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The work of Cantor

In the second half of the 19th century, german mathematician, Georg
Cantor laid the foundations of set theory. He defined, ordinal and
cardinal numbers, and developed their arithmetic.
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cardinal numbers, and developed their arithmetic.



Cantor’s work provoked a lot of controversy.



Definition
Let X and Y be sets. We write X ⪯ Y if there is an injection from X
to Y . We write X ≈ Y if there is a bijection between X et Y .



Theorem (Cantor - Bernstein)
Suppose that X ⪯ Y and Y ⪯X . Then X ≈ Y .

Proposition
X is infinite iff X ≈X ∖ {x}, for any x ∈X .

Definition
X is countable if X ≈ N.

Proposition (Cantor)
1 If An is countable, for all n, then ⋃nAn is countable.
2 An ≈ A, for any infinite set A and integer n ≥ 1.



Theorem (Cantor - Bernstein)
Suppose that X ⪯ Y and Y ⪯X . Then X ≈ Y .

Proposition
X is infinite iff X ≈X ∖ {x}, for any x ∈X .

Definition
X is countable if X ≈ N.

Proposition (Cantor)
1 If An is countable, for all n, then ⋃nAn is countable.
2 An ≈ A, for any infinite set A and integer n ≥ 1.



Theorem (Cantor - Bernstein)
Suppose that X ⪯ Y and Y ⪯X . Then X ≈ Y .

Proposition
X is infinite iff X ≈X ∖ {x}, for any x ∈X .

Definition
X is countable if X ≈ N.

Proposition (Cantor)
1 If An is countable, for all n, then ⋃nAn is countable.
2 An ≈ A, for any infinite set A and integer n ≥ 1.



Theorem (Cantor - Bernstein)
Suppose that X ⪯ Y and Y ⪯X . Then X ≈ Y .

Proposition
X is infinite iff X ≈X ∖ {x}, for any x ∈X .

Definition
X is countable if X ≈ N.

Proposition (Cantor)
1 If An is countable, for all n, then ⋃nAn is countable.
2 An ≈ A, for any infinite set A and integer n ≥ 1.



However, there are infinite sets that are not countable. By the famous
diagonal argument we have.

Theorem (Cantor)
The set of reals R is uncountable.

Cantor spent the rest of his life trying to prove the following.

Continuum Hypothesis (CH)
Let X be an infinite set of reals. Then either X ≈ N or X ≈ R.
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However, there are infinite sets that are not countable. By the famous
diagonal argument we have.

Theorem (Cantor)
The set of reals R is uncountable.

Cantor spent the rest of his life trying to prove the following.

Continuum Hypothesis (CH)
Let X be an infinite set of reals. Then either X ≈ N or X ≈ R.



Zermelo-Fraenkel set theory

Following a tumultuous period in the Foundations of Mathematics, in
the early 20th century, Ernst Zermelo and Abraham Fraenkel
formulated set theory as a first order theory ZF whose only
nonlogical symbol is ∈. This was later augmented by adding the
Axiom of Choice.



ZFC axioms



Ordinals

In principle, all of mathematics can be carried out in ZFC. So it is
important to understand its strengths and limitations. The basic
concept is that of an ordinal, which is a generalization of an integer.

Definition
1 A well order on a set X is a total order < on X such that every

nonempty subset of X has a minimal element.
2 An ordinal is a set α which is transitive (i.e. if x ∈ y ∈ α then
x ∈ α) and well ordered by ∈.
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important to understand its strengths and limitations. The basic
concept is that of an ordinal, which is a generalization of an integer.

Definition
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We have:
0 ∶= ∅,

1 ∶= {0} = {∅},
2 ∶= {0,1} = {∅,{∅}},

3 ∶= {0,1,2} = {∅,{∅},{∅,{∅}}},
. . .

ω ∶= {0,1,2,3, . . .},
ω + 1 ∶= {0,1,2,3, . . . , ω},

. . .
ω ⋅ 2 ∶= ω + ω = {0,1,2,3, . . . , ω, ω + 1, ω + 2, ω + 3, . . .},

. . .
ω2 ∶= {0,1, . . . , ω, ω + 1, . . . , ω ⋅ 2, ω ⋅ 2 + 1, . . . , ω ⋅ n,ω ⋅ n + 1, . . .},

. . .



