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Abstract. Cellular automata are discrete dynamical systems and a model
of computation. The limit set of a cellular automaton consists of the con-
figurations having an infinite sequence of preimages. It is well known that
these always contain a computable point and that any non-trivial property on
them is undecidable. We go one step further in this article by giving a full
characterization of the sets of Turing degrees of cellular automata: they are
the same as the sets of Turing degrees of effectively closed sets containing a
computable point.

1. Introduction4

Cellular Automata (CAs for short) are both discrete dynamical systems and5

a model of computation. They were introduced in the late 1940s independently6

by John von Neumann and Stanislaw Ulam to study, respectively, self-replicating7

systems and the growth of quasi-crystals.8

A d-dimensional CA consists of cells aligned on Zd that may be in a finite number9

of states, and are updated synchronously with a local rule, i.e. depending only on a10

finite neighborhood. All cells operate under the same local rule. The state of all11

cells at some time step is called a configuration. CAs are very well known for being12

simple systems that may exhibit complicated behavior.13

A d-dimensional subshift of finite type (SFT for short) is a set of colorings of Zd14

by a finite number of colors containing no pattern from a finite family of forbidden15

patterns. Most proofs of undecidability concerning CAs involve the use of SFTs, so16

both topics are very intertwined [Kar90; Kar92; Kar94a; Mey08; Kar11]. A recent17

trend in the study of SFTs has been to give computational characterizations of18

dynamical properties, which has been followed by the study of their computational19

structure and in particular the comparison with the computational structure of20

effectively closed sets, which are the subsets of {0, 1}Non which some Turing machine21

does not halt. It is quite easy to see that SFTs are such sets.22

In this paper, we follow this trend and study the limit set Ω (A) of a CA A,23

which consist of all the configurations of the CA that can occur after arbitrarily24

long computations. They were introduced by Culik, Pachl, and Yu [CPY89] in25

order to classify CAs. It has been proved that non-trivial properties on these sets26

are undecidable by Kari [Kar94b] and Guillon and Richard [GR10] for CAs of all27

dimensions. Limit sets of CAs are subshifts, and the question of which subshifts28

may be limit sets of CA has been a thriving topic, see [Hur87; Hur90a; Hur90b;29

Maa95; FK07; LM09; BGK11]. However, most of these results are on the language30
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of the limit set or on simple limit sets. Our aim here is to study the configurations31

themselves.32

In dimension 1, limit sets are effectively closed sets, so it is quite natural to com-33

pare them from a computational point of view. The natural measure of complexity34

for effectively closed sets is the Medvedev degree [Sim11], which, informally, is a35

measure of the complexity of the simplest points of the set. As limit sets always36

contain a uniform configuration (wherein all cells are in the same state), they always37

contain a computable point and have Medvedev degree 0. Thus, if we want to study38

their computable structure, we need a finer measure; in this sense, the set of Turing39

degrees is appropriate.40

It turns out that for SFTs, there is a characterization of the sets of Turing degrees41

found by Jeandel and Vanier [JV13b], which states that one may construct SFTs42

with the same Turing degrees as any effectively closed set containing a computable43

point. In the case of limit sets, such a characterization would be perfect, as limit44

sets always contain a computable point1. This is exactly what we achieve in this45

article:46

Theorem 1. For any effectively closed set S, there exists a cellular automaton A47

such that48

degTΩ (A) = degTS ∪ {0}.

In the way to achieve this theorem, we introduce a new construction which gives49

us some control over the limit set. We hope that this construction will lead to other50

unrelated results on limit sets of CAs, as it was the case for the construction in51

[JV13b], see [JV13a].52

The paper is organized as follows. In Section 2 we recall the usual definitions53

concerning CAs and Turing degrees. In Section 3 we give the reasons for each54

trait of the construction which allows us to prove theorem 1. In Section 4 we give55

the actual construction. We end the paper by a discussion, in Section 5, on the56

Cantor-Bendixson ranks of the limit sets of CAs. The choice has been made to have57

colored figures, which are best viewed on screen.58

2. Preliminary definitions59

A (1-dimensional) cellular automaton is a triple A = (Q, r, δ), where Q is the60

finite set of states, r > 0 is the radius and δ : Q2r+1 → Q the local transition61

function.62

An element of i ∈ Z is called a cell, and the set Ji− r, i+ rK is the neighborhood63

of i (the elements of which are the neighbors of i). A configuration is a function64

c : Z→ Q. The local transition function induces a global transition function (that65

can be regarded as the automaton itself, hence the notation), which associates to66

any configuration c its successor :67

A(c) :

{
Z → Q
i 7→ δ(c(i− r), . . . , c(i− 1), c(i), c(i+ 1), . . . , c(i+ r))).

