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1 Introduction
In this report we detail the specification of a train system, to explore the complementarity between B-like
specifications and astd for safety-critical system modeling. The majority of train systems are based on the
communication between two sub-systems. The first one is called on-board controler and is the controler that
actually drives the train. The second one is called the track controler. It controls the entire train system
and authorizes the trains to move. The specification will be made step by step, using refinement relations
between the steps. This introduction will detail the used methodology and explain and justify the technical
choices.

1.1 Background
1.1.1 B and Event-B

B is a formal method [2] supporting the main stages of the software development life cycle. Specifications
are composed of abstract machines, which encapsulate state variables, an invariant constraining the state
variables, an initialization of all the state variables, and operations on the state variables. The invariant is
a first-order predicate in a simplified version of the ZF-set theory, enriched by many relational operators.
Abstract sets or enumerated sets are used for typing the state variables. In B, state variables are modified
only by means of substitutions. The initialization and the operations are specified in a generalization of
Dijkstra’s guarded command notation, called the Generalized Substitution Language (GSL), that allows the
definition of non-deterministic and preconditioned substitutions. An operation is generally a preconditioned
substitution, of the form PRE P THEN S END, where P is the precondition and S is a substitution. The state
transition specified by a preconditioned substitution is guaranteed only when the precondition is satisfied.
The main substitutions that will be used in the case study are: assignment substitution (denoted by :=);
substitution of the form x : |(P ), which states that state variable x is updated such that predicate P becomes
true; and simultaneous substitutions (||).

Through refinement steps, the initial abstract machine is transformed, step by step, into a B model of the
code. Translations tools are then available for synthesizing the final code. Proof activity consists in proving
all the generated proof obligations for the abstract machine and for each refinement step. In that aim, the B
method is supported by several tools like Atelier B1, ProB2 and RODIN3.

Event-B [1] is an evolution of the B language to specify complex systems by using decomposition and
event-based descriptions. In Event-B, specifications describe “closed” event systems, in order to consider a
system and its interactions with its environment as a whole. The behaviour is then modeled by events on the
system. An event is defined by a guard, a blocking condition that ensures the consistency of the system if
the event is executed, and an action described by GSL as in B. An event is of the form ANY x, y, ... WHERE
P (x, y, ..., v, w, ...) THEN S(x, y, ..., v, w, ...) END, where x, y, ... are local variables and v, w, ... are constants
or state variables of the event system, predicate P is the guard, and substitution S, the action. An event
system may be refined. Refinement in Event-B not only refines data structures like in B, but also allows
new events to be added. However, only new concrete variables can be modified by new events. The state
refinement is expressed, like in B, with a gluing invariant between the abstract state and the concrete state.

1http://www.atelierb.eu
2http://www.stups.uni-duesseldorf.de/ProB
3http://www.rodintools.org
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1.1.2 ASTD

astd [5] is a formal graphical notation, which is an extension of Harel’s Statecharts [7] with process algebra
operators. Each astd type corresponds to either a hierarchical automaton or a process algebra operator
like sequence, choice, Kleene closure, guard, synchronization, choice and interleave quantification. One of
the main important features of astds is to allow parameterized instances and quantifications. Moreover, the
graphical representation brings an important mean for communicating with stakeholders and for validating
the system model. This formal language has been notably used in the context of secure web services for the
security policy specification [9, 3]. For the sake of concision, we introduce only the astd operators that will
be used in the case study: automaton, quantified parameterized synchronization, Kleene closure and weak
synchronization. The complete operational semantics is in [4].

