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@ A brief history of Set Theory




The work of Cantor




The work of Cantor

In the second half of the 19th centlulr'y., germén mathematician, Georg
Cantor laid the foundations of set theory. He defined, ordinal and
cardinal numbers, and developed their arithmetic.
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Cantor’s work provoked a lot of controversy.

Henri Poincaré, the great |

| French genivs, a strong
belizver n Hhe Tmpertance
of huwian intuttion.
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Definition
Let X and'Y be sets. We write X <Y if there is an injection from X
toY. We write X ~Y if there is a bijection between X etY .

X Y
1 d
2 > b
3 >C
4 a




Theorem (Cantor - Bernstein)
Suppose that X <Y andY < X. Then X =Y.
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Proposition
X is infinite iff X ~ X ~ {x}, for any x € X.
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Theorem (Cantor - Bernstein)
Suppose that X <Y andY < X. Then X =Y.

Proposition
X is infinite iff X ~ X ~ {x}, for any x € X.

Definition
X is countable if X ~ N.

Proposition (Cantor)

@ If A, is countable, for all n, then \U,, A,, is countable.
@ A"~ A, for any infinite set A and integer n > 1.
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However, there are infinite sets that are not countable. By the famous
diagonal argument we have.




However, there are infinite sets that are not countable. By the famous
diagonal argument we have.

Theorem (Cantor)

The set of reals R is uncountable.
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However, there are infinite sets that are not countable. By the famous
diagonal argument we have.

Theorem (Cantor)

The set of reals R is uncountable.

Cantor spent the rest of his life trying to prove the following.




However, there are infinite sets that are not countable. By the famous
diagonal argument we have.

Theorem (Cantor)
The set of reals R is uncountable.

Cantor spent the rest of his life trying to prove the following.

Continuum Hypothesis (CH)
Let X be an infinite set of reals. Then either X ~ N or X ~ R.




Zermelo-Fraenkel set theory

Following a tumultuous period in the Foundations of Mathematics, in
the early 20th century, Ernst Zermelo and Abraham Fraenkel
formulated set theory as a first order theory ZF whose only
nonlogical symbol is €. This was later augmented by adding the
Axiom of Choice.
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ZFC axioms

The axioms of Zermelo-Fraenkel set theory with choice ZFC

In principle all of mathematics can be derived from these axioms

Extensionality VXYY [X =Y & Vz(zeX & zeV)]

Pairing VeVy3ZVz[z€Z & z=xzorz=y]

Union VX3IYVylyeY & 3Z(ZeXandyeZ)]

Empty set IXVy |y ¢ X| (this set X is denoted by )

Infinity X[ e X andVz(z € X = zU{z} € X)]

Power set VX3IYVZ(ZeY & VixzeZ = z€X)]

Replacement Vee X3y Plz,y) = [F¥VVylyeY & JzeX (Py)))]
Regularity VX[X#40 = I eX(XnYy="0)

Axiom of choice VX [0 ¢ X andVY,Z e X(Y #Z =Y NZ=10)
= WVZeX3AzeZ(zeY)]

¥ = for all 3! = there exists a unique P is any formula that does not contain Y’

ze€XUY & zeXorzeVY zeXNY & zeXandzeY

[J—mﬁ
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Ordinals

In principle, all of mathematics can be carried out in ZFC. So it is
important to understand its strengths and limitations. The basic
concept is that of an ordinal, which is a generalization of an integer.
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Ordinals

In principle, all of mathematics can be carried out in ZFC. So it is
important to understand its strengths and limitations. The basic
concept is that of an ordinal, which is a generalization of an integer.

Definition

@ A well order on a set X is a total order < on X such that every
nonempty subset of X has a minimal element.
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Ordinals

In principle, all of mathematics can be carried out in ZFC. So it is
important to understand its strengths and limitations. The basic
concept is that of an ordinal, which is a generalization of an integer.

Definition
@ A well order on a set X is a total order < on X such that every
nonempty subset of X has a minimal element.

@ Anordinal is a set o which is transitive (i.e. if T € y € o then
x € ) and well ordered by e.
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We have:
0:=g,
1:={0} = {a@},
2:={0,1} ={o,{2}},
3:= {07 L, 2} = {Qv {®}7 {®7 {@}}},

w:={0,1,2,3,...},
w+1:={0,1,2,3,...,w},

w-2=w+w={0,1,2,3,...,w,w+ L,w+2,w+3,...},

w?={0,1,...,w,w+1,...,w-2,w-2+1,...,.w-nw-n+1,...},
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Definition

@ The successor of an ordinal « is the ordinal o + 1 = a U {a}.
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Definition
@ The successor of an ordinal « is the ordinal o + 1 = a U {a}.

@ An ordinal o is limit if o > 0 and « is not a successor. The least
limit ordinal is w.
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Definition

@ The successor of an ordinal « is the ordinal o + 1 = a U {a}.

@ An ordinal o is limit if o > 0 and « is not a successor. The least
limit ordinal is w.

Definition
A cardinal is an ordinal o such that o # f3, for all f < «




Definition

@ The successor of an ordinal « is the ordinal o + 1 = a U {a}.

@ An ordinal o is limit if o > 0 and « is not a successor. The least
limit ordinal is w.

Definition
A cardinal is an ordinal o such that o % B, for all 5 < «

Remark

@ All integers are cardinals, as well as w. The ordinals
w+1l,w+2,...,w-2,...,are not cardinals.
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Definition

@ The successor of an ordinal « is the ordinal o + 1 = a U {a}.

@ An ordinal o is limit if o > 0 and « is not a successor. The least
limit ordinal is w.

Definition
A cardinal is an ordinal o such that o % B, for all 5 < «

Remark

@ All integers are cardinals, as well as w. The ordinals
w+1l,w+2,...,w-2,...,are not cardinals.

@ The first cardinal > w is denoted by w; or Ry, the second ws or
Ro, €fC.




Von Neumann’s Cumulative Hierarchy

We define the cumulative hierarchy.
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Von Neumann’s Cumulative Hierarchy

We define the cumulative hierarchy.

°oWo=2,

o (Successor case) V41 = P(Vy), for all o, where P(X) is the
powerset of X,
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Von Neumann’s Cumulative Hierarchy

We define the cumulative hierarchy.

o V=g,

o (Successor case) V41 = P(Vy), for all o, where P(X) is the
powerset of X,

o (Limit case) Vo, = U{V¢ : £ < a}, for all limit o,

fe!
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Von Neumann’s Cumulative Hierarchy

We define the cumulative hierarchy.

°o Vo=2a,

o (Successor case) V41 = P(Vy), for all o, where P(X) is the
powerset of X,

o (Limit case) Vo, = U{V¢ : £ < a}, for all limit o,

o V=U{V,:aeORD}.
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Von Neumann’s Cumulative Hierarchy

We define the cumulative hierarchy.

°oWo=2,

o (Successor case) V41 = P(Vy), for all o, where P(X) is the
powerset of X,

o (Limit case) Vo, = U{V¢ : £ < a}, for all limit o,
o V=U{V,:aeORD}.

The theory ZF formalizes the first order theory of V.




Von Neumann’s Cumulative Hierarchy




What about Choice?

And what about the Axiom of Choice? Well, it is necessary for some

basic theorems in mathematics...

AXIOM OF CHOICE (AC)

Vector Basis Theorem, DC+BP4+LM{Solovay)
Tychonov's Theorem

DC+BP (Shalah)
ur (cumpadness)

DC (cumpleﬁaness) Garmr-WriSht

&Acchﬁ;.me Continuify Theorem
for [) Hah“ |
Banach h's Closed
TheDrEms Banach's Close
Graph Theorem
TWIF

\ co Uniform Boundedness
Theorems
fon £
¢ )* #h Banach \ |

nnt B [I)I:ESI]_E n Uniform Boundedness
P Theorems for Norms

HE faor separable apaces
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What about Choice?

On the other hand it leads to some strange paradoxes...

| The Banach-Tarski Paradox

® The Banach Tarski Paradox: Let S and T be solid three-dimensional

spheres of possibly different radii. Then S and T are equivalent by
decomposition.
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What about Choice?

And in some countries it is still the topic of hot debate...

SUPRORT

CHOLGCE

WEARMATH.COM

le
1 J-PRG
nstitut de Mathéuatioues
de
Jussieu-paris wive Gauche



Outline

@ Independence results




Models of ZF

ZF is a first order theory, so we can consider models of ZF. A model
of ZF is a set M with a binary relation E such that (M, E) = ZF.
Note that £ may not be the true membership relation e.
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ZF is recursive and contains arithmetic, hence by Godel’s
Incompleteness theorem, if it is consistent then it is incomplete. In
fact, ZF does not prove its own consistency.
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Models of ZF

ZF is a first order theory, so we can consider models of ZF. A model
of ZF is a set M with a binary relation E such that (M, E) = ZF.
Note that £ may not be the true membership relation e.

ZF is recursive and contains arithmetic, hence by Godel’s
Incompleteness theorem, if it is consistent then it is incomplete. In
fact, ZF does not prove its own consistency.

But, wait! Isn’t V a model of ZF'?

Yes! But V is a proper class and the statement that V is a model of
ZF cannot even be expressed as a first order statement by Tarski’s
undefinability of truth.




Relative consistency of CH and AC




Relative consistency of CH and AC

Theorem (Kurt Godel, 1940)

If the theory ZF is consistent, then so is ZFC + CH.



Effective cumulative hierarchy: L

The definable power set

For each set X, Ppes(X) denotes the set of all Y ¢ X which are
logically definable in the structure (X, €).




Effective cumulative hierarchy: L

The definable power set

For each set X, Ppes(X) denotes the set of all Y ¢ X which are
logically definable in the structure (X, €).

e (AC) Ppet(X) = P(X) if and only if X is finite.




Effective cumulative hierarchy: L

The definable power set

For each set X, Ppes(X) denotes the set of all Y ¢ X which are
logically definable in the structure (X, €).

e (AC) Ppet(X) = P(X) if and only if X is finite.

Godel’s constructible universe, I
Define L, by induction on « as follows.
@ Lo=0,
@ (Successor case) Lat1 = Ppet(La),
@ (Limit case) Lo, = U{Lg : 8 < a}, if ais limit,
@ L=U{Ly:aecORD}.




IL is a proper class, i.e. not a set. Formally, we prove the following
metatheorem.
Theorem

@ ZF + (o)~ for every axiom ¢ of ZF,

@ zZF+ (V=L)%

@ ZF+V =L - CH, and

@ ZF+-V=L- AC.




L is a proper class, i.e. not a set. Formally, we prove the following
metatheorem.

Theorem
@ ZF + (o)~ for every axiom ¢ of ZF,
@ zZF+ (V=L)%
@ ZF+~V=L-CH, and
@ ZF+-V=L- AC.

L is the smallest transitive class which is a model of ZF, hence with
this method we cannot prove the independence of CH and AC.
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Independence of CH and AC




Independence of CH and AC

Theorem (Paul Cohen, 1963)

If the theory ZF is consistent, then so are the theories ZFC + -CH
and ZF + -AC.
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@ Forcing
o Generalities
o Fundamental theorem of forcing

o Examples




Cohen’s method of forcing

There are two equivalent ways of presenting forcing.
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Cohen’s method of forcing

There are two equivalent ways of presenting forcing.

One is to work in V, but change the concept of truth. We fix a
complete Boolean algebra B and define the B-valued universe VE. If

@(x1,...,x,) is a formula of set theory, and 71, ..., 7, € V2, we can
define || (71, . .., 7n)||, the B-value of ¢, which measure how much
©(71,...,7y) is true in VB, Then we show that ||¢|| = 1, for every

axiom ¢ of ZF. Moreover, if 1, ..., o, + ¥ then

sl A Allenll < [l




Cohen’s method of forcing

There are two equivalent ways of presenting forcing.

One is to work in V, but change the concept of truth. We fix a
complete Boolean algebra B and define the B-valued universe VE. If

@(x1,...,x,) is a formula of set theory, and 71, ..., 7, € V2, we can
define || (71, . .., 7n)||, the B-value of ¢, which measure how much
©(71,...,7y) is true in VB, Then we show that ||¢|| = 1, for every

axiom ¢ of ZF. Moreover, if 1, ..., o, + ¥ then
el A~ Allpnll <l

Then, by choosing carefully B, we can make ||CH|| equal to Op or 1.
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Cohen’s method of forcing

The second method is to assume that there is a countable, transitive
set M such that (M, €) satisfies ZFC and work with actual models.
Given a formula ¢ the truth value of ¢ may change when we change
the model, so we must be careful.




Cohen’s method of forcing

The second method is to assume that there is a countable, transitive
set M such that (M, €) satisfies ZFC and work with actual models.
Given a formula ¢ the truth value of ¢ may change when we change
the model, so we must be careful.

Ag-formulas

A formula ¢ of set theory is A if every quantifier ¢ is bounded, i.e.
is of the form Jx € y or Vz € y, for some variables x and y.
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Cohen’s method of forcing

The second method is to assume that there is a countable, transitive
set M such that (M, €) satisfies ZFC and work with actual models.
Given a formula ¢ the truth value of ¢ may change when we change
the model, so we must be careful.

Ag-formulas

A formula ¢ of set theory is A if every quantifier ¢ is bounded, i.e.
is of the form Jx € y or Vz € y, for some variables x and y.

Absoluteness of Aj-formulas

If M is a transitive set, p(v) a Ag-formula and @ € M. Then
M e p(a) iff VE p(a).
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Cohen’s method of forcing

So, fix our ctm M and work for a while in M .
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Cohen’s method of forcing

So, fix our ctm M and work for a while in M .

Forcing notions

A forcing notion is a partial order (P, <) with the largest element 1p.




Cohen’s method of forcing

So, fix our ctm M and work for a while in M .

Forcing notions

A forcing notion is a partial order (P, <) with the largest element 1p.

Conditions

Elements of P are called conditions. If p < ¢ we say that p is
stronger than q. If there is r such that r < p, ¢ we say that p and q are
compatible. Otherwise, we say that they are incompatible and we
write p 1L g. A set of incompatible conditions is called an antichain.

M
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Cohen’s method of forcing

Dense sets
D c P is called dense if for every p € P there is ¢ € D with g < p.




Cohen’s method of forcing

Dense sets
D c P is called dense if for every p € P there is ¢ € D with g < p.

Filters
A subset I’ of P is called a filter if:

@ if p,q € F then there is r < p,q with r € F,
@ ifpe Fandp<qthenqe F.




Cohen’s method of forcing

Dense sets
D c P is called dense if for every p € P there is ¢ € D with g < p.

Filters

A subset F' of P is called a filter if:
@ if p,q € F then there is r < p,q with r € F,
@ ifpe Fandp<qthenqe F.

Generic filters

A filter G is M-generic if G n D # @, for all dense D ¢ P with
DeM.

\8|
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Cohen’s method of forcing

In nontrivial cases there are no M -generic filters in M, but it is easy
to construct them in V.
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Cohen’s method of forcing

In nontrivial cases there are no M -generic filters in M, but it is easy
to construct them in V.

Baire category theorem
In V, for every p € P, there is an M -generic filter G such that p € G.
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Cohen’s method of forcing

In nontrivial cases there are no M -generic filters in M, but it is easy
to construct them in V.

Baire category theorem
In V, for every p € P, there is an M -generic filter G such that p € G.

Proof.

M is countable, so we can list all dense subsets of P which belong to
M as Dg, D1, . ... Then we build a sequence pg > p; > .. .. Let pg = p.
Given p,,, use the fact that D,, is dense to pick p,+1 € D), such that

Pn+1 < pp. Finally, let G = {g € P: Inp, < q}. O
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Example of a forcing notion

Definition
Let Py consist of all finite partial functions from w to {0,1}. The
order is given by: p < q iff q € p.

This definition is done in M, but it gives the same object in V. What
can we say about an M -generic filter G?




Example of a forcing notion

Definition
Let Py consist of all finite partial functions from w to {0,1}. The
order is given by: p < q iff q € p.

This definition is done in M, but it gives the same object in V. What
can we say about an M -generic filter G?

@ If p,q € G then pu q is a function.

@ Let g =UG. Then g is a total function from w to {0, 1}.
@ Letz, ={n:g(n)=1}. Then z, is infinite and co-infinite.
@ 2,¢ M.
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@ Gisafilter,soif p,q € G thereis r < p,q. Hence pu qis a
function.
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@ Gisafilter,soif p,q € G thereis r < p,q. Hence pu qis a
function.

@ Givenn,let D,, = {p € Py:nedom(p)}. Then D, is dense and
GnD, #@,sonedom(g).




@ Gisafilter,soif p,q € G thereis r < p,q. Hence pu qis a
function.

@ Givenn,let D,, = {p € Py:nedom(p)}. Then D, is dense and
GnD, #@,sonedom(g).

@ EV={pePy:|pt(0)|2n}and E} = {pe Py: |p~t(1)| > n}.
Then EY and E; are dense, for all n, and hence intersect G.




G is afilter, so if p,q € G there is r < p,q. Hence pu g is a
function.

Given n, let D,, = {p € Py : n € dom(p)}. Then D,, is dense and
GnD, #@,sonedom(g).

ES={pePy:|p7(0)2n}and E} = {pe Py: |pt(1)| 2 n}.
Then EY and E; are dense, for all n, and hence intersect G.
Given areal z € M (think of z : w — {0,1}), let

H,={pePy:3Inedom(p)p(n) +z(n)}.

Then H, is dense and intersects G, for all z € M.
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Fundamental theorem of forcing |

The fundamental theorem of forcing I

Let M be a ctm of ZFC, (P, <) € M a forcing notion and G an
M -generic filter. Then there is a transitive set M [G] such that:

@ Mu{G}<cM|[q],

@ M[G]nORD =M n ORD,

@ M[G]E ZFC,

@ M][G] is minimal with the above properties.




Fundamental theorem of forcing |

The fundamental theorem of forcing I

Let M be a ctm of ZFC, (P,<) € M a forcing notion and G an
M -generic filter. Then there is a transitive set M/ [G] such that:

@ Mu{G}<cM[G],

@ M[G]nORD =M nORD,

@ M[G]F ZFC,

@ M][G] is minimal with the above properties.

M|[G] is obtained by adding G to M and closing under simple
set-theoretic operations.
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P-names

People living in M do not know G but they can still talk about M[G].
Every t € M[G] will have a name 7 € M. In general, 7 is not unique.
One can interpret 7 only once G is known. The following definition is
done in M by e,-induction.




P-names

People living in M do not know G but they can still talk about M[G].
Every t € M[G] will have a name 7 € M. In general, 7 is not unique.
One can interpret 7 only once G is known. The following definition is
done in M by e,-induction.

P-names

@ is a P-name. We say that 7 is a P-name if every element of 7 is of
the form (¢, o), where ¢ € P and o is a P-name. Let M* be the
(class) of all P-names.
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Fundamental theorem of forcing Il

Let G be an M -generic filter. We define K(7) for every P-name 7.
@ Ke(9)=2,
@ Kg(1)={Kg(o):3qeG(q,0)eT}.




Fundamental theorem of forcing Il

Let G be an M -generic filter. We define K(7) for every P-name 7.
@ Ke(9)=2,
@ Kg(1)={Kg(o):3qeG(q,0)eT}.

The fundamental theorem of forcing II
M[G]={Kg(7r): 7€ M and 7 is a P-name}.




Canonical names

How do we show that M ¢ M [G] and G € M[G]? First, we build a
name for every element of M.




Canonical names

How do we show that M ¢ M [G] and G € M[G]? First, we build a
name for every element of M.

Canonical names
Letg=a.Ife+aleti={(1p,9):yecx}.

Since 1p € G, it is easy to check that K (i) = x, for all x € M.
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Canonical names

How do we show that M ¢ M [G] and G € M[G]? First, we build a
name for every element of M.

Canonical names

Letg=a.Ife+aleti={(1p,9):yecx}.

Since 1p € G, it is easy to check that K (i) = x, for all x € M.
Definition

LetT = {(p,p) : pe P}.

Then K(I') = G, i.e. every generic filter G interprets I as itself!
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Language of forcing

The language L of forcing consists of symbols €, =, a unary
predicate S and a constant 7, for every P-name 7. We interpret L in
M[G]. We let € and = be as usual, 7 is interpreted by K¢(7), for
every P-name 7. Finally, we let S(z) iff x € M.




Language of forcing

The language L of forcing consists of symbols €, =, a unary
predicate S and a constant 7, for every P-name 7. We interpret L in
M[G]. We let € and = be as usual, 7 is interpreted by K¢(7), for
every P-name 7. Finally, we let S(z) iff 2 € M.

Forcing relation

Letp € P, ¢ a formula of Ly, and 71, ..., 7, the P-names appearing
in ¢. We say that p forces ¢ and write p I- ¢ iff, for every M-generic
filter G with p € G, we have

M[G]E p(Ka(r1),..., Ka(m)).
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Fundamental theorem of forcing Ill and IV

The fundamental theorem of forcing I11
Let ¢ be a closed formula of £ and G an M -generic filter. Then

M|[G] & ¢ if and only if p I+ ¢, for some p € G.




Fundamental theorem of forcing Ill and IV

The fundamental theorem of forcing I11
Let ¢ be a closed formula of £ and GG an M -generic filter. Then

M[G] e ¢ if and only if p I ¢, for some p € G.

The fundamental theorem of forcing IV - definability of the
forcing relation

If o(x1,...,2,) is a formula of Lzr U {S}, then there is a formula
0(y,z,21,...,x,) such that, for every forcing notion (P, <), p € P,
and P-names 7, ..., T,

- o(T1,. .. ) I O(P,p,T1,...,Tn)-




Fundamental theorem of forcing Ill and IV

The fundamental theorem of forcing I11
Let ¢ be a closed formula of £ and GG an M -generic filter. Then

M[G] e ¢ if and only if p I ¢, for some p € G.

The fundamental theorem of forcing IV - definability of the
forcing relation

If o(x1,...,2,) is a formula of Lzr U {S}, then there is a formula
0(y,z,21,...,x,) such that, for every forcing notion (P, <), p € P,
and P-names 7, ..., T,

- o(T1,. .. ) I O(P,p,T1,...,Tn)-

At first sight, this looks surprising. M does not have any generic "M U onc
filter, yet somehow it is able to talk about all generic filters. P
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Forcing relation - atomic case

In M,wedefinepi-7 =7, pl-1i S and pi- 71 € ™, forpe P
and P-names 71, 72 by induction on (rank(7y),rank(m)).
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Forcing relation - atomic case

In M,wedefinepi-7 =7, pl-1i S and pi- 71 € ™, forpe P
and P-names 71, 72 by induction on (rank(7y),rank(m)).

Definition
@ P71 =T iff pl- T ST and p - T2 C Ty.

@ p+ 1 S iffforevery (q,0) € 71 andr < p,q thereis s<r
such that s |+ o € 7.

@ pi- 11 e ifffor every q < pthereis (r,0) € 7o and s < q,r such
that s I+ 11 = 0.
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Forcing relation - connectives and quantifiers

Still in M, we continue to define p I+ ¢, for non atomic (.




Forcing relation - connectives and quantifiers

Still in M, we continue to define p I+ ¢, for non atomic (.

Definition
@D pi-oAYiffpik pandpi- .
@ pi--piffqi o, forall q < p.

@ pi- 3z (x) iff for all q < p there is v < q and a P-name T such
that r I+ o(T).




Forcing relation - connectives and quantifiers

Still in M, we continue to define p I+ ¢, for non atomic (.

Definition
@D pi-oAYiffpik pandpi- .
@ pi--piffqi o, forall q < p.

@ pi- 3z (x) iff for all q < p there is v < q and a P-name T such
that r I+ o(T).

Proposition
@ Ifpi-pandq<pthen qi+- .
@ {p:pi-porpi-—p} is dense.
@ No p forces both ¢ and —.




Proof of the Fundamental theorem of forcing

The proof of the Fundamental theorem of forcing is a straightforward,
but tedious exercise. We prove:
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Proof of the Fundamental theorem of forcing

The proof of the Fundamental theorem of forcing is a straightforward,
but tedious exercise. We prove:

M[G)Ee o(Kg(11),...,Kg(m))iff Ipe Gpi- o(11,..., 7).
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Proof of the Fundamental theorem of forcing

The proof of the Fundamental theorem of forcing is a straightforward,
but tedious exercise. We prove:

M[G)Ee o(Kg(11),...,Kg(m))iff Ipe Gpi- o(11,..., 7).

@ First the atomic case - requires careful transfinite induction

@ Then the connectives and quantifier case - easy.




Proof of the Fundamental theorem of forcing

Lemma
M[G] & ZFC.




Proof of the Fundamental theorem of forcing

Lemma
M[G] & ZFC.

Proof.
@ Extensionality: M[G] is transitive
@ Foundation: holds in each € model

@ For those axioms that asserts the existence of sets, we need to
design appropriate names.



Proof of the Fundamental theorem of forcing

Lemma
M[G] e ZFC.

Proof.
(@ Extensionality: M[G] is transitive
@ Foundation: holds in each € model

@ For those axioms that asserts the existence of sets, we need to
design appropriate names.

Lemma

If N is a transitive model of ZF such that M € N and G € N then
M[G] < N.



Finite partial functions

In applications, the hard part is designing the forcing notion that does
what we want. We give a simple example.




Finite partial functions

In applications, the hard part is designing the forcing notion that does
what we want. We give a simple example.

Finite partial functions

Given sets I, .J let Fn(Z, .J) consist of all finite partial functions from
ItoJ. Wesay: p<qiffqcp.
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Finite partial functions

e Collapsing cardinals Let s > w be a cardinal in M. Force with
Fn(w, k). Then UG is a total function from w onto «. So, « is not a
cardinal in M.




Finite partial functions

e Collapsing cardinals Let s > w be a cardinal in M. Force with
Fn(w, k). Then UG is a total function from w onto «. So, « is not a
cardinal in M.

¢ Adding many reals Let x > w; be a cardinal in M. Force with
Fn(k x w,2). Let G be generic. Then:
@ ¢g=UG is atotal function from k x w — 2.

@ For a <k let go(n) = g(a,n). Then the the g, are distinct.
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Finite partial functions

e Collapsing cardinals Let s > w be a cardinal in M. Force with
Fn(w, k). Then UG is a total function from w onto «. So, « is not a
cardinal in M.