In other words, all cells are finite automata that update their states in parallel,68

according to the same local transition rule, transforming a configuration into its69

successor.70

1Note that this is not the case for subshifts: there exist non-empty subshifts containing only
non-computable points.
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If we draw some configuration as a horizontal bi-infinite line of cells, then add its71

successor above it, then the successor of the latter and so on, we obtain a space-time72

diagram, which is a two-dimensional representation of some computation performed73

by A.74

A site (i, t) ∈ Z2 is a cell i at a certain time step t of the computation we75

consider (hereinafter there will never be any ambiguity on the automaton nor on76

the computation considered).77

The limit set of A, denoted by Ω (A), is the set of all the configurations that can78

appear after arbitrarily many computation steps:79

Ω (A) =
⋂
k∈N
Ak(QZ).

For surjective CAs, the limit set is the set of all possible configurations QZ, while80

for non-surjective CAs, it is the set of all configurations containing no orphan of any81

order, see [Hur90a]. An orphan of order n is a finite word w which has no preimage82

by An|Q|w| .83

An effectively closed set, or Π0
1 class, is a subset S of {0, 1}N for which there84

exists a Turing machine that, given any x ∈ {0, 1}N, halts if and only if x 6∈ S.85

Equivalently, a class S ⊆ {0, 1}N is Π0
1 if there exists a computable set L such that86

x ∈ S if and only if no prefix of x is in L. It is then quite easy to see that limit87

sets of CAs are Π0
1 classes: for any limit set, the set of forbidden patterns is the88

set of all orphans of all orders, which form a recursively enumerable set, since it is89

computable to check whether a finite word is an orphan.90

For x, y ∈ {0, 1}N, we say that x≤T y if x is computable by a Turing machine91

using x as an oracle. If x≤T y and x≥T y, x and y are said to be Turing-equivalent,92

which is noted x≡T y. The Turing degree of x, noted degTx, is its equivalence class93

under relation ≡T . The Turing degrees form a lattice whose bottom is 0, the Turing94

degree of computable sequences.95

Effectively closed sets are quite well understood from a computational point of96

view, and there has been numerous contributions concerning their Turing degrees,97

see the book of Cenzer and Remmel [CR98] for a survey. One of the most interesting98

results may be that there exist Π0
1 classes whose members are two-by-two Turing99

incomparable [JS72].100

3. Requirements of the construction101

The idea to prove Theorem 1 is to make a construction embedding computations102

of a Turing machine that will check a read-only tape containing a member of the Π0
1103

class S that will have to appear “non-deterministically”. The following constraints104

have to be addressed.105

• Since CAs are intrinsically deterministic, this non-determinism will have to106

come from the “past”, i.e. from the “limit” of the preimages.107

• The oracle tape, the element of {0, 1}N that needs to be checked, needs to108

appear entirely on at least one configuration of the limit set.109

• Each configuration of the limit set containing the oracle tape needs to have110

exactly one head of the Turing machine, in order to ensure that there really111

is a computation going on in the associated space-time diagram.112

• The construction, without any computation, needs to have a very simple113

limit set, i.e. it needs to be computable, and in particular countable; this114
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to ensure that no complexity overhead will be added to any configuration115

containing the oracle, and that “unuseful” configurations of the limit set – the116