An astd automaton is similar to a classical automaton, except that its states can be of any astd type,
and that its transition relation δ can refer to substates of automaton states. Hence, there are three kinds of
arrows: local transition between two states n1 and n2 of the automaton, denoted by (loc, n1, n2); transition
from n1 to substate n2[

of n2; and transition from substate n1[
of n1 to n2. A transition can also be guarded

or considered as final (i.e. it is triggered only if its source state is final). Thus, a transition from δ is of
the form (t, σ, g,final?), where t denotes the arrow, σ is the event, g is the guard, and final? is a boolean
denoting whether the transition is final. For the sake of concision, history states are here omitted. A state of
an automaton is of the form (aut◦, n, s) where n is the name of its current state and s is the current substate
of the state. For example, rule aut1 describes the semantics of a local transition

δ((loc, n1, n2), σ′, g,final?) Ψ
aut1

(aut◦, n1, s)
σ,Γ−−→ (aut◦, n2, init(ν(n2)))

Predicate Ψ is a premiss which checks if the source state is final for final transitions, if the guard holds, and
if the event received, noted σ, is equal, under the current transition environment Γ, to the event specified
in the transition relation, noted σ′. Expression init((ν(n2))) represents the initial state of the astd whose
name is n2. Thus, the target state of the transition is the initial state of the destination state in δ.

Then we need Kleene closure: a Kleene closure astd is an astd that can be executed zero, one or more
time. When the final state is reached, the astd can restart.

The next astd we consider is parameterized quantified synchronization. The behaviour is defined as
follows. Many astds are executed in parallel. For each event whose label belongs to a synchronization set
∆, all astds must execute this event at the same time; otherwise, they are executed in interleaving. The
first requirement may be too strong to satisfy in some situations. In particular, if a quantified parameterized
synchronization is used to specify the behaviour of several entities in parallel, it would be very restrictive to
prevent a large subset of entities from executing a synchronized event because some of them are not ready
or can be considered as having stopped their activity.

To take such cases into account, a weak synchronization has been defined. A state of the astd is then
of the form (Ψ◦, f), where f maps an astd state to each quantification parameter value. In the type
corresponding to this kind of astds, ∆ represents the set of the actions that synchronize as above, and
predicate p characterizes which instances of the quantified astd must synchronize. There are two inference
rules:

α(σ) /∈ ∆ f(v)
σ, ([x := v]) C Γ−−−−−−−−−−→ s′

Ψ1

(Ψ◦, f)
σ,Γ−→ (Ψ◦, f C− x 7→ s′)
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α(σ) ∈ ∆
∀v ∈ T.((¬([x := v]p) ∧ f(v) = f ′(v))∨

(f(v)
σ, ([x := v])−−−−−−−→ f ′(v)))

Ψ2

(Ψ◦, f)
σ,Γ−→ (Ψ◦, f ′)

Rule Ψ1 is applied when there is no synchronization. Rule Ψ2 corresponds to the case with synchronization:
all the astds for which p is true execute the event at the same time and the state of the other astds does
not change.

1.2 Methodology

Figure 1: Methodology of the specification

Our approach uses a coupling of the graphical astd notation and Event-B to specify a system. The
specification methodology is shown in Fig. 1. A system can be viewed in two parts. The first part models
the dynamic behaviour of the system, and is specified in astd (box on the left in Fig. 1). The second part
focuses on data, and is described in Event-B (box on the right in Fig. 1). Transitions constitute the link
between the two parts: to each action label in astd corresponds an event in Event-B. To ensure the global
consistency of the system, the astd and Event-B specifications are translated into classical B (middle box
in Fig. 1). As we will explain later, the classical B is only used for technical reasons.

1.2.1 astd specification.

With graphical notation and process algebra operators, the astd specification models the ordering of actions.
Since formal notations are not always easy to understand, astd provides a graphical visualisation which makes
the model validation easier, while still remaining formal. Compared to Statecharts, the astd language is
based on process algebra operators, like quantified parameterised synchronisation, which allows to represent
many processes in parallel.
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1.2.2 Event-B specification.

Event-B specification contains an event for each action label declared in astd. The astd part just describes
the ordering of actions. In the Event-B part we specify the effects on the data model of each astd action.
Static properties like safety and typing constraints are specified by means of Event-B invariants. Sometimes
we need temporal properties which are not supported by the Event-B notation. In that case, we encode these
temporal properties by using theorems. RODIN tools4 are used to generate and prove the proof obligations
associated to invariant preservation and additional theorems.

1.2.3 B specification.

The classical B specification contains two B machines. The first one is the translation of the astd specifica-
tion, the second one is a transcription of the Event-B specification.

