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Proving the Low Basis Theorem

SOME PROOFS FOR SEX/ASEX 11

[Hyperimmune-free Basis Theorem]. Every non-empty ⇧0
1 class

has a member of hyperimmune-free degree.

We say a degree a is hyperimmune-free if for every f : ! ! !

computable in a, there exists a computable function g which ma-
jorises f , i.e. such that g(n) > f(n) for all n.

Convention: we shall suppose that  �
s (n) # only if this computa-

tion converges in at most |�| many steps.
Stage 0. Define ⇤0 = ⇤.
Stage s+ 1. We are given ⇤s which is non-empty. We ask:

“Does there exist an n such that  �
s (s) # for all � 2 ⇤s of length

n?”

If so: Then we can define ⇤s+1 = ⇤s, and we already know that
s 2 A

0 for all A 2 Q.
If not: Then we can define ⇤s+1 to be all those strings � in ⇤s

for which  �
s (s) ". Since there exist such � of every length, it

follows by WKL that [⇤s+1] is non-empty. In this case we have
established that s /2 A

0 for all A 2 Q.
We suppose P is non-empty and is the set of infinite paths through
⇤ ✓ 2<! which is downward closed and computable.

We run a construction which makes use of an oracle for ;0.
At stage 0 we define ⇤0 = ⇤, and at each stage s + 1 we define
⇤s+1 ✓ ⇤s such that [⇤s+1] (the set of infinite paths through
⇤s+1) is non-empty.

⇤0 ◆ ⇤1 ◆ ⇤2 ◆ · · ·
Ultimately we can then consider Q =

T
s[⇤s], which by compact-

ness will be non-empty.

At stage s+ 1 we define ⇤s+1 so as to decide whether  A
s (s) #

for all A 2 Q once and for all. Since we compute A

0 for all A 2 Q
as the construction progresses (using only our oracle for ;0), Q
must have precisely one member, and this must be of low degree.

[Low Basis Theorem]. We call a Turing degree a low if a0 = 0

0.
Every non-empty ⇧0

1 class has a member of low degree.

A ⇧0
1 class (subset of Cantor

space) is one defined by a
universal formula:

X 2 P $ 8nR[X,n].

Equivalently, P is a ⇧0
1 class i↵ it is the set of infinite

paths through a downward closed and computable set



Proving the Low Basis Theorem

ON THE DEGREE SPECTRA OF ⇧

0
1 CLASSES

ANDY LEWIS-PYE AND LSE

Convention: we shall suppose that  

�
s (n) # only if this computation converges

in at most |�| many steps.

Stage 0. Define ⇤0 = ⇤.

Stage s+ 1. We are given ⇤s which is non-empty. We ask:

“Does there exist an n such that  

�
s (s) # for all � 2 ⇤s of length n?”

If so: Then we can define ⇤s+1 = ⇤s, and we already know that s 2 A0
for all

A 2 ⇤⇤
.

If not: Then we can define ⇤s+1 to be all those strings � in ⇤s for which

 

�
s (s) ". Since there exist such � of every length, it follows by WKL that

[⇤s+1] is non-empty. In this case we have established that s /2 A0
for all

A 2 ⇤⇤
.

We suppose P is non-empty and is the set of infinite paths through ⇤ ✓ 2

<!

which is downward closed and computable.

We run a construction which makes use of an oracle for ;0. At stage 0 we

define ⇤0 = ⇤, and at each stage s + 1 we define ⇤s+1 ✓ ⇤s such that [⇤s+1]

(the set of infinite paths through ⇤s+1) is non-empty.

⇤0 ◆ ⇤1 ◆ ⇤2 ◆ · · ·
Ultimately we can then consider ⇤

⇤
=

T
s ⇤s, which by compactness will be

non-empty.

At stage s+1 we define ⇤s+1 so as to decide whether  

A
s (s) # for all A 2 ⇤⇤

once and for all. Since we compute A0
for all A 2 ⇤⇤

as the construction pro-

gresses (using only our oracle for ;0), ⇤⇤
must have precisely one member, and

this must be of low degree.

[Low Basis Theorem]. We call a Turing degree a low if a0
= 00

. Every non-

empty ⇧

0
1 class has a member of low degree.

A ⇧

0
1 class (subset of Cantor

space) is one defined by a

universal formula:

X 2 P $ 8nR[X,n].

Equivalently, P is a ⇧

0
1 class i↵ it is the set of infinite

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew Lewis) was

supported by a Royal Society University Research Fellowship.

1

SOME PROOFS FOR SEX/ASEX 11

[Hyperimmune-free Basis Theorem]. Every non-empty ⇧0
1 class

has a member of hyperimmune-free degree.

We say a degree a is hyperimmune-free if for every f : ! ! !

computable in a, there exists a computable function g which ma-
jorises f , i.e. such that g(n) > f(n) for all n.

Convention: we shall suppose that  �
s (n) # only if this computa-

tion converges in at most |�| many steps.
Stage 0. Define ⇤0 = ⇤.
Stage s + 1. We are given ⇤s such that [⇤s] is non-empty. We
ask:

“Does there exist an n such that  �
s (s) # for all � 2 ⇤s of length

n?”

If so: Then we can define ⇤s+1 = ⇤s, and we already know that
s 2 A

0 for all A 2 Q.
If not: Then we can define ⇤s+1 to be all those strings � in ⇤s

for which  �
s (s) ". Since there exist such � of every length, it

follows by WKL that [⇤s+1] is non-empty. In this case we have
established that s /2 A

0 for all A 2 Q.
We suppose P is non-empty and is the set of infinite paths through
⇤ ✓ 2<! which is downward closed and computable.

We run a construction which makes use of an oracle for ;0.
At stage 0 we define ⇤0 = ⇤, and at each stage s + 1 we define
⇤s+1 ✓ ⇤s such that [⇤s+1] (the set of infinite paths through
⇤s+1) is non-empty.

⇤0 ◆ ⇤1 ◆ ⇤2 ◆ · · ·
Ultimately we can then consider Q =

T
s[⇤s], which by compact-

ness will be non-empty.

At stage s+ 1 we define ⇤s+1 so as to decide whether  A
s (s) #

for all A 2 Q once and for all. Since we compute A

0 for all A 2 Q
as the construction progresses (using only our oracle for ;0), Q
must have precisely one member, and this must be of low degree.

[Low Basis Theorem]. We call a Turing degree a low if a0 = 0

0.
Every non-empty ⇧0

1 class has a member of low degree.

A ⇧0
1 class (subset of Cantor

space) is one defined by a
universal formula:

X 2 P $ 8nR[X,n].

Equivalently, P is a ⇧0
1 class i↵ it is the set of infinite



5 BASIC FACTS

ON THE DEGREE SPECTRA OF ⇧

0
1 CLASSES

ANDY LEWIS-PYE AND LSE

[Weak König’s Lemma]. If ⇤ ✓ 2

<!
is downward closed and

infinite then there is an infinite path through ⇤.

A ⇧

0
1 class (subset of Cantor

space) is one defined by a

universal formula:

X 2 P $ 8nR[X,n].

Equivalently, P is a ⇧

0
1 class i↵ it is the set of infinite

paths through a downward closed and computable set

of finite binary strings ⇤.

�0

�1

�2

Thomas Kent, Mathematics, Columbia House, London School of
Economics, WC2A 2AE, London, United Kingdom.

E-mail address: andy@aemlewis.com
URL: http://aemlewis.co.uk

LSE, Department of Mathematics, Berkeley

E-mail address: amontalb@gmail.com
URL: http://aemlewis.co.uk

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1

FACT 1

FACT 2

ON THE DEGREE SPECTRA OF ⇧

0
1 CLASSES

ANDY LEWIS-PYE AND LSE

Any isolated member of a ⇧

0
1 class is computable.

A ⇧

0
1 class (subset of Cantor

space) is one defined by a

universal formula:

X 2 P $ 8nR[X,n].

Equivalently, P is a ⇧

0
1 class i↵ it is the set of infinite

paths through a downward closed and computable set

of finite binary strings ⇤.

�0

�1

�2

Thomas Kent, Mathematics, Columbia House, London School of

Economics, WC2A 2AE, London, United Kingdom.

E-mail address: andy@aemlewis.com
URL: http://aemlewis.co.uk

LSE, Department of Mathematics, Berkeley
E-mail address: amontalb@gmail.com
URL: http://aemlewis.co.uk

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1

FACT 3

ON THE DEGREE SPECTRA OF ⇧

0
1 CLASSES

ANDY LEWIS-PYE AND LSE

We call a ⇧

0
1 class special if it is non-empty and has no computable

members. Any special ⇧

0
1 class is of cardinality the continuum.

A ⇧

0
1 class (subset of Cantor

space) is one defined by a

universal formula:

X 2 P $ 8nR[X,n].

Equivalently, P is a ⇧

0
1 class i↵ it is the set of infinite

paths through a downward closed and computable set

of finite binary strings ⇤.

�0

�1

�2

Thomas Kent, Mathematics, Columbia House, London School of
Economics, WC2A 2AE, London, United Kingdom.

E-mail address: andy@aemlewis.com
URL: http://aemlewis.co.uk

LSE, Department of Mathematics, Berkeley

E-mail address: amontalb@gmail.com
URL: http://aemlewis.co.uk

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1

FACT 4

ON THE DEGREE SPECTRA OF ⇧

0
1 CLASSES

ANDY LEWIS-PYE AND LSE

[Low Basis Theorem]. We call a Turing degree a low if a0
= 00

.

Every non-empty ⇧

0
1 class has a member of low degree.

A ⇧

0
1 class (subset of Cantor

space) is one defined by a

universal formula:

X 2 P $ 8nR[X,n].

Equivalently, P is a ⇧

0
1 class i↵ it is the set of infinite

paths through a downward closed and computable set

of finite binary strings ⇤.

�0

�1

�2

Thomas Kent, Mathematics, Columbia House, London School of
Economics, WC2A 2AE, London, United Kingdom.

E-mail address: andy@aemlewis.com
URL: http://aemlewis.co.uk

LSE, Department of Mathematics, Berkeley

E-mail address: amontalb@gmail.com
URL: http://aemlewis.co.uk

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1

ON THE DEGREE SPECTRA OF ⇧

0
1 CLASSES

ANDY LEWIS-PYE AND LSE

We say a degree a is hyperimmune-free if for every f : ! ! !
computable in a, there exists a computable function g which ma-

jorises f , i.e. such that g(n) > f(n) for all n.

Convention: we shall suppose that  

�
s (n) # only if this computa-

tion converges in at most |�| many steps.

Stage 0. Define ⇤0 = ⇤.

Stage s+ 1. We are given ⇤s which is non-empty. We ask:

“Does there exist an n such that  

�
s (s) # for all � 2 ⇤s of length

n?”

If so: Then we can define ⇤s+1 = ⇤s, and we already know that

s 2 A0
for all A 2 ⇤⇤

.

If not: Then we can define ⇤s+1 to be all those strings � in ⇤s

for which  

�
s (s) ". Since there exist such � of every length, it

follows by WKL that [⇤s+1] is non-empty. In this case we have

established that s /2 A0
for all A 2 ⇤⇤

.

We suppose P is non-empty and is the set of infinite paths through

⇤ ✓ 2

<!
which is downward closed and computable.

We run a construction which makes use of an oracle for ;0.
At stage 0 we define ⇤0 = ⇤, and at each stage s + 1 we define

⇤s+1 ✓ ⇤s such that [⇤s+1] (the set of infinite paths through

⇤s+1) is non-empty.

⇤0 ◆ ⇤1 ◆ ⇤2 ◆ · · ·
Ultimately we can then consider ⇤

⇤
=

T
s ⇤s, which by compact-

ness will be non-empty.

At stage s+ 1 we define ⇤s+1 so as to decide whether  

A
s (s) #

for all A 2 ⇤⇤
once and for all. Since we compute A0

for all A 2 ⇤⇤

as the construction progresses (using only our oracle for ;0), ⇤⇤

must have precisely one member, and this must be of low degree.

[Low Basis Theorem]. We call a Turing degree a low if a0
= 00

.

Every non-empty ⇧

0
1 class has a member of low degree.

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1



5 BASIC FACTS

ON THE DEGREE SPECTRA OF ⇧

0
1 CLASSES

ANDY LEWIS-PYE AND LSE

[Weak König’s Lemma]. If ⇤ ✓ 2

<!
is downward closed and

infinite then there is an infinite path through ⇤.

A ⇧

0
1 class (subset of Cantor

space) is one defined by a

universal formula:

X 2 P $ 8nR[X,n].

Equivalently, P is a ⇧

0
1 class i↵ it is the set of infinite

paths through a downward closed and computable set

of finite binary strings ⇤.

�0

�1

�2

Thomas Kent, Mathematics, Columbia House, London School of
Economics, WC2A 2AE, London, United Kingdom.

E-mail address: andy@aemlewis.com
URL: http://aemlewis.co.uk

LSE, Department of Mathematics, Berkeley

E-mail address: amontalb@gmail.com
URL: http://aemlewis.co.uk

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1

FACT 1

FACT 2

ON THE DEGREE SPECTRA OF ⇧

0
1 CLASSES

ANDY LEWIS-PYE AND LSE

Any isolated member of a ⇧

0
1 class is computable.

A ⇧

0
1 class (subset of Cantor

space) is one defined by a

universal formula:

X 2 P $ 8nR[X,n].

Equivalently, P is a ⇧

0
1 class i↵ it is the set of infinite

paths through a downward closed and computable set

of finite binary strings ⇤.

�0

�1

�2

Thomas Kent, Mathematics, Columbia House, London School of

Economics, WC2A 2AE, London, United Kingdom.

E-mail address: andy@aemlewis.com
URL: http://aemlewis.co.uk

LSE, Department of Mathematics, Berkeley
E-mail address: amontalb@gmail.com
URL: http://aemlewis.co.uk

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1

FACT 3

ON THE DEGREE SPECTRA OF ⇧

0
1 CLASSES

ANDY LEWIS-PYE AND LSE

We call a ⇧

0
1 class special if it is non-empty and has no computable

members. Any special ⇧

0
1 class is of cardinality the continuum.

A ⇧

0
1 class (subset of Cantor

space) is one defined by a

universal formula:

X 2 P $ 8nR[X,n].

Equivalently, P is a ⇧

0
1 class i↵ it is the set of infinite

paths through a downward closed and computable set

of finite binary strings ⇤.

�0

�1

�2

Thomas Kent, Mathematics, Columbia House, London School of
Economics, WC2A 2AE, London, United Kingdom.

E-mail address: andy@aemlewis.com
URL: http://aemlewis.co.uk

LSE, Department of Mathematics, Berkeley

E-mail address: amontalb@gmail.com
URL: http://aemlewis.co.uk

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1

FACT 4

ON THE DEGREE SPECTRA OF ⇧

0
1 CLASSES

ANDY LEWIS-PYE AND LSE

[Low Basis Theorem]. We call a Turing degree a low if a0
= 00

.

Every non-empty ⇧

0
1 class has a member of low degree.

A ⇧

0
1 class (subset of Cantor

space) is one defined by a

universal formula:

X 2 P $ 8nR[X,n].

Equivalently, P is a ⇧

0
1 class i↵ it is the set of infinite

paths through a downward closed and computable set

of finite binary strings ⇤.

�0

�1

�2

Thomas Kent, Mathematics, Columbia House, London School of
Economics, WC2A 2AE, London, United Kingdom.

E-mail address: andy@aemlewis.com
URL: http://aemlewis.co.uk

LSE, Department of Mathematics, Berkeley

E-mail address: amontalb@gmail.com
URL: http://aemlewis.co.uk

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1

FACT 5

ON THE DEGREE SPECTRA OF ⇧0
1 CLASSES

ANDY LEWIS-PYE AND LSE

[Hyperimmune-free Basis Theorem]. Every non-empty ⇧0
1 class

has a member of hyperimmune-free degree.