configurations that do not appear in a space-time diagram corresponding to117

a computation – will be computable.118

• The computation of the embedded Turing machine needs to go backwards,119

this to ensure that we can have the non-determinism. And an error in the120

computation must ensure that there is no infinite sequence of preimages.121

• The computation needs to have a beginning (also to ensure the presence of122

a head), so the construction needs some marked beginning, and the oracle123

and tapes have to disappear at this point, otherwise by compactness the124

part without any computation could be extended bi-infinitely to contain125

any member of {0, 1}N, thus leading to the full set of Turing degrees.126

There are other constraints that we will discuss during the construction, as they127

arise.128

In order to make a construction complying to all these constraints, we reuse, with129

heavy modifications, an idea of Jeandel and Vanier [JV13b], which is to construct130

a sparse grid. However, their construction, being meant for subshifts, requires to131

be completely rethought in order to work for CAs. In particular, there was no132

determinism in this construction, and the oracle tape did not need to appear on a133

single column/row, since their result was on two-dimensional subshifts.134

4. The construction135

4.1. A self-vanishing sparse grid. In order to have space-time diagrams that136

constitute sparse grids, the idea is to have columns of squares, each of these columns137

containing less and less squares as we move to the left, see fig. 1. The CA has three138

categories of states:139

• a killer state, which is a spreading state that erases anything on its path;140

• a quiescent state, represented in white in the figures; its sole purpose is to141

mark the spaces that are “outside” the construction;142

• some construction states, which will be constituted of signals and background143

colors.144

In order to ensure that just with the signals themselves it is not possible to145

encode anything non-computable in the limit set, all signals will need to have at all146

points in time different colors on their left and right, otherwise a killer state will147

arise. Here are the main signals.148

• Vertical lines: serve as boundaries between columns of squares and form the149

left/right sides of the squares.150

• SW-NE and SE-NW diagonals: used to mark the corners of the squares,151

they are signals of respective speeds 1 and −1. Each time they collide with152

a vertical line (except for the last square of the row), they bounce and start153

the converse diagonal of the next square.154

• Counting signal: will count the number of squares inside a column; every155

time it crosses the SW-NE diagonal of a square it will shift to the left. When156

it is superimposed to a vertical line, it means that the square is the last of157

its column, so when it crosses the next SE-NW diagonal, it vanishes and158

with it the vertical line.159
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• Starting signals: used to start the next column to the left, at the bottom of160

one column. Here is how they work.161

– The bottommost signal, of speed − 1
4 , is at the boundary between162

the empty part of the space-time diagram and the construction. It is163

started 4 time steps after the collision with the signal of speed − 1
3 .164

– The signal of speed − 1
3 is started just after the vertical line sees the165

incoming SE-NW diagonal of the first square of the row on the right,166

at distance 33 (the diagonal will collide with the vertical line 2 time167

steps after the start of that signal).168

– At the same time as the signal of speed − 1
3 is created, a signal of169

speed − 1
2 is generated. When this signal collides with the bottommost170

signal, it bounces into a signal of speed 1
4 that will create the first171

SE-NW diagonal of the first square of the row of squares of the left,172

4 time steps after it will collide with the vertical line.173

On top of the construction states, except on the vertical lines, we add a parity174

layer {0, 1}: on a configuration, two neighboring cells of the construction must have175

different parity bits, otherwise a killer state appears. On the left of a vertical line176

there has to be parity 1 and on the right parity 0, otherwise the killer state pops up177

again. This is to ensure that the columns will always contain an even number of178

squares.179

The following lemmas address which types of configurations may occur in the180

limit set of this CA. First note that any configuration wherein the construction181

states do not appear in the right order do not have a preimage.182

Lemma 4.1. The sequence of preimages of a segment ended by consecutive vertical183

lines (and containing none) is a slice of a column of squares of even side.184

Proof. Suppose a configuration contains two vertical line symbols, then to be in the185

limit set, in between these two symbols there needs to be two diagonal symbols, one186

for the SE-NW one and one for SW-NE one, a symbol for the counting signal, and187

in between these signals there needs to be the appropriate colors: there is only one188

possibility for each of them. If this is not the case, then the configuration has no189

preimage.190

Also, the distance between the first vertical line and the SE-NW diagonal needs191

to be the same than the distance between the second vertical line and the SW-NE192

diagonal, otherwise the signals at the bottom – the ones starting a column, that193

are the only preimages of the first diagonals – would have, in one case, created a194

vertical line in between, and in the other case, not started at the same time on the195

right vertical.196

The side of the squares is even, otherwise the parity layer has no preimage. �197