The astd to B translation can be summed up as follows. astd states are encoded by B state variables.
To every astd action label corresponds a B operation. Its precondition checks that the state variable is
in the initial state of the astd transition. Its postcondition assigns to the state variable the final state of
the transition. Moreover, to link the resulting B operation with the data model, we would like to execute
the events defined in the Event-B part during the transition. But technically, a B operation cannot call an
Event-B event. That is why we also have to translate the events into B operations.

For the translation of the Event-B machine, variables and typing invariants remain unchanged. Events
are rewritten into B operations: their guards are simply changed into preconditions and their postconditions
remain identical. Grouping the two parts together in one unique B specification allows the global consistency
(one horizontal level in Fig. 1) of the system to be proved: when we call an operation in B, the generated
proof obligation checks that the precondition of the called operation is true before executing it. To prove the
calling proof obligations, invariants are added in the B machine that translates the astd. This invariants
link the variables of the Event-B description and the variables that encode the states of the astd.

Event-B provides the expressiveness and the refinement relation required for the system to be modeled,
but it lacks some modularity features. There exist theoretical foundations for modularity in Event-B [8], but
in practice, they are not yet supported by existing tools. B is then used for technical reasons.

1.2.4 Refinement of the model.

The methodology uses two refinements. On one side we refine the astd specification (left refinement arrow
in Fig. 1), on the other side we refine the data specification in Event-B (right refinement arrow in Fig. 1).

A first definition of astd refinement is proposed in [6]. This refinement definition requires the traces to
be preserved and three generic application patterns are described. By trying to apply this astd refinement
relation on the case study described here, we realise that it is too restrictive. Consequently we have introduced
new patterns that weaken the original definition but preserve behaviour consistency: the properties that are
true in a state of the abstract astd specification have to be preserved in corresponding state of the concrete
specification.

The Event-B part of the specification is refined using the Event-B definition of refinement. The proof
obligations are automatically generated by the RODIN tool. The Event-B refinement guarantees the preser-
vation of the invariants in the data part of the specification. This refinement definition is one of the reasons
why we chose Event-B to specify the data part of the system: The classical B refinement does not allow
events to be added, while astd refinement allows new transitions.

4www.event-b.org

5



1.3 Modeling choices
In this case study, a train system is modeled using astd. The most known train systems are CBTC (Com-
munication Based Train System) and ERTMS (European Rail Traffic Management System). The first one
is used for metros, the second one for trains. Those two systems are based on communications between two
subsystems. The on-board controler is the system that drives the train. It has to respect the instructions
given by the track controler that knows the positions of all the trains on the track and that computes limits
for the train movement.

At the most abstract level, we consider a unique track on which a set of trains are moving in the same
direction. This is realistic since, if there are trains in the opposite direction, they are blocked at switches.
Furthermore, all the issues concerning switches, interlocking, etc... are not considered in this paper. They
can be dealt with in subsequent refinement steps. Consequently, we check only the absence of front-to-rear
collision.

The data concerning the track are defined in an Event-B context. It can be seen on figure 2. A set named
TRACK is defined. On this set, there is a total, strict, order relation (irreflexive, transitive and asymetric)
called is_behind . x1 7→ x2 ∈ is_behind means that the element x1 is behind the element x2 on the track.
The element position0 represent the first element in the begining of the track.

The case study contains six levels of refinement. The first two ones specify a set of train moving au-
tonomously. The third one introduces a control operation for each train. The fourth one regroups all the
control operations in a unique control operation. The fifth one introduces communication operations. Those
operations will allow us to decompose the system in the sixth level of refinement.

2 Specifications

2.1 First specification
We start by specifying the system behaviour in astd (see Fig. 3). The fact that the system contains many
trains is represented by the quantified interleaving operator. Each train can start, then move zero or more
times and then stop. Thanks to the Kleene closure, when it is stopped, a train can restart.