We say a degree a is hyperimmune-free if for every f : ! ! !
computable in a, there exists a computable function g which ma-
jorises f , i.e. such that g(n) > f(n) for all n.

Convention: we shall suppose that  �
s (n) # only if this computa-

tion converges in at most |�| many steps.
Stage 0. Define ⇤0 = ⇤.
Stage s+ 1. We are given ⇤s which is non-empty. We ask:

“Does there exist an n such that  �
s (s) # for all � 2 ⇤s of length

n?”

If so: Then we can define ⇤s+1 = ⇤s, and we already know that
s 2 A0 for all A 2 ⇤⇤.
If not: Then we can define ⇤s+1 to be all those strings � in ⇤s

for which  �
s (s) ". Since there exist such � of every length, it

follows by WKL that [⇤s+1] is non-empty. In this case we have
established that s /2 A0 for all A 2 ⇤⇤.
We suppose P is non-empty and is the set of infinite paths through
⇤ ✓ 2<! which is downward closed and computable.

We run a construction which makes use of an oracle for ;0.
At stage 0 we define ⇤0 = ⇤, and at each stage s + 1 we define
⇤s+1 ✓ ⇤s such that [⇤s+1] (the set of infinite paths through
⇤s+1) is non-empty.

⇤0 ◆ ⇤1 ◆ ⇤2 ◆ · · ·
Ultimately we can then consider ⇤⇤ =

T
s ⇤s, which by compact-

ness will be non-empty.

At stage s+ 1 we define ⇤s+1 so as to decide whether  A
s (s) #

for all A 2 ⇤⇤ once and for all. Since we compute A0 for all A 2 ⇤⇤

as the construction progresses (using only our oracle for ;0), ⇤⇤

must have precisely one member, and this must be of low degree.
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⇤0 ◆ ⇤1 ◆ ⇤2 ◆ · · ·
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has a member of hyperimmune-free degree.

We say a degree a is hyperimmune-free if for every f : ! ! !
computable in a, there exists a computable function g which ma-
jorises f , i.e. such that g(n) > f(n) for all n.

Convention: we shall suppose that  �
s (n) # only if this computa-

tion converges in at most |�| many steps.
Stage 0. Define ⇤0 = ⇤.
Stage s+ 1. We are given ⇤s which is non-empty. We ask:

“Does there exist an n such that  �
s (s) # for all � 2 ⇤s of length

n?”

If so: Then we can define ⇤s+1 = ⇤s, and we already know that
s 2 A0 for all A 2 ⇤⇤.
If not: Then we can define ⇤s+1 to be all those strings � in ⇤s

for which  �
s (s) ". Since there exist such � of every length, it

follows by WKL that [⇤s+1] is non-empty. In this case we have
established that s /2 A0 for all A 2 ⇤⇤.
We suppose P is non-empty and is the set of infinite paths through
⇤ ✓ 2<! which is downward closed and computable.

We run a construction which makes use of an oracle for ;0.
At stage 0 we define ⇤0 = ⇤, and at each stage s + 1 we define
⇤s+1 ✓ ⇤s such that [⇤s+1] (the set of infinite paths through
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for which  �
s (s) ". Since there exist such � of every length, it

follows by WKL that [⇤s+1] is non-empty. In this case we have
established that s /2 A0 for all A 2 ⇤⇤.
We suppose P is non-empty and is the set of infinite paths through
⇤ ✓ 2<! which is downward closed and computable.

We run a construction which makes use of an oracle for ;0.
At stage 0 we define ⇤0 = ⇤, and at each stage s + 1 we define
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For P ✓ 2! we define S(P), the degree spectrum of P, to be the
set of Turing degrees a such that there exists A 2 P of degree a.

We define P = {S(P) : P is a ⇧0
1 class} and we consider the

elements of P to be ordered by inclusion.
low degrees

hyperimmune-free degrees
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00

[Hyperimmune-free Basis Theorem]. Every non-empty ⇧0
1 class

has a member of hyperimmune-free degree.

We say a degree a is hyperimmune-free if for every f : ! ! !
computable in a, there exists a computable function g which ma-
jorises f , i.e. such that g(n) > f(n) for all n.

Convention: we shall suppose that  �
s (n) # only if this computa-

tion converges in at most |�| many steps.
Stage 0. Define ⇤0 = ⇤.
Stage s+ 1. We are given ⇤s which is non-empty. We ask:

“Does there exist an n such that  �
s (s) # for all � 2 ⇤s of length

n?”

If so: Then we can define ⇤s+1 = ⇤s, and we already know that
s 2 A0 for all A 2 ⇤⇤.
If not: Then we can define ⇤s+1 to be all those strings � in ⇤s

for which  �
s (s) ". Since there exist such � of every length, it

follows by WKL that [⇤s+1] is non-empty. In this case we have
established that s /2 A0 for all A 2 ⇤⇤.
We suppose P is non-empty and is the set of infinite paths through
⇤ ✓ 2<! which is downward closed and computable.
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This proof is easily modified to show that for any a  0

0, {0}[{b :
b � a} is a degree spectrum.

Here we used 2s as the ‘filler’, but for any ⇧0
1 class P, we could

have used P as the filler instead, to give a new class with degree
spectrum S(P) [ {a}.
Stage 0. Enumerate ; into ⇤.
Stage s > 0. Choose that leaf ⌧ such that amongst those leaves
⌧

0 with g(⌧ 0) ⇢ �s, g(⌧) is the longest. Enumerate ⌧ ⇤ �s(g(|⌧ |))
and ⌧ ⇤ 2 into ⇤. For every other leaf ⌧ 0 enumerate ⌧

0 ⇤ 2 into ⇤.
We construct P ✓ {0, 1, 2}!. We construct ⇤ which is down-

ward closed and computable – at stage s we decide which strings
of length s are in ⇤.
We suppose given an approximation {�s}s2! to A 2 a (and sup-
pose �s is of length s). For any ⌧ 2 3<! we let g(⌧) be the binary
string obtained by removing all 2s. The idea is that we construct
⇤ so that all infinite paths B either end with infinitely many 2s,
or else satisfy g(B) = A.
The set of PA degrees is an element of the structure, as is the set
of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 0

0. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..

Question: Is (P, <) a lattice?
The hf and low basis theorems combine to show that no non-trivial
upper cone can be a degree spectrum, but the question becomes
more interesting if we add in 0: for which a is it the case that
{0} [ {b : b > a} is a degree spectrum?
The following facts are easily derived:

(i) (P, <) has a greatest element 1P = D and a least element
0P = ;.

(ii) (P, <) is an uppersemilattice.
(iii) There is at least one minimal element {0}.

For P ✓ 2! we define S(P), the degree spectrum of P, to be the
set of Turing degrees a such that there exists A 2 P of degree a.

We define P = {S(P) : P is a ⇧0
1 class} and we consider the

elements of P to be ordered by inclusion.
low degrees

hyperimmune-free degrees

0

0

0
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The set of PA degrees is an element of the structure, as is the set
of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..

Question: Is (P, <) a lattice?
The following facts are easily derived:

(i) (P, <) has a greatest element 1P = D and a least element
0P = ;.

(ii) (P, <) is an uppersemilattice.
(iii) There is at least one minimal element {0}.

For P ✓ 2! we define S(P), the degree spectrum of P, to be the
set of Turing degrees a such that there exists A 2 P of degree a.

We define P = {S(P) : P is a ⇧0
1 class} and we consider the

elements of P to be ordered by inclusion.
low degrees

hyperimmune-free degrees

0

00

[Hyperimmune-free Basis Theorem]. Every non-empty ⇧0
1 class

has a member of hyperimmune-free degree.

We say a degree a is hyperimmune-free if for every f : ! ! !
computable in a, there exists a computable function g which ma-
jorises f , i.e. such that g(n) > f(n) for all n.

Convention: we shall suppose that  �
s (n) # only if this computa-

tion converges in at most |�| many steps.
Stage 0. Define ⇤0 = ⇤.
Stage s+ 1. We are given ⇤s which is non-empty. We ask:
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The set of PA degrees is an element of the structure, as is the set
of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..

Question: Is (P, <) a lattice?
The following facts are easily derived:

(i) (P, <) has a greatest element 1P = D and a least element
0P = ;.

(ii) (P, <) is an uppersemilattice.
(iii) There is at least one minimal element {0}.

For P ✓ 2! we define S(P), the degree spectrum of P, to be the
set of Turing degrees a such that there exists A 2 P of degree a.

We define P = {S(P) : P is a ⇧0
1 class} and we consider the

elements of P to be ordered by inclusion.
low degrees

hyperimmune-free degrees

0

00

[Hyperimmune-free Basis Theorem]. Every non-empty ⇧0
1 class

has a member of hyperimmune-free degree.

We say a degree a is hyperimmune-free if for every f : ! ! !
computable in a, there exists a computable function g which ma-
jorises f , i.e. such that g(n) > f(n) for all n.

Convention: we shall suppose that  �
s (n) # only if this computa-

tion converges in at most |�| many steps.
Stage 0. Define ⇤0 = ⇤.
Stage s+ 1. We are given ⇤s which is non-empty. We ask:
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The set of PA degrees is an element of the structure, as is the set
of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..

Question: Is (P, <) a lattice?
The following facts are easily derived:

(i) (P, <) has a greatest element 1P = D and a least element
0P = ;.

(ii) (P, <) is an uppersemilattice.
(iii) There is at least one minimal element {0}.

For P ✓ 2! we define S(P), the degree spectrum of P, to be the
set of Turing degrees a such that there exists A 2 P of degree a.

We define P = {S(P) : P is a ⇧0
1 class} and we consider the

elements of P to be ordered by inclusion.
low degrees

hyperimmune-free degrees

0

00

[Hyperimmune-free Basis Theorem]. Every non-empty ⇧0
1 class

has a member of hyperimmune-free degree.

We say a degree a is hyperimmune-free if for every f : ! ! !
computable in a, there exists a computable function g which ma-
jorises f , i.e. such that g(n) > f(n) for all n.

Convention: we shall suppose that  �
s (n) # only if this computa-

tion converges in at most |�| many steps.
Stage 0. Define ⇤0 = ⇤.
Stage s+ 1. We are given ⇤s which is non-empty. We ask:
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The hf and low basis theorems combine to show that no non-trivial
upper conner can be a degree spectrum. The question becomes
more interesting when we add in 0: for which a is it the case that
{0} [ {b : b � a} is a degree spectrum?
‘
This proof is easily modified to show that for any a  00, {0}[{b :
b � a} is a degree spectrum.

Here we used 2s as the ‘filler’, but for any ⇧0
1 class P, we could

have used P as the filler instead, to give a new class with degree
spectrum S(P) [ {a}.
Stage 0. Enumerate ; into ⇤.
Stage s > 0. Choose that leaf ⌧ such that amongst those leaves
⌧ 0 with g(⌧ 0) ⇢ �s, g(⌧) is the longest. Enumerate ⌧ ⇤ �s(g(|⌧ |))
and ⌧ ⇤ 2 into ⇤. For every other leaf ⌧ 0 enumerate ⌧ 0 ⇤ 2 into ⇤.

We construct P ✓ {0, 1, 2}!. We construct ⇤ which is down-
ward closed and computable – at stage s we decide which strings
of length s are in ⇤.
We suppose given an approximation {�s}s2! to A 2 a (and sup-
pose �s is of length s). For any ⌧ 2 3<! we let g(⌧) be the binary
string obtained by removing all 2s. The idea is that we construct
⇤ so that all infinite paths B either end with infinitely many 2s,
or else satisfy g(B) = A.
The set of PA degrees is an element of the structure, as is the set
of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..

Question: Is (P, <) a lattice?
The hf and low basis theorems combine to show that no non-trivial
upper cone can be a degree spectrum, but the question becomes
more interesting if we add in 0: for which a is it the case that
{0} [ {b : b > a} is a degree spectrum?
The following facts are easily derived:

(i) (P, <) has a greatest element 1P = D and a least element
0P = ;.

(ii) (P, <) is an uppersemilattice.
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Proving that for a  00, {0,a} is a degree spectrum.
The set of PA degrees is an element of the structure, as is the set
of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..

Question: Is (P, <) a lattice?
The hf and low basis theorems combine to show that no non-trivial
upper cone can be a degree spectrum, but the question becomes
more interesting if we add in 0: for which a is it the case that
{0} [ {b : b > a} is a degree spectrum?
The following facts are easily derived:

(i) (P, <) has a greatest element 1P = D and a least element
0P = ;.

(ii) (P, <) is an uppersemilattice.
(iii) There is at least one minimal element {0}.

For P ✓ 2! we define S(P), the degree spectrum of P, to be the
set of Turing degrees a such that there exists A 2 P of degree a.

We define P = {S(P) : P is a ⇧0
1 class} and we consider the

elements of P to be ordered by inclusion.
low degrees

hyperimmune-free degrees

0

00

[Hyperimmune-free Basis Theorem]. Every non-empty ⇧0
1 class

has a member of hyperimmune-free degree.
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We construct P ✓ {0, 1, 2}!. We construct ⇤ which is downward
closed and computable – at stage s we decide which strings of
length s are in ⇤.
We suppose given an approximation {�s}s2! to A 2 a (and sup-
pose �s is of length s). For any ⌧ 2 3<! we let g(⌧) be the binary
string obtained by removing all 2s. The idea is that we construct
⇤ so that all infinite paths B either end with infinitely many 2s,
or else satisfy g(B) = A.
The set of PA degrees is an element of the structure, as is the set
of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..

Question: Is (P, <) a lattice?
The hf and low basis theorems combine to show that no non-trivial
upper cone can be a degree spectrum, but the question becomes
more interesting if we add in 0: for which a is it the case that
{0} [ {b : b > a} is a degree spectrum?
The following facts are easily derived:

(i) (P, <) has a greatest element 1P = D and a least element
0P = ;.

(ii) (P, <) is an uppersemilattice.
(iii) There is at least one minimal element {0}.

For P ✓ 2! we define S(P), the degree spectrum of P, to be the
set of Turing degrees a such that there exists A 2 P of degree a.

We define P = {S(P) : P is a ⇧0
1 class} and we consider the

elements of P to be ordered by inclusion.
low degrees

hyperimmune-free degrees

0
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or else satisfy g(B) = A.
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Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..

Question: Is (P, <) a lattice?
The hf and low basis theorems combine to show that no non-trivial
upper cone can be a degree spectrum, but the question becomes
more interesting if we add in 0: for which a is it the case that
{0} [ {b : b > a} is a degree spectrum?
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(i) (P, <) has a greatest element 1P = D and a least element
0P = ;.

(ii) (P, <) is an uppersemilattice.
(iii) There is at least one minimal element {0}.
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set of Turing degrees a such that there exists A 2 P of degree a.
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Proving that for a  00, {0,a} is a degree spectrum.
The set of PA degrees is an element of the structure, as is the set
of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..
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The hf and low basis theorems combine to show that no non-trivial
upper cone can be a degree spectrum, but the question becomes
more interesting if we add in 0: for which a is it the case that
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has a member of hyperimmune-free degree.
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We construct P ✓ {0, 1, 2}!. We construct ⇤ which is downward
closed and computable – at stage s we decide which strings of
length s are in ⇤.
We suppose given an approximation {�s}s2! to A 2 a (and sup-
pose �s is of length s). For any ⌧ 2 3<! we let g(⌧) be the binary
string obtained by removing all 2s. The idea is that we construct
⇤ so that all infinite paths B either end with infinitely many 2s,
or else satisfy g(B) = A.
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of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..
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The hf and low basis theorems combine to show that no non-trivial
upper cone can be a degree spectrum, but the question becomes
more interesting if we add in 0: for which a is it the case that
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Proving that for a  00, {0,a} is a degree spectrum.
The set of PA degrees is an element of the structure, as is the set
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random are precisely the degrees above 00. This su�ces to show
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spectrum. This does not mean than ↵ ^ � doesn’t exist though..

