure with nested components
© Where nodes have a storage capacity

Allombert, Gava & Tesson — Multi-BSML 15/28

Introduction Multi-BSML Conclusion

Multi-BSP Model (1)

9000000000

What is ? (Valiant)
@ A tree structure with nested components
© Where nodes have a storage capacity
© And leaf are homogenous processors

Allombert, Gava & Tesson — Multi-BSML 15/28

Introduction Multi-BSML Conclusion

Multi-BSP Model (1)

9000000000

What is ? (Valiant)
@ A tree structure with nested components
© Where nodes have a storage capacity
© And leaf are homogenous processors

Multi-BSP

S
))

thO th1 th2 th3 thO th1 th2. th3

Allombert, Gava & Tesson — Multi-BSML 15/28

Introduction Multi-BSML Conclusion

Multi-BSP Model (1)

9000000000

What is ? (Valiant)
@ A tree structure with nested components
© Where nodes have a storage capacity
© And leaf are homogenous processors

Multi-BSP BSP

@ @ thO th1 th2 th3 th4| th5 thé |th7

thO th1 th2 th3 thO th1 th2. th3

Allombert, Gava & Tesson — Multi-BSML 15/28

Multi-BSML

O®00000000

Cost model

A d depth tree is specified by 4 x d parameters:
p : Number of sub-components
m : Available memory at a level
g : Bandwidth with the upper level
L : Synchronisation

Allombert, Gava & Tesson — Multi-BSML 16/28

Introduction / Multi-BSML Comluswm
C 000000000 000

Multi-BSP Model (2

Cost model

A d depth tree is specified by 4 x d parameters:
p : Number of sub-components
m : Available memory at a level
g : Bandwidth with the upper level
L : Synchronisation

.

Example: 16 with

@ Level 4 (p=16,9=00,L=1000,m=16Tb) (RAM/IO)
@ Level 3 (p=4,9=150,L =100, m = 64Gb) (RAM)
@ Level2(p=8,9=>5L=10,m=2Mb) (L2 cache)
@ Level1 (p=1,9=1,L=1,m =8Kb) (L1 cache)

V.

Allombert, Gava & Tesson — Multi-BSML 16/28

Introduction Multi-BSML Conclusion
00®0000000

Multi-BSP Model (3)

Execution model

At a level i, a super-step is:
@ Each component at level i — 1 does its own super-steps
@ Then each copies some data to the memory at level j
@ Then synchronisation

@ Finaly copy of some data from level jto j — 1

Allombert, Gava & Tesson — Multi-BSML 17/28

Introduction Multi-BSML
00®0000000

Multi-BSP Model (3

Execution model

At a level i, a super-step is:
@ Each component at level i — 1 does its own super-steps
@ Then each copies some data to the memory at level j
@ Then synchronisation
@ Finaly copy of some data from level jto j — 1

v

Advantages and drawbacks

@ Implicit subgroup synchronisation
@ Recursive decomposition of problems
@ Harder to design/cost some algorithms

Allombert, Gava & Tesson — Multi-BSML 17/28

Introduction Multi-BSML Conclusion
0008000000

Multi-BSML Language (1)

Syntaxic construction

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...
< fargs >
... CodeBSML
where leaf [args] = CodeOCaml
inf..

Allombert, Gava & Tesson — Multi-BSML 18/28

tion Multi-BSML

Multi-BSML Language (1)

0008000000

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...
< fargs >
... CodeBSML
where leaf [args] = CodeOCaml
inf..

Allombert, Gava & Tesson — Multi-BSML

18/28

Multi-BSML Conclusion
0008000000 000

Multi-BSML Language (1)

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...
< fargs >
... CodeBSML
where leaf [args] = CodeOCaml
inf..

Limitations and differences

@ Nodes are implicit computation units
@ Horizontal communications between level components

@ Garbage collector = no L1, L2 caches.

Allombert, Gava & Tesson — Multi-BSML 18/28

Introduction Multi-BSML

Multi-BSML Language (2)

0O000@00000

Semantics of multi
@ BSML code to distribute values
@ ((...) and proj; level changing
@ Mutual recursive functions of standard OCaml values
@ (Formal) Big-steps <= small-steps for a mini-Multi-BSML

Allombert, Gava & Tesson — Multi-BSML 19/28

Introduction S Multi-BSML Conclusion

Multi-BSML Language (2)

0O000@00000

Semantics of multi
@ BSML code to distribute values
@ ((...) and proj; level changing
@ Mutual recursive functions of standard OCaml values
@ (Formal) Big-steps <= small-steps for a mini-Multi-BSML

Copy memory values and distribution of values

@ letx=1in<#x#+1> let vect = mkpar (fun i -> v)
@ mkpar (funi — e)
Vo, oov s Vpo1)
where (e i) — v;

Allombert, Gava & Tesson — Multi-BSML 19/28

Multi-BSML
foleYelele] Yolelele}

Example : Sum Of The Elements Of A List

let multi sum_list | =

where node | =
let v = mkpar (funi — splitil) in
sumSeq (flatten < sum_list v >) (x flatten uses a proj *)
(x sumSeq is List.fold_left x)
where leaf | = sumSeq |

in ... (sum_list Ist) ...

Allombert, Gava & Tesson — Multi-BSML 20/28

Introduction / Multi-BSML Conclusion

Multi With Tree Construction

0O00000e000

@ Keep values on each node and leaf
@ To program multiple phases of multi

Allombert, Gava & Tesson — Multi-BSML 21/28

Introduction Y Multi-BSML

Multi With Tree Construction

0O00000e000

@ Keep values on each node and leaf
@ To program multiple phases of multi

Extension

Two new keywords:

@ finally; pushes up a value and keeps a value

@ where default; keeps a value even if the recursive calls
generates partial trees; Optional if the language allows to
raise exceptions

Allombert, Gava & Tesson — Multi-BSML 21/28

Multi-BSML
0000000800

Example

Keep the intermediate results of the sum

let multi sum_list | =

@ @ where node | =

let v = mkpar (funi — splitil) in
let s = sumSeq (flatten < sum_list v >>) in
finally ~up:s ~keep:s

where leaf | =
let s = sumSeq | in
finally ~up:s ~keep:s

where default = 0 (x not used)

Allombert, Gava & Tesson — Multi-BSML 22/28

Introduction Multi-BSML
0000000080

Implementation

(currently test phase)
For debugging and toplevel
@ iree structure of data
@ A global tree of Hashtables to represent the memories

Allombert, Gava & Tesson — Multi-BSML 23/28

Multi-BSML
0000000080

Implementation

(currently test phase)
For debugging and toplevel
@ iree structure of data
@ A global tree of Hashtables to represent the memories

A\

(ongoing work)
Modular (MPI, TCP/IP, etc.) and based on formal semantics.

&

Allombert, Gava & Tesson — Multi-BSML 23/28

Multi-BSML
0000000080

Implementation

(currently test phase)
For debugging and toplevel
@ iree structure of data
@ A global tree of Hashtables to represent the memories

(ongoing work)

Modular (MPI, TCP/IP, etc.) and based on formal semantics.
Shared memory

letx =fy
in replicate x

fy

&

Allombert, Gava & Tesson — Multi-BSML 23/28

Introduction S Multi-BSML Conclusion
O« 0000000080 000

Implementation

(currently test phase)
For debugging and toplevel
@ iree structure of data
@ A global tree of Hashtables to represent the memories

(ongoing work)

Modular (MPI, TCP/IP, etc.) and based on formal semantics.
Shared memory Distributed

letx =fy
in replicate x letx =fy
in replicate x

fy

x fy £y

(G
v
Allombert, Gava & Tesson — Multi-BSML 23/28

Multi-BSML
0000000008

eleton (For Coq) Example

Embed Multi in Coq:
@ Syntax extensions not friendly in Coq
@ finally too close to a monad (side effect)

Allombert, Gava & Tesson — Multi-BSML 24/28

Multi-BSML

000000000 e

Embed Multi in Coq:
@ Syntax extensions not friendly in Coq
@ finally too close to a monad (side effect)

V.

The multi skeleton

mkiree :’a tree — b — ‘e tree — down — leaff — up — control — (’cx’e tree)
where

down:’a — b — b par

leaf:'’e —-’a— b — ('cx’e)

up:'dpar —-’e —-’'a—'b— (cx’e)

control: ’c par— ’e— ’a— 'b— UP of ('d par = ’e) | DOWN of (b * ’e))

Allombert, Gava & Tesson — Multi-BSML 24/28

Introduction i Conclusion

Outline

0 Conclusion

Allombert, Gava & Tesson — Multi-BSML 25/28

Introduction Conclusion
000

Conclusion

Allombert, Gava & Tesson — Multi-BSML 26/28

Introduction V Conclusion
00) O O ole €00

Conclusion

@ Mulii-BSP extension of BSP for hierarchical architectures

Allombert, Gava & Tesson — Multi-BSML 26/28

Introduction V Conclusion
00) O O ole €00

Conclusion

@ Mulii-BSP extension of BSP for hierarchical architectures
@ BSP = BSML

Allombert, Gava & Tesson — Multi-BSML 26/28

Introduction i-BSN Conclusion
000

Conclusion

@ Mulii-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Multi-BSP = Multi-BSML

Allombert, Gava & Tesson — Multi-BSML 26/28

Introduction Multi-BSN Conclusion
000

Conclusion

@ Mulii-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Multi-BSP = Multi-BSML

v

Multi-BSML

Allombert, Gava & Tesson — Multi-BSML 26/28

Introduction Y Multi-BSML Conclusion
& ®00

Conclusion

@ Mulii-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Multi-BSP = Multi-BSML

v

Multi-BSML

@ Recursive functions on different memories of chips

Allombert, Gava & Tesson — Multi-BSML 26/28

Introduction Multi-BS Conclusion
@ ®00

Conclusion

@ Mulii-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Multi-BSP = Multi-BSML

v

Multi-BSML

@ Recursive functions on different memories of chips
@ Structured nesting of BSML codes