Since we assume that the trains are moving in the same direction on one track, the non-collision property
can be expressed by the following predicate:

∀t1, t2.(t1 ∈ set_of_trains ∧
t2 ∈ set_of_trains ∧
t1 6= t2⇒

position_of(t1) 6= position_of(t2)) (1)

Predicate (1) means that the positions of two distinct trains are different. We also need another predicate
to express that a train cannot jump over another train.

∀t1, t2.(t1 ∈ set_of_trains ∧
t2 ∈ set_of_trains ∧
position_of(t1) 7→ position_of(t2) ∈ is_behind⇒

X(position_of(t1) 7→ position_of(t2) ∈ is_behind)) (2)
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CONTEXT TRACK_DEF

SETS
TRACK

TRAIN
CONSTANTS

is_behind
position0

AXIOMS
axm1 : is_behind ∈ (TRACK↔ TRACK)

axm2 : (∀p1·(p1 ∈ TRACK⇒
¬(p1 7→ p1 ∈ is_behind)))

axm3 : ∀p1, p2, p3·(p1 ∈ TRACK ∧
p2 ∈ TRACK ∧
p3 ∈ TRACK ∧
p1 7→ p2 ∈ is_behind ∧
p2 7→ p3 ∈ is_behind⇒

p1 7→ p3 ∈ is_behind)

axm4 : ∀p1, p2·(p1 ∈ TRACK ∧
p2 ∈ TRACK ∧
p1 7→ p2 ∈ is_behind⇒

¬(p2 7→ p1 ∈ is_behind))

axm5 : ∀p1, p2·(p1 ∈ TRACK ∧
p2 ∈ TRACK ∧
p1 6= p2⇒

p1 7→ p2 ∈ is_behind ∨
p2 7→ p1 ∈ is_behind)

axm6 : position0 ∈ TRACK
axm7 : ∀pp·(pp ∈ TRACK ∧ pp 6= position0⇒

position0 7→ pp ∈ is_behind)

END

Figure 2: Event-B context defining the set TRACK
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|||(t : TRAIN) CBTC*

S2
Start(t)

Movement(t)

S1 S3
Stop(t)

[position0 ∉
    ran(position)]

Figure 3: Train System astd Specification: First Specification

Predicate (2) checks that the order of trains does not change. Symbol X denotes the "next" operator from
temporal logic [10].

To express these predicates in Event-B we introduce a set TRAIN and a state variable position which
is a partial function from TRAIN to TRACK (position ∈ TRAIN 7→ TRACK). Variable position is set
when the train starts and until it stops. The EventB event, corresponding to the movement action, that acts
on the data is called movement_act. It updates the variable such as:

• the new position is different from the positions of the other trains;

• the new position stays behind the position of the trains that were located before;

• the new position cannot be located behind the old position.

The start operation set the position value to the constant position0 . This constant is only used for technical
reasons: In the Event-B methods, when a variable is modified with a Before/After predicate, a proof of
existence is needed. The idea of the proof is to prove that it exists a variable that satisfies the Before/After
predicate. By setting the position to a value, this proof becomes trivial.

Predicate (1) is directly defined as an invariant of the data machine. Predicate (2) uses an operator coming
from temporal logic and cannot be model checked by ProB. To avoid this issue, we translate temporal logic
predicate (2) into assertions on the states, written as Event-B theorems. An Event-B theorem is an assertion
that has to be proved with the invariants of the machine. A theorem is written for each event of the machine.
For example, the theorem corresponding to the movement_act event checks that for all trains train1, train2
and train3:

• if train1 is behind train2

• if the precondition of the movement_act operation is true for train3

• if we execute movement_act(train3)

then train1 stays behind train2. Note that this theorem includes the three possible cases: train3 = train1,
train3 = train2 and (train3 6= train1 and train3 6= train2).

Figure 5 shows the Event-B theorem proved for the movement event. The idea is that we define a relation
that links the state of the variables before the execution of the operation and the state of the variables after
the execution of the operation (axm8_1 and axm8_2). Then we check that if the property was right for the
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variables that are in the before-state of the event, it is still true for the variables that are in the after-state
of the event (th_movement_act). The first two properties are axioms. The third one is a theorem and has
to be proved.