Definition
1 The successor of an ordinal α is the ordinal α + 1 = α ∪ {α}.
2 An ordinal α is limit if α > 0 and α is not a successor. The least

limit ordinal is ω.

Definition
A cardinal is an ordinal α such that α ≉ β, for all β < α

Remark
1 All integers are cardinals, as well as ω. The ordinals
ω + 1, ω + 2, . . ., ω ⋅ 2, . . ., are not cardinals.

2 The first cardinal > ω is denoted by ω1 or ℵ1, the second ω2 or
ℵ2, etc.
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Von Neumann’s Cumulative Hierarchy

We define the cumulative hierarchy.

V0 = ∅,

(Successor case) Vα+1 = P(Vα), for all α, where P(X) is the
powerset of X ,

(Limit case) Vα = ⋃{Vξ ∶ ξ < α}, for all limit α,

V = ⋃{Vα ∶ α ∈ ORD}.

The theory ZF formalizes the first order theory of V.
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Von Neumann’s Cumulative Hierarchy



What about Choice?

And what about the Axiom of Choice? Well, it is necessary for some
basic theorems in mathematics...



What about Choice?

On the other hand it leads to some strange paradoxes...



What about Choice?

And in some countries it is still the topic of hot debate...
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Models of ZF

ZF is a first order theory, so we can consider models of ZF. A model
of ZF is a set M with a binary relation E such that (M,E) ⊧ ZF.
Note that E may not be the true membership relation ∈.

ZF is recursive and contains arithmetic, hence by Gödel’s
Incompleteness theorem, if it is consistent then it is incomplete. In
fact, ZF does not prove its own consistency.

But, wait! Isn’t V a model of ZF?

Yes! But V is a proper class and the statement that V is a model of
ZF cannot even be expressed as a first order statement by Tarski’s
undefinability of truth.
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Relative consistency of CH and AC

Theorem (Kurt Gödel, 1940)
If the theory ZF is consistent, then so is ZFC +CH.
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Effective cumulative hierarchy: L

The definable power set
For each set X , PDef(X) denotes the set of all Y ⊆X which are
logically definable in the structure (X, ∈).

● (AC) PDef(X) = P(X) if and only if X is finite.

Gödel’s constructible universe, L
Define Lα by induction on α as follows.

1 L0 = ∅,
2 (Successor case) Lα+1 = PDef(Lα),
3 (Limit case) Lα = ⋃{Lβ ∶ β < α}, if α is limit,
4 L = ⋃{Lα ∶ α ∈ ORD}.
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L is a proper class, i.e. not a set. Formally, we prove the following
metatheorem.

Theorem
1 ZF ⊢ (ϕ)L, for every axiom ϕ of ZF,
2 ZF ⊢ (V = L)L,
3 ZF ⊢ V = L→ CH, and
4 ZF ⊢ V = L→ AC.

L is the smallest transitive class which is a model of ZF, hence with
this method we cannot prove the independence of CH and AC.
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Independence of CH and AC

Theorem (Paul Cohen, 1963)
If the theory ZF is consistent, then so are the theories ZFC + ¬CH
and ZF + ¬AC.
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Cohen’s method of forcing

There are two equivalent ways of presenting forcing.

One is to work in V , but change the concept of truth. We fix a
complete Boolean algebra B and define the B-valued universe VB. If
ϕ(x1, . . . , xn) is a formula of set theory, and τ1, . . . , τn ∈ VB, we can
define ∣∣ϕ(τ1, . . . , τn)∣∣, the B-value of ϕ, which measure how much
ϕ(τ1, . . . , τn) is true in VB. Then we show that ∣∣ϕ∣∣ = 1B, for every
axiom ϕ of ZF. Moreover, if ϕ1, . . . , ϕn ⊢ ψ then

∣∣ϕ1∣∣ ∧ . . . ∧ ∣∣ϕn∣∣ ≤ ∣∣ψ∣∣.

Then, by choosing carefully B, we can make ∣∣CH∣∣ equal to 0B or 1B.
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Cohen’s method of forcing

The second method is to assume that there is a countable, transitive
set M such that (M, ∈) satisfies ZFC and work with actual models.
Given a formula ϕ the truth value of ϕ may change when we change
the model, so we must be careful.

∆0-formulas
A formula ϕ of set theory is ∆0 if every quantifier ϕ is bounded, i.e.
is of the form ∃x ∈ y or ∀x ∈ y, for some variables x and y.

Absoluteness of ∆0-formulas
If M is a transitive set, ϕ(v) a ∆0-formula and a ∈M . Then
M ⊧ ϕ(a) iff V ⊧ ϕ(a).
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Cohen’s method of forcing

So, fix our ctm M and work for a while in M .

Forcing notions
A forcing notion is a partial order (P,≤) with the largest element 1P .

Conditions
Elements of P are called conditions. If p ≤ q we say that p is
stronger than q. If there is r such that r ≤ p, q we say that p and q are
compatible. Otherwise, we say that they are incompatible and we
write p ⊥ q. A set of incompatible conditions is called an antichain.



Cohen’s method of forcing

So, fix our ctm M and work for a while in M .

Forcing notions
A forcing notion is a partial order (P,≤) with the largest element 1P .

Conditions
Elements of P are called conditions. If p ≤ q we say that p is
stronger than q. If there is r such that r ≤ p, q we say that p and q are
compatible. Otherwise, we say that they are incompatible and we
write p ⊥ q. A set of incompatible conditions is called an antichain.



Cohen’s method of forcing

So, fix our ctm M and work for a while in M .

Forcing notions
A forcing notion is a partial order (P,≤) with the largest element 1P .

Conditions
Elements of P are called conditions. If p ≤ q we say that p is
stronger than q. If there is r such that r ≤ p, q we say that p and q are
compatible. Otherwise, we say that they are incompatible and we
write p ⊥ q. A set of incompatible conditions is called an antichain.



Cohen’s method of forcing

Dense sets
D ⊆ P is called dense if for every p ∈ P there is q ∈D with q ≤ p.

Filters
A subset F of P is called a filter if:

1 if p, q ∈ F then there is r ≤ p, q with r ∈ F ,
2 if p ∈ F and p ≤ q then q ∈ F .

Generic filters
A filter G is M -generic if G ∩D ≠ ∅, for all dense D ⊆ P with
D ∈M .
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Cohen’s method of forcing

In nontrivial cases there are no M -generic filters in M , but it is easy
to construct them in V.

Baire category theorem
In V, for every p ∈ P , there is an M -generic filter G such that p ∈ G.

Proof.
M is countable, so we can list all dense subsets of P which belong to
M as D0,D1, . . .. Then we build a sequence p0 ≥ p1 ≥ . . .. Let p0 = p.
Given pn, use the fact that Dn is dense to pick pn+1 ∈Dn such that
pn+1 ≤ pn. Finally, let G = {q ∈ P ∶ ∃npn ≤ q}.
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Example of a forcing notion

Definition
Let P0 consist of all finite partial functions from ω to {0,1}. The
order is given by: p ≤ q iff q ⊆ p.

This definition is done in M , but it gives the same object in V. What
can we say about an M -generic filter G?

1 If p, q ∈ G then p ∪ q is a function.
2 Let g = ⋃G. Then g is a total function from ω to {0,1}.
3 Let xg = {n ∶ g(n) = 1}. Then xg is infinite and co-infinite.
4 xg ∉M .
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3 Let xg = {n ∶ g(n) = 1}. Then xg is infinite and co-infinite.
4 xg ∉M .



1 G is a filter, so if p, q ∈ G there is r ≤ p, q. Hence p ∪ q is a
function.

2 Given n, let Dn = {p ∈ P0 ∶ n ∈ dom(p)}. Then Dn is dense and
G ∩Dn ≠ ∅, so n ∈ dom(g).

3 E0
n = {p ∈ P0 ∶ ∣p

−1(0)∣ ≥ n} and E1
n = {p ∈ P0 ∶ ∣p

−1(1)∣ ≥ n}.
Then E0

n and E1
n are dense, for all n, and hence intersect G.

4 Given a real z ∈M (think of z ∶ ω → {0,1}), let

Hz = {p ∈ P0 ∶ ∃n ∈ dom(p)p(n) ≠ z(n)}.

Then Hz is dense and intersects G, for all z ∈M .
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Fundamental theorem of forcing I

The fundamental theorem of forcing I
Let M be a ctm of ZFC, (P,≤) ∈M a forcing notion and G an
M -generic filter. Then there is a transitive set M[G] such that:

1 M ∪ {G} ⊆M[G],
2 M[G] ∩ORD = M ∩ORD,
3 M[G] ⊧ ZFC,
4 M[G] is minimal with the above properties.

M[G] is obtained by adding G to M and closing under simple
set-theoretic operations.
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P -names

People living in M do not know G but they can still talk about M[G].
Every t ∈M[G] will have a name τ ∈M . In general, τ is not unique.
One can interpret τ only once G is known. The following definition is
done in M by ∈∗-induction.

P -names
∅ is a P -name. We say that τ is a P -name if every element of τ is of
the form (q, σ), where q ∈ P and σ is a P -name. Let MP be the
(class) of all P -names.
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Fundamental theorem of forcing II

Let G be an M -generic filter. We define KG(τ) for every P -name τ .
1 KG(∅) = ∅,
2 KG(τ) = {KG(σ) ∶ ∃q ∈ G (q, σ) ∈ τ}.

The fundamental theorem of forcing II
M[G] = {KG(τ) ∶ τ ∈M and τ is a P -name}.
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Canonical names

How do we show that M ⊆M[G] and G ∈M[G]? First, we build a
name for every element of M .

Canonical names
Let ∅̌ = ∅. If x ≠ ∅ let x̌ = {(1P , y̌) ∶ y ∈ x}.

Since 1P ∈ G, it is easy to check that KG(x̌) = x, for all x ∈M .

Definition
Let Γ = {(p, p̌) ∶ p ∈ P}.

Then KG(Γ) = G, i.e. every generic filter G interprets Γ as itself!
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Language of forcing

The language Lf of forcing consists of symbols ∈, =, a unary
predicate S and a constant τ , for every P -name τ . We interpret Lf in
M[G]. We let ∈ and = be as usual, τ is interpreted by KG(τ), for
every P -name τ . Finally, we let S(x) iff x ∈M .

Forcing relation
Let p ∈ P , ϕ a formula of Lf , and τ1, . . . , τn the P -names appearing
in ϕ. We say that p forces ϕ and write p ⊩ ϕ iff, for every M -generic
filter G with p ∈ G, we have

M[G] ⊧ ϕ(KG(τ1), . . . ,KG(τn)).
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Fundamental theorem of forcing III and IV

The fundamental theorem of forcing III
Let ϕ be a closed formula of Lf and G an M -generic filter. Then

M[G] ⊧ ϕ if and only if p ⊩ ϕ, for some p ∈ G.

The fundamental theorem of forcing IV - definability of the
forcing relation
If ϕ(x1, . . . , xn) is a formula of LZF ∪ {S}, then there is a formula
θ(y, z, x1, . . . , xn) such that, for every forcing notion (P,≤), p ∈ P ,
and P -names τ1, . . . , τn

p ⊩ ϕ(τ1, . . . , τn) iff θ(P, p, τ1, . . . , τn).

At first sight, this looks surprising. M does not have any generic
filter, yet somehow it is able to talk about all generic filters.
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Forcing relation - atomic case

In M , we define p ⊩ τ1 = τ2, p ⊩ τ1 ⊆ τ2 and p ⊩ τ1 ∈ τ2, for p ∈ P
and P -names τ1, τ2 by induction on (rank(τ1), rank(τ2)).

Definition
1 p ⊩ τ1 = τ2 iff p ⊩ τ1 ⊆ τ2 and p ⊩ τ2 ⊆ τ1.
2 p ⊩ τ1 ⊆ τ2 iff for every (q, σ) ∈ τ1 and r ≤ p, q there is s ≤ r

such that s ⊩ σ ∈ τ2.
3 p ⊩ τ1 ∈ τ2 iff for every q ≤ p there is (r, σ) ∈ τ2 and s ≤ q, r such

that s ⊩ τ1 = σ.
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Forcing relation - connectives and quantifiers

Still in M , we continue to define p ⊩ ϕ, for non atomic ϕ.

Definition
1 p ⊩ ϕ ∧ ψ iff p ⊩ ϕ and p ⊩ ψ.
2 p ⊩ ¬ϕ iff q ⊮ ϕ, for all q ≤ p.
3 p ⊩ ∃xϕ(x) iff for all q ≤ p there is r ≤ q and a P -name τ such

that r ⊩ ϕ(τ).

Proposition
1 If p ⊩ ϕ and q ≤ p then q ⊩ ϕ.
2 {p ∶ p ⊩ ϕ or p ⊩ ¬ϕ} is dense.
3 No p forces both ϕ and ¬ϕ.
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Proof of the Fundamental theorem of forcing

The proof of the Fundamental theorem of forcing is a straightforward,
but tedious exercise. We prove:

M[G] ⊧ ϕ(KG(τ1), . . . ,KG(τn)) iff ∃p ∈ Gp ⊩ ϕ(τ1, . . . , τn).

1 First the atomic case - requires careful transfinite induction
2 Then the connectives and quantifier case - easy.
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Proof of the Fundamental theorem of forcing

Lemma
M[G] ⊧ ZFC.

Proof.
1 Extensionality: M[G] is transitive
2 Foundation: holds in each ∈ model
3 For those axioms that asserts the existence of sets, we need to

design appropriate names.

Lemma
If N is a transitive model of ZF such that M ⊆ N and G ∈ N then
M[G] ⊆ N .
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Finite partial functions

In applications, the hard part is designing the forcing notion that does
what we want. We give a simple example.

Finite partial functions
Given sets I, J let Fn(I, J) consist of all finite partial functions from
I to J . We say: p ≤ q iff q ⊆ p.
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Finite partial functions

● Collapsing cardinals Let κ > ω be a cardinal in M . Force with
Fn(ω,κ). Then ⋃G is a total function from ω onto κ. So, κ is not a
cardinal in M .

● Adding many reals Let κ > ω1 be a cardinal in M . Force with
Fn(κ × ω,2). Let G be generic. Then:

1 g = ⋃G is a total function from κ × ω → 2.
2 For α < κ let gα(n) = g(α,n). Then the the gα are distinct.

So, we made 2ω ≥ κ. But how do we know that κ is not collapsed?
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Countable antichain condition

Definition
P satisfies the countable antichain condition (c.a.c.) if any antichain
A in P is at most countable.

Theorem
Suppose P ∈M and M ⊧ ”P satisfies the c.a.c.”. Then, for α ∈M

M[G] ⊧ α is a cardinal iff M ⊧ α is a cardinal.

Lemma
Fn(κ × ω,2) satisfies the c.a.c.

So, starting from a model M of CH we can make 2ω as large as we
like!
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Countable partial functions

What if we start from M which satisfies ¬CH and want to make CH
true in M[G]? Easy! All we need to do is collapse 2ω to ω1.

Countable partial functions
Given I and J , let CPF(I, J) set of countable partial functions from
I to J . Let p ≤ q iff q ⊆ p.

We force with CPF(ω1,2
ω) as defined in M . If G is generic then

⋃G is a total function from ωM1 onto (2ω)M .
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Countably closed forcing notions

We need to check that ωM[G]1 = ωM1 and that we did not add any reals.

Definition
P is countably closed if for any decreasing sequence p0 ≥ p1 ≥ . . .
there is q such that q ≤ pn, for all n.

Proposition

If P is countably closed then (2ω)M[G] = (2ω)M and ωM[G]1 = ωM1 .

And CPF(ω1,2
ω) is countably closed, so M[G] ⊧ CH.
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Negation of the Axiom of Choice

Question
If M ⊧ AC then so does M[G]. So, how do we get a model of ¬AC?

Sketch
Start with M , force with Fn(ω,ω) to get M[G]. Then define an
intermediate model N , i.e. M ⊆ N ⊆M[G], such that N ⊧ ¬AC. N
is a symmetric model, i.e. there is a group Σ in M acting on MP and
N is the set of all KG(τ), for τ a P -name invariant under all σ ∈ Σ.

Details some other time....
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