¢ Adding many reals Let x > w; be a cardinal in M. Force with
Fn(k x w,2). Let G be generic. Then:

@ ¢g=UG is atotal function from k x w — 2.

@ For a <k let go(n) = g(a,n). Then the the g, are distinct.

So, we made 2% > k. But how do we know that  is not collapsed?

\“i‘ \ M

Jussieu

JPRG



Countable antichain condition

Definition

P satisfies the countable antichain condition (c.a.c.) if any antichain
A in P is at most countable.
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Countable antichain condition

Definition

P satisfies the countable antichain condition (c.a.c.) if any antichain
A in P is at most countable.

Theorem
Suppose P € M and M = 7 P satisfies the c.a.c.”. Then, for o € M

MI[G] e acis a cardinal iff M & « is a cardinal.




Countable antichain condition

Definition

P satisfies the countable antichain condition (c.a.c.) if any antichain
A in P is at most countable.

Theorem
Suppose P € M and M = 7 P satisfies the c.a.c.”. Then, for o € M

M[G] & «is a cardinal iff M = « is a cardinal.

Lemma
Fn(k x w,2) satisfies the c.a.c.

So, starting from a model M of CH we can make 2% as large as wg
like! LA
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Countable partial functions

What if we start from M which satisfies ~CH and want to make CH
true in M[G]?
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Countable partial functions

What if we start from M which satisfies ~CH and want to make CH
true in M [G]? Easy! All we need to do is collapse 2 to w.




Countable partial functions

What if we start from M which satisfies ~CH and want to make CH
true in M [G]? Easy! All we need to do is collapse 2 to w.

Countable partial functions

Given [ and J, let CPF(7, J) set of countable partial functions from
ItoJ. Letp<qiffqcp.
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Countable partial functions

What if we start from M which satisfies ~CH and want to make CH
true in M [G]? Easy! All we need to do is collapse 2 to w.

Countable partial functions

Given [ and J, let CPF(7, J) set of countable partial functions from
ItoJ. Letp<qiffqcp.

We force with CPF(wy,2*) as defined in M. If G is generic then
UG is a total function from w} onto (2+)M.
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Countably closed forcing notions

M[G]

We need to check that w; = w and that we did not add any reals.
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Countably closed forcing notions

(G]

We need to check that w{w = w and that we did not add any reals.

Definition

P is countably closed if for any decreasing sequence pg > p1 > ...
there is q such that q < py, for all n.




Countably closed forcing notions

(G]

We need to check that wiw = w and that we did not add any reals.

Definition

P is countably closed if for any decreasing sequence pg > p1 > ...
there is q such that q < py, for all n.

Proposition
If P is countably closed then (2°)M[E] = (29)M and wi\/I[G] =w,

And CPF(wy,2%) is countably closed, so M[G] = CH.




Negation of the Axiom of Choice

Question
If M = AC then so does M[G]. So, how do we get a model of ~AC?




Negation of the Axiom of Choice

Question
If M = AC then so does M[G]. So, how do we get a model of ~AC?

Sketch

Start with M, force with Fn(w,w) to get M[G]. Then define an
intermediate model N, i.e. M ¢ N ¢ M[G], such that N £ -AC. N
is a symmetric model, i.e. there is a group ¥ in M acting on M* and
N is the set of all K(7), for 7 a P-name invariant under all o € X.
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Negation of the Axiom of Choice

Question
If M = AC then so does M[G]. So, how do we get a model of ~AC?

Sketch

Start with M, force with Fn(w,w) to get M[G]. Then define an
intermediate model N, i.e. M ¢ N ¢ M[G], such that N £ -AC. N
is a symmetric model, i.e. there is a group ¥ in M acting on M* and
N is the set of all K(7), for 7 a P-name invariant under all o € X.

Details some other time....
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