Both astd and Event-B specifications are then translated into classical B. For each transition of the
astd, a B operation is created. The precondition of the operation checks that the astd is in a state that
allows the transition. The post-condition change the state of the astd: the state becomes the final state of
the translation. In the post-condition, the translation of the Event-B operation is called.

The Event-B specification checks that the invariants do not change when each event is executed. This
means that we check that the invariants do not change if the events are executed when their guards are true.
By translating them and calling them in the classical B, we check that their guards are true when they are
executed. This garantees the horizontal consistency of the model.

The Event-B operations of the first level of specification can be seen on figure 4.

2.2 First refinement
In the following parts, we will explain how the trains are moving while respecting the non-collision property.
This refinement details the movement cycle as a Kleene closure astd. The new refinement can be seen in
figure 6. The refinement we use does not exactly satisfy the definition of astd refinement.

Let’s remind the definition of astd refinement. Let A be an abstract astd specification and C a concrete
astd specification. We say that A v C iff:

α(C)− α(A) 6= ∅ (3)

traces(A\C̄) = traces(C\Ā) (4)

deadlocks(A\C̄) = deadlocks(C\Ā) (5)

τ − enabled(A\C̄) ⊆ τ − enabled(C\Ā) (6)

where A\C̄ is the astd A where all the transition that are in A and not in C are hidden (replaced by a silent
τ -transition). It means that A\C̄ = A\(α(A)− α(C)). If all the propsitions are true except the first one and
if α(A) = α(C), we say that the astd A and the astd C are equivalent.

In our refinement case, propositions (4), (5) and (6) are true and α(A) = α(C). The concrete astd
specification is a way to rewrite the abstract astd specification. Since the concret astd and the abstract
one are equivalent and contain the same operations, the Event-B specification does not change.

2.3 Second refinement
In the previous specifications, the movement operation modifies the trains position such as the new position
respect the non-collision properties. In this refinement, we explain the way such a position can be chosen. A
computing operation is added. This operation computes a limit for each train. The limit is called Movement
Authority Limit (mal). The movement operation updates the position of the train using the mal . The new
position cannot overtake the limit.

The astd specification can be seen in figure 7. The refinement is proved using the general definition of
the astd refinement from [6]. The propositions (3), (4), (5) and (6) are proved.

The limit is computed each time the position of the trains are updated, that means after the train starts
and after every movement. The new limit is such that:
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Event start_act =̂

any
tt

where
gu1 : tt ∈ TRAIN

gu2 : tt /∈ dom(position)
gu3 : position0 /∈ ran(position)

then
act1 : position := positionC− {tt 7→ position0}

end

Event movement_act =̂

any
tt

where
gu1 : tt ∈ TRAIN

gu2 : tt ∈ dom(position)
then

act1 : position : |(∃pp·(pp ∈ TRACK ∧
position′ = positionC− {tt 7→ pp} ∧
(∀t2·(t2 ∈ dom(position′) ∧

t2 6= tt⇒ pp 6= position′(t2))) ∧
(∀t2·(t2 ∈ dom(position) ∧

position(tt) 7→ position(t2) ∈ behind⇒
pp 7→ position(t2) ∈ behind)) ∧

(pp = position(tt) ∨
position(tt) 7→ pp ∈ behind)))

end

Event stop_act =̂

any
tt

where
gu1 : tt ∈ TRAIN

then
act1 : position := {tt}C− position

end

END

Figure 4: Train System Event-B Specification: First Specification
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axm8_1 : movement_relation ∈ TRAIN ↔ ((TRAIN 7→ TRACK)↔ (TRAIN 7→ TRACK))

axm8_2 : movement_relation = {train·train ∈ TRAIN |
train 7→ {position1, position2·(position1 ∈ TRAIN 7→ TRACK ∧
train ∈ dom(position1) ∧
∃pp·(pp ∈ TRACK ∧

position2 = position1 C− {train 7→ pp} ∧
(∀t2·(t2 ∈ dom(position2) ∧ t2 6= train⇒ pp 6= position2(t2))) ∧
(∀t2·(t2 ∈ dom(position1) ∧

position1(train) 7→ position1(t2) ∈ is_behind⇒
pp 7→ position1(t2) ∈ is_behind)) ∧

(pp = position1(train) ∨ position1(train) 7→ pp ∈ is_behind)))|
position1 7→ position2}}

th_movement_act : ∀train3, position1, position2·
(position1 7→ position2 ∈ movement_relation(train3)⇒

∀train1, train2·(train1 ∈ dom(position1) ∧
train1 ∈ dom(position2) ∧
train2 ∈ dom(position1) ∧
train2 ∈ dom(position2) ∧
position1(train1) 7→ position1(train2) ∈ is_behind⇒

position2(train1) 7→ position2(train2) ∈ is_behind))

Figure 5: Expression Of Non-Collision Property In Event-B Theorem

Start(t)

S3S1
* S2 (t)

Movement(t)

S2.2S2.1

Stop(t)

|||(t : TRAIN) CBTC*

[position0 ∉
    ran(position)]

Figure 6: Train System astd Specification: First Refinement
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S1
Start(t)

S3
Stop(t)

* S2(t)

S2.3

Compute_l(t)Movement(t)

S2.2S2.1
S1.1

Compute_l(t)

[position0 ∉
    ran(position)]

||| (t :  TRAIN) CBTC*

Figure 7: Train System astd Specification: Second Refinement

• The position of the train is behind the limit or equal to the limit

• The limit is behind the position of all trains that are ahead

The movement operation updates the position of the train with the mal variable. The new position has
to be behind the limit. Figure 8 shows the specification of compute_l_act and the new specification of
movement_act . start_act and stop_act remain unchanged.

The non-collision property is expressed with the two following predicates :

∀t1, t2.(t1 ∈ TRAIN∧
t2 ∈ TRAIN∧
position(t1) 7→ position(t2) ∈ is_behind⇒

mal(t1) 7→ position(t2) ∈ is_behind (7)

∀tt.(tt ∈ TRAIN∧
tt ∈ dom(mal)∧
tt ∈ dom(position)⇒

(position(tt) 7→ mal(tt) ∈ is_behind ∨
position(tt) = mal(tt))) (8)

Predicate (7) checks that the mal of a train is always behind the trains that are ahead it. Predicate (8)
checks that a train cannot overtake its limit. The propositions are translated into B invariants and proved
using the RODIN tools.

2.4 Third refinement
In this level of refinement, all the local compute_l operations are grouped into one global compute operation.
This operation is synchronized for all the started train (Ψ operator). The new astd specification can be seen
on figure 9.

This refinement transforms an interleaving astd |||(t ∈ TRAIN )A(t) into a synchronised astd Ψ(t ∈
TRAIN )C(t). The set of accepted traces is restricted. But we want to preserve behaviour consistency:
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Event compute_l_act =̂

any
tt

where
gu1 : tt ∈ TRAIN

gu2 : tt ∈ dom(position)
then

act1 : mal : |(∃mm·(mm ∈ TRACK ∧
∀t2·(t2 ∈ TRAIN ∧ t2 ∈ dom(position) ∧
position(tt) 7→ position(t2) ∈ is_behind⇒

mm 7→ position(t2) ∈ is_behind) ∧
(position(tt) 7→ mm ∈ is_behind ∨ position(tt) = mm) ∧
mal′ = mal C− {tt 7→ mm}))

end

Event movement_act =̂

any
tt

where
gu1 : tt ∈ TRAIN

gu2 : tt ∈ dom(position)
gu3 : tt ∈ dom(mal)

then
act1 : position : |(∃pp·(pp ∈ TRACK ∧

position′ = positionC− {tt 7→ pp} ∧
(position(tt) = mal(tt)⇒ position(tt) = pp) ∧
(¬(position(tt) = mal(tt))⇒ (position(tt) 7→ pp) ∈ is_behind) ∧
(pp = mal(tt) ∨ (pp 7→ mal(tt)) ∈ is_behind)))

end

Figure 8: Train System Event-B Specification: Second Refinement

S1 S3

* S2(t)

