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DEGREE SPECTRA OF IIY CLASSES
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Cantor Space

Underlying set: {0, 1}~.
Topology:

A XY class (subset of Cantor
space) is one defined by an ot
existential formula:

X € P+ dnR|X,nl.

Equivalently, a 39 class is an open set specified by
a set of defining strings {og, 01, 09,...} which is c.e..




Cantor Space

Underlying set: {0, 1}~.
Topology:

A TIY class (subset of Cantor
space) is one defined by a
universal formula:

X € P+ VnR|X,n].

Equivalently, P is a II} class iff it is the set of infinite

paths through a downward closed and computable set
of finite binary strings A.
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3 BASIC FACTS

FACT 1 [Weak Koénig’'s Lemmal. If A C 2<% is downward closed and
infinite then there is an infinite path through A.

FACT 2 Any isolated member of a IIY class is computable.

We call a ITY class special if it is non-empty and has no computable
FACT 3 ACTI LG Ml & .
members. Any special II7 class is of cardinality the continuum.

FACT 4 [Low Basis Theorem|. We call a Turing degree a low if a’ = 0’.
Every non-empty IIY class has a member of low degree.



Proving the Low Basis Theorem

We suppose P is non-empty and is the set of infinite paths through
A C 2<% which is downward closed and computable.

We run a construction which makes use of an oracle for (.
At stage 0 we define Ag = A, and at each stage s + 1 we define

As11 € Ag such that [Agyq| (the set of infinite paths through
As11) is non-empty.

Ag2D A DA D ---

Ultimately we can then consider O = (1 [A;], which by compact-
ness will be non-empty.

At stage s + 1 we define A, so as to decide whether ¥4(s) |
for all A € Q once and for all. Since we compute A’ for all A € O
as the construction progresses (using only our oracle for ('), Q
must have precisely one member, and this must be of low degree.



Proving the Low Basis Theorem

Convention: we shall suppose that W7 (n) | only if this computation converges
in at most |o| many steps.

Stage 0. Define Ag = A.
Stage s + 1. We are given Ag such that [Ag] is non-empty. We
ask:

“Does there exist an n such that ¥7(s) | for all o € A of length
n?”

If so: Then we can define A;1 1 = Ag, and we already know that
sec A’ for all A € O.

If not: Then we can define A;1 1 to be all those strings o in Ag
for which W7(s) 1. Since there exist such o of every length, it
follows by WKL that [A;.1] is non-empty. In this case we have
established that s ¢ A’ for all A € O.



3 BASIC FACTS

FACT 1 [Weak Koénig’'s Lemmal. If A C 2<% is downward closed and
infinite then there is an infinite path through A.

FACT 2 Any isolated member of a IIY class is computable.

We call a ITY class special if it is non-empty and has no computable
FACT 3 ACTI LG Ml & .
members. Any special II7 class is of cardinality the continuum.

FACT 4 [Low Basis Theorem|. We call a Turing degree a low if a’ = 0’.
Every non-empty IIY class has a member of low degree.

We say a degree a is hyperimmune-free it for every f : w — w
computable in a, there exists a computable function g which ma-
jorises f, i.e. such that g(n) > f(n) for all n.



FACT 1

FACT 2

FACT 3

FACT 4

FACT 5

3 BASIC FACTS

'Weak Konig’s Lemmal. If A C 2<% is downward closed and
infinite then there is an infinite path through A.

Any isolated member of a IIY class is computable.

We call a ITY class special if it is non-empty and has no computable
members. Any special II{ class is of cardinality the continuum.

[Low Basis Theorem]. We call a Turing degree a low if @’ = 0.
Every non-empty IIY class has a member of low degree.

[Hyperimmune-free Basis Theorem|. Every non-empty II9 class
has a member of hyperimmune-free degree.



The hyperimmune-free degrees

hyperimmune-free degrees

low degrees / 5

\&j/



Defining the Structure

For P C 2% we define S(P), the degree spectrum of P, to be the
set of Turing degrees a such that there exists A € P of degree a.

We define B = {S(P) : PisaIl} class} and we consider the

elements of P to be ordered by inclusion.

The following facts are easily derived:

(i) (B, <) has a greatest element 1y = O and a least element
Oy = 0.
(ii) (B, <) is an uppersemilattice.
(iii) There is at least one minimal element {0}.



Some easy examples of elements of the
structure

The set of PA degrees is an element of the structure, as is the set
of Martin-Lof random degrees.