Allombert, Gava & Tesson — Multi-BSML 26/28

Introduction Multi-BSML Conclusion
@ ®00

Conclusion

@ Mulii-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Multi-BSP = Multi-BSML

v

Multi-BSML

@ Recursive functions on different memories of chips
@ Structured nesting of BSML codes
@ Big-steps and small-steps formal semantics (confuent)

Allombert, Gava & Tesson — Multi-BSML 26/28

Introduction Multi-BSML Conclusion
@ ®00

Conclusion

@ Mulii-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Multi-BSP = Multi-BSML

v

Multi-BSML

@ Recursive functions on different memories of chips

@ Structured nesting of BSML codes

@ Big-steps and small-steps formal semantics (confuent)
@ A skeleton for Coq

Allombert, Gava & Tesson — Multi-BSML 26/28

Introduction Multi-BSML Conclusion
@ ®00

Conclusion

@ Mulii-BSP extension of BSP for hierarchical architectures
@ BSP = BSML
@ Multi-BSP = Multi-BSML

v

Multi-BSML

@ Recursive functions on different memories of chips

@ Structured nesting of BSML codes

@ Big-steps and small-steps formal semantics (confuent)
@ A skeleton for Coq

@ Small number of primitives and little syntax extension

Allombert, Gava & Tesson — Multi-BSML 26/28

Conclusion
(o] le}

Short term (for Victor’'s Phd)

Allombert, Gava & Tesson — Multi-BSML 27/28

Conclusion
(o] le}

Perspectives (Ongoing/Future Work)

Short term (for Victor’'s Phd)
@ Implementation using MPI

Allombert, Gava & Tesson — Multi-BSML 27/28

Conclusion
(o] le}

Perspectives (Ongoing/Future Work)

Short term (for Victor’'s Phd)
@ Implementation using MPI
@ Examples and benchmarks

Allombert, Gava & Tesson — Multi-BSML 27/28

Conclusion
(o] le}

Perspectives (Ongoing/Future Work)

Short term (for Victor’'s Phd)
@ Implementation using MPI

@ Examples and benchmarks
@ Type system for a subpart of OCaml| again

Allombert, Gava & Tesson — Multi-BSML 27/28

Conclusion
(o] le}

Perspectives (Ongoing/Future Work)

Short term (for Victor’'s Phd)
@ Implementation using MPI

@ Examples and benchmarks
@ Type system for a subpart of OCaml| again
e Bad nesting of parallelism

Allombert, Gava & Tesson — Multi-BSML 27/28

Conclusion
(o] le}

Perspectives (Ongoing/Future Work)

Short term (for Victor’'s Phd)
@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml| again

e Bad nesting of parallelism
e Bad copy of data

Allombert, Gava & Tesson — Multi-BSML 27/28

Introduction Multi-BS Conclusion
@ o] Yo}

Perspectives (Ongoing/Future Work)

Short term (for Victor’'s Phd)
@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml| again

e Bad nesting of parallelism
e Bad copy of data
e Bad use of the parallel operators

Allombert, Gava & Tesson — Multi-BSML 27/28

Conclusion
(o] le}

Short term (for Victor’'s Phd)
@ Implementation using MPI

@ Examples and benchmarks
@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data
e Bad use of the parallel operators

\

Long term (team)

4

Allombert, Gava & Tesson — Multi-BSML 27/28

ction Multi-BSML Conclusion
[e (o] le}

Perspectives (Ongoing/Future Work)

Short term (for Victor’'s Phd)
@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data
e Bad use of the parallel operators

\

Long term (team)
@ Mechanized semantics in Coq

4

Allombert, Gava & Tesson — Multi-BSML 27/28

ction Multi-BSML Conclusion
[e (o] le}

Perspectives (Ongoing/Future Work)

Short term (for Victor’'s Phd)
@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data
e Bad use of the parallel operators

\

Long term (team)
@ Mechanized semantics in Coq

@ Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

4

Allombert, Gava & Tesson — Multi-BSML 27/28

ction Multi-BSML Conclusion
[e (o] le}

Perspectives (Ongoing/Future Work)

Short term (for Victor’'s Phd)
@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data
e Bad use of the parallel operators

\

Long term (team)
@ Mechanized semantics in Coq

@ Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

@ Examples and libraries

4

Allombert, Gava & Tesson — Multi-BSML 27/28

ction Multi-BSML Conclusion
[e (o] le}

Perspectives (Ongoing/Future Work)

Short term (for Victor’'s Phd)
@ Implementation using MPI
@ Examples and benchmarks

@ Type system for a subpart of OCaml again

e Bad nesting of parallelism
e Bad copy of data
e Bad use of the parallel operators

\

Long term (team)
@ Mechanized semantics in Coq

@ Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

@ Examples and libraries
@ Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27/28

Merci !

	Introduction
	BSML: Functional BSP Programming
	Multi-BSML : Syntax and semantics
	Conclusion