Question: Is (P, <) a lattice?
The hf and low basis theorems combine to show that no non-trivial
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more interesting if we add in 0: for which a is it the case that
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We construct P ✓ {0, 1, 2}!. We construct ⇤ which is downward
closed and computable – at stage s we decide which strings of
length s are in ⇤.
We suppose given an approximation {�s}s2! to A 2 a (and sup-
pose �s is of length s). For any ⌧ 2 3<! we let g(⌧) be the binary
string obtained by removing all 2s. The idea is that we construct
⇤ so that all infinite paths B either end with infinitely many 2s,
or else satisfy g(B) = A.
The set of PA degrees is an element of the structure, as is the set
of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
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of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
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random are precisely the degrees above 00. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..

Question: Is (P, <) a lattice?
The hf and low basis theorems combine to show that no non-trivial
upper cone can be a degree spectrum, but the question becomes
more interesting if we add in 0: for which a is it the case that
{0} [ {b : b > a} is a degree spectrum?
The following facts are easily derived:

(i) (P, <) has a greatest element 1P = D and a least element
0P = ;.

(ii) (P, <) is an uppersemilattice.
(iii) There is at least one minimal element {0}.

For P ✓ 2! we define S(P), the degree spectrum of P, to be the
set of Turing degrees a such that there exists A 2 P of degree a.

We define P = {S(P) : P is a ⇧0
1 class} and we consider the

elements of P to be ordered by inclusion.
low degrees

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1

PROVING THAT FOR a  00, {0,a} IS A DEGREE

SPECTRUM.

ANDY LEWIS-PYE AND LSE

such that g(⌧) ⇢ �s is longest.
�s(|g(⌧)|)

2

We construct P ✓ {0, 1, 2}!. We construct ⇤ which is down-
ward closed and computable – at stage s we decide which strings
of length s are in ⇤.
We suppose given an approximation {�s}s2! to A 2 a (and sup-
pose �s is of length s). For any ⌧ 2 3<! we let g(⌧) be the binary
string obtained by removing all 2s. The idea is that we construct
⇤ so that all infinite paths B either end with infinitely many 2s,
or else satisfy g(B) = A.
The set of PA degrees is an element of the structure, as is the set
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For P ✓ 2! we define S(P), the degree spectrum of P, to be the
set of Turing degrees a such that there exists A 2 P of degree a.

We define P = {S(P) : P is a ⇧0
1 class} and we consider the
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string obtained by removing all 2s. The idea is that we construct
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or else satisfy g(B) = A.
The set of PA degrees is an element of the structure, as is the set
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Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
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Proving that for a  00, {0,a} is a degree spectrum.
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[Hyperimmune-free Basis Theorem]. Every non-empty ⇧0
1 class

has a member of hyperimmune-free degree.
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The hf and low basis theorems combine to show that no non-trivial
upper conner can be a degree spectrum. The question becomes
more interesting when we add in 0: for which a is it the case that
{0} [ {b : b � a} is a degree spectrum?
‘
This proof is easily modified to show that for any a  00, {0}[{b :
b � a} is a degree spectrum.

Here we used 2s as the ‘filler’, but for any ⇧0
1 class P, we could

have used P as the filler instead, to give a new class with degree
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of length s are in ⇤.
We suppose given an approximation {�s}s2! to A 2 a (and sup-
pose �s is of length s). For any ⌧ 2 3<! we let g(⌧) be the binary
string obtained by removing all 2s. The idea is that we construct
⇤ so that all infinite paths B either end with infinitely many 2s,
or else satisfy g(B) = A.
The set of PA degrees is an element of the structure, as is the set
of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..

Question: Is (P, <) a lattice?
The hf and low basis theorems combine to show that no non-trivial
upper cone can be a degree spectrum, but the question becomes
more interesting if we add in 0: for which a is it the case that
{0} [ {b : b > a} is a degree spectrum?
The following facts are easily derived:

(i) (P, <) has a greatest element 1P = D and a least element
0P = ;.

(ii) (P, <) is an uppersemilattice.
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..rather than simply coding A into one path, we now have one
coding path for each set of the form A�B, where:

A�B(2n) = A(n)

A�B(2n+ 1) = B(n).
The hf and low basis theorems combine to show that no non-trivial
upper conner can be a degree spectrum. The question becomes
more interesting when we add in 0: for which a is it the case that
{0} [ {b : b � a} is a degree spectrum?
‘
This proof is easily modified to show that for any a  00, {0}[{b :
b � a} is a degree spectrum.

Here we used 2s as the ‘filler’, but for any ⇧0
1 class P, we could

have used P as the filler instead, to give a new class with degree
spectrum S(P) [ {a}.
Stage 0. Enumerate ; into ⇤.
Stage s > 0. Choose that leaf ⌧ such that amongst those leaves
⌧ 0 with g(⌧ 0) ⇢ �s, g(⌧) is the longest. Enumerate ⌧ ⇤ �s(g(|⌧ |))
and ⌧ ⇤ 2 into ⇤. For every other leaf ⌧ 0 enumerate ⌧ 0 ⇤ 2 into ⇤.

We construct P ✓ {0, 1, 2}!. We construct ⇤ which is down-
ward closed and computable – at stage s we decide which strings
of length s are in ⇤.
We suppose given an approximation {�s}s2! to A 2 a (and sup-
pose �s is of length s). For any ⌧ 2 3<! we let g(⌧) be the binary
string obtained by removing all 2s. The idea is that we construct
⇤ so that all infinite paths B either end with infinitely many 2s,
or else satisfy g(B) = A.
The set of PA degrees is an element of the structure, as is the set
of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
that when ↵ and �, their intersection ↵\� need not be a degree
spectrum. This does not mean than ↵ ^ � doesn’t exist though..

Question: Is (P, <) a lattice?
The hf and low basis theorems combine to show that no non-trivial
upper cone can be a degree spectrum, but the question becomes
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Recall that a degree is fixed point free i↵ it contains a DNC (di-
agonally non-computable) function, where f is DNC if for all n
we have f(n) 6=  n(n).

Simpson has shown that the fixed point free degrees are a degree
spectrum.

..rather than simply coding A into one path, we now have one
coding path for each set of the form A�B, where:

A�B(2n) = A(n)

A�B(2n+ 1) = B(n).
The hf and low basis theorems combine to show that no non-trivial
upper conner can be a degree spectrum. The question becomes
more interesting when we add in 0: for which a is it the case that
{0} [ {b : b � a} is a degree spectrum?
‘
This proof is easily modified to show that for any a  00, {0}[{b :
b � a} is a degree spectrum.

Here we used 2s as the ‘filler’, but for any ⇧0
1 class P, we could

have used P as the filler instead, to give a new class with degree
spectrum S(P) [ {a}.
Stage 0. Enumerate ; into ⇤.
Stage s > 0. Choose that leaf ⌧ such that amongst those leaves
⌧ 0 with g(⌧ 0) ⇢ �s, g(⌧) is the longest. Enumerate ⌧ ⇤ �s(g(|⌧ |))
and ⌧ ⇤ 2 into ⇤. For every other leaf ⌧ 0 enumerate ⌧ 0 ⇤ 2 into ⇤.

We construct P ✓ {0, 1, 2}!. We construct ⇤ which is down-
ward closed and computable – at stage s we decide which strings
of length s are in ⇤.
We suppose given an approximation {�s}s2! to A 2 a (and sup-
pose �s is of length s). For any ⌧ 2 3<! we let g(⌧) be the binary
string obtained by removing all 2s. The idea is that we construct
⇤ so that all infinite paths B either end with infinitely many 2s,
or else satisfy g(B) = A.
The set of PA degrees is an element of the structure, as is the set
of Martin-Löf random degrees.
Stephan has shown that the degrees which are PA and Martin-Löf
random are precisely the degrees above 00. This su�ces to show
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The set of all c.e. degrees is the degree spectrum of a ⇧0
1 class.

Proof. We let Wi denote the ith c.e. set according to some fixed
e↵ective listing. Let f be a computable function such that, for
any i 2 !, S([⇤f(i)]) = {0,ai} where ai is the degree of Wi. Now
let ⇤ be the computable set of strings which contains a copy of
⇤f(i) above each string 0i ? 1, where 0i is the sequence of i many
zeros. ⇤

Recall that a degree is fixed point free i↵ it contains a DNC
(diagonally non-computable) function, where f is DNC if for all
n we have f(n) 6=  n(n).

Simpson has shown that the fixed point free degrees are a degree
spectrum.

..rather than simply coding A into one path, we now have one
coding path for each set of the form A�B, where:

A�B(2n) = A(n)

A�B(2n+ 1) = B(n).
The hf and low basis theorems combine to show that no non-trivial
upper conner can be a degree spectrum. The question becomes
more interesting when we add in 0: for which a is it the case that
{0} [ {b : b � a} is a degree spectrum?
‘
This proof is easily modified to show that for any a  00, {0}[{b :
b � a} is a degree spectrum.

Here we used 2s as the ‘filler’, but for any ⇧0
1 class P, we could

have used P as the filler instead, to give a new class with degree
spectrum S(P) [ {a}.
Stage 0. Enumerate ; into ⇤.
Stage s > 0. Choose that leaf ⌧ such that amongst those leaves
⌧ 0 with g(⌧ 0) ⇢ �s, g(⌧) is the longest. Enumerate ⌧ ⇤ �s(g(|⌧ |))
and ⌧ ⇤ 2 into ⇤. For every other leaf ⌧ 0 enumerate ⌧ 0 ⇤ 2 into ⇤.

We construct P ✓ {0, 1, 2}!. We construct ⇤ which is down-
ward closed and computable – at stage s we decide which strings
of length s are in ⇤.
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upper conner can be a degree spectrum. The question becomes
more interesting when we add in 0: for which a is it the case that
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‘
This proof is easily modified to show that for any a  00, {0}[{b :
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Here we used 2s as the ‘filler’, but for any ⇧0
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not obviously the case that there exists � > 0P with ↵ ^ � = 0P are those
uncountable ↵ which contain 0. The following theorem su�ces to show
that the equivalent of Corollary 3.1 does not hold for the degree spectra of
special ⇧0

1 classes. Although the result has already been proved by Cole and
Simpson [CS], we include a proof here which serves as a good introduction
to techniques which will be used later in the paper.

Theorem 3.2 (Cole and Simpson [CS]). For any special ⇧0
1 class P0 there

exists a special ⇧0
1 class P1 such that no member of P1 computes any member

of P0.

Proof. Suppose given downward closed and computable ⇤ such that P0 =
[⇤]. We define an approximation to a 2-branching T such that P1 = [T ]
satisfies the statement of the theorem. Those ⌧ in T of level 2i + 1 will be
defined so as to satisfy requirement:
⇥i: If A 2 P1 then A 6=  i(;).

Those ⌧ in T of level 2i + 2 will be defined so as to satisfy requirement:
⌅i: If A 2 P1 and  i(A) is total then  i(A) /2 P0.

Stage 0. Enumerate � into T .
Stage s > 0. Consider all the strings in T to be ordered first according to
their level in T and then lexicographically. Find the least string ⌧ 2 T (if
any) such that either:

(1) ⌧ is of level 2i + 1 and ⌧ ⇢  i(;)[s]. In this case let ⌧0 be the
immediate predecessor of ⌧ in T and let ⌧1 be a leaf of T extending
⌧0 and incompatible with ⌧ . Remove all strings properly extending
⌧0 from T and then enumerate in two incompatible extensions of ⌧1.

(2) ⌧ is of level 2i + 2,  i(⌧) is compatible with some string in ⇤ of
length s and there exists a leaf ⌧

0 of T extending ⌧ such that  i(⌧ 0)
properly extends  i(⌧). In this case remove all strings extending
(and including) ⌧ from T , other than ⌧

0.
Once these instructions are completed, choose two incompatible strings ex-
tending each leaf of T , and enumerate these strings into T .

It is clear that P1 is a ⇧0
1 class. In order to see that our approximation to

T converges, suppose that for some least i there exists a sequence {⌧j}j�0

of strings such that each ⌧j is a string of level 2i + 2 in T at some stage
of the construction and ⌧j ⇢ ⌧j+1 for all j. Let A =

S
j ⌧j . Then  i(A) is

computable and is in P0, which gives the required contradiction.
⇤

4. Invisible degrees

Before going on to consider the issue of which ↵ 2 P can be cupped
to 1P, we present in this section a number of theorems concerning lower
levels of the arithmetical and Borel hierarchies, which will give us valuable
information regarding the structure (P, <) when applied to the countable
sequence of ⇧0

1 classes. We prove Theorems 4.1 and 4.2 in a way that may
initially seem more complicated than is necessary, in order that we can later
use these proofs to deduce certain corollaries.
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The invisible degrees and cupping

PROVING THAT FOR a  00, {0,a} IS A DEGREE

SPECTRUM.
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Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

For any special ⇧0
1 class P0 there exists a special ⇧0

1 class P1

such that no member of P1 computes any member of P0.

So here we have a degree spectrum ↵ which has non-empty
intersection with every other non-empty degree spectrum �. The
analogue of this doesn’t hold for the special degree spectra though..
The set of all c.e. degrees is the degree spectrum of a ⇧0

1 class.

Proof. We let Wi denote the ith c.e. set according to some fixed
e↵ective listing. Let f be a computable function such that, for
any i 2 !, S([⇤f(i)]) = {0,ai} where ai is the degree of Wi. Now
let ⇤ be the computable set of strings which contains a copy of
⇤f(i) above each string 0i ? 1, where 0i is the sequence of i many
zeros. ⇤

Recall that a degree is fixed point free i↵ it contains a DNC
(diagonally non-computable) function, where f is DNC if for all
n we have f(n) 6=  n(n).

Simpson has shown that the fixed point free degrees are a degree
spectrum.

..rather than simply coding A into one path, we now have one
coding path for each set of the form A�B, where:

A�B(2n) = A(n)
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Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is su�cient to imply the full
theorem is immediate since any F� set is the union of a countable
sequence of closed sets. More specifically, let {Qk}k2! be a se-
quence of F� sets, with Qk =

S
j2! Pk,j with Pk,j closed for each

k, j 2 !, and let a be such that if a 2 S(Pk,j) then S(Pk,j) = D.
If a 2 S(Qk) then there exists a j such that a 2 S(Pk,j), giv-
ing S(Qk) = D as required. So suppose we are given a sequence
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The set of all c.e. degrees is the degree spectrum of a ⇧0

1 class.

Proof. We let Wi denote the ith c.e. set according to some fixed
e↵ective listing. Let f be a computable function such that, for
any i 2 !, S([⇤f(i)]) = {0,ai} where ai is the degree of Wi. Now
let ⇤ be the computable set of strings which contains a copy of
⇤f(i) above each string 0i ? 1, where 0i is the sequence of i many
zeros. ⇤

Recall that a degree is fixed point free i↵ it contains a DNC
(diagonally non-computable) function, where f is DNC if for all
n we have f(n) 6=  n(n).

Simpson has shown that the fixed point free degrees are a degree
spectrum.

