On the information carried by programs about the objects they compute

Mathieu Hoyrup and Cristóbal Rojas

LORIA - Inria, Nancy (France)
The problem

Let p be a program. Two possible types of access to p:

(i) Running p.

(ii) Reading the code of p.

Having the code of p enables one to execute p, but not vice-versa.
Let p be a program. Two possible types of access to p:

(i) **Running** p.

(ii) **Reading** the code of p.

Having the code of p enables one to execute p, but not vice-versa.

Main questions

- Does it make a difference?
- Does the code of a program give more information about what it computes?
The problem

Historical results

New results

Limitations
Halting problem

Running \(p \), one can only semi-decide whether \(p \) halts.
Halting problem

Running p, one can only semi-decide whether p halts.

Theorem (Turing, 1936)

Reading the code of p, a computer cannot do better.
Rice theorem

A program p computes a partial function f.

What can be decided about f?
Rice theorem

A program p computes a partial function f.

What can be **decided** about f?

Answer

Running p, only trivial properties: the decision about $\lambda x. \bot$ applies to every f.
Rice theorem

A program p computes a partial function f.

What can be decided about f?

Answer

Running p, only trivial properties: the decision about $\lambda x. \bot$ applies to every f.

Theorem (Rice, 1953)

Reading the code of p, *a computer cannot do better.*
Rice-Shapiro theorem

A program p computes a partial function f.

What can be \textbf{semi-decided} about f?
Rice-Shapiro theorem

A program p computes a partial function f.

What can be **semi-decided** about f?

Answer

Running p, exactly the properties of the form:

\[(f(a_1) = u_1 \land \ldots \land f(a_i) = u_i) \lor (f(b_1) = v_1 \land \ldots \land f(b_j) = v_j) \lor (f(c_1) = w_1 \land \ldots \land f(c_k) = w_k) \lor \ldots\]
Rice-Shapiro theorem

A program p computes a partial function f.

What can be **semi-decided** about f?

Answer

Running p, exactly the properties of the form:

$$(f(a_1) = u_1 \land \ldots \land f(a_i) = u_i)$$

$$(f(b_1) = v_1 \land \ldots \land f(b_j) = v_j)$$

$$(f(c_1) = w_1 \land \ldots \land f(c_k) = w_k)$$

\lor ...

Theorem (Rice-Shapiro, 1956)

Reading the code of p, a computer cannot do better.
Kreisel-Lacombe-Schoenfield/Ceitin theorem

Now assume that program p computes a total function f.

What can be decided/semi-decided about f?
Kreisel-Lacombe-Schoenfield/Ceitin theorem

Now assume that program \(p \) computes a total function \(f \).

What can be decided/semi-decided about \(f \)?

Theorem (Kreisel-Lacombe-Schoenfield/Ceitin, 1957/1962)

For properties of total computable functions,

\[
\text{read-decidable} \iff \text{run-decidable}.
\]
Kreisel-Lacombe-Schoenfield/Ceitin theorem

Now assume that program p computes a **total** function f.

What can be **decided/semi-decided** about f?

Theorem (Kreisel-Lacombe-Schoenfield/Ceitin, 1957/1962)

For properties of total computable functions,

\[
\text{read-decidable } \iff \text{run-decidable.}
\]

It makes a difference!

Theorem (Friedberg, 1958)

For properties of total computable functions,

\[
\text{read-semi-decidable } \nRightarrow \text{run-semi-decidable.}
\]
Two computation models: read\(^1\) and run\(^2\).

<table>
<thead>
<tr>
<th>Class of functions</th>
<th>Decidability</th>
<th>Semi-decidability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial</td>
<td>read ≡ run _ _ _ _ Rice _ _ _ _</td>
<td>read ≡ run _ _ _ _ Rice-Shapiro _ _ _</td>
</tr>
<tr>
<td>Total</td>
<td>read ≡ run _ _ _ _ Kreisel-Lacombe-Schönfield/Ceitin _ _ _</td>
<td>read > run _ _ _ _ Friedberg _ _ _</td>
</tr>
</tbody>
</table>
Sum up

Two computation models: \(\text{read}^1 \) and \(\text{run}^2 \).

<table>
<thead>
<tr>
<th>Class of functions</th>
<th>Decidability</th>
<th>Semi-decidability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial</td>
<td>(\text{read} \equiv \text{run}) (\text{Rice})</td>
<td>(\text{read} \equiv \text{run}) (\text{Rice-Shapiro})</td>
</tr>
<tr>
<td>Total</td>
<td>(\text{read} \equiv \text{run}) (\text{Kreisel-Lacombe-Schöenfield/Ceitin})</td>
<td>(\text{read} \succ \text{run}) (\text{Friedberg})</td>
</tr>
</tbody>
</table>

Let’s now look at Friedberg’s example.

\(^1\) usually called Markov computability
\(^2\) usually called Type-2 computability
Kolmogorov complexity

- Let $K(n) = \min\{|p| : \text{program } p \text{ computes } n\}$.
- $K(n) \leq \log(n) + O(1)$.
- n is **compressible** if $K(n) < \log(n)$.
- There are infinitely many incompressible numbers.
- Inequality $K(n) \leq k$ is semi-decidable.
Friedberg’s property

Given a total function $f \neq \lambda x.0$, let

$$n_f = \min\{n : f(n) \neq 0\}.$$

Friedberg’s property is

$$P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$$
Friedberg’s property

Given a total function \(f \neq \lambda x.0 \), let

\[n_f = \min\{n : f(n) \neq 0\}. \]

Friedberg’s property is

\[P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}. \]

Semi-deciding \(f \in P \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Friedberg’s property

Given a total function \(f \neq \lambda x.0 \), let

\[
 n_f = \min\{n : f(n) \neq 0\}.
\]

Friedberg's property is

\[
 P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.
\]

Semi-deciding \(f \in P \)

\[
 \begin{array}{cccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \ldots \\
 f(n) & 0 & & & & & & & \\
 \end{array}
 \]
Friedberg’s property

Given a total function $f \neq \lambda x.0$, let

$$n_f = \min\{n : f(n) \neq 0\}.$$

Friedberg's property is

$$P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$$

Semi-deciding $f \in P$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Friedberg’s property

Given a total function \(f \neq \lambda x.0 \), let

\[
n_f = \min\{n : f(n) \neq 0\}.
\]

Friedberg’s property is

\[
P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.
\]

Semi-deciding \(f \in P \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Friedberg’s property

Given a total function $f \neq \lambda x.0$, let

$$n_f = \min \{n : f(n) \neq 0\}.$$

Friedberg’s property is

$$P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$$

Semi-deciding $f \in P$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Friedberg’s property

Given a total function \(f \neq \lambda x.0 \), let

\[
n_f = \min\{n : f(n) \neq 0\}.
\]

Friedberg’s property is

\[
P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.
\]

Semi-deciding \(f \in P \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Friedberg’s property

Given a total function $f \neq \lambda x.0$, let

$$n_f = \min\{n : f(n) \neq 0\}.$$

Friedberg’s property is

$$P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$$

Semi-deciding $f \in P$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Friedberg’s property

Given a total function $f \neq \lambda x.0$, let

$$n_f = \min \{ n : f(n) \neq 0 \}.$$

Friedberg’s property is

$$P = \{ \lambda x.0 \} \cup \{ f : n_f \text{ is compressible} \}.$$

Semi-deciding $f \in P$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Friedberg’s property

Given a total function $f \neq \lambda x.0$, let

$$n_f = \min\{n : f(n) \neq 0\}.$$

Friedberg’s property is

$$P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$$

Semi-deciding $f \in P$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

When is it time to accept f?
Friedberg’s property

Given a total function $f \neq \lambda x.0$, let

$$n_f = \min\{n : f(n) \neq 0\}.$$

Friedberg’s property is

$$P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$$

Semi-deciding $f \in P$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
</tr>
</tbody>
</table>

When is it time to accept f?

- If f is given by running p, we can never know.
Friedberg’s property

Given a total function $f \neq \lambda x.0$, let

$$n_f = \min\{n : f(n) \neq 0\}.$$

Friedberg’s property is

$$P = \{\lambda x.0\} \cup \{f : n_f \text{ is compressible}\}.$$

Semi-deciding $f \in P$

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

When is it time to accept f?

- If f is given by running p, we can never know.
- If f is given by the code of p then evaluate f up to $2^{|p|}$.
<table>
<thead>
<tr>
<th>The problem</th>
<th>Historical results</th>
<th>New results</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Historical results</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>New results</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limitations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let \(x \) be an object. All the programs computing \(x \) share some common information about \(x \):

- The information needed to recover \(x \),
- Plus some extra information about \(x \).

Question

What is the extra information?
Let x be an object. All the programs computing x share some common information about x:

- The information needed to recover x,
- Plus some extra information about x.

Question

What is the extra information?

Answer

They bound the Kolmogorov complexity of x!
We define

$$K(f) = \min\{|p| : p \text{ computes } f\}.$$

Theorem

Let P be a property of total functions. The following are equivalent:

- $f \in P$ is **read-semi-decidable**,
- $f \in P$ is **run-semi-decidable** given any upper bound on $K(f)$.

In other words, the **only** useful information provided by a program p for f is:

- the graph of f (by **running** p),
- an upper bound on $K(f)$ (namely, $|p|$).
More general results

The result is much more general and holds for:

- many classes of objects other than total functions
 (real numbers, subsets of \mathbb{N}, points of a countably-based topological space)
- many computability notions other than semi-decidability
 (computable functions, n-c.e. properties, Σ_2^0 properties).
More general results

The result is much more general and holds for:

- many classes of objects other than total functions
 (real numbers, subsets of \(\mathbb{N} \), points of a countably-based topological space)
- many computability notions other than semi-decidability
 (computable functions, \(n \)-c.e. properties, \(\Sigma^0_2 \) properties).

For instance,

Theorem (Computable functions)

Let \(X, Y \) be effective topological spaces and \(f : X \to Y \).

\[
\text{\(f \) is read-computable} \iff \text{\(f \) is (run,K)-computable.}
\]
Example: \(n \)-c.e. properties of partial functions

Theorem (Selivanov, 1984)

There is a property of partial functions that is

- 2-c.e. in the read-model,
- not 2-c.e. (and not even \(\Pi^0_2 \)) in the run-model.
Example: \(n \)-c.e. properties of partial functions

Theorem (Selivanov, 1984)

There is a property of partial functions that is

- \(2 \)-c.e. in the read-model,
- not \(2 \)-c.e. (and not even \(\Pi^0_2 \)) in the run-model.

Again,

Theorem

Let \(P \) be a property of partial functions. The following are equivalent:

- \(P \) is \(n \)-c.e. in the read-model,
- \(P \) is \(n \)-c.e. in the (run,K)-model.
The problem

<table>
<thead>
<tr>
<th>Historical results</th>
<th>New results</th>
<th>Limitations</th>
</tr>
</thead>
</table>

Applications

Effective Borel complexity of semi-decidable properties

Theorem

Every property that is read-semi-decidable is Π^0_2.

Applications

Effective Borel complexity of semi-decidable properties

Theorem

Every property that is read-semi-decidable is Π_2^0.

This is tight.

Theorem

There is a read-semi-decidable property of binary sequences that is not Σ_2^0.

$$x \in P \iff \forall n, K(x_0 \ldots x_{n-1}) < \log(n).$$
Applications

Space of objects: \(\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\} \). A program \(p \):

- computes \(\infty \) if \(p \) outputs \(0000000000 \ldots \),
- computes \(n \) if \(p \) outputs \(00 \ldots 01 \ldots \)

Examples of run-semi-decidable sets

- Singleton \(\{n\}, n \in \mathbb{N} \),
- Semi-line \([n, \infty], n \in \mathbb{N} \),
Applications

Space of objects: \(\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\} \). A program \(p \):

- computes \(\infty \) if \(p \) outputs \(0000000000 \ldots \),
- computes \(n \) if \(p \) outputs \(00 \ldots 01 \ldots \) _\(n \)_.

Examples of run-semi-decidable sets

- Singleton \(\{n\}, n \in \mathbb{N} \),
- Semi-line \([n, \infty], n \in \mathbb{N}\),

Examples of read-semi-decidable sets

- Friedberg’s set \(F = \{n \in \mathbb{N} : K(n) < \log(n)\} \cup \{\infty\} \),
- More generally \(F_h = \{n \in \mathbb{N} : K(n) < h(n)\} \cup \{\infty\} \).
Applications

Space of objects: \(\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\} \). A program \(p \):
- computes \(\infty \) if \(p \) outputs \(0000000000 \ldots \),
- computes \(n \) if \(p \) outputs \(00 \ldots 01 \ldots \). \(n \)

Examples of run-semi-decidable sets

- Singleton \(\{n\}, n \in \mathbb{N} \),
- Semi-line \([n, \infty] \), \(n \in \mathbb{N} \),

Examples of read-semi-decidable sets

- Friedberg’s set \(F = \{n \in \mathbb{N} : K(n) < \log(n)\} \cup \{\infty\} \),
- More generally \(F_h = \{n \in \mathbb{N} : K(n) < h(n)\} \cup \{\infty\} \).

Theorem

That’s it!
A Rice-like theorem for primitive recursive functions

Space of objects: primitive recursive functions. Here, only primitive recursive programs are allowed.

Example of run-decidable property

\[f(0) = 1 \land f(1) = 2 \land f(2) = 4 \]
A Rice-like theorem for primitive recursive functions

Space of objects: primitive recursive functions. Here, only primitive recursive programs are allowed.

Example of run-decidable property

\[f(0) = 1 \land f(1) = 2 \land f(2) = 4 \]

Example of read-decidable property

\[\forall n, K_{pr}(f \upharpoonright_n) < h(n) \]
A Rice-like theorem for primitive recursive functions

Space of objects: primitive recursive functions. Here, only primitive recursive programs are allowed.

Example of run-decidable property

\[f(0) = 1 \land f(1) = 2 \land f(2) = 4 \]

Example of read-decidable property

\[\forall n, K_{pr}(f \upharpoonright n) < h(n) \]

Theorem

That’s it!

Idem for FPTIME, provably total functions, etc.
<table>
<thead>
<tr>
<th>The problem</th>
<th>Historical results</th>
<th>New results</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“The only extra information shared by programs computing an object is bounding its Kolmogorov complexity.”

True to a large extent
See previous results.

Not always true
See next results.
Does the result hold relative to any oracle?

- On partial functions, **NO**.
- On total functions, **YES**.
Relativization

Properties of \textbf{partial} functions.

\textbf{Reminder: Rice-Shapiro theorem}

\begin{align*}
\text{read-semi-decidable} & \iff (\text{run}, \text{K})\text{-semi-decidable} \\
& \iff \text{run-semi-decidable}
\end{align*}

However,

\textbf{Proposition}

\textit{For some oracle } \mathcal{A} \subseteq \mathbb{N},

\begin{align*}
\text{read-semi-decidable}^\mathcal{A} & \not\iff (\text{run}, \text{K})\text{-semi-decidable}^\mathcal{A} \text{ (when } \mathcal{A} \text{ computes } \text{Halt)} \\
& \iff \text{run-semi-decidable}^\mathcal{A} \quad \text{ (when } \mathcal{A} \text{ computes } \text{Tot)}
\end{align*}
Properties of total functions.

Theorem

For each oracle $A \subseteq \mathbb{N}$,

\[\text{read-semi-decidable}^A \iff (\text{run},K)-\text{semi-decidable}^A \]

There are two cases, whether A computes Halt or not.

Theorem

There is no uniform argument.
Computable functions

Reminder
Let \(X, Y \) be countably-based topological spaces and \(f : X \to Y \).

\[
f \text{ is read-computable } \iff f \text{ is (run,K)-computable.}
\]

What about non-countably-based spaces?

Theorem

Equivalence is broken for some \(Y \).
Computable functions

Reminder

Let X, Y be countably-based topological spaces and $f : X \rightarrow Y$.

f is read-computable $\iff f$ is (run,K)-computable.

What about non-countably-based spaces?

Theorem

Equivalence is broken for some Y.

Open question

What about X?
Future work

- What are the read-semi-decidable properties of total functions?
- Precise limits of the equivalence $\text{read} \equiv (\text{run},K)$?
- The objects always lived in effective topological spaces. What about other spaces?