Lemma 4.2. A configuration of the limit set containing at least three vertical-line198

symbols needs to verify, for any three consecutive symbols, that if the distance between199

the first one and the second one is k, then the distance between the second one and200

the third one needs to be (k + 2).201

Proof. Let us take a configuration containing at least three vertical-line symbols,202

take three consecutive ones. The states between them have to be of the right form203

as we said above. Suppose the first of these symbols is at distance k1 of the second204

3That can be done, provided the radius of the CA is large enough.
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4
3
2
1

2
1

time

Figure 1. The sparse grid construction: it is based on columns
containing a finite number of squares, whose number decreases
when we go left. Note that the figure is squeezed vertically.

one, which is at distance k2 of the third one. This means that the first (resp. second)205

segment defines a column of squares of side k1 (resp. k2). It is clear that the second206

column of squares cannot end before the first one.207

Now let i be the position of the counting signal of the first column and j the208

distance between the SW-NE diagonal and the left vertical line. The preimage of209

the first segment ends (k1i+ j) (resp. (k1(i− 1) + j)) steps before if the counting210

signal is on the left (resp. right) of the SW-NE diagonal. Then, the preimages of211

the left and right vertical lines of this column are the creating signals. Before the212

signal created on the right bounces on the one of speed − 1
4 created on the left, it213

collides with the one of speed − 1
3 , thus determining the height of the squares on214

the right column of squares. So k1 = k2 − 2. �215
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Lemma 4.3. A configuration having two vertical line symbols pertaining to the216

limit set needs to verify one of the following statements.217

• It is constituted of a finite number of vertical lines.218

• It appears in the space-time diagram of fig. 1.219

• It is constituted of an infinite number of vertical lines, then starting from220

some position it is equal on the right to some (shifted) line of fig. 1.221

Proof. We place ourselves in the case of a configuration of the limit set. Because222

of lemma 4.1, two consecutive vertical lines at distance k from each other define223

a column of squares. In a space-time diagram they belong to, on their left there224

necessarily is another column of squares, because of the starting signal generated225

at the beginning of the left vertical line, except when k = 3, in which case there is226

nothing on the left. In this column, the vertical lines are at distance (k − 2), see227

lemma 4.2. So, if there is an infinite number of vertical lines, either it is of the228

form of fig. 1, or there is some killer state coming from infinity and “eating” the229

construction. �230

4.2. Backward computation inside the grid. We now wish to embed the com-231

putation of a reversible Turing machine inside the aforementioned sparse grid, which232

for this purpose is better seen as a lattice. The fact the TM is reversible allows us to233

embed it backwards in the CA. We will below denote by TM time (resp. CA time)234

the time going forward for the Turing machine (resp. the CA); on a space-time235

diagram, TM time goes from top to bottom, while CA time goes from bottom to236

top (cf. arrows in fig. 2a). That way, the beginning of the computation of the TM237

will occur in the first (topmost) square of the first (leftmost) column of squares.238

We have to ensure that any computation of the TM is possible, and in particular239

ensure that such a computation is consistent over time; the idea is that at the first240

TM time step, i.e. the moment the sparse grid disappears, the tape is on each of241

the vertical line symbols, but since these all disappear a finite number of CA steps242

before, we have to compel all tape cells to shift to the right regularly as TM time243

increases.244

Moreover, we want to force the presence of exactly one head (there could be245

none if it were, for instance, infinitely far right). To do that, the grid is divided246

into three parts that must appear in this order (from left to right): the left of the247

head, the right of the head (together referred to as the computation zone) and the248

unreachable zone (where no computation can ever be performed), resp. in blue,249

yellow and green in fig. 2a.250

The vertices of our lattice are the top left corners of the squares, each one marked251

by the rebound of a SE-NW diagonal on a vertical line, while the top right corners252

will just serve as intermediate points for signals. More precisely, if we choose253

(arbitrarily) the top left corner of the first square of the first column to appear at254

site (0, 0), then for any i, j ∈ N, the respective sites for the top left and top right255

corners of si,j , the (j + 1)-th square of the (i + 1)-th column, are the following256

(cf. fig. 2a):257 {
s`i,j = (i(i+ 1),−2(i+ 1)j)
sri,j = ((i+ 1)(i+ 2),−2(i+ 1)j).

Fig. 2b illustrates a computation by the TM, with the three aforementioned zones,258

as it would be embedded the usual way (but with reverse time) into a CA, with259

site (i,−t) corresponding to the content of the tape at i ∈ N and TM time t ∈ N.260
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Fig. 2c represents another, still simple, embedding, which is a distortion of the261

previous one: the head moves every even time step within a tape that is shifted262

every odd time steps, so that instead of site (i,−t), we have two sites, (i+ t,−2t)263

and (i+ t,−2t− 1), resp. the computation site (big circle on fig. 2c) and the shifting264

site (small circle on fig. 2c). The head only reads the content of the tape when it265

lies on a computation site. This type of embedding can easily be realized forwards266

or backwards (provided the TM is reversible).267

Our embedding, derived from the latter, is drawn on fig. 2a. The “only” difference268

is the replacement of sites (i + t,−2t) and (i + t,−2t − 1) by sites s`i,t and s`i,t+1.269

Notice that as the number of squares in a column is always finite, each square can270

“know” whether its top left corner is a computation or a shifting site with a parity bit.271

More precisely, the j-th square (from bottom to top) of a column has a computation272

site on its top left if and only if j is even.273

Let si,j be a square of our construction. s`i,j is either a computation site or a274

shifting site. In the latter case, it is supposed to receive the content of a cell of275

the TM tape with an incoming signal of speed −1. All it has to do is to send it276

to s`i,j−1 (at speed 0), which is a computation site. In the former case, however,277

things a slightly more complicated. The content of the tape has to be transmitted278

to s`i−1,j−1 (which is a shifting site). To do that, a signal of speed 0 is sent and279

waits for site sri−1,j , which sends the content to s`i−1,j−1 with a signal of speed −1280

along the SE-NW diagonal. The problem is to recognize which sr site is the correct281

one. Fortunately, there are only two possibilities: it is either the first or the second282

sr site to appear after (in CA time, of course) s`i,j on the vertical line. The first case283

corresponds exactly to the unreachable zone (where j ≤ i), hence the result if the284

three zones are marked. The lack of other cases is due to the number of si squares,285

which is only 2(i+ 1).286

Another issue is the superposition of such signals. Here again, there are only287

two cases: in the unreachable zone there is none, whereas in the computation zone288

a signal of speed 0 from a computation site can be superimposed to the signal of289

speed 0 sent by the shifting site just above it. As aforesaid, there is no other case290

because of the limited number of si squares. Thus, there is no problem to keep the291

number of states of the CA finite, since the number of signals going through a same292

cell is limited to two at the same time.293

While the two parts of the computation zones are to be separated by the presence294

of a head, the unreachable zone is at the right of signal a which is sent from any295

computation site that has two diagonals (one from the left and one from the right)296

below it (indicated as circles on fig. 1), goes at speed 0 until the next sr site, then297

at speed 1 (along SE-NW diagonals) to the second next shifting site, and finally298

at speed 0 again, to the next computation site (cf. fig. 2a), which also has two299

diagonals below it if the grid contains no error.300

Now only the movements of the head remain to be described (in black on fig. 2a).301

Let s`i,j be a computation site containing the head.302

• If the previous move of the head (previous because we are in CA time, that303

is, in reverse TM time) was to the left, the next computation site is the one304

just above, that is, s`i,j−2. The head is thus transferred by a simple signal305

of speed 0.306

• If the previous move was to stand still, the next computation site is s`i−1,j−2.307

It can be reached by a signal of speed 0 until the second next sr site, from308
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which a signal of speed −1 (along a SE-NW diagonal) is launched, to be309

replaced by another signal of speed 0 from s`i−1,j−1 on.310

• If the previous move was to the right, the next computation site is s`i−2,j−2.311