S2.3
Movement(t)

S2.1 S2.2
Compute Stop(t)

S1.1
Start(t) Compute

ψ(t :  TRAIN)(State_cbtc(t) : {S2;s1.1}))({Compute}) CBTC*

Figure 9: Train System astd Specification: Third Refinement
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Event compute_act =̂

begin
act1 : mal : |((dom(mal′) = dom(position) ∧

mal′ ∈ TRAIN 7→ TRACK ∧
(∀t1, t2·(t1 ∈ dom(position) ∧ t2 ∈ dom(position) ∧
position(t1) 7→ position(t2) ∈ is_behind⇒
mal′(t1) 7→ position(t2) ∈ is_behind)) ∧
(∀tt·(tt ∈ dom(mal′)⇒ (position(tt) 7→ mal′(tt) ∈ is_behind ∨
mal′(tt) = position(tt))))))

end

Figure 10: Train System Event-B Specification: Third Refinement - compute_act event

For each train tn ∈ TRAIN the astd C(tn) is a refinement of the astd A(tn) according to the definition
proposed in [6]. It means that if the global set of traces accepted by the astd specification is reduced, the
local behaviour of each entities is preserved.

Since we change the local compute_l operation into a global one, we need to define this operation in
the data part of the specification. This operation computes for all the started trains a limit such that the
limit respects the invariants defined in section 2.3. The Event-B specification of compute_act can be seen in
figure 10.

Proving this refinement is not possible in Event-B: a set of local events cannot be refined by a global one.
To prove the consistency of our specification, we proved that executing compute operation is equivalent to
execute any sequence of compute_l (which means an interleaving of compute_l).

To prove the refinement, events are expressed as relation between the state of a variable before and after
executing the event. We write RelEv the relation for an event Ev and RelEv(t) if the event has a parameter.
We proved that:

∀(t1, t2).(t1 ∈ TRAIN∧
t2 ∈ TRAIN⇒

RelCompute_l(t1);RelCompute_l(t2) = RelCompute_l(t2);RelCompute_l(t1) (9)

which means that for all couple of trains, the order in which we execute Compute_l event does not change the
result. Using (9) and by induction on the set of trains, we prove that all the sequences of Compute_l execution
are equivalents. Finally, we prove that executing an arbitrary sequence of Compute_l is equivalent to execute
Compute. This implies that executing Compute is equivalent to execute an interleaving of Compute_l event.

To make this proof, the same solution that we used to prove the temporal property in section 2.1 is used.
A context is defined (see fig. 11). In this context, we represent the operations as relations - the relation
RelCompute_l (axioms axm8 and axm9 in fig. 11). Then a theorem is defined to prove the property (theorem
th1 in fig. 11).

2.5 Fourth refinement
In this level of refinement, the communication operations are introduced. In the further refinement, we want
to decompose our system into two sub-systems. The on-board system will do the movement and the start
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AXIOMS
axm8 : compute_l_relation ∈

(TRAIN ↔ (TRAIN 7→ TRACK))↔
((TRAIN 7→ TRACK)↔ (TRAIN 7→ TRACK))

axm9 : compute_l_relation = {train, position1·train ∈ TRAIN ∧
train ∈ dom(position1) ∧ position1 ∈ TRAIN 7→ TRACK|
({train 7→ position1}) 7→ {mal1,mal2·mal1 ∈ TRAIN 7→ TRACK ∧
(∃mm·(mm ∈ TRACK ∧
∀t2·(t2 ∈ TRAIN ∧ t2 ∈ dom(position1) ∧
position1(train) 7→ position1(t2) ∈ is_behind⇒
mm 7→ position1(t2) ∈ is_behind) ∧
(position1(train) 7→ mm ∈ is_behind ∨ position1(train) = mm) ∧
mal2 = mal1 C− {train 7→ mm}))|mal1 7→ mal2}}

th1 : ∀t1, t2, position1·(position1 ∈ TRAIN 7→ TRACK ∧ t1 ∈ dom(position1) ∧
t2 ∈ dom(position1) ∧
t1 6= t2⇒
compute_l_relation({t1 7→ position1}); compute_l_relation({t2 7→ position1}) =
compute_l_relation({t2 7→ position1}); compute_l_relation({t1 7→ position1}))