..rather than simply coding A into one path, we now have one
coding path for each set of the form A�B, where:

A�B(2n) = A(n)
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Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is su�cient to imply the full
theorem is immediate since any F� set is the union of a countable
sequence of closed sets. More specifically, let {Qk}k2! be a se-
quence of F� sets, with Qk =

S
j2! Pk,j with Pk,j closed for each

k, j 2 !, and let a be such that if a 2 S(Pk,j) then S(Pk,j) = D.
If a 2 S(Qk) then there exists a j such that a 2 S(Pk,j), giv-
ing S(Qk) = D as required. So suppose we are given a sequence
{Pk}k2! of closed sets.
Proof (continued) .. so now we have to construct A, such that
no Pk has a member of degree a = deg(A) unless it has a member
of every degree. This means that sometimes we will have to be able
to demonstrate that Pk does contain a member of every degree..

⇤

Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

For any special ⇧0
1 class P0 there exists a special ⇧0

1 class P1

such that no member of P1 computes any member of P0.

So here we have a degree spectrum ↵ which has non-empty
intersection with every other non-empty degree spectrum �. The
analogue of this doesn’t hold for the special degree spectra though..
The set of all c.e. degrees is the degree spectrum of a ⇧0

1 class.
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and consider running the construction of an invisible degree but
beginning with T0 as the set of strings of the form ⌧0 � ⌧1 such
that ⌧0 ⇢ B. Now whenever case (4) applies we may deduce that
Pk contains [T ] for some perfect pointed b-computable T . Since
b is weakly invisible, Pk therefore contains a member of every
degree. ⇤

..so there exist invisible degrees which are not strongly invisible.

Proof. By Theorem ?? there exists a weakly invisible degree
which is non-zero and which is not invisible. By Theorem ??

this degree is bounded by an invisible degree which cannot be
strongly invisible. ⇤

We say that a degree a is invisible if any ⇧0
1 class which contains

a member of degree a contains a member of every degree.
The existence of invisible degrees immediately su�ces to give

the following corollary: There do not exist ↵ < 1P and � < 1P

with ↵ _ � = 1P.

Proof. If neither of ↵ or � contain any invisible degrees then
neither does their union. ⇤

If we analyse these proofs a little further, then we reach some
interesting conclusions:
An F� set Q contains a member of every degree above b i↵ there
exists some b-computable perfect and pointed T with [T ] ✓ Q.

A ⌃0
3 class P contains a member of every degree above b i↵ there

exists some b-computable perfect and pointed T with [T ] ✓ P.

Proof. Let Q =
S

k Pk where each Pk is closed. Given B of
degree b, consider running the previous construction but begin-
ning with T0 as the set of strings of the form ⌧0 � ⌧1 such that
⌧0 ⇢ B—so that all the Ts are now computable in B. Let the set
A constructed be of degree a. If Q contains a member of every
degree above b then, in particular, some Pk must contain a mem-
ber of degree a. Therefore, for some s = hi, j, ki it must be that
case (4) applies. Then T = { i(�) : � 2 Ts+1} is B-computable
perfect and pointed, and [T ] ✓ Q. ⇤

..it su�ces to show that [T ] ✓ Pk for some 2-branching com-
putable T ✓ 2<!.

For future reference, in order to show that Pk contains a mem-
ber of every degree above b (for some b) it also su�ces to show that
[T ] ✓ Pk for some 2-branching b computable pointed T ✓ 2<!.

Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is su�cient to imply the full
theorem is immediate since any F� set is the union of a countable
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Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

For any special ⇧0
1 class P0 there exists a special ⇧0

1 class P1

such that no member of P1 computes any member of P0.

So here we have a degree spectrum ↵ which has non-empty
intersection with every other non-empty degree spectrum �. The
analogue of this doesn’t hold for the special degree spectra though..
The set of all c.e. degrees is the degree spectrum of a ⇧0

1 class.

Proof. We let Wi denote the ith c.e. set according to some fixed
e↵ective listing. Let f be a computable function such that, for
any i 2 !, S([⇤f(i)]) = {0,ai} where ai is the degree of Wi. Now
let ⇤ be the computable set of strings which contains a copy of
⇤f(i) above each string 0i ? 1, where 0i is the sequence of i many
zeros. ⇤

Recall that a degree is fixed point free i↵ it contains a DNC
(diagonally non-computable) function, where f is DNC if for all
n we have f(n) 6=  n(n).

Simpson has shown that the fixed point free degrees are a degree
spectrum.

..rather than simply coding A into one path, we now have one
coding path for each set of the form A�B, where:

A�B(2n) = A(n)
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Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is su�cient to imply the full
theorem is immediate since any F� set is the union of a countable
sequence of closed sets. More specifically, let {Qk}k2! be a se-
quence of F� sets, with Qk =

S
j2! Pk,j with Pk,j closed for each

k, j 2 !, and let a be such that if a 2 S(Pk,j) then S(Pk,j) = D.
If a 2 S(Qk) then there exists a j such that a 2 S(Pk,j), giv-
ing S(Qk) = D as required. So suppose we are given a sequence
{Pk}k2! of closed sets.
Proof (continued) For every k, let Pk = [⌥k] for some down-
ward closed ⌥k ✓ 2<!. We shall use a simple forcing argument
in order to construct A =

S
s �s which is of hyperimmune-free

minimal degree. Initially we define �0 = � and we define T0 to be
the identity tree. At every stage s, given computable 2-branching
Ts and �s which is the string of level 0 in Ts, we define �s+1 � �s

and Ts+1 ⇢ Ts.

so now we have to construct A, such that no Pk has a member
of degree a = deg(A) unless it has a member of every degree. This
means that sometimes we will have to be able to demonstrate that
Pk does contain a member of every degree..

⇤

Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
In fact a can be chosen to be hyperimmune-free and minimal.
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Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is su�cient to imply the full
theorem is immediate since any F� set is the union of a countable
sequence of closed sets. More specifically, let {Qk}k2! be a se-
quence of F� sets, with Qk =

S
j2! Pk,j with Pk,j closed for each

k, j 2 !, and let a be such that if a 2 S(Pk,j) then S(Pk,j) = D.
If a 2 S(Qk) then there exists a j such that a 2 S(Pk,j), giv-
ing S(Qk) = D as required. So suppose we are given a sequence
{Pk}k2! of closed sets.
Proof (continued) For every k, let Pk = [⌥k] for some down-
ward closed ⌥k ✓ 2<!. We shall use a simple forcing argument
in order to construct A =

S
s �s which is of hyperimmune-free

minimal degree. Initially we define �0 = � and we define T0 to be
the identity tree. At every stage s, given computable 2-branching
Ts and �s which is the string of level 0 in Ts, we define �s+1 � �s

and Ts+1 ⇢ Ts.

For each hi, j, ki we must ensure:
If  A

i is total and belongs to Pk and if  j( 
A
i ) = A then Pk

contains a member of every degree.
so now we have to construct A, such that no Pk has a member

of degree a = deg(A) unless it has a member of every degree. This
means that sometimes we will have to be able to demonstrate that
Pk does contain a member of every degree..

⇤
Next we want to want to answer questions of the form, is it the

case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
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Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is su�cient to imply the full
theorem is immediate since any F� set is the union of a countable
sequence of closed sets. More specifically, let {Qk}k2! be a se-
quence of F� sets, with Qk =

S
j2! Pk,j with Pk,j closed for each

k, j 2 !, and let a be such that if a 2 S(Pk,j) then S(Pk,j) = D.
If a 2 S(Qk) then there exists a j such that a 2 S(Pk,j), giv-
ing S(Qk) = D as required. So suppose we are given a sequence
{Pk}k2! of closed sets.
Proof (continued) For every k, let Pk = [⌥k] for some down-
ward closed ⌥k ✓ 2<!. We shall use a simple forcing argument
in order to construct A =

S
s �s which is of hyperimmune-free

minimal degree. Initially we define �0 = � and we define T0 to be
the identity tree. At every stage s, given computable 2-branching
Ts and �s which is the string of level 0 in Ts, we define �s+1 � �s

and Ts+1 ⇢ Ts.

For each hi, j, ki we must ensure:
If  A

i is total and belongs to Pk and if  j( 
A
i ) = A then Pk

contains a member of every degree.
so now we have to construct A, such that no Pk has a member

of degree a = deg(A) unless it has a member of every degree. This
means that sometimes we will have to be able to demonstrate that
Pk does contain a member of every degree..

⇤
Next we want to want to answer questions of the form, is it the

case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
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Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

For any special ⇧0
1 class P0 there exists a special ⇧0

1 class P1

such that no member of P1 computes any member of P0.

So here we have a degree spectrum ↵ which has non-empty
intersection with every other non-empty degree spectrum �. The
analogue of this doesn’t hold for the special degree spectra though..
The set of all c.e. degrees is the degree spectrum of a ⇧0

1 class.

Proof. We let Wi denote the ith c.e. set according to some fixed
e↵ective listing. Let f be a computable function such that, for
any i 2 !, S([⇤f(i)]) = {0,ai} where ai is the degree of Wi. Now
let ⇤ be the computable set of strings which contains a copy of
⇤f(i) above each string 0i ? 1, where 0i is the sequence of i many
zeros. ⇤

Recall that a degree is fixed point free i↵ it contains a DNC
(diagonally non-computable) function, where f is DNC if for all
n we have f(n) 6=  n(n).

Simpson has shown that the fixed point free degrees are a degree
spectrum.

..rather than simply coding A into one path, we now have one
coding path for each set of the form A�B, where:

A�B(2n) = A(n)
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Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is su�cient to imply the full
theorem is immediate since any F� set is the union of a countable
sequence of closed sets. More specifically, let {Qk}k2! be a se-
quence of F� sets, with Qk =

S
j2! Pk,j with Pk,j closed for each

k, j 2 !, and let a be such that if a 2 S(Pk,j) then S(Pk,j) = D.
If a 2 S(Qk) then there exists a j such that a 2 S(Pk,j), giv-
ing S(Qk) = D as required. So suppose we are given a sequence
{Pk}k2! of closed sets.
Proof (continued) For every k, let Pk = [⌥k] for some down-
ward closed ⌥k ✓ 2<!. We shall use a simple forcing argument
in order to construct A =

S
s �s which is of hyperimmune-free

minimal degree. Initially we define �0 = � and we define T0 to be
the identity tree. At every stage s, given computable 2-branching
Ts and �s which is the string of level 0 in Ts, we define �s+1 � �s

and Ts+1 ⇢ Ts.

For each hi, j, ki we must ensure:
If  A

i is total and belongs to Pk and if  j( 
A
i ) = A then Pk

contains a member of every degree.

At stage s we act according to the first of the following situa-
tions which applies. Let s = hi, j, ki.

(1) There exists � 2 Ts such that no two strings extending �
in Ts are  i-splitting. In this case we define �s+1 to be
the first such � properly extending �s and we define Ts+1

to be the set of strings in Ts extending �. In so doing we
have ensured that  i(A) is either computable or partial.

so now we have to construct A, such that no Pk has a member
of degree a = deg(A) unless it has a member of every degree. This
means that sometimes we will have to be able to demonstrate that
Pk does contain a member of every degree..

⇤

Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
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Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is su�cient to imply the full
theorem is immediate since any F� set is the union of a countable
sequence of closed sets. More specifically, let {Qk}k2! be a se-
quence of F� sets, with Qk =

S
j2! Pk,j with Pk,j closed for each

k, j 2 !, and let a be such that if a 2 S(Pk,j) then S(Pk,j) = D.
If a 2 S(Qk) then there exists a j such that a 2 S(Pk,j), giv-
ing S(Qk) = D as required. So suppose we are given a sequence
{Pk}k2! of closed sets.
Proof (continued) For every k, let Pk = [⌥k] for some down-
ward closed ⌥k ✓ 2<!. We shall use a simple forcing argument
in order to construct A =

S
s �s which is of hyperimmune-free

minimal degree. Initially we define �0 = � and we define T0 to be
the identity tree. At every stage s, given computable 2-branching
Ts and �s which is the string of level 0 in Ts, we define �s+1 � �s

and Ts+1 ⇢ Ts.

For each hi, j, ki we must ensure:
If  A

i is total and belongs to Pk and if  j( 
A
i ) = A then Pk

contains a member of every degree.

Proof (continued) At stage s we act according to the first of
the following situations which applies. Let s = hi, j, ki.

(1) There exists � 2 Ts such that no two strings extending �
in Ts are  i-splitting. In this case we define �s+1 to be
the first such � properly extending �s and we define Ts+1

to be the set of strings in Ts extending �. In so doing we
have ensured that  i(A) is either computable or partial.

so now we have to construct A, such that no Pk has a member
of degree a = deg(A) unless it has a member of every degree. This
means that sometimes we will have to be able to demonstrate that
Pk does contain a member of every degree..

⇤

Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
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Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

For any special ⇧0
1 class P0 there exists a special ⇧0

1 class P1

such that no member of P1 computes any member of P0.

So here we have a degree spectrum ↵ which has non-empty
intersection with every other non-empty degree spectrum �. The
analogue of this doesn’t hold for the special degree spectra though..
The set of all c.e. degrees is the degree spectrum of a ⇧0

1 class.

Proof. We let Wi denote the ith c.e. set according to some fixed
e↵ective listing. Let f be a computable function such that, for
any i 2 !, S([⇤f(i)]) = {0,ai} where ai is the degree of Wi. Now
let ⇤ be the computable set of strings which contains a copy of
⇤f(i) above each string 0i ? 1, where 0i is the sequence of i many
zeros. ⇤

Recall that a degree is fixed point free i↵ it contains a DNC
(diagonally non-computable) function, where f is DNC if for all
n we have f(n) 6=  n(n).

Simpson has shown that the fixed point free degrees are a degree
spectrum.

..rather than simply coding A into one path, we now have one
coding path for each set of the form A�B, where:

A�B(2n) = A(n)
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Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is su�cient to imply the full
theorem is immediate since any F� set is the union of a countable
sequence of closed sets. More specifically, let {Qk}k2! be a se-
quence of F� sets, with Qk =

S
j2! Pk,j with Pk,j closed for each

k, j 2 !, and let a be such that if a 2 S(Pk,j) then S(Pk,j) = D.
If a 2 S(Qk) then there exists a j such that a 2 S(Pk,j), giv-
ing S(Qk) = D as required. So suppose we are given a sequence
{Pk}k2! of closed sets.
Proof (continued) For every k, let Pk = [⌥k] for some down-
ward closed ⌥k ✓ 2<!. We shall use a simple forcing argument
in order to construct A =

S
s �s which is of hyperimmune-free

minimal degree. Initially we define �0 = � and we define T0 to be
the identity tree. At every stage s, given computable 2-branching
Ts and �s which is the string of level 0 in Ts, we define �s+1 � �s

and Ts+1 ⇢ Ts.

For each hi, j, ki we must ensure:
If  A

i is total and belongs to Pk and if  j( 
A
i ) = A then Pk

contains a member of every degree.

Proof (continued) At stage s we act according to the first of
the following situations which applies. Let s = hi, j, ki.

(1) There exists � 2 Ts such that no two strings extending �
in Ts are  i-splitting. In this case we define �s+1 to be
the first such � properly extending �s and we define Ts+1

to be the set of strings in Ts extending �. In so doing we
have ensured that  i(A) is either computable or partial.

so now we have to construct A, such that no Pk has a member
of degree a = deg(A) unless it has a member of every degree. This
means that sometimes we will have to be able to demonstrate that
Pk does contain a member of every degree..

⇤

Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
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Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is su�cient to imply the full
theorem is immediate since any F� set is the union of a countable
sequence of closed sets. More specifically, let {Qk}k2! be a se-
quence of F� sets, with Qk =

S
j2! Pk,j with Pk,j closed for each

k, j 2 !, and let a be such that if a 2 S(Pk,j) then S(Pk,j) = D.
If a 2 S(Qk) then there exists a j such that a 2 S(Pk,j), giv-
ing S(Qk) = D as required. So suppose we are given a sequence
{Pk}k2! of closed sets.
Proof (continued) For every k, let Pk = [⌥k] for some down-
ward closed ⌥k ✓ 2<!. We shall use a simple forcing argument
in order to construct A =

S
s �s which is of hyperimmune-free

minimal degree. Initially we define �0 = � and we define T0 to be
the identity tree. At every stage s, given computable 2-branching
Ts and �s which is the string of level 0 in Ts, we define �s+1 � �s

and Ts+1 ⇢ Ts.

For each hi, j, ki we must ensure:
If  A

i is total and belongs to Pk and if  j( 
A
i ) = A then Pk

contains a member of every degree.

Proof (continued) At stage s we act according to the first of
the following situations which applies. Let s = hi, j, ki.

(1) There exists � 2 Ts such that no two strings extending �
in Ts are  i-splitting. In this case we define �s+1 to be
the first such � properly extending �s and we define Ts+1

to be the set of strings in Ts extending �. In so doing we
have ensured that  i(A) is either computable or partial.

(2) Since the previous case does not apply we may let T 0
s

be a computable, 2-branching and  i-splitting subset of
Ts containing �s (we shall eventually define Ts+1 to be
a subset of T 0

s ). There exists � 2 T 0
s such that either

 j( i(�)) is incompatible with � or else for no string
⌧ � � in T 0

s is it the case that  j( i(⌧)) properly extends
 j( i(�)). In this case we define �s+1 to be the first such
� properly extending �s and we define Ts+1 to be the set
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of strings in T 0
s extending �. In so doing we have ensured

it is not the case that  j( i(A)) = A.
(3) Since the previous case does not apply we may let T 1

s

be a computable and 2-branching subset of T 0
s containing

�s such that, whenever ⌧, ⌧ 0 2 T 1
s and ⌧ 0 � ⌧ , we have

that  j( i(⌧ 0)) properly extends  j( i(⌧)). There exists
� 2 T 1

s such that  i(�) is not in ⌥k. In this case we define
�s+1 to be the first such � properly extending �s and we
define Ts+1 to be the set of strings in T 1

s extending �. In
so doing we have ensured that  i(A) /2 Pk.

(4) Since none of the previous cases apply we have that, for
all B 2 [T 1

s ],  i(B) 2 Pk and  j( i(B)) = B. Since T 1
s

is 2-branching and computable it follows that Ps contains
a member of every Turing degree. In this case we define
�s+1 to be some proper extension of �s in T 1

s and we define
Ts+1 to be the set of strings in T 1

s which extend �s+1.

so now we have to construct A, such that no Pk has a member
of degree a = deg(A) unless it has a member of every degree. This
means that sometimes we will have to be able to demonstrate that
Pk does contain a member of every degree..

⇤

Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

For any special ⇧0
1 class P0 there exists a special ⇧0

1 class P1

such that no member of P1 computes any member of P0.

So here we have a degree spectrum ↵ which has non-empty
intersection with every other non-empty degree spectrum �. The
analogue of this doesn’t hold for the special degree spectra though..
The set of all c.e. degrees is the degree spectrum of a ⇧0

1 class.

Proof. We let Wi denote the ith c.e. set according to some fixed
e↵ective listing. Let f be a computable function such that, for
any i 2 !, S([⇤f(i)]) = {0,ai} where ai is the degree of Wi. Now
let ⇤ be the computable set of strings which contains a copy of
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e↵ective listing. Let f be a computable function such that, for
any i 2 !, S([⇤f(i)]) = {0,ai} where ai is the degree of Wi. Now
let ⇤ be the computable set of strings which contains a copy of
⇤f(i) above each string 0i ? 1, where 0i is the sequence of i many
zeros. ⇤

Recall that a degree is fixed point free i↵ it contains a DNC
(diagonally non-computable) function, where f is DNC if for all
n we have f(n) 6=  n(n).

Simpson has shown that the fixed point free degrees are a degree
spectrum.

..rather than simply coding A into one path, we now have one
coding path for each set of the form A�B, where:

A�B(2n) = A(n)
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If a 2 S(Qk) then there exists a j such that a 2 S(Pk,j), giv-
ing S(Qk) = D as required. So suppose we are given a sequence
{Pk}k2! of closed sets.
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In fact a can be chosen to be hyperimmune-free and minimal.

For any special ⇧0
1 class P0 there exists a special ⇧0

1 class P1

such that no member of P1 computes any member of P0.

So here we have a degree spectrum ↵ which has non-empty
intersection with every other non-empty degree spectrum �. The
analogue of this doesn’t hold for the special degree spectra though..
The set of all c.e. degrees is the degree spectrum of a ⇧0

1 class.

Proof. We let Wi denote the ith c.e. set according to some fixed
e↵ective listing. Let f be a computable function such that, for
any i 2 !, S([⇤f(i)]) = {0,ai} where ai is the degree of Wi. Now
let ⇤ be the computable set of strings which contains a copy of



The invisible degrees and cupping

2 ANDY LEWIS-PYE AND LSE

of strings in T 0
s extending �. In so doing we have ensured

it is not the case that  j( i(A)) = A.
(3) Since the previous case does not apply we may let T 1

s

be a computable and 2-branching subset of T 0
s containing

�s such that, whenever ⌧, ⌧ 0 2 T 1
s and ⌧ 0 � ⌧ , we have

that  j( i(⌧ 0)) properly extends  j( i(⌧)). There exists
� 2 T 1

s such that  i(�) is not in ⌥k. In this case we define
�s+1 to be the first such � properly extending �s and we
define Ts+1 to be the set of strings in T 1

s extending �. In
so doing we have ensured that  i(A) /2 Pk.

(4) Since none of the previous cases apply we have that, for
all B 2 [T 1

s ],  i(B) 2 Pk and  j( i(B)) = B. Since T 1
s

is 2-branching and computable it follows that Ps contains
a member of every Turing degree. In this case we define
�s+1 to be some proper extension of �s in T 1

s and we define
Ts+1 to be the set of strings in T 1

s which extend �s+1.

If we restrict ourselves to the arithmetical hierarchy, then we
can do a little better:
There exists a hyperimmune-free minimal degree a below 000, such
that no ⌃0

3 class contains a member of degree a unless it contains
a member of every degree.

so now we have to construct A, such that no Pk has a member
of degree a = deg(A) unless it has a member of every degree. This
means that sometimes we will have to be able to demonstrate that
Pk does contain a member of every degree..

⇤

Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

For any special ⇧0
1 class P0 there exists a special ⇧0

1 class P1

such that no member of P1 computes any member of P0.

So here we have a degree spectrum ↵ which has non-empty
intersection with every other non-empty degree spectrum �. The
analogue of this doesn’t hold for the special degree spectra though..
The set of all c.e. degrees is the degree spectrum of a ⇧0

1 class.

2 ANDY LEWIS-PYE AND LSE

of strings in T 0
s extending �. In so doing we have ensured

it is not the case that  j( i(A)) = A.
(3) Since the previous case does not apply we may let T 1

s

be a computable and 2-branching subset of T 0
s containing

�s such that, whenever ⌧, ⌧ 0 2 T 1
s and ⌧ 0 � ⌧ , we have

that  j( i(⌧ 0)) properly extends  j( i(⌧)). There exists
� 2 T 1

s such that  i(�) is not in ⌥k. In this case we define
�s+1 to be the first such � properly extending �s and we
define Ts+1 to be the set of strings in T 1

s extending �. In
so doing we have ensured that  i(A) /2 Pk.

(4) Since none of the previous cases apply we have that, for
all B 2 [T 1

s ],  i(B) 2 Pk and  j( i(B)) = B. Since T 1
s

is 2-branching and computable it follows that Ps contains
a member of every Turing degree. In this case we define
�s+1 to be some proper extension of �s in T 1

s and we define
Ts+1 to be the set of strings in T 1

s which extend �s+1.

If we restrict ourselves to the arithmetical hierarchy, then we
can do a little better:
There exists a hyperimmune-free minimal degree a below 000, such
that no ⌃0

3 class contains a member of degree a unless it contains
a member of every degree.

so now we have to construct A, such that no Pk has a member
of degree a = deg(A) unless it has a member of every degree. This
means that sometimes we will have to be able to demonstrate that
Pk does contain a member of every degree..

⇤

Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

For any special ⇧0
1 class P0 there exists a special ⇧0

1 class P1

such that no member of P1 computes any member of P0.

So here we have a degree spectrum ↵ which has non-empty
intersection with every other non-empty degree spectrum �. The
analogue of this doesn’t hold for the special degree spectra though..
The set of all c.e. degrees is the degree spectrum of a ⇧0

1 class.



The invisible degrees and cupping

2 ANDY LEWIS-PYE AND LSE

of strings in T 0
s extending �. In so doing we have ensured

it is not the case that  j( i(A)) = A.
(3) Since the previous case does not apply we may let T 1

s

be a computable and 2-branching subset of T 0
s containing

�s such that, whenever ⌧, ⌧ 0 2 T 1
s and ⌧ 0 � ⌧ , we have

that  j( i(⌧ 0)) properly extends  j( i(⌧)). There exists
� 2 T 1

s such that  i(�) is not in ⌥k. In this case we define
�s+1 to be the first such � properly extending �s and we
define Ts+1 to be the set of strings in T 1

s extending �. In
so doing we have ensured that  i(A) /2 Pk.

(4) Since none of the previous cases apply we have that, for
all B 2 [T 1

s ],  i(B) 2 Pk and  j( i(B)) = B. Since T 1
s

is 2-branching and computable it follows that Ps contains
a member of every Turing degree. In this case we define
�s+1 to be some proper extension of �s in T 1

s and we define
Ts+1 to be the set of strings in T 1

s which extend �s+1.

If we restrict ourselves to the arithmetical hierarchy, then we
can do a little better:
There exists a hyperimmune-free minimal degree a below 000, such
that no ⌃0

3 class contains a member of degree a unless it contains
a member of every degree.

so now we have to construct A, such that no Pk has a member
of degree a = deg(A) unless it has a member of every degree. This
means that sometimes we will have to be able to demonstrate that
Pk does contain a member of every degree..

⇤

Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

For any special ⇧0
1 class P0 there exists a special ⇧0

1 class P1

such that no member of P1 computes any member of P0.

So here we have a degree spectrum ↵ which has non-empty
intersection with every other non-empty degree spectrum �. The
analogue of this doesn’t hold for the special degree spectra though..
The set of all c.e. degrees is the degree spectrum of a ⇧0

1 class.

2 ANDY LEWIS-PYE AND LSE

of strings in T 0
s extending �. In so doing we have ensured

it is not the case that  j( i(A)) = A.
(3) Since the previous case does not apply we may let T 1

s

be a computable and 2-branching subset of T 0
s containing

�s such that, whenever ⌧, ⌧ 0 2 T 1
s and ⌧ 0 � ⌧ , we have

that  j( i(⌧ 0)) properly extends  j( i(⌧)). There exists
� 2 T 1

s such that  i(�) is not in ⌥k. In this case we define
�s+1 to be the first such � properly extending �s and we
define Ts+1 to be the set of strings in T 1

s extending �. In
so doing we have ensured that  i(A) /2 Pk.

(4) Since none of the previous cases apply we have that, for
all B 2 [T 1

s ],  i(B) 2 Pk and  j( i(B)) = B. Since T 1
s

is 2-branching and computable it follows that Ps contains
a member of every Turing degree. In this case we define
�s+1 to be some proper extension of �s in T 1

s and we define
Ts+1 to be the set of strings in T 1

s which extend �s+1.

If we restrict ourselves to the arithmetical hierarchy, then we
can do a little better:
There exists a hyperimmune-free minimal degree a below 000, such
that no ⌃0

3 class contains a member of degree a unless it contains
a member of every degree.

so now we have to construct A, such that no Pk has a member
of degree a = deg(A) unless it has a member of every degree. This
means that sometimes we will have to be able to demonstrate that
Pk does contain a member of every degree..

⇤

Next we want to want to answer questions of the form, is it the
case for every ↵ > 0P there exists � < 1P with ↵_� = 1P? Do
there exist any ↵,� < 1P with ↵ _ � = 1P?

We’ll be able to answer this by establishing the existence of
invisible degrees – degrees which don’t belong to any spectrum
other than 1P.

The principal theorem here is this:
For any countable sequence of F� sets, {Qk}k2! say, there exists a
degree a such that, for any k 2 !, if a 2 S(Qk) then S(Qk) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

For any special ⇧0
1 class P0 there exists a special ⇧0

1 class P1

such that no member of P1 computes any member of P0.

So here we have a degree spectrum ↵ which has non-empty
intersection with every other non-empty degree spectrum �. The
analogue of this doesn’t hold for the special degree spectra though..
The set of all c.e. degrees is the degree spectrum of a ⇧0

1 class.
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If we analyse these proofs a little further, then we reach some
interesting conclusions:
An F� set Q contains a member of every degree above b i↵ there
exists some b-computable perfect and pointed T with [T ] ✓ Q.

Proof. Let Q =
S

k Pk where each Pk is closed. Given B of
degree b, consider running the previous construction but begin-
ning with T0 as the set of strings of the form ⌧0 � ⌧1 such that
⌧0 ⇢ B—so that all the Ts are now computable in B. Let the set
A constructed be of degree a. If Q contains a member of every
degree above b then, in particular, some Pk must contain a mem-
ber of degree a. Therefore, for some s = hi, j, ki it must be that
case (4) applies. Then T = { i(�) : � 2 Ts+1} is B-computable
perfect and pointed, and [T ] ✓ Q. ⇤

Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is su�cient to imply the full
theorem is immediate since any F� set is the union of a countable
sequence of closed sets. More specifically, let {Qk}k2! be a se-
quence of F� sets, with Qk =

S
j2! Pk,j with Pk,j closed for each

k, j 2 !, and let a be such that if a 2 S(Pk,j) then S(Pk,j) = D.
If a 2 S(Qk) then there exists a j such that a 2 S(Pk,j), giv-
ing S(Qk) = D as required. So suppose we are given a sequence
{Pk}k2! of closed sets.
Proof (continued) For every k, let Pk = [⌥k] for some down-
ward closed ⌥k ✓ 2<!. We shall use a simple forcing argument
in order to construct A =

S
s �s which is of hyperimmune-free

minimal degree. Initially we define �0 = � and we define T0 to be
the identity tree. At every stage s, given computable 2-branching
Ts and �s which is the string of level 0 in Ts, we define �s+1 � �s

and Ts+1 ⇢ Ts.

For each hi, j, ki we must ensure:
If  A

i is total and belongs to Pk and if  j( 
A
i ) = A then Pk

contains a member of every degree.
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All weakly 2-generics are invisible. In fact they are all strongly
invisible:
We say a is strongly invisible if any ⇧0

1 class which has a member
of non-zero degree below a has a member of every degree.
Are all invisible degrees strongly invisible? This holds i↵ the in-
visible degrees are downward closed avoiding 0.

We say that a degree a is invisible if any ⇧0
1 class which contains

a member of degree a contains a member of every degree.
The existence of invisible degrees immediately su�ces to give

the following corollary: There do not exist ↵ < 1P and � < 1P

with ↵ _ � = 1P.

Proof. If neither of ↵ or � contain any invisible degrees then
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exists some b-computable perfect and pointed T with [T ] ✓ P.

Proof. Let Q =
S

k Pk where each Pk is closed. Given B of
degree b, consider running the previous construction but begin-
ning with T0 as the set of strings of the form ⌧0 � ⌧1 such that
⌧0 ⇢ B—so that all the Ts are now computable in B. Let the set
A constructed be of degree a. If Q contains a member of every
degree above b then, in particular, some Pk must contain a mem-
ber of degree a. Therefore, for some s = hi, j, ki it must be that
case (4) applies. Then T = { i(�) : � 2 Ts+1} is B-computable
perfect and pointed, and [T ] ✓ Q. ⇤
Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is su�cient to imply the full
theorem is immediate since any F� set is the union of a countable
sequence of closed sets. More specifically, let {Qk}k2! be a se-
quence of F� sets, with Qk =

S
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every degree.

There exists a non-zero weakly invisible degree which is not invis-
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A degree is weakly invisible i↵ it is bounded by an invisible degree.

Proof. Any degree bounded by an invisible degree is clearly weakly
invisible, so it su�ces to show that any weakly invisible degree is
bounded by an invisible degree. In order to see this suppose given
B of degree b which is weakly invisible, let Pk be the kth ⇧0

1

class and consider running the construction of Theorem ??, but
beginning with T0 as the set of strings of the form ⌧0 � ⌧1 such
that ⌧0 ⇢ B. Now whenever case (4) applies we may deduce that
Pk contains [T ] for some perfect pointed b-computable T . Since
b is weakly invisible, Pk therefore contains a member of every
degree. ⇤

Corollary 0.1. There exist invisible degrees which are not strongly

invisible.

Proof. By Theorem ?? there exists a weakly invisible degree
which is non-zero and which is not invisible. By Theorem ??
this degree is bounded by an invisible degree which cannot be
strongly invisible. ⇤

We say that a degree a is invisible if any ⇧0
1 class which contains

a member of degree a contains a member of every degree.
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strongly invisible. ⇤
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1 class which contains

a member of degree a contains a member of every degree.
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1 class which has a member
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QUESTION: Are all invisible degrees strongly invisible? This
holds i↵ the invisible degrees are downward closed avoiding 0.
In order to answer this, we need to consider a third category of
invisibility (and then things will work out nicely):

We say that a degree a is weakly invisible if any ⇧0
1 class which

contains a member of every degree above a contains a member of
every degree.

There exists a non-zero weakly invisible degree which is not invis-
ible.
A degree is weakly invisible i↵ it is bounded by an invisible degree.

Proof. Any degree bounded by an invisible degree is clearly weakly
invisible, so it su�ces to show that any weakly invisible degree is
bounded by an invisible degree. In order to see this suppose given
B of degree b which is weakly invisible, let Pk be the kth ⇧0

1 class
and consider running the construction of an invisible degree but
beginning with T0 as the set of strings of the form ⌧0 � ⌧1 such
that ⌧0 ⇢ B. Now whenever case (4) applies we may deduce that
Pk contains [T ] for some perfect pointed b-computable T . Since
b is weakly invisible, Pk therefore contains a member of every
degree. ⇤
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Pk contains [T ] for some perfect pointed b-computable T . Since
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Now suppose that ↵ is subclass invariant, let P be a ⇧0

1 class
with S(P) = ↵ and suppose that P 0 is a nonempty ⇧0

1 class with
S(P 0) ⇢ ↵. Then {0 ? A : A 2 P} [ {1 ? A : A 2 P 0} is a ⇧0
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class with degree spectrum ↵ and witnesses the fact that ↵ is not
subclass invariant, a contradiction. Thus being subclass invariant
is equivalent to minimality.

All weakly 2-generics are invisible. In fact they are all strongly
invisible:
We say a is strongly invisible if any ⇧0

1 class which has a member
of non-zero degree below a has a member of every degree.
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We say that a degree a is weakly invisible if any ⇧0
1 class which

contains a member of every degree above a contains a member of
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contains a member of every degree above a contains a member of
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There exists a non-zero weakly invisible degree which is not invis-
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bounded by an invisible degree. In order to see this suppose given
B of degree b which is weakly invisible, let Pk be the kth ⇧0

1 class
and consider running the construction of an invisible degree but
beginning with T0 as the set of strings of the form ⌧0 � ⌧1 such
that ⌧0 ⇢ B. Now whenever case (4) applies we may deduce that
Pk contains [T ] for some perfect pointed b-computable T . Since
b is weakly invisible, Pk therefore contains a member of every
degree. ⇤

..so there exist invisible degrees which are not strongly invisible.

Proof. By Theorem ?? there exists a weakly invisible degree
which is non-zero and which is not invisible. By Theorem ??
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Clearly any ↵ which is minimal must be subclass invariant.
Now suppose that ↵ is subclass invariant, let P be a ⇧0

1 class
with S(P) = ↵ and suppose that P 0 is a nonempty ⇧0

1 class with
S(P 0) ⇢ ↵. Then {0 ? A : A 2 P} [ {1 ? A : A 2 P 0} is a ⇧0

1

class with degree spectrum ↵ and witnesses the fact that ↵ is not
subclass invariant, a contradiction. Thus being subclass invariant
is equivalent to minimality.

Suppose that ↵ is weakly subclass invariant. If a ⇧0
1 class con-

tains any member of any hyperimmune-free degree in ↵ then it
contains a member of every degree in ↵.

Proof. Let P0 be a ⇧0
1 class with S(P0) = ↵ and such that for

any nonempty ⇧0
1 class P ✓ P0, S(P) = ↵. Let P1 be a ⇧0

1

class which contains A of hyperimmune-free degree in ↵. Then
there exists B ⌘tt A and which is in P0. Let i, j be such that the
total functionals �i and �j satisfy �i(A) = B and �j(B) = A.
Now let P2 be the ⇧0

1 class {C : C 2 P0 & (9D 2 P1)[�i(D) =
C & �j(C) = D]}. Then S(P2) ✓ S(P1). Since P2 is nonempty
and P2 ✓ P0, S(P2) and S(P1) contain every degree in ↵. ⇤

Corollary 0.1. ↵ is minimal i↵ it is weakly subclass invariant.

Proof. If↵ is weakly subclass invariant then, by the hyperimmune-
free basis theorem, any nonempty ⇧0

1 class which contains only
members of degree in ↵ contains a member of hyperimmune-free
degree in ↵ and therefore, by Theorem ??, contains a member of
every degree in ↵. ⇤

All weakly 2-generics are invisible. In fact they are all strongly
invisible:
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that ⌧0 ⇢ B. Now whenever case (4) applies we may deduce that
Pk contains [T ] for some perfect pointed b-computable T . Since
b is weakly invisible, Pk therefore contains a member of every
degree. ⇤

..so there exist invisible degrees which are not strongly invisible.

Proof. By Theorem ?? there exists a weakly invisible degree
which is non-zero and which is not invisible. By Theorem ??
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is equivalent to minimality.
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with S(P) = ↵ and any nonempty ⇧0
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We say that ↵ 6= 0P is weakly subclass invariant if there exists a
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1 class P with S(P) = ↵ and for any nonempty ⇧0
1 class P 0 ✓ P,

S(P 0) = ↵.

All weakly 2-generics are invisible. In fact they are all strongly
invisible:
We say a is strongly invisible if any ⇧0

1 class which has a member
of non-zero degree below a has a member of every degree.
QUESTION: Are all invisible degrees strongly invisible? This
holds i↵ the invisible degrees are downward closed avoiding 0.
In order to answer this, we need to consider a third category of
invisibility (and then things will work out nicely):

We say that a degree a is weakly invisible if any ⇧0
1 class which

contains a member of every degree above a contains a member of
every degree.

There exists a non-zero weakly invisible degree which is not invis-
ible.
A degree is weakly invisible i↵ it is bounded by an invisible degree.

Proof. Any degree bounded by an invisible degree is clearly weakly
invisible, so it su�ces to show that any weakly invisible degree is
bounded by an invisible degree. In order to see this suppose given
B of degree b which is weakly invisible, let Pk be the kth ⇧0

1 class
and consider running the construction of an invisible degree but
beginning with T0 as the set of strings of the form ⌧0 � ⌧1 such
that ⌧0 ⇢ B. Now whenever case (4) applies we may deduce that
Pk contains [T ] for some perfect pointed b-computable T . Since
b is weakly invisible, Pk therefore contains a member of every
degree. ⇤

..so there exist invisible degrees which are not strongly invisible.

Proof. By Theorem ?? there exists a weakly invisible degree
which is non-zero and which is not invisible. By Theorem ??
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We say that ↵ 6= 0P is weakly subclass invariant if there exists a
⇧0

1 class P with S(P) = ↵ and for any nonempty ⇧0
1 class P 0 ✓ P,

S(P 0) = ↵.

Clearly any ↵ which is minimal must be subclass invariant.
Now suppose that ↵ is subclass invariant, let P be a ⇧0

1 class
with S(P) = ↵ and suppose that P 0 is a nonempty ⇧0

1 class with
S(P 0) ⇢ ↵. Then {0 ? A : A 2 P} [ {1 ? A : A 2 P 0} is a ⇧0

1

class with degree spectrum ↵ and witnesses the fact that ↵ is not
subclass invariant, a contradiction. Thus being subclass invariant
is equivalent to minimality.

Suppose that ↵ is weakly subclass invariant. If a ⇧0
1 class con-

tains any member of any hyperimmune-free degree in ↵ then it
contains a member of every degree in ↵.

Proof. Let P0 be a ⇧0
1 class with S(P0) = ↵ and such that for

any nonempty ⇧0
1 class P ✓ P0, S(P) = ↵. Let P1 be a ⇧0

1

class which contains A of hyperimmune-free degree in ↵. Then
there exists B ⌘tt A and which is in P0. Let i, j be such that the
total functionals �i and �j satisfy �i(A) = B and �j(B) = A.
Now let P2 be the ⇧0

1 class {C : C 2 P0 & (9D 2 P1)[�i(D) =
C & �j(C) = D]}. Then S(P2) ✓ S(P1). Since P2 is nonempty
and P2 ✓ P0, S(P2) and S(P1) contain every degree in ↵. ⇤

Corollary 0.1. ↵ is minimal i↵ it is weakly subclass invariant.

Proof. If↵ is weakly subclass invariant then, by the hyperimmune-
free basis theorem, any nonempty ⇧0

1 class which contains only
members of degree in ↵ contains a member of hyperimmune-free
degree in ↵ and therefore, by Theorem ??, contains a member of
every degree in ↵. ⇤

All weakly 2-generics are invisible. In fact they are all strongly
invisible:
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This immediately gives us nice examples of minimal elements..
The Martin-Löf random degrees are a minimal element of the
structure.

Proof. Any nonempty ⇧0
1 class containing only random sets is

witness to the fact that this class is weakly subclass invariant
since any ⇧0

1 class containing a random set is of positive measure
and any ⇧0

1 class of positive measure contains a member of every
random degree [?]. ⇤
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..and so are the PA degrees.
This immediately gives us nice examples of minimal elements..

The Martin-Löf random degrees are a minimal element of the
structure.

Proof. Any nonempty ⇧0
1 class containing only random sets is

witness to the fact that this class is weakly subclass invariant
since any ⇧0

1 class containing a random set is of positive measure
and any ⇧0

1 class of positive measure contains a member of every
random degree. ⇤

We say that ↵ 6= 0P is subclass invariant if for any ⇧0
1 class P

with S(P) = ↵ and any nonempty ⇧0
1 class P 0 ✓ P, S(P 0) = ↵.

We say that ↵ 6= 0P is weakly subclass invariant if there exists a
⇧0

1 class P with S(P) = ↵ and for any nonempty ⇧0
1 class P 0 ✓ P,

S(P 0) = ↵.

Clearly any ↵ which is minimal must be subclass invariant.
Now suppose that ↵ is subclass invariant, let P be a ⇧0

1 class
with S(P) = ↵ and suppose that P 0 is a nonempty ⇧0

1 class with
S(P 0) ⇢ ↵. Then {0 ? A : A 2 P} [ {1 ? A : A 2 P 0} is a ⇧0

1

class with degree spectrum ↵ and witnesses the fact that ↵ is not
subclass invariant, a contradiction. Thus being subclass invariant
is equivalent to minimality.

Suppose that ↵ is weakly subclass invariant. If a ⇧0
1 class con-

tains any member of any hyperimmune-free degree in ↵ then it
contains a member of every degree in ↵.

Proof. Let P0 be a ⇧0
1 class with S(P0) = ↵ and such that for

any nonempty ⇧0
1 class P ✓ P0, S(P) = ↵. Let P1 be a ⇧0

1

class which contains A of hyperimmune-free degree in ↵. Then
there exists B ⌘tt A and which is in P0. Let i, j be such that the
total functionals �i and �j satisfy �i(A) = B and �j(B) = A.
Now let P2 be the ⇧0

1 class {C : C 2 P0 & (9D 2 P1)[�i(D) =
C & �j(C) = D]}. Then S(P2) ✓ S(P1). Since P2 is nonempty
and P2 ✓ P0, S(P2) and S(P1) contain every degree in ↵. ⇤
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Any non-empty ⇧0
1 class containing only {0, 1}-valued DNC func-

tions contains a member of every PA degree.

Proof. If ⇤ is computable and downward closed then consider
 i(;) such that  i(;; i) #= n i↵ there exists some l > i such
that ⌧(i) = n for all ⌧ 2 ⇤ of length l. By the uniformity of the
recursion theorem it follows that there exists computable f such
that, whenever [⇤j ] is non-empty and contains only {0, 1}-valued
DNC functions, there exist A,B 2 [⇤j ] with A(f(j)) = 0 and
B(f(j)) = 1.

Now suppose given j0 such that [⇤j0 ] is non-empty and con-
tains only {0, 1}-valued DNC functions. Let A be a {0, 1}-valued
DNC function. We construct B =

S
s �s which is in [⇤j0 ] and is

of the same degree as A.

Stage 0. Define �0 = �.
Stage s > 0. We have already decided js�1 and �s�1. There

exists C 2 [⇤js�1 ] with C(f(js�1)) = A(s � 1). Using the oracle
for A we can therefore compute � of length f(js�1) + 1 such that
�(f(js�1)) = A(s � 1) and which is an initial segment of some
C 2 [⇤js�1 ] (this follows using the standard argument that any
{0, 1}-valued DNC function computes a member of any non-empty
⇧0

1 class). Define �s = � and define js so that [⇤js ] is the set of
all C 2 [⇤js�1 ] which extend �.

That B computes A follows from the fact that an oracle for B
allows us to retrace every step of the construction defining B.

⇤
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The Martin-Löf random degrees are a minimal element of the
structure.

Proof. Any nonempty ⇧0
1 class containing only random sets is

witness to the fact that this class is weakly subclass invariant
since any ⇧0

1 class containing a random set is of positive measure
and any ⇧0

1 class of positive measure contains a member of every
random degree. ⇤

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1



Minimal Elements

PROVING THAT FOR a  00, {0,a} IS A DEGREE

SPECTRUM.

ANDY LEWIS-PYE AND LSE

Any non-empty ⇧0
1 class containing only {0, 1}-valued DNC func-

tions contains a member of every PA degree.

Proof. If ⇤ is computable and downward closed then consider
 i(;) such that  i(;; i) #= n i↵ there exists some l > i such
that ⌧(i) = n for all ⌧ 2 ⇤ of length l. By the uniformity of the
recursion theorem it follows that there exists computable f such
that, whenever [⇤j ] is non-empty and contains only {0, 1}-valued
DNC functions, there exist A,B 2 [⇤j ] with A(f(j)) = 0 and
B(f(j)) = 1.

Now suppose given j0 such that [⇤j0 ] is non-empty and con-
tains only {0, 1}-valued DNC functions. Let A be a {0, 1}-valued
DNC function. We construct B =

S
s �s which is in [⇤j0 ] and is

of the same degree as A.

Stage 0. Define �0 = �.
Stage s > 0. We have already decided js�1 and �s�1. There

exists C 2 [⇤js�1 ] with C(f(js�1)) = A(s � 1). Using the oracle
for A we can therefore compute � of length f(js�1) + 1 such that
�(f(js�1)) = A(s � 1) and which is an initial segment of some
C 2 [⇤js�1 ] (this follows using the standard argument that any
{0, 1}-valued DNC function computes a member of any non-empty
⇧0

1 class). Define �s = � and define js so that [⇤js ] is the set of
all C 2 [⇤js�1 ] which extend �.

That B computes A follows from the fact that an oracle for B
allows us to retrace every step of the construction defining B.

⇤

This immediately gives us nice examples of minimal elements..
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The Martin-Löf random degrees are a minimal element of the
structure.

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1



Minimal Elements

PROVING THAT FOR a  00, {0,a} IS A DEGREE

SPECTRUM.

ANDY LEWIS-PYE AND LSE

So now we have a number of minimal elements..but are there in-
finitely many? For every ↵, does there exist some � such that
↵ ^ � = 0P?

For any ↵ < 1P there exists � which is minimal and such that
� 6 ↵.

Any non-empty ⇧0
1 class containing only {0, 1}-valued DNC

functions contains a member of every PA degree.

Proof. If ⇤ is computable and downward closed then consider
 i(;) such that  i(;; i) #= n i↵ there exists some l > i such
that ⌧(i) = n for all ⌧ 2 ⇤ of length l. By the uniformity of the
recursion theorem it follows that there exists computable f such
that, whenever [⇤j ] is non-empty and contains only {0, 1}-valued
DNC functions, there exist A,B 2 [⇤j ] with A(f(j)) = 0 and
B(f(j)) = 1.

Now suppose given j0 such that [⇤j0 ] is non-empty and con-
tains only {0, 1}-valued DNC functions. Let A be a {0, 1}-valued
DNC function. We construct B =

S
s �s which is in [⇤j0 ] and is

of the same degree as A.

Stage 0. Define �0 = �.
Stage s > 0. We have already decided js�1 and �s�1. There

exists C 2 [⇤js�1 ] with C(f(js�1)) = A(s � 1). Using the oracle
for A we can therefore compute � of length f(js�1) + 1 such that
�(f(js�1)) = A(s � 1) and which is an initial segment of some
C 2 [⇤js�1 ] (this follows using the standard argument that any
{0, 1}-valued DNC function computes a member of any non-empty
⇧0

1 class). Define �s = � and define js so that [⇤js ] is the set of
all C 2 [⇤js�1 ] which extend �.

That B computes A follows from the fact that an oracle for B
allows us to retrace every step of the construction defining B.

⇤
This immediately gives us nice examples of minimal elements..
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any hyperimmune-free element of ↵ which is minimal, then the
⇧0

1-mates of a are ↵. So far then, we have seen a for which the
⇧0

1-mates of a are of cardinalities 1 and 2, and also a for which
the ⇧0

1-mates of a are uncountable.

The following theorem provides a wealth of further examples...

For any ↵ < 1P there exists a /2 ↵ such that the ⇧0
1-mates of a

are ↵ [ {a} and, moreover, such that ↵ [ {a} 2 P.

This tells us that every element of the structure has a strong
minimal cover.
Some comments on the proof. First of all, how will we build
P whose degree spectrum is minimal?

Then we also have to ensure that � 6 ↵. We suppose we are
given downward closed and computable ⇤ such that [⇤] has degree
spectrum ↵. We ensure P contains a non-computable A such that
the following requirements are satisfied:

⌅i: If  i(A) is total and non-computable then  i(A) /2 [⇤].

A di�culty with this is that it requires us to search for split-
tings inside the ⇧0

1 class that we are building. It is quite possible
to have a ⇧0

1 class Q and A 2 Q such that  i(A) is total and non-
computable, but such that no two initial segments of elements of
Q are  i-splitting.

The solution we adopt is to constructA which is of hyperimmune-
free degree. Then if  i(A) = B, there exists a total Turing func-
tional � such that �(A) = B. The totality of � means that
{�(C) : C 2 Q} is a ⇧0

1 class, and so cannot consist of a single
non-computable member.

First of all, how will we build P whose desire spectrum is min-
imal?

We say that T is homogenous if all strings of the same level in
T are of the same length and, whenever �0 and �1 are of the same
level in T and �0 ? ⌧ 2 T , �1 ? ⌧ is also in T . Recall that a ⇧0

1

class P is thin if for any ⇧0
1 class P 0 ⇢ P there exists a clopen set

Q such that P 0 = P \Q.
So in order to construct P whose degree spectrum is minimal,

we ensure that P is thin and that P = [T ] for some T ✓ 2<!

which is homogenous.
So now we have a number of minimal elements..but are there

infinitely many? For every ↵, does there exist some � such that
↵ ^ � = 0P?

For any ↵ < 1P there exists � which is minimal and such that
� 6 ↵.
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Some comments on the proof. First of all, how will we build
P whose desire spectrum is minimal?

We say that T is homogenous if all strings of the same level in
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So now we have a number of minimal elements..but are there

infinitely many? For every ↵, does there exist some � such that
↵ ^ � = 0P?

For any ↵ < 1P there exists � which is minimal and such that
� 6 ↵.

Therefore (P, <) has an infinite number of minimal elements.

Proof. Suppose that (P, <) has only a finite number of minimal
elements, ↵0, · · · ,↵k say. Then ↵0 [ · · · [↵k is an element ↵ of
P and by the previous result there exists � which is minimal and
such that � 6 ↵, a contradiction. ⇤

Any non-empty ⇧0
1 class containing only {0, 1}-valued DNC

functions contains a member of every PA degree.

Proof. If ⇤ is computable and downward closed then consider
 i(;) such that  i(;; i) #= n i↵ there exists some l > i such
that ⌧(i) = n for all ⌧ 2 ⇤ of length l. By the uniformity of the
recursion theorem it follows that there exists computable f such
that, whenever [⇤j ] is non-empty and contains only {0, 1}-valued
DNC functions, there exist A,B 2 [⇤j ] with A(f(j)) = 0 and
B(f(j)) = 1.

Now suppose given j0 such that [⇤j0 ] is non-empty and con-
tains only {0, 1}-valued DNC functions. Let A be a {0, 1}-valued
DNC function. We construct B =
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B(f(j)) = 1.

Now suppose given j0 such that [⇤j0 ] is non-empty and con-
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DNC function. We construct B =
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of the same degree as A.

Stage 0. Define �0 = �.
Stage s > 0. We have already decided js�1 and �s�1. There

exists C 2 [⇤js�1 ] with C(f(js�1)) = A(s � 1). Using the oracle
for A we can therefore compute � of length f(js�1) + 1 such that
�(f(js�1)) = A(s � 1) and which is an initial segment of some
C 2 [⇤js�1 ] (this follows using the standard argument that any
{0, 1}-valued DNC function computes a member of any non-empty
⇧0

1 class). Define �s = � and define js so that [⇤js ] is the set of
all C 2 [⇤js�1 ] which extend �.

That B computes A follows from the fact that an oracle for B
allows us to retrace every step of the construction defining B.
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This immediately gives us nice examples of minimal elements..
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So in order to construct P whose degree spectrum is minimal,
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which is homogenous.
So now we have a number of minimal elements..but are there

infinitely many? For every ↵, does there exist some � such that
↵ ^ � = 0P?

For any ↵ < 1P there exists � which is minimal and such that
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Therefore (P, <) has an infinite number of minimal elements.

Proof. Suppose that (P, <) has only a finite number of minimal
elements, ↵0, · · · ,↵k say. Then ↵0 [ · · · [↵k is an element ↵ of
P and by the previous result there exists � which is minimal and
such that � 6 ↵, a contradiction. ⇤

Any non-empty ⇧0
1 class containing only {0, 1}-valued DNC

functions contains a member of every PA degree.

Proof. If ⇤ is computable and downward closed then consider
 i(;) such that  i(;; i) #= n i↵ there exists some l > i such
that ⌧(i) = n for all ⌧ 2 ⇤ of length l. By the uniformity of the
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Some comments on the proof. Then we also have to ensure
that � 6 ↵. We suppose we are given downward closed and
computable ⇤ such that [⇤] has degree spectrum ↵. We ensure P
contains a non-computable A such that the following requirements
are satisfied:

⌅i: If  i(A) is total and non-computable then  i(A) /2 [⇤].

First of all, how will we build P whose desire spectrum is min-
imal?

We say that T is homogenous if all strings of the same level in
T are of the same length and, whenever �0 and �1 are of the same
level in T and �0 ? ⌧ 2 T , �1 ? ⌧ is also in T . Recall that a ⇧0

1

class P is thin if for any ⇧0
1 class P 0 ⇢ P there exists a clopen set

Q such that P 0 = P \Q.
So in order to construct P whose degree spectrum is minimal,

we ensure that P is thin and that P = [T ] for some T ✓ 2<!

which is homogenous.
So now we have a number of minimal elements..but are there

infinitely many? For every ↵, does there exist some � such that
↵ ^ � = 0P?

For any ↵ < 1P there exists � which is minimal and such that
� 6 ↵.

Therefore (P, <) has an infinite number of minimal elements.
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Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1

PROVING THAT FOR a  00, {0,a} IS A DEGREE

SPECTRUM.

ANDY LEWIS-PYE AND LSE

Some comments on the proof. Then we also have to ensure
that � 6 ↵. We suppose we are given downward closed and
computable ⇤ such that [⇤] has degree spectrum ↵. We ensure P
contains a non-computable A such that the following requirements
are satisfied:

⌅i: If  i(A) is total and non-computable then  i(A) /2 [⇤].

A di�culty with this is that it requires us to search for split-
tings inside the ⇧0

1 class that we are building. It is quite possible
to have a ⇧0

1 class Q and A 2 Q such that  i(A) is total and non-
computable, but such that no two initial segments of elements of
Q are  i-splitting.

The solution we adopt is to constructA which is of hyperimmune-
free degree. Then if  i(A) = B, there exists a total Turing func-
tional � such that �(A) = B. The totality of � means that
{�(C) : C 2 Q} is a ⇧0

1 class, and so cannot consist of a single
non-computable member.

First of all, how will we build P whose desire spectrum is min-
imal?

We say that T is homogenous if all strings of the same level in
T are of the same length and, whenever �0 and �1 are of the same
level in T and �0 ? ⌧ 2 T , �1 ? ⌧ is also in T . Recall that a ⇧0

1

class P is thin if for any ⇧0
1 class P 0 ⇢ P there exists a clopen set

Q such that P 0 = P \Q.
So in order to construct P whose degree spectrum is minimal,

we ensure that P is thin and that P = [T ] for some T ✓ 2<!

which is homogenous.
So now we have a number of minimal elements..but are there

infinitely many? For every ↵, does there exist some � such that
↵ ^ � = 0P?

For any ↵ < 1P there exists � which is minimal and such that
� 6 ↵.

Therefore (P, <) has an infinite number of minimal elements.

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1

PROVING THAT FOR a  00, {0,a} IS A DEGREE

SPECTRUM.

ANDY LEWIS-PYE AND LSE

Some comments on the proof. Then we also have to ensure
that � 6 ↵. We suppose we are given downward closed and
computable ⇤ such that [⇤] has degree spectrum ↵. We ensure P
contains a non-computable A such that the following requirements
are satisfied:

⌅i: If  i(A) is total and non-computable then  i(A) /2 [⇤].

A di�culty with this is that it requires us to search for split-
tings inside the ⇧0

1 class that we are building. It is quite possible
to have a ⇧0

1 class Q and A 2 Q such that  i(A) is total and non-
computable, but such that no two initial segments of elements of
Q are  i-splitting.

The solution we adopt is to constructA which is of hyperimmune-
free degree. Then if  i(A) = B, there exists a total Turing func-
tional � such that �(A) = B. The totality of � means that
{�(C) : C 2 Q} is a ⇧0

1 class, and so cannot consist of a single
non-computable member.

First of all, how will we build P whose desire spectrum is min-
imal?

We say that T is homogenous if all strings of the same level in
T are of the same length and, whenever �0 and �1 are of the same
level in T and �0 ? ⌧ 2 T , �1 ? ⌧ is also in T . Recall that a ⇧0

1

class P is thin if for any ⇧0
1 class P 0 ⇢ P there exists a clopen set

Q such that P 0 = P \Q.
So in order to construct P whose degree spectrum is minimal,

we ensure that P is thin and that P = [T ] for some T ✓ 2<!

which is homogenous.
So now we have a number of minimal elements..but are there

infinitely many? For every ↵, does there exist some � such that
↵ ^ � = 0P?

For any ↵ < 1P there exists � which is minimal and such that
� 6 ↵.

Therefore (P, <) has an infinite number of minimal elements.

Authors are listed alphabetically. Andrew Lewis-Pye (previously Andrew

Lewis) was supported by a Royal Society University Research Fellowship.

1



⇧0
1 MATES

ANDY LEWIS-PYE AND LSE

The existence of invisible degrees serves to highlight the fact that
there exist degrees a 6= b such that any ⇧0

1 class which contains a
member of degree a must also contain a member of degree b. In
this section we shall further investigate this kind of relationship
between degrees.

Definition 0.1. We define the ⇧0
1 mates of a to be

T
{↵ 2 P :

a 2 ↵}.

It is clear that there exist degrees a such that the ⇧0
1-mates of

a are just {a}. In order to see that, in fact, there exist continuum
many such a, consider any non-empty ⇧0

1 class P in which all
elements are Turing incomparable. Suppose A 2 P and is of
degree a. Then the ⇧0

1-mates of a must be a subset of S(P), and
for each B 6= A in P there exists a ⇧0

1 class P 0 ⇢ P which contains
A but does not contain B.

If C is of hyperimmune-free degree and B T C then B tt C.
Cenzer and Smith [?] have shown that whenever B tt C and
C is ranked, B is also ranked and has rank less than or equal to
that of C. Downey has constructed [?] a set A of hyperimmune-
free degree a and which is of rank 1, and so is a member of a
⇧0

1 class with degree spectrum {0,a}. Since a must therefore
be completely ranked and a set is ranked i↵ it is a member of a
countable ⇧0

1 class, it follows that the ⇧0
1-mates of a are {0,a},

since if any special ⇧0
1 class contained a member B of degree

a then its intersection with any countable class with B as an
element, would be a countable special ⇧0

1 class. By Theorem ??,
if a is any hyperimmune-free element of ↵ which is minimal, then
the ⇧0

1-mates of a are ↵. So far then, we have seen a for which the
⇧0

1-mates of a are of cardinalities 1 and 2, and also a for which the
⇧0

1-mates of a are uncountable. The following theorem, however,
provides a wealth of further examples.

For any ↵ < 1P there exists a /2 ↵ such that the ⇧0
1-mates of

a are ↵ [ {a} and, moreover, such that ↵ [ {a} 2 P.
Some comments on the proof. Then we also have to ensure

that � 6 ↵. We suppose we are given downward closed and
computable ⇤ such that [⇤] has degree spectrum ↵. We ensure P
contains a non-computable A such that the following requirements
are satisfied:
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⇧0

1-mates of a are of cardinalities 1 and 2, and also a for which the
⇧0

1-mates of a are uncountable. The following theorem, however,
provides a wealth of further examples.

For any ↵ < 1P there exists a /2 ↵ such that the ⇧0
1-mates of

a are ↵ [ {a} and, moreover, such that ↵ [ {a} 2 P.
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The existence of invisible degrees serves to highlight the fact that
there exist degrees a 6= b such that any ⇧0

1 class which contains
a member of degree a must also contain a member of degree b.
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there exist degrees a 6= b such that any ⇧0

1 class which contains a
member of degree a must also contain a member of degree b. In
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Cenzer and Smith [?] have shown that whenever B tt C and
C is ranked, B is also ranked and has rank less than or equal to
that of C. Downey has constructed [?] a set A of hyperimmune-
free degree a and which is of rank 1, and so is a member of a
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1 class with degree spectrum {0,a}. Since a must therefore
be completely ranked and a set is ranked i↵ it is a member of a
countable ⇧0

1 class, it follows that the ⇧0
1-mates of a are {0,a},

since if any special ⇧0
1 class contained a member B of degree

a then its intersection with any countable class with B as an
element, would be a countable special ⇧0

1 class. By Theorem ??,
if a is any hyperimmune-free element of ↵ which is minimal, then
the ⇧0

1-mates of a are ↵. So far then, we have seen a for which the
⇧0

1-mates of a are of cardinalities 1 and 2, and also a for which the
⇧0

1-mates of a are uncountable. The following theorem, however,
provides a wealth of further examples.

For any ↵ < 1P there exists a /2 ↵ such that the ⇧0
1-mates of

a are ↵ [ {a} and, moreover, such that ↵ [ {a} 2 P.
Some comments on the proof. Then we also have to ensure

that � 6 ↵. We suppose we are given downward closed and
computable ⇤ such that [⇤] has degree spectrum ↵. We ensure P
contains a non-computable A such that the following requirements
are satisfied:
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For any ↵ < 1P there exists a /2 ↵ such that the ⇧0
1-mates of a

are ↵ [ {a} and, moreover, such that ↵ [ {a} 2 P.
Some comments on the proof. Then we also have to ensure

that � 6 ↵. We suppose we are given downward closed and
computable ⇤ such that [⇤] has degree spectrum ↵. We ensure P
contains a non-computable A such that the following requirements
are satisfied:

⌅i: If  i(A) is total and non-computable then  i(A) /2 [⇤].

A di�culty with this is that it requires us to search for split-
tings inside the ⇧0

1 class that we are building. It is quite possible
to have a ⇧0

1 class Q and A 2 Q such that  i(A) is total and non-
computable, but such that no two initial segments of elements of
Q are  i-splitting.

The solution we adopt is to constructA which is of hyperimmune-
free degree. Then if  i(A) = B, there exists a total Turing func-
tional � such that �(A) = B. The totality of � means that
{�(C) : C 2 Q} is a ⇧0

1 class, and so cannot consist of a single
non-computable member.

First of all, how will we build P whose desire spectrum is min-
imal?

We say that T is homogenous if all strings of the same level in
T are of the same length and, whenever �0 and �1 are of the same
level in T and �0 ? ⌧ 2 T , �1 ? ⌧ is also in T . Recall that a ⇧0

1

class P is thin if for any ⇧0
1 class P 0 ⇢ P there exists a clopen set

Q such that P 0 = P \Q.
So in order to construct P whose degree spectrum is minimal,

we ensure that P is thin and that P = [T ] for some T ✓ 2<!

which is homogenous.
So now we have a number of minimal elements..but are there

infinitely many? For every ↵, does there exist some � such that
↵ ^ � = 0P?

For any ↵ < 1P there exists � which is minimal and such that
� 6 ↵.

Therefore (P, <) has an infinite number of minimal elements.

Proof. Suppose that (P, <) has only a finite number of minimal
elements, ↵0, · · · ,↵k say. Then ↵0 [ · · · [↵k is an element ↵ of
P and by the previous result there exists � which is minimal and
such that � 6 ↵, a contradiction. ⇤

Any non-empty ⇧0
1 class containing only {0, 1}-valued DNC

functions contains a member of every PA degree.

Proof. If ⇤ is computable and downward closed then consider
 i(;) such that  i(;; i) #= n i↵ there exists some l > i such
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T are of the same length and, whenever �0 and �1 are of the same
level in T and �0 ? ⌧ 2 T , �1 ? ⌧ is also in T . Recall that a ⇧0
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Q such that P 0 = P \Q.
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infinitely many? For every ↵, does there exist some � such that
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We say that ↵ is a su�ciency set for a if every ⇧0
1 class that

contains a member of every degree in ↵ also contains a member
of degree a.
In the previous section we considered the ⇧0

1 mates of individual
degrees. The previous definition could also be phrased in terms of
the ⇧0

1 mates of larger sets of degrees; if we define the ⇧0
1 mates

of ↵ (which is not necessarily an element of P) to be
T
{� 2 P :

↵ ✓ �}, then ↵ is a su�ciency set for precisely those degrees
which are an element of the ⇧0

1 mates of ↵.
If ↵ is a su�ciency set for a then there exists some countable

� ✓ ↵ which is a su�ciency set for a (for each element of P which
does not contain every element of ↵ choose some element of ↵ not
in this set). For every countably infinite su�ciency set ↵ for a
there exists some proper subset which is also a su�ciency set for
a. In order to see this let a0 and a1 be distinct elements of ↵. If
each ↵�{ai} is not a su�ciency set for a then let each Pi be a ⇧0

1

class which contains a member of every degree in ↵�{ai} but does
not contain a member of degree a. Then P0 [ P1 witnesses the
fact that ↵ is not a su�ciency set for a, a contradiction. Almost
exactly the same argument su�ces to show that if ↵ is a finite
su�ciency set for a then there exists some element b of ↵ such
that {b} is a su�ciency set for a. The following theorem shows,
however, that it is possible to find a and a countable ↵ which is a
su�ciency set for a, such that no finite subset of ↵ is a su�ciency
set for a.

[Low Anti-basis Theorem] Any ⇧0
1 class that contains a member

of every low degree contains a member of every degree.
The existence of invisible degrees serves to highlight the fact

that there exist degrees a 6= b such that any ⇧0
1 class which con-

tains a member of degree a must also contain a member of degree
b. Let’s investigate this idea further:
We define the ⇧0

1 mates of a to be
T
{↵ 2 P : a 2 ↵}.

What could the ⇧0
1 mates of a look like?

D
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We say that ↵ is a su�ciency set for a if every ⇧0
1 class that

contains a member of every degree in ↵ also contains a member
of degree a.
In the previous section we considered the ⇧0

1 mates of individual
degrees. The previous definition could also be phrased in terms of
the ⇧0

1 mates of larger sets of degrees; if we define the ⇧0
1 mates

of ↵ (which is not necessarily an element of P) to be
T
{� 2 P :

↵ ✓ �}, then ↵ is a su�ciency set for precisely those degrees
which are an element of the ⇧0

1 mates of ↵.
What can we say about these su�ciency sets?

• If ↵ is a su�ciency set for a then there exists some count-
able � ✓ ↵ which is a su�ciency set for a.

• For every countably infinite su�ciency set ↵ for a there
exists some proper subset which is also a su�ciency set
for a.

(for each element of P which does not contain every element of ↵
choose some element of ↵ not in this set).

For every countably infinite su�ciency set ↵ for a there exists
some proper subset which is also a su�ciency set for a. In order
to see this let a0 and a1 be distinct elements of ↵. If each ↵�{ai}
is not a su�ciency set for a then let each Pi be a ⇧0

1 class which
contains a member of every degree in ↵�{ai} but does not contain
a member of degree a. Then P0 [ P1 witnesses the fact that ↵
is not a su�ciency set for a, a contradiction. Almost exactly the
same argument su�ces to show that if ↵ is a finite su�ciency set
for a then there exists some element b of ↵ such that {b} is a
su�ciency set for a. The following theorem shows, however, that
it is possible to find a and a countable ↵ which is a su�ciency set
for a, such that no finite subset of ↵ is a su�ciency set for a.

[Low Anti-basis Theorem] Any ⇧0
1 class that contains a member

of every low degree contains a member of every degree.
The existence of invisible degrees serves to highlight the fact

that there exist degrees a 6= b such that any ⇧0
1 class which con-

tains a member of degree a must also contain a member of degree
b. Let’s investigate this idea further:
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The following theorem shows, however, that it is possible to find
a and a countable ↵ which is a su�ciency set for a, such that no
finite subset of ↵ is a su�ciency set for a.
[Low Anti-basis Theorem] Any ⇧0

1 class that contains a member
of every low degree contains a member of every degree.

The existence of invisible degrees serves to highlight the fact
that there exist degrees a 6= b such that any ⇧0

1 class which con-
tains a member of degree a must also contain a member of degree
b. Let’s investigate this idea further:
We define the ⇧0

1 mates of a to be
T
{↵ 2 P : a 2 ↵}.

What could the ⇧0
1 mates of a look like?

D

{a}
{0,a}
It is clear that there exist degrees a such that the ⇧0

1-mates of
a are just {a}. In order to see that, in fact, there exist continuum
many such a, consider any non-empty ⇧0

1 class P in which all
elements are Turing incomparable. Suppose A 2 P and is of
degree a. Then the ⇧0

1-mates of a must be a subset of S(P), and
for each B 6= A in P there exists a ⇧0

1 class P 0 ⇢ P which contains
A but does not contain B.

If C is of hyperimmune-free degree and B T C then B tt C.
Cenzer and Smith [?] have shown that whenever B tt C and
C is ranked, B is also ranked and has rank less than or equal to
that of C. Downey has constructed [?] a set A of hyperimmune-
free degree a and which is of rank 1, and so is a member of a
⇧0

1 class with degree spectrum {0,a}. Since a must therefore be
completely ranked and a set is ranked i↵ it is a member of a count-
able ⇧0

1 class, it follows that the ⇧0
1-mates of a are {0,a}, since

if any special ⇧0
1 class contained a member B of degree a then

its intersection with any countable class with B as an element,
would be a countable special ⇧0

1 class. By Theorem ??, if a is
any hyperimmune-free element of ↵ which is minimal, then the
⇧0

1-mates of a are ↵. So far then, we have seen a for which the
⇧0

1-mates of a are of cardinalities 1 and 2, and also a for which
the ⇧0

1-mates of a are uncountable.

The following theorem provides a wealth of further examples...

For any ↵ < 1P there exists a /2 ↵ such that the ⇧0
1-mates of a

are ↵ [ {a} and, moreover, such that ↵ [ {a} 2 P.

This tells us that every element of the structure has a strong
minimal cover.

2 ANDY LEWIS-PYE AND LSE
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that of C. Downey has constructed [?] a set A of hyperimmune-
free degree a and which is of rank 1, and so is a member of a
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1 class with degree spectrum {0,a}. Since a must therefore be
completely ranked and a set is ranked i↵ it is a member of a count-
able ⇧0

1 class, it follows that the ⇧0
1-mates of a are {0,a}, since

if any special ⇧0
1 class contained a member B of degree a then

its intersection with any countable class with B as an element,
would be a countable special ⇧0

1 class. By Theorem ??, if a is
any hyperimmune-free element of ↵ which is minimal, then the
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1-mates of a are ↵. So far then, we have seen a for which the
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1-mates of a are of cardinalities 1 and 2, and also a for which
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1-mates of a are uncountable.

The following theorem provides a wealth of further examples...
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1-mates of a

are ↵ [ {a} and, moreover, such that ↵ [ {a} 2 P.

This tells us that every element of the structure has a strong
minimal cover.
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The following theorem shows, however, that it is possible to find
a and a countable ↵ which is a su�ciency set for a, such that no
finite subset of ↵ is a su�ciency set for a.
[Low Anti-basis Theorem] Any ⇧0

1 class that contains a member
of every low degree contains a member of every degree.

Proof. Let ⇤ be downward closed and computable and such that
[⇤] does not contain a member of every degree. We define non-
computable A =

S
i �i which is of low degree and such that for

each i, if  i(A) is total and non-computable then it is not an
element of [⇤]. The fact that A is of low degree follows because
we run the construction using an oracle for ;0 and decide whether
 i(A; i) # at each stage 2i+ 2.

In order to define the construction, we make use of a function
� which is defined as follows. Given inputs i and ⌧ , let T be
a  i-splitting set of strings (enumerated in some uniform way),
which has ⌧ as the single element of level 0, such that each element
which is not a leaf has precisely two successors, such that for any
� which is a leaf of T there does not exist a  i-splitting set of
strings above �, and such that at each stage of the enumeration
of T we only enumerate in strings which properly extend leaves of
the set of strings already enumerated into T .

Let the strings in T be ordered according to their level and then
from left to right. Since ⇤ does not contain a member of every
degree, there exists a least string � in T such that either � is a
leaf of T , or else  i(�) /2 ⇤j . We define �(i, ⌧) to be that string.

and for every i, ⌧ let �(i, j, ⌧) be defined as in the proof of
Theorem ??.

Stage 0. Define �0 = �.
Stage 2i+ 1. Define �2i+1 = �(i, j,�2i).
Stage 2i + 2. If there exists � � �2i+1 such that  i(�; i) #

then define �2i+2 to be some extension of � which is not an initial
segment of  i(;). Otherwise define �2i+2 to be some extension of
�2i+1 which is not an initial segment of  i(;).

⇤

The existence of invisible degrees serves to highlight the fact
that there exist degrees a 6= b such that any ⇧0

1 class which con-
tains a member of degree a must also contain a member of degree
b. Let’s investigate this idea further:
We define the ⇧0

1 mates of a to be
T
{↵ 2 P : a 2 ↵}.

What could the ⇧0
1 mates of a look like?

D

{a}
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The following theorem shows, however, that it is possible to find
a and a countable ↵ which is a su�ciency set for a, such that no
finite subset of ↵ is a su�ciency set for a.
[Low Anti-basis Theorem] Any ⇧0
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Proof. Let ⇤ be downward closed and computable and such that
[⇤] does not contain a member of every degree. We define non-
computable A =
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i �i which is of low degree and such that for
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element of [⇤]. The fact that A is of low degree follows because
we run the construction using an oracle for ;0 and decide whether
 i(A; i) # at each stage 2i+ 2.
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degree, there exists a least string � in T such that either � is a
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We noted previously that the intersection of the degree spectra of
two ⇧0

1 classes need not be the degree spectrum of a ⇧0
1 class. The

following result su�ces to show, however, that (P, <) is a lattice.

The intersection of the degree spectra of two ⇧0
1 classes is the

degree spectrum of a ⇧0
1 class if it is the superset of the degree

spectrum of a non-empty ⇧0
1 class.

We say that ↵ is a su�ciency set for a if every ⇧0
1 class that

contains a member of every degree in ↵ also contains a member
of degree a.
In the previous section we considered the ⇧0

1 mates of individual
degrees. The previous definition could also be phrased in terms of
the ⇧0

1 mates of larger sets of degrees; if we define the ⇧0
1 mates

of ↵ (which is not necessarily an element of P) to be
T
{� 2 P :

↵ ✓ �}, then ↵ is a su�ciency set for precisely those degrees
which are an element of the ⇧0

1 mates of ↵.
What can we say about these su�ciency sets?

• If ↵ is a su�ciency set for a then there exists some count-
able � ✓ ↵ which is a su�ciency set for a.

• For every countably infinite su�ciency set ↵ for a there
exists some proper subset which is also a su�ciency set
for a.

• If ↵ is a finite su�ciency set for a then there exists some
element b of ↵ such that {b} is a su�ciency set for a.

In order to see this let a0 and a1 be distinct elements of ↵. If
each ↵ � {ai} is not a su�ciency set for a then let each Pi be a
⇧0

1 class which contains a member of every degree in ↵�{ai} but
does not contain a member of degree a. Then P0 [ P1 witnesses
the fact that ↵ is not a su�ciency set for a, a contradiction.
(for each element of P which does not contain every element of ↵
choose some element of ↵ not in this set).

For every countably infinite su�ciency set ↵ for a there exists
some proper subset which is also a su�ciency set for a. In order
to see this let a0 and a1 be distinct elements of ↵. If each ↵�{ai}
is not a su�ciency set for a then let each Pi be a ⇧0

1 class which
contains a member of every degree in ↵� {ai} but does not con-
tain a member of degree a. Then P0 [ P1 witnesses the fact that
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