It can be reached by a signal of speed 0 until the second next sr site, from312

which a signal of speed −1 (along a SE-NW diagonal) is launched, to be313

replaced by another signal of speed 0 from s`i−1,j−1 on, which itself waits for314

the next sr site (which is sri−2,j) to start another signal of speed 1 (along315

a SW-NE diagonal) that is finally succeeded to by a last signal of speed 0316

from s`i−2,j−1 on.317

time

CA TM

(a)

(b)

(c)

Figure 2. The embedding of a Turing machine computation in
the sparse grid (2a), compared to the usual embedding (2b) and
a slightly distorted one (2c). The paths followed by the content
of each cell of the tape are in red and orange (two colors just to
keep track of the signals), while the one of the head is in black.
The arrows indicate the next move of the head (for TM time, going
towards the bottom). The green background denotes the zone the
head cannot reach, while the computation zone is in blue on the
left of the head and in yellow on its right.
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4.3. The computation itself. As we said before, the computation will take place318

on the computation sites, which will contain two kinds of tape cells: one for the319

oracle and one for the work. In the unreachable zone there are only oracle cells,320

which do not change over time except for the shifting. Now we want to eliminate321

all space-time diagrams corresponding to rejecting computations of some Turing322

machine M . Bennett [Ben73] has proved that for any Turing machine, we can323

construct a reversible one computing the same function. So a first idea would just324

be to encode this reversible Turing machine in the sparse grid; however there is no325

way to guarantee that the work tape that was non-deterministically inherited from326

the past corresponds to a valid configuration and by the time the Turing machine327

“realizes” this it will be too late, there will already exist configurations containing328

some oracle that we would otherwise have rejected.329

The solution to this problem is to use a robust Turing machine in the sense of330

Hooper [Hoo66], that is to say a Turing machine that regularly rechecks its whole331

computation. Kari and Ollinger [KO08] have constructed reversible such machines.332

In these constructions the machines constructed were working on a bi-infinite tape,333

which had the drawback that some infinite side of the tape might not be checked;334

here it is not the case, hence we can modify the machine so that on an infinite335

computation it visits all cells of the tape (we omit the details for brevity’s sake).336

In terms of limit sets, this means that if some oracle is rejected by the machine,337

then it must have been rejected an infinite number of times in the past (CA time).338

So, only oracles pertaining to the desired class may appear in the limit set.339

Furthermore, even if some killer state coming from the right eats the grid, at340

some point in the past of the CA, it will be in the unreachable zone, and stay341

there for ever, so the computation from that moment on even ensures that the342

oracle computed is correct. Though, that doesn’t matter, because in this case the343

configurations of the corresponding space-time diagram that are in the limit set are344

uniform both on the right and on the left except for a finite part in the middle, and345

are hence computable.346

5. Cantor-Bendixson rank of limit sets347

The Cantor-Bendixson derivative of some set S ⊆ ΣZ, with Σ finite, is noted348

D (S) and consists of all configurations of S except the isolated ones. A configuration349

c is said to be isolated if there exists a pattern P such that c is the only configuration350

of S containing p (up to a shift). For any ordinal λ we can define S(λ), the351

Cantor-Bendixson derivative of rank λ, inductively:352

S(0) = S
S(λ+1) = D

(
S(λ)

)
S(λ) =

⋂
γ<λ

S(γ).

The Cantor-Bendixson rank of S, denoted by CB (S), is defined as the first353

ordinal λ such that S(λ+1) = S(λ). In particular, when S is countable, S(CB(S)) is354

empty. An element s is of rank λ in S if λ is the least ordinal such that s /∈ S(λ).355

For more information about Cantor-Bendixson rank, one may skim [Kec95].356

The Cantor-Bendixson rank corresponds to the height of a configuration cor-357

responding to a preorder on patterns as noted by Ballier, Durand, and Jeandal358
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[BDJ08].Thus, it gives some information on the way the limit set is structured359

pattern-wise. A straightforward corollary of the construction above is the following.360

Corollary 5.1. There exists a constant c ≤ 10 such that for any Π0
1 class S, there361

exists a CA A such that362

CB (Ω (A)) = CB (S) + c.

Here the constant corresponds to the pattern overhead brought by the sparse-grid363

construction.364
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