Stephan has shown that the degrees which are PA and Martin-Lof
random are precisely the degrees above 0’. This suffices to show
that when ¢ and 3, their intersection a N 3 need not be a degree
spectrum. This does not mean than a A 3 doesn’t exist though..

Question: Is (B, <) a lattice?

The htf and low basis theorems combine to show that no non-trivial
upper conner can be a degree spectrum. The question becomes
more interesting when we add in 0: for which a is it the case that

{0} U{b:b > a} is a degree spectrum?



PROVING THAT FOR a <0/, {0,a} IS A DEGREE
SPECTRUM.

We construct P C {0,1,2}*. We construct A which is downward

closed and computable — at stage s we decide which strings of
length s are in A.

We suppose given an approximation {os}sc,, to A € a (and sup-
pose o, is of length s). For any 7 € 3<% we let g(7) be the binary
string obtained by removing all 2s. The idea is that we construct
A so that all infinite paths B either end with infinitely many 2s,
or else satisfy g(B) = A.
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SPECTRUM.

We suppose given an approximation {o,}sc,, to A € a (and sup-
pose o is of length s). For any 7 € 3<% we let g(7) be the binary
string obtained by removing all 2s. The idea is that we construct
A so that all infinite paths B either end with infinitely many 2s,
or else satisfy g(B) = A.

such that g(7) C o5 is longest.

"
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We suppose given an approximation {o,}sc,, to A € a (and sup-
pose o is of length s). For any 7 € 3<% we let g(7) be the binary
string obtained by removing all 2s. The idea is that we construct
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or else satisfy g(B) = A.

Stage 0. Enumerate () into A.

Stage s > 0. Choose that leaf 7 such that amongst those leaves
" with g(7') C os, g(7) is the longest. Enumerate 7 % o5(g(|7]))
and 7 * 2 into A. For every other leaf 7/ enumerate 7’ * 2 into A.



PROVING THAT FOR a <0/, {0,a} IS A DEGREE
SPECTRUM.

We suppose given an approximation {o,}sc,, to A € a (and sup-
pose o is of length s). For any 7 € 3<% we let g(7) be the binary
string obtained by removing all 2s. The idea is that we construct
A so that all infinite paths B either end with infinitely many 2s,
or else satisfy g(B) = A.

Stage 0. Enumerate () into A.

Stage s > 0. Choose that leaf 7 such that amongst those leaves
" with g(7') C os, g(7) is the longest. Enumerate 7 % o5(g(|7]))
and 7 * 2 into A. For every other leaf 7/ enumerate 7’ * 2 into A.

Here we used 2s as the ‘filler’, but for any IIY class P, we could

have used P as the filler instead, to give a new class with degree
spectrum S(P) U {a}.



PROVING THAT FOR a <0/, {0,a} IS A DEGREE
SPECTRUM.

This proof is easily modified to show that for any a < 0’, {0}U{b :
b> a} is a degree spectrum.

..rather than simply coding A into one path, we now have one
coding path for each set of the form A & B, where:

A® B(2n) = A(n)

A®B(2n+1)= B(n).



Some easy examples of elements of the
structure

Recall that a degree is fixed point free iff it contains a DNC (di-
agonally non-computable) function, where f is DNC if for all n

we have f(n) # ¥, (n).

Simpson has shown that the fixed point free degrees are a degree
spectrum.



Some easy examples of elements of the
structure

The set of all c.e. degrees is the degree spectrum of a IIY class.

Proof. We let W, denote the it" c.e. set according to some fixed
effective listing. Let f be a computable function such that, for
any i € w, S([Af)]) =10, a;} where a; is the degree of W;. Now
let A be the computable set of strings which contains a copy of
A4y above each string 0* x 1, where 0’ is the sequence of ¢ many
ZEeTos.

S0 here we have a degree spectrum « which has non-empty inter-
section with every other non-empty degree spectrum 3. The ana-
logue of this doesn’t hold for the special degree spectra though..



Some easy examples of elements of the
structure

For any special II{ class Py there exists a special IIY class P; such
that no member of P; computes any member of P.

Proof. Suppose given downward closed and computable A such that Py =
'A]. We define an approximation to a 2-branching T such that P; = [T
satisfies the statement of the theorem. Those 7 in T of level 2¢: + 1 will be
defined so as to satisty requirement:

©;: It A € P; then A # \PZ(@)
Those 7 in T of level 27 + 2 will be defined so as to satisfy requirement:
=;: If A€ Py and V,;(A) is total then W;(A) & Py.



Some easy examples of elements of the
structure

Stage 0. Enumerate A into T
Stage s > 0. Consider all the strings in 1" to be ordered first according to
their level in T and then lexicographically. Find the least string 7 € T' (if

any) such that either:

(1) 7 is of level 2i + 1 and 7 C W;(0)[s]. In this case let 79 be the
immediate predecessor of 7 in 1" and let 7; be a leaf of T" extending
7o and incompatible with 7. Remove all strings properly extending
170 from 7" and then enumerate in two incompatible extensions of 7.

(2) 7 is of level 2¢ 4+ 2, W;(7) is compatible with some string in A of
length s and there exists a leaf 7" of T extending 7 such that W;(7')
properly extends W;(7). In this case remove all strings extending
(and including) 7 from T', other than 7’.

Once these instructions are completed, choose two incompatible strings ex-
tending each leaf of T', and enumerate these strings into 7.



The invisible degrees and cupping

Next we want to want to answer questions of the form, is it the
case for every a > Oy there exists 8 < 1z with aaV 8 = 137 Do
there exist any o, 3 < 1 with aV 8 = 137

We’'ll be able to answer this by establishing the existence of
inusible degrees — degrees which don’t belong to any spectrum
other than 1.



The invisible degrees and cupping

Next we want to want to answer questions of the form, is it the
case for every a > Oy there exists 8 < 1z with aaV 8 = 137 Do
there exist any o, 3 < 1 with aV 8 = 137

We’'ll be able to answer this by establishing the existence of
inusible degrees — degrees which don’t belong to any spectrum
other than 1.

The principal theorem here is this:

For any countable sequence of F}, sets, { Ok } e, say, there exists a
degree a such that, for any k € w, if a € S(Qy) then S(Qx) = D.
In fact a can be chosen to be hyperimmune-free and minimal.



For any countable sequence of F,; sets, { Ok } e, say, there exists a
degree a such that, for any k € w, if a € S(Qy) then S(Qx) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

Proof. We will in fact show that the conclusion holds for a count-
able sequence of closed sets. That this is sufficient to imply the full
theorem is immediate since any F, set is the union of a countable
sequence of closed sets. More specifically, let {Q}reo be a se-
quence of F, sets, with Q. = UjEw Pr..; with Py ; closed for each
k,j € w, and let a be such that if @ € S(Py ;) then S(Py ;) = D.
If a € S(Qy) then there exists a j such that a € S(Py ), giv-
ing S(Qr) = ® as required. So suppose we are given a sequence
{Pr}reo of closed sets.



For any countable sequence of F,; sets, { Ok } e, say, there exists a
degree a such that, for any k € w, if a € S(Qy) then S(Qx) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

Proof (continued) .. so now we have to construct A, such that
no Pj. has a member of degree a = deg(A) unless it has a member
of every degree. This means that sometimes we will have to be able
to demonstrate that P, does contain a member of every degree..

..it suffices to show that |T'| C Py for some 2-branching com-
putable T' C 2<%,

For future reference, in order to show that P, contains a mem-
ber of every degree above b (for some b) it also suffices to show that
T C Py for some 2-branching b computable pointed T' C 2<¢.



For any countable sequence of F,; sets, { Ok } e, say, there exists a
degree a such that, for any k € w, if a € S(Qy) then S(Qx) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

Proof (continued) For every k, let P = [T;| for some down-
ward closed Y, C 2<“. We shall use a simple forcing argument
in order to construct A = |J, o5 which is of hyperimmune-free
minimal degree. Initially we define og = A and we define Tj to be
the identity tree. At every stage s, given computable 2-branching
T and o5 which is the string of level 0 in T, we define 0511 D 0o,
and TS_|_1 C TS.

For each (i, j, k) we must ensure:

If U4 is total and belongs to Pj and if . (U4) = A then Py
contains a member of every degree.



For any countable sequence of F,; sets, { Ok } e, say, there exists a
degree a such that, for any k € w, if a € S(Qy) then S(Qx) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

Proof (continued) At stage s we act according to the first of
the following situations which applies. Let s = (1, j, k).

(1) There exists o € T such that no two strings extending o
in Ty are W;-splitting. In this case we define o541 to be
the first such o properly extending o, and we define T, ¢
to be the set of strings in T extending o. In so doing we
have ensured that W;(A) is either computable or partial.



For any countable sequence of F,; sets, { Ok } e, