
Introduction BSML Multi-BSML Conclusion

Multi-BSML, une approche à la ML
pour la programmation Multi-BSP

Victor Allombert & Frédéric Gava & Julien Tesson

Laboratory of Algorithms, Complexity and Logic (LACL)
University of Paris-East

Allombert, Gava & Tesson — Multi-BSML 1 / 28

Introduction BSML Multi-BSML Conclusion

Outline

1 Introduction

2 BSML: Functional BSP Programming

3 Multi-BSML : Syntax and semantics

4 Conclusion

Allombert, Gava & Tesson — Multi-BSML 2 / 28

Introduction BSML Multi-BSML Conclusion

Parallel Architectures

Distributed computing

Clusters

Shared memory

Multi-core

Hybrid model

Allombert, Gava & Tesson — Multi-BSML 3 / 28

Introduction BSML Multi-BSML Conclusion

Parallel Architectures

Distributed computing

Clusters

Shared memory

Multi-core

Hybrid model

Allombert, Gava & Tesson — Multi-BSML 3 / 28

Introduction BSML Multi-BSML Conclusion

Parallel Architectures

Distributed computing

Clusters

Shared memory

Multi-core

Hybrid model

Allombert, Gava & Tesson — Multi-BSML 3 / 28

Introduction BSML Multi-BSML Conclusion

“Think Parallel or Perish”

GPU Phone Tablet

Laptop PC Cluster

Supercomputer:

Allombert, Gava & Tesson — Multi-BSML 4 / 28

Introduction BSML Multi-BSML Conclusion

(Parallel) Software Errors

Risks
Over-consumption
Erroneous results

Typical bugs

Distributed Shared memory

Deadlocks:

Race condition:

Considered solutions
1 Well structured parallelism;
2 Design a high-level language for “hybrid architectures”
3 Software-hardware bridging model⇒ Portability, scalability

Allombert, Gava & Tesson — Multi-BSML 5 / 28

Introduction BSML Multi-BSML Conclusion

(Parallel) Software Errors

Risks
Over-consumption
Erroneous results

Typical bugs

Distributed Shared memory

Deadlocks:

Race condition:

Considered solutions
1 Well structured parallelism;
2 Design a high-level language for “hybrid architectures”
3 Software-hardware bridging model⇒ Portability, scalability

Allombert, Gava & Tesson — Multi-BSML 5 / 28

Introduction BSML Multi-BSML Conclusion

(Parallel) Software Errors

Risks
Over-consumption
Erroneous results

Typical bugs

Distributed Shared memory

Deadlocks:

Race condition:

Considered solutions
1 Well structured parallelism;
2 Design a high-level language for “hybrid architectures”
3 Software-hardware bridging model⇒ Portability, scalability

Allombert, Gava & Tesson — Multi-BSML 5 / 28

Introduction BSML Multi-BSML Conclusion

(Parallel) Software Errors

Risks
Over-consumption
Erroneous results

Typical bugs

Distributed Shared memory

Deadlocks:

Race condition:

Considered solutions
1 Well structured parallelism;
2 Design a high-level language for “hybrid architectures”
3 Software-hardware bridging model⇒ Portability, scalability

Allombert, Gava & Tesson — Multi-BSML 5 / 28

Introduction BSML Multi-BSML Conclusion

(Parallel) Software Errors

Risks
Over-consumption
Erroneous results

Typical bugs

Distributed Shared memory

Deadlocks:

Race condition:

Considered solutions
1 Well structured parallelism;
2 Design a high-level language for “hybrid architectures”
3 Software-hardware bridging model⇒ Portability, scalability

Allombert, Gava & Tesson — Multi-BSML 5 / 28

Introduction BSML Multi-BSML Conclusion

(Parallel) Software Errors

Risks
Over-consumption
Erroneous results

Typical bugs

Distributed Shared memory

Deadlocks:

Race condition:

Considered solutions
1 Well structured parallelism;
2 Design a high-level language for “hybrid architectures”
3 Software-hardware bridging model⇒ Portability, scalability

Allombert, Gava & Tesson — Multi-BSML 5 / 28

Introduction BSML Multi-BSML Conclusion

(Parallel) Software Errors

Risks
Over-consumption
Erroneous results

Typical bugs

Distributed Shared memory

Deadlocks:

Race condition:

Considered solutions
1 Well structured parallelism;
2 Design a high-level language for “hybrid architectures”
3 Software-hardware bridging model⇒ Portability, scalability

Allombert, Gava & Tesson — Multi-BSML 5 / 28

Introduction BSML Multi-BSML Conclusion

Why Structured Parallelism?

Safety, debugging and verification

⇒

Reasoning about cost

⇒

4︷ ︸︸ ︷
2

Considered solutions
“Send-receive considered harmful” (Sergei GORLATCH)

1 Distributed extension of a functional language;
2 Tools for correctness; (mechanized) Semantics⇒ Coq

Allombert, Gava & Tesson — Multi-BSML 6 / 28

Introduction BSML Multi-BSML Conclusion

Why Structured Parallelism?

Safety, debugging and verification

⇒

Reasoning about cost

⇒

4︷ ︸︸ ︷
2

Considered solutions
“Send-receive considered harmful” (Sergei GORLATCH)

1 Distributed extension of a functional language;
2 Tools for correctness; (mechanized) Semantics⇒ Coq

Allombert, Gava & Tesson — Multi-BSML 6 / 28

Introduction BSML Multi-BSML Conclusion

Why Structured Parallelism?

Safety, debugging and verification

⇒

Reasoning about cost

⇒

4︷ ︸︸ ︷
2

Considered solutions
“Send-receive considered harmful” (Sergei GORLATCH)

1 Distributed extension of a functional language;
2 Tools for correctness; (mechanized) Semantics⇒ Coq

Allombert, Gava & Tesson — Multi-BSML 6 / 28

Introduction BSML Multi-BSML Conclusion

Why Structured Parallelism?

Safety, debugging and verification

⇒

Reasoning about cost

⇒

4︷ ︸︸ ︷
2

Considered solutions
“Send-receive considered harmful” (Sergei GORLATCH)

1 Distributed extension of a functional language;
2 Tools for correctness; (mechanized) Semantics⇒ Coq

Allombert, Gava & Tesson — Multi-BSML 6 / 28

Introduction BSML Multi-BSML Conclusion

Why Structured Parallelism?

Safety, debugging and verification

⇒

Reasoning about cost

⇒

4︷ ︸︸ ︷
2

Considered solutions
“Send-receive considered harmful” (Sergei GORLATCH)

1 Distributed extension of a functional language;
2 Tools for correctness; (mechanized) Semantics⇒ Coq

Allombert, Gava & Tesson — Multi-BSML 6 / 28

Introduction BSML Multi-BSML Conclusion

Outline

1 Introduction

2 BSML: Functional BSP Programming

3 Multi-BSML : Syntax and semantics

4 Conclusion

Allombert, Gava & Tesson — Multi-BSML 7 / 28

Introduction BSML Multi-BSML Conclusion

Bridging Model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network
Synchronisation unit
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable
performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step

...
...

...
...

Allombert, Gava & Tesson — Multi-BSML 8 / 28

Introduction BSML Multi-BSML Conclusion

Bridging Model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network
Synchronisation unit
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable
performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step

...
...

...
...

Allombert, Gava & Tesson — Multi-BSML 8 / 28

Introduction BSML Multi-BSML Conclusion

Bridging Model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network
Synchronisation unit
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable
performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step

...
...

...
...

Allombert, Gava & Tesson — Multi-BSML 8 / 28

Introduction BSML Multi-BSML Conclusion

Bridging Model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network
Synchronisation unit
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable
performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step

...
...

...
...

Allombert, Gava & Tesson — Multi-BSML 8 / 28

Introduction BSML Multi-BSML Conclusion

Bridging Model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network
Synchronisation unit
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable
performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step

...
...

...
...

Allombert, Gava & Tesson — Multi-BSML 8 / 28

Introduction BSML Multi-BSML Conclusion

Bridging Model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network
Synchronisation unit
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable
performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step

...
...

...
...

Allombert, Gava & Tesson — Multi-BSML 8 / 28

Introduction BSML Multi-BSML Conclusion

Bridging Model: Bulk Synchronous Parallelism (BSP)

The BSP computer
Defined by:

p pairs CPU/memory
Communication network
Synchronisation unit
Super-steps execution

Properties:
“Confluent”
“Deadlock-free”
Predictable
performances

local
computations

p0 p1 p2 p3

communication

barrier
next super-step

...
...

...
...

Allombert, Gava & Tesson — Multi-BSML 8 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Language

BSML
Explicit BSP programming with a functional approach
Based upon ML; Implemented over OCaml
Formal semantics (confluent)→ Coq

Main idea

Parallel data structure⇒ vectors:

1 〈 v0, . . ., vp−1 〉 : α par ≡ vi on node i
2 Four primitives⇒ simple semantics

Allombert, Gava & Tesson — Multi-BSML 9 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Language

BSML
Explicit BSP programming with a functional approach
Based upon ML; Implemented over OCaml
Formal semantics (confluent)→ Coq

Main idea

Parallel data structure⇒ vectors:

1 〈 v0, . . ., vp−1 〉 : α par ≡ vi on node i
2 Four primitives⇒ simple semantics

Allombert, Gava & Tesson — Multi-BSML 9 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Language

BSML
Explicit BSP programming with a functional approach
Based upon ML; Implemented over OCaml
Formal semantics (confluent)→ Coq

Main idea

Parallel data structure⇒ vectors:

1 〈 v0, . . ., vp−1 〉 : α par ≡ vi on node i
2 Four primitives⇒ simple semantics

Allombert, Gava & Tesson — Multi-BSML 9 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Language

BSML
Explicit BSP programming with a functional approach
Based upon ML; Implemented over OCaml
Formal semantics (confluent)→ Coq

Main idea

Parallel data structure⇒ vectors:

1 〈 v0, . . ., vp−1 〉 : α par ≡ vi on node i
2 Four primitives⇒ simple semantics

Allombert, Gava & Tesson — Multi-BSML 9 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Language

BSML
Explicit BSP programming with a functional approach
Based upon ML; Implemented over OCaml
Formal semantics (confluent)→ Coq

Main idea
Parallel data structure⇒ vectors:

1 〈 v0, . . ., vp−1 〉 : α par ≡ vi on node i
2 Four primitives⇒ simple semantics

Allombert, Gava & Tesson — Multi-BSML 9 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Language

BSML
Explicit BSP programming with a functional approach
Based upon ML; Implemented over OCaml
Formal semantics (confluent)→ Coq

Main idea
Parallel data structure⇒ vectors:

1 〈 v0, . . ., vp−1 〉 : α par ≡ vi on node i
2 Four primitives⇒ simple semantics

Allombert, Gava & Tesson — Multi-BSML 9 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Language

BSML
Explicit BSP programming with a functional approach
Based upon ML; Implemented over OCaml
Formal semantics (confluent)→ Coq

Main idea
Parallel data structure⇒ vectors:

1 〈 v0, . . ., vp−1 〉 : α par ≡ vi on node i
2 Four primitives⇒ simple semantics

Allombert, Gava & Tesson — Multi-BSML 9 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Primitives

Asynchronous operations

〈〈 . . . 〉〉 : local execution (vector)
v: element of a parallel vector v
pid: id of the processor

Communication

proj: 〈 x0, . . . , xp−1 〉 7→
x0
...

xp−1

put: 〈 f0, . . . , fp−1 〉 7→

〈 f0 0 f0 (p− 1)
... , . . .,

...
fp−1 0 fp−1 (p− 1)

〉

super: evaluation of two expressions into super-threads

Allombert, Gava & Tesson — Multi-BSML 10 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Primitives

Asynchronous operations

〈〈 . . . 〉〉 : local execution (vector)
v: element of a parallel vector v
pid: id of the processor

Communication

proj: 〈 x0, . . . , xp−1 〉 7→
x0
...

xp−1

put: 〈 f0, . . . , fp−1 〉 7→

〈 f0 0 f0 (p− 1)
... , . . .,

...
fp−1 0 fp−1 (p− 1)

〉

super: evaluation of two expressions into super-threads

Allombert, Gava & Tesson — Multi-BSML 10 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Primitives

Asynchronous operations

〈〈 . . . 〉〉 : local execution (vector)
v: element of a parallel vector v
pid: id of the processor

Communication

proj: 〈 x0, . . . , xp−1 〉 7→
x0
...

xp−1

put: 〈 f0, . . . , fp−1 〉 7→

〈 f0 0 f0 (p− 1)
... , . . .,

...
fp−1 0 fp−1 (p− 1)

〉

super: evaluation of two expressions into super-threads

Allombert, Gava & Tesson — Multi-BSML 10 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Primitives

Asynchronous operations

〈〈 . . . 〉〉 : local execution (vector)
v: element of a parallel vector v
pid: id of the processor

Communication

proj: 〈 x0, . . . , xp−1 〉 7→
x0
...

xp−1

put: 〈 f0, . . . , fp−1 〉 7→

〈 f0 0 f0 (p− 1)
... , . . .,

...
fp−1 0 fp−1 (p− 1)

〉

super: evaluation of two expressions into super-threads

Allombert, Gava & Tesson — Multi-BSML 10 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Primitives

Asynchronous operations

〈〈 . . . 〉〉 : local execution (vector)
v: element of a parallel vector v
pid: id of the processor

Communication

proj: 〈 x0, . . . , xp−1 〉 7→
x0
...

xp−1

put: 〈 f0, . . . , fp−1 〉 7→

〈 f0 0 f0 (p− 1)
... , . . .,

...
fp−1 0 fp−1 (p− 1)

〉

super: evaluation of two expressions into super-threads

Allombert, Gava & Tesson — Multi-BSML 10 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Primitives

Asynchronous operations

〈〈 . . . 〉〉 : local execution (vector)
v: element of a parallel vector v
pid: id of the processor

Communication

proj: 〈 x0, . . . , xp−1 〉 7→
x0
...

xp−1

put: 〈 f0, . . . , fp−1 〉 7→

〈 f0 0 f0 (p− 1)
... , . . .,

...
fp−1 0 fp−1 (p− 1)

〉

super: evaluation of two expressions into super-threads

Allombert, Gava & Tesson — Multi-BSML 10 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Primitives

Asynchronous operations

〈〈 . . . 〉〉 : local execution (vector)
v: element of a parallel vector v
pid: id of the processor

Communication

proj: 〈 x0, . . . , xp−1 〉 7→
x0
...

xp−1

put: 〈 f0, . . . , fp−1 〉 7→

〈 f0 0 f0 (p− 1)
... , . . .,

...
fp−1 0 fp−1 (p− 1)

〉

super: evaluation of two expressions into super-threads

Allombert, Gava & Tesson — Multi-BSML 10 / 28

Introduction BSML Multi-BSML Conclusion

The BSML Primitives

Asynchronous operations

〈〈 . . . 〉〉 : local execution (vector)
v: element of a parallel vector v
pid: id of the processor

Communication

proj: 〈 x0, . . . , xp−1 〉 7→
x0
...

xp−1

put: 〈 f0, . . . , fp−1 〉 7→

〈 f0 0 f0 (p− 1)
... , . . .,

...
fp−1 0 fp−1 (p− 1)

〉

super: evaluation of two expressions into super-threads

Allombert, Gava & Tesson — Multi-BSML 10 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Modular
Based on a semantic study:

BSML ≡ p× ML + 2 BSP instructions (SPMD style)
Different implementations: TCP/IP, MPI, PUB, · · ·

Extensions
Exception mechanism and pattern matching: implemented
using a modification of the source code
Superposition using:

1 System threads⇒ slowdown if there is too many threads
2 A CPS (Continuation Passing Style) transformation

Inspire:
Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)

Allombert, Gava & Tesson — Multi-BSML 11 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Modular
Based on a semantic study:

BSML ≡ p× ML + 2 BSP instructions (SPMD style)
Different implementations: TCP/IP, MPI, PUB, · · ·

Extensions
Exception mechanism and pattern matching: implemented
using a modification of the source code
Superposition using:

1 System threads⇒ slowdown if there is too many threads
2 A CPS (Continuation Passing Style) transformation

Inspire:
Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)

Allombert, Gava & Tesson — Multi-BSML 11 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Modular
Based on a semantic study:

BSML ≡ p× ML + 2 BSP instructions (SPMD style)
Different implementations: TCP/IP, MPI, PUB, · · ·

Extensions
Exception mechanism and pattern matching: implemented
using a modification of the source code
Superposition using:

1 System threads⇒ slowdown if there is too many threads
2 A CPS (Continuation Passing Style) transformation

Inspire:
Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)

Allombert, Gava & Tesson — Multi-BSML 11 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Modular
Based on a semantic study:

BSML ≡ p× ML + 2 BSP instructions (SPMD style)
Different implementations: TCP/IP, MPI, PUB, · · ·

Extensions
Exception mechanism and pattern matching: implemented
using a modification of the source code
Superposition using:

1 System threads⇒ slowdown if there is too many threads
2 A CPS (Continuation Passing Style) transformation

Inspire:
Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)

Allombert, Gava & Tesson — Multi-BSML 11 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Modular
Based on a semantic study:

BSML ≡ p× ML + 2 BSP instructions (SPMD style)
Different implementations: TCP/IP, MPI, PUB, · · ·

Extensions
Exception mechanism and pattern matching: implemented
using a modification of the source code
Superposition using:

1 System threads⇒ slowdown if there is too many threads
2 A CPS (Continuation Passing Style) transformation

Inspire:
Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)

Allombert, Gava & Tesson — Multi-BSML 11 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Modular
Based on a semantic study:

BSML ≡ p× ML + 2 BSP instructions (SPMD style)
Different implementations: TCP/IP, MPI, PUB, · · ·

Extensions
Exception mechanism and pattern matching: implemented
using a modification of the source code
Superposition using:

1 System threads⇒ slowdown if there is too many threads
2 A CPS (Continuation Passing Style) transformation

Inspire:
Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)

Allombert, Gava & Tesson — Multi-BSML 11 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Modular
Based on a semantic study:

BSML ≡ p× ML + 2 BSP instructions (SPMD style)
Different implementations: TCP/IP, MPI, PUB, · · ·

Extensions
Exception mechanism and pattern matching: implemented
using a modification of the source code
Superposition using:

1 System threads⇒ slowdown if there is too many threads
2 A CPS (Continuation Passing Style) transformation

Inspire:
Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)

Allombert, Gava & Tesson — Multi-BSML 11 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Modular
Based on a semantic study:

BSML ≡ p× ML + 2 BSP instructions (SPMD style)
Different implementations: TCP/IP, MPI, PUB, · · ·

Extensions
Exception mechanism and pattern matching: implemented
using a modification of the source code
Superposition using:

1 System threads⇒ slowdown if there is too many threads
2 A CPS (Continuation Passing Style) transformation

Inspire:
Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)

Allombert, Gava & Tesson — Multi-BSML 11 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Modular
Based on a semantic study:

BSML ≡ p× ML + 2 BSP instructions (SPMD style)
Different implementations: TCP/IP, MPI, PUB, · · ·

Extensions
Exception mechanism and pattern matching: implemented
using a modification of the source code
Superposition using:

1 System threads⇒ slowdown if there is too many threads
2 A CPS (Continuation Passing Style) transformation

Inspire:
Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)

Allombert, Gava & Tesson — Multi-BSML 11 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Modular
Based on a semantic study:

BSML ≡ p× ML + 2 BSP instructions (SPMD style)
Different implementations: TCP/IP, MPI, PUB, · · ·

Extensions
Exception mechanism and pattern matching: implemented
using a modification of the source code
Superposition using:

1 System threads⇒ slowdown if there is too many threads
2 A CPS (Continuation Passing Style) transformation

Inspire:
Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)

Allombert, Gava & Tesson — Multi-BSML 11 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Modular
Based on a semantic study:

BSML ≡ p× ML + 2 BSP instructions (SPMD style)
Different implementations: TCP/IP, MPI, PUB, · · ·

Extensions
Exception mechanism and pattern matching: implemented
using a modification of the source code
Superposition using:

1 System threads⇒ slowdown if there is too many threads
2 A CPS (Continuation Passing Style) transformation

Inspire:
Imperative: BSP++ (J. Falcou) , BSP-Python (K. Kinsen)
Functional: BSP-Haskell (Q. Miller), Snow/BSP-R (N. Li)

Allombert, Gava & Tesson — Multi-BSML 11 / 28

Introduction BSML Multi-BSML Conclusion

Example : BSP Sampling Sort

(∗ psrs: int par→ ’a list→ ’a list ∗)
let psrs lvlengths lv =

(∗ super−step 1(a): local sorting ∗)
let locsort =� List.sort compare lv� in

(∗ super−step 1(b): selection of the primary samples ∗)
let regsampl =� extract_n P $lvlengths$ $locsort$� in

(∗ super−step 2(a): total exchange of the primary samples;∗)
let glosampl = List.sort compare (proj regsampl) in

(∗ super−step 2(b): selection of the secondary samples ∗)
let pivots = extract_n P (P∗(P−1)) glosampl in

(∗ super−step 2(c) : building the communicated lists of values ∗)
let comm =� slice_p $locsort$ pivots� in

(∗ super−step 3: sended them and merging of the received values ∗)
let recv = put� List.nth $comm$� in
� p_merge P (List.map $recv$ procs_list)�

Allombert, Gava & Tesson — Multi-BSML 12 / 28

Introduction BSML Multi-BSML Conclusion

Advantages and Drawbacks

Advantages
Easy to learn
“All” OCaml codes can be used
Easy to get a BSML code from a BSP algorithm

Drawbacks
Hierarchical architecture as a flat one
Congestion using network

Allombert, Gava & Tesson — Multi-BSML 13 / 28

Introduction BSML Multi-BSML Conclusion

Advantages and Drawbacks

Advantages
Easy to learn
“All” OCaml codes can be used
Easy to get a BSML code from a BSP algorithm

Drawbacks
Hierarchical architecture as a flat one
Congestion using network

Allombert, Gava & Tesson — Multi-BSML 13 / 28

Introduction BSML Multi-BSML Conclusion

Advantages and Drawbacks

Advantages
Easy to learn
“All” OCaml codes can be used
Easy to get a BSML code from a BSP algorithm

Drawbacks
Hierarchical architecture as a flat one
Congestion using network

Allombert, Gava & Tesson — Multi-BSML 13 / 28

Introduction BSML Multi-BSML Conclusion

Advantages and Drawbacks

Advantages
Easy to learn
“All” OCaml codes can be used
Easy to get a BSML code from a BSP algorithm

Drawbacks
Hierarchical architecture as a flat one
Congestion using network

Allombert, Gava & Tesson — Multi-BSML 13 / 28

Introduction BSML Multi-BSML Conclusion

Advantages and Drawbacks

Advantages
Easy to learn
“All” OCaml codes can be used
Easy to get a BSML code from a BSP algorithm

Drawbacks
Hierarchical architecture as a flat one
Congestion using network

Allombert, Gava & Tesson — Multi-BSML 13 / 28

Introduction BSML Multi-BSML Conclusion

Advantages and Drawbacks

Advantages
Easy to learn
“All” OCaml codes can be used
Easy to get a BSML code from a BSP algorithm

Drawbacks
Hierarchical architecture as a flat one
Congestion using network

Allombert, Gava & Tesson — Multi-BSML 13 / 28

Introduction BSML Multi-BSML Conclusion

Advantages and Drawbacks

Advantages
Easy to learn
“All” OCaml codes can be used
Easy to get a BSML code from a BSP algorithm

Drawbacks
Hierarchical architecture as a flat one
Congestion using network

Allombert, Gava & Tesson — Multi-BSML 13 / 28

Introduction BSML Multi-BSML Conclusion

Outline

1 Introduction

2 BSML: Functional BSP Programming

3 Multi-BSML : Syntax and semantics

4 Conclusion

Allombert, Gava & Tesson — Multi-BSML 14 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSP Model (1)

What is Multi-BSP? (Valiant)
1 A tree structure with nested components
2 Where nodes have a storage capacity
3 And leaf are homogenous processors

Multi-BSP

Multi_Core

core0

th0 th1 th2 th3

core1

th0 th1 th2 th3

BSP

Root

th0 th1 th2 th3 th4 th5 th6 th7

Allombert, Gava & Tesson — Multi-BSML 15 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSP Model (1)

What is Multi-BSP? (Valiant)
1 A tree structure with nested components
2 Where nodes have a storage capacity
3 And leaf are homogenous processors

Multi-BSP

Multi_Core

core0

th0 th1 th2 th3

core1

th0 th1 th2 th3

BSP

Root

th0 th1 th2 th3 th4 th5 th6 th7

Allombert, Gava & Tesson — Multi-BSML 15 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSP Model (1)

What is Multi-BSP? (Valiant)
1 A tree structure with nested components
2 Where nodes have a storage capacity
3 And leaf are homogenous processors

Multi-BSP

Multi_Core

core0

th0 th1 th2 th3

core1

th0 th1 th2 th3

BSP

Root

th0 th1 th2 th3 th4 th5 th6 th7

Allombert, Gava & Tesson — Multi-BSML 15 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSP Model (1)

What is Multi-BSP? (Valiant)
1 A tree structure with nested components
2 Where nodes have a storage capacity
3 And leaf are homogenous processors

Multi-BSP

Multi_Core

core0

th0 th1 th2 th3

core1

th0 th1 th2 th3

BSP

Root

th0 th1 th2 th3 th4 th5 th6 th7

Allombert, Gava & Tesson — Multi-BSML 15 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSP Model (1)

What is Multi-BSP? (Valiant)
1 A tree structure with nested components
2 Where nodes have a storage capacity
3 And leaf are homogenous processors

Multi-BSP

Multi_Core

core0

th0 th1 th2 th3

core1

th0 th1 th2 th3

BSP

Root

th0 th1 th2 th3 th4 th5 th6 th7

Allombert, Gava & Tesson — Multi-BSML 15 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSP Model (1)

What is Multi-BSP? (Valiant)
1 A tree structure with nested components
2 Where nodes have a storage capacity
3 And leaf are homogenous processors

Multi-BSP

Multi_Core

core0

th0 th1 th2 th3

core1

th0 th1 th2 th3

BSP

Root

th0 th1 th2 th3 th4 th5 th6 th7

Allombert, Gava & Tesson — Multi-BSML 15 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSP Model (2)

Cost model
A d depth tree is specified by 4×d parameters:

p : Number of sub-components
m : Available memory at a level
g : Bandwidth with the upper level
L : Synchronisation

Example: 16 quad-chips with octo-cores

Level 4 (p=16,g=∞,L=1000,m=16Tb) (RAM/IO)
Level 3 (p = 4,g = 150,L = 100,m = 64Gb) (RAM)
Level 2 (p = 8,g = 5,L = 10,m = 2Mb) (L2 cache)
Level 1 (p = 1,g = 1,L = 1,m = 8Kb) (L1 cache)

Allombert, Gava & Tesson — Multi-BSML 16 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSP Model (2)

Cost model
A d depth tree is specified by 4×d parameters:

p : Number of sub-components
m : Available memory at a level
g : Bandwidth with the upper level
L : Synchronisation

Example: 16 quad-chips with octo-cores

Level 4 (p=16,g=∞,L=1000,m=16Tb) (RAM/IO)
Level 3 (p = 4,g = 150,L = 100,m = 64Gb) (RAM)
Level 2 (p = 8,g = 5,L = 10,m = 2Mb) (L2 cache)
Level 1 (p = 1,g = 1,L = 1,m = 8Kb) (L1 cache)

Allombert, Gava & Tesson — Multi-BSML 16 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSP Model (3)

Execution model
At a level i , a super-step is:

Each component at level i − 1 does its own super-steps
Then each copies some data to the memory at level i
Then synchronisation
Finaly copy of some data from level i to i − 1

Advantages and drawbacks
Implicit subgroup synchronisation
Recursive decomposition of problems
Harder to design/cost some algorithms

Allombert, Gava & Tesson — Multi-BSML 17 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSP Model (3)

Execution model
At a level i , a super-step is:

Each component at level i − 1 does its own super-steps
Then each copies some data to the memory at level i
Then synchronisation
Finaly copy of some data from level i to i − 1

Advantages and drawbacks
Implicit subgroup synchronisation
Recursive decomposition of problems
Harder to design/cost some algorithms

Allombert, Gava & Tesson — Multi-BSML 17 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSML Language (1)

Syntaxic construction

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...

� f args�
... CodeBSML

where leaf [args] = CodeOCaml
in f ...

Limitations and differences
Nodes are implicit computation units
Horizontal communications between level components
Garbage collector⇒ no L1, L2 caches.

Allombert, Gava & Tesson — Multi-BSML 18 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSML Language (1)

Syntaxic construction

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...

� f args�
... CodeBSML

where leaf [args] = CodeOCaml
in f ...

Limitations and differences
Nodes are implicit computation units
Horizontal communications between level components
Garbage collector⇒ no L1, L2 caches.

Allombert, Gava & Tesson — Multi-BSML 18 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSML Language (1)

Syntaxic construction

let multi f [args] =
let cst = CodeOCaml
where node [args] = CodeBSML ...

� f args�
... CodeBSML

where leaf [args] = CodeOCaml
in f ...

Limitations and differences
Nodes are implicit computation units
Horizontal communications between level components
Garbage collector⇒ no L1, L2 caches.

Allombert, Gava & Tesson — Multi-BSML 18 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSML Language (2)

Semantics of multi
BSML code to distribute values
〈〈 . . . 〉〉 and proj; level changing
Mutual recursive functions of standard OCaml values
(Formal) Big-steps⇐⇒ small-steps for a mini-Multi-BSML

Copy memory values and distribution of values
let x = 1 in� #x# + 1�
mkpar (fun i→ e)

7→ 〈 v0, . . . , vp−1 〉
where (e i) 7→ vi

Allombert, Gava & Tesson — Multi-BSML 19 / 28

Introduction BSML Multi-BSML Conclusion

Multi-BSML Language (2)

Semantics of multi
BSML code to distribute values
〈〈 . . . 〉〉 and proj; level changing
Mutual recursive functions of standard OCaml values
(Formal) Big-steps⇐⇒ small-steps for a mini-Multi-BSML

Copy memory values and distribution of values
let x = 1 in� #x# + 1�
mkpar (fun i→ e)

7→ 〈 v0, . . . , vp−1 〉
where (e i) 7→ vi

Allombert, Gava & Tesson — Multi-BSML 19 / 28

Introduction BSML Multi-BSML Conclusion

Example : Sum Of The Elements Of A List

let multi sum_list l =

where node l =
let v = mkpar (fun i→ split i l) in
sumSeq (flatten� sum_list v�) (∗ flatten uses a proj ∗)

(∗ sumSeq is List.fold_left ∗)
where leaf l = sumSeq l

in ... (sum_list lst) ...

Allombert, Gava & Tesson — Multi-BSML 20 / 28

Introduction BSML Multi-BSML Conclusion

Multi With Tree Construction

Goals
Keep values on each node and leaf
To program multiple phases of multi

Extension
Two new keywords:

finally; pushes up a value and keeps a value
where default; keeps a value even if the recursive calls
generates partial trees; Optional if the language allows to
raise exceptions

Allombert, Gava & Tesson — Multi-BSML 21 / 28

Introduction BSML Multi-BSML Conclusion

Multi With Tree Construction

Goals
Keep values on each node and leaf
To program multiple phases of multi

Extension
Two new keywords:

finally; pushes up a value and keeps a value
where default; keeps a value even if the recursive calls
generates partial trees; Optional if the language allows to
raise exceptions

Allombert, Gava & Tesson — Multi-BSML 21 / 28

Introduction BSML Multi-BSML Conclusion

Example

Keep the intermediate results of the sum

0 + 1 + 2 + 3

0 + 1

0 1

2 + 3

2 3

let multi sum_list l =

where node l =
let v = mkpar (fun i→ split i l) in
let s = sumSeq (flatten� sum_list v�) in
finally ~up:s ~keep:s

where leaf l =
let s = sumSeq l in
finally ~up:s ~keep:s

where default = 0 (∗ not used ∗)

Allombert, Gava & Tesson — Multi-BSML 22 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Sequential (currently test phase)
For debugging and toplevel

tree structure of data
A global tree of Hashtables to represent the memories

Distributed (ongoing work)

Modular (MPI, TCP/IP, etc.) and based on formal semantics.

Shared memory Distributed

Allombert, Gava & Tesson — Multi-BSML 23 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Sequential (currently test phase)
For debugging and toplevel

tree structure of data
A global tree of Hashtables to represent the memories

Distributed (ongoing work)

Modular (MPI, TCP/IP, etc.) and based on formal semantics.

Shared memory Distributed

Allombert, Gava & Tesson — Multi-BSML 23 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Sequential (currently test phase)
For debugging and toplevel

tree structure of data
A global tree of Hashtables to represent the memories

Distributed (ongoing work)

Modular (MPI, TCP/IP, etc.) and based on formal semantics.
Shared memory

Distributed

Allombert, Gava & Tesson — Multi-BSML 23 / 28

Introduction BSML Multi-BSML Conclusion

Implementation

Sequential (currently test phase)
For debugging and toplevel

tree structure of data
A global tree of Hashtables to represent the memories

Distributed (ongoing work)

Modular (MPI, TCP/IP, etc.) and based on formal semantics.
Shared memory Distributed

Allombert, Gava & Tesson — Multi-BSML 23 / 28

Introduction BSML Multi-BSML Conclusion

Skeleton (For Coq) Example

Why ?
Embed Multi in Coq:

Syntax extensions not friendly in Coq

finally too close to a monad (side effect)

The multi skeleton
mktree : ’a tree→ ’b→ ’e tree→ down→ leaff→ up→ control→ (’c∗’e tree)
where

down: ’a→ ’b→ ’b par
leaf: ’e→ ’a→ ’b→ (’c ∗ ’e)
up: ’d par→ ’e→ ’a→ ’b→ (’c ∗ ’e)
control: ’c par→ ’e→ ’a→ ’b→ UP of (’d par ∗ ’e) | DOWN of (’b ∗ ’e)

Allombert, Gava & Tesson — Multi-BSML 24 / 28

Introduction BSML Multi-BSML Conclusion

Skeleton (For Coq) Example

Why ?
Embed Multi in Coq:

Syntax extensions not friendly in Coq

finally too close to a monad (side effect)

The multi skeleton
mktree : ’a tree→ ’b→ ’e tree→ down→ leaff→ up→ control→ (’c∗’e tree)
where

down: ’a→ ’b→ ’b par
leaf: ’e→ ’a→ ’b→ (’c ∗ ’e)
up: ’d par→ ’e→ ’a→ ’b→ (’c ∗ ’e)
control: ’c par→ ’e→ ’a→ ’b→ UP of (’d par ∗ ’e) | DOWN of (’b ∗ ’e)

Allombert, Gava & Tesson — Multi-BSML 24 / 28

Introduction BSML Multi-BSML Conclusion

Outline

1 Introduction

2 BSML: Functional BSP Programming

3 Multi-BSML : Syntax and semantics

4 Conclusion

Allombert, Gava & Tesson — Multi-BSML 25 / 28

Introduction BSML Multi-BSML Conclusion

Conclusion

Multi
Multi-BSP extension of BSP for hierarchical architectures
BSP⇒ BSML
Multi-BSP⇒ Multi-BSML

Multi-BSML
Recursive functions on different memories of chips
Structured nesting of BSML codes
Big-steps and small-steps formal semantics (confuent)
A skeleton for Coq

Small number of primitives and little syntax extension

Allombert, Gava & Tesson — Multi-BSML 26 / 28

Introduction BSML Multi-BSML Conclusion

Conclusion

Multi
Multi-BSP extension of BSP for hierarchical architectures
BSP⇒ BSML
Multi-BSP⇒ Multi-BSML

Multi-BSML
Recursive functions on different memories of chips
Structured nesting of BSML codes
Big-steps and small-steps formal semantics (confuent)
A skeleton for Coq

Small number of primitives and little syntax extension

Allombert, Gava & Tesson — Multi-BSML 26 / 28

Introduction BSML Multi-BSML Conclusion

Conclusion

Multi
Multi-BSP extension of BSP for hierarchical architectures
BSP⇒ BSML
Multi-BSP⇒ Multi-BSML

Multi-BSML
Recursive functions on different memories of chips
Structured nesting of BSML codes
Big-steps and small-steps formal semantics (confuent)
A skeleton for Coq

Small number of primitives and little syntax extension

Allombert, Gava & Tesson — Multi-BSML 26 / 28

Introduction BSML Multi-BSML Conclusion

Conclusion

Multi
Multi-BSP extension of BSP for hierarchical architectures
BSP⇒ BSML
Multi-BSP⇒ Multi-BSML

Multi-BSML
Recursive functions on different memories of chips
Structured nesting of BSML codes
Big-steps and small-steps formal semantics (confuent)
A skeleton for Coq

Small number of primitives and little syntax extension

Allombert, Gava & Tesson — Multi-BSML 26 / 28

Introduction BSML Multi-BSML Conclusion

Conclusion

Multi
Multi-BSP extension of BSP for hierarchical architectures
BSP⇒ BSML
Multi-BSP⇒ Multi-BSML

Multi-BSML
Recursive functions on different memories of chips
Structured nesting of BSML codes
Big-steps and small-steps formal semantics (confuent)
A skeleton for Coq

Small number of primitives and little syntax extension

Allombert, Gava & Tesson — Multi-BSML 26 / 28

Introduction BSML Multi-BSML Conclusion

Conclusion

Multi
Multi-BSP extension of BSP for hierarchical architectures
BSP⇒ BSML
Multi-BSP⇒ Multi-BSML

Multi-BSML
Recursive functions on different memories of chips
Structured nesting of BSML codes
Big-steps and small-steps formal semantics (confuent)
A skeleton for Coq

Small number of primitives and little syntax extension

Allombert, Gava & Tesson — Multi-BSML 26 / 28

Introduction BSML Multi-BSML Conclusion

Conclusion

Multi
Multi-BSP extension of BSP for hierarchical architectures
BSP⇒ BSML
Multi-BSP⇒ Multi-BSML

Multi-BSML
Recursive functions on different memories of chips
Structured nesting of BSML codes
Big-steps and small-steps formal semantics (confuent)
A skeleton for Coq

Small number of primitives and little syntax extension

Allombert, Gava & Tesson — Multi-BSML 26 / 28

Introduction BSML Multi-BSML Conclusion

Conclusion

Multi
Multi-BSP extension of BSP for hierarchical architectures
BSP⇒ BSML
Multi-BSP⇒ Multi-BSML

Multi-BSML
Recursive functions on different memories of chips
Structured nesting of BSML codes
Big-steps and small-steps formal semantics (confuent)
A skeleton for Coq

Small number of primitives and little syntax extension

Allombert, Gava & Tesson — Multi-BSML 26 / 28

Introduction BSML Multi-BSML Conclusion

Conclusion

Multi
Multi-BSP extension of BSP for hierarchical architectures
BSP⇒ BSML
Multi-BSP⇒ Multi-BSML

Multi-BSML
Recursive functions on different memories of chips
Structured nesting of BSML codes
Big-steps and small-steps formal semantics (confuent)
A skeleton for Coq

Small number of primitives and little syntax extension

Allombert, Gava & Tesson — Multi-BSML 26 / 28

Introduction BSML Multi-BSML Conclusion

Conclusion

Multi
Multi-BSP extension of BSP for hierarchical architectures
BSP⇒ BSML
Multi-BSP⇒ Multi-BSML

Multi-BSML
Recursive functions on different memories of chips
Structured nesting of BSML codes
Big-steps and small-steps formal semantics (confuent)
A skeleton for Coq

Small number of primitives and little syntax extension

Allombert, Gava & Tesson — Multi-BSML 26 / 28

Introduction BSML Multi-BSML Conclusion

Perspectives (Ongoing/Future Work)

Short term (for Victor’s Phd)
Implementation using MPI
Examples and benchmarks
Type system for a subpart of OCaml again
• Bad nesting of parallelism
• Bad copy of data
• Bad use of the parallel operators

Long term (team)
Mechanized semantics in Coq

Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

Examples and libraries
Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27 / 28

Introduction BSML Multi-BSML Conclusion

Perspectives (Ongoing/Future Work)

Short term (for Victor’s Phd)
Implementation using MPI
Examples and benchmarks
Type system for a subpart of OCaml again
• Bad nesting of parallelism
• Bad copy of data
• Bad use of the parallel operators

Long term (team)
Mechanized semantics in Coq

Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

Examples and libraries
Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27 / 28

Introduction BSML Multi-BSML Conclusion

Perspectives (Ongoing/Future Work)

Short term (for Victor’s Phd)
Implementation using MPI
Examples and benchmarks
Type system for a subpart of OCaml again
• Bad nesting of parallelism
• Bad copy of data
• Bad use of the parallel operators

Long term (team)
Mechanized semantics in Coq

Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

Examples and libraries
Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27 / 28

Introduction BSML Multi-BSML Conclusion

Perspectives (Ongoing/Future Work)

Short term (for Victor’s Phd)
Implementation using MPI
Examples and benchmarks
Type system for a subpart of OCaml again
• Bad nesting of parallelism
• Bad copy of data
• Bad use of the parallel operators

Long term (team)
Mechanized semantics in Coq

Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

Examples and libraries
Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27 / 28

Introduction BSML Multi-BSML Conclusion

Perspectives (Ongoing/Future Work)

Short term (for Victor’s Phd)
Implementation using MPI
Examples and benchmarks
Type system for a subpart of OCaml again
• Bad nesting of parallelism
• Bad copy of data
• Bad use of the parallel operators

Long term (team)
Mechanized semantics in Coq

Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

Examples and libraries
Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27 / 28

Introduction BSML Multi-BSML Conclusion

Perspectives (Ongoing/Future Work)

Short term (for Victor’s Phd)
Implementation using MPI
Examples and benchmarks
Type system for a subpart of OCaml again
• Bad nesting of parallelism
• Bad copy of data
• Bad use of the parallel operators

Long term (team)
Mechanized semantics in Coq

Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

Examples and libraries
Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27 / 28

Introduction BSML Multi-BSML Conclusion

Perspectives (Ongoing/Future Work)

Short term (for Victor’s Phd)
Implementation using MPI
Examples and benchmarks
Type system for a subpart of OCaml again
• Bad nesting of parallelism
• Bad copy of data
• Bad use of the parallel operators

Long term (team)
Mechanized semantics in Coq

Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

Examples and libraries
Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27 / 28

Introduction BSML Multi-BSML Conclusion

Perspectives (Ongoing/Future Work)

Short term (for Victor’s Phd)
Implementation using MPI
Examples and benchmarks
Type system for a subpart of OCaml again
• Bad nesting of parallelism
• Bad copy of data
• Bad use of the parallel operators

Long term (team)
Mechanized semantics in Coq

Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

Examples and libraries
Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27 / 28

Introduction BSML Multi-BSML Conclusion

Perspectives (Ongoing/Future Work)

Short term (for Victor’s Phd)
Implementation using MPI
Examples and benchmarks
Type system for a subpart of OCaml again
• Bad nesting of parallelism
• Bad copy of data
• Bad use of the parallel operators

Long term (team)
Mechanized semantics in Coq

Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

Examples and libraries
Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27 / 28

Introduction BSML Multi-BSML Conclusion

Perspectives (Ongoing/Future Work)

Short term (for Victor’s Phd)
Implementation using MPI
Examples and benchmarks
Type system for a subpart of OCaml again
• Bad nesting of parallelism
• Bad copy of data
• Bad use of the parallel operators

Long term (team)
Mechanized semantics in Coq

Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

Examples and libraries
Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27 / 28

Introduction BSML Multi-BSML Conclusion

Perspectives (Ongoing/Future Work)

Short term (for Victor’s Phd)
Implementation using MPI
Examples and benchmarks
Type system for a subpart of OCaml again
• Bad nesting of parallelism
• Bad copy of data
• Bad use of the parallel operators

Long term (team)
Mechanized semantics in Coq

Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

Examples and libraries
Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27 / 28

Introduction BSML Multi-BSML Conclusion

Perspectives (Ongoing/Future Work)

Short term (for Victor’s Phd)
Implementation using MPI
Examples and benchmarks
Type system for a subpart of OCaml again
• Bad nesting of parallelism
• Bad copy of data
• Bad use of the parallel operators

Long term (team)
Mechanized semantics in Coq

Embed in Coq for proofs and extraction of multi-BSML
programs as for BSML

Examples and libraries
Same work for other languages (C++, Java)

Allombert, Gava & Tesson — Multi-BSML 27 / 28

Merci !

	Introduction
	BSML: Functional BSP Programming
	Multi-BSML : Syntax and semantics
	Conclusion