END

Figure 11: Proving the refinement of a set of local operations by a global one

Start(t)

S1 S3S1.1

CommBT(t)
* S2(t)

S2.1

Movement(t) Compute

S2.2 S2.3 S2.5

CommTB(t)

S2.4

CommBT(t) Stop(t)

S1.2 S1.3

CommTB(t)Compute

Ψ(t :  TRAIN)(State_cbtc(t) : {S2;S1.1;S1.2;S1.3})({Compute}) CBTC*

[position0 ∉
    ran(position)]

Figure 12: Train System astd Specification: Fourth Refinement

operation. The track system will do the compute operation. The stop operation will be a synchronized
operation. Each time a sub-system will execute an operation, a communication operation will immediatly
follow. This communication operation will communicate the new value of the variables. For exemple, when
the on-board execute the movement operation, a communication from the board to the track (CommBT )
will send the updated value of the position variable.

The new specification can be seen in figure 12. This refinement is proved using the general definition of
astd refinement. The proof obligation given in section 2.2 are proved.

For each variable var of the abstract Event-B specification, two variables, on_board_var and track_var
are defined. The “on board” variables can only be modified “on board” events, the “track” variables can
only modified in “track” events. For exemple, an on_board_position and a track_position are defined. The
on_board_position is the variable that will be used and modified in the “on board” events (movement and
start). The specification of the movement_act event and the communications event can be seen in figure 13.
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Event commBT_act =̂

any
tt

where
gu1 : tt ∈ TRAIN

gu2 : tt ∈ dom(on_board_position)
then

act1 : track_position(tt) := on_board_position(tt)
end

Event movement_act =̂

any
tt

where
gu1 : tt ∈ TRAIN

gu2 : tt ∈ dom(on_board_position)
gu4 : tt ∈ dom(on_board_mal)
gu5 : tt ∈ dom(track_mal)
gu3 : on_board_mal(tt) = track_mal(tt)

then
act1 : on_board_position : |(∃pp·(pp ∈ TRACK ∧

on_board_position′ = on_board_positionC− {tt 7→ pp} ∧
(on_board_position(tt) = on_board_mal(tt)⇒

on_board_position(tt) = pp) ∧
(¬(on_board_position(tt) = on_board_mal(tt))⇒

(on_board_position(tt) 7→ pp) ∈ is_behind) ∧
(pp = on_board_mal(tt) ∨ (pp 7→ on_board_mal(tt)) ∈ is_behind)))

end

Event commTB_act =̂

any
tt

where
gu1 : tt ∈ TRAIN

gu2 : tt ∈ dom(track_mal)
then

act1 : on_board_mal(tt) := track_mal(tt)
end

END

Figure 13: Train System Event-B Specification : Fourth Refinement
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Ψ(State_cbtc(t) = s2) CBTC

* S2 (t)

CommTB(t)
Start(t)

S1 S2-5 S2-6
Movement(t) CommBT(t)

S2-7S2-4 S3

Stop(t)

S1-2

CommBT(t)

*||| (t :  TRAIN) Bord

Ψ[Compute](State_cbtc(t) = s2) (t : TRAIN) Sol

Stop(t)

* S4

S4-2
Compute

S4-3
CommTB(t)

S4-4S4-1
CommBT(t)

S5

*

[position0 ∉
    ran(position)]

Figure 14: Train System astd Specification: Fifth Refinement

2.6 Fifth refinement
In this level the astd specification is decomposed into two subsystems. The astd specification can be seen
in figure 14. Like the step between level 1 of specification and level 2 of specification (see section 2.2), this
refinement does not totaly respect the refinement relation defined in [6]. The properties (4), (5) and (6)
are proved, and α(A) = α(C). The concrete specification is equivalent to the abstract one. Since the astd
specifications are equivalent and contain the same operations, the Event-B specification is not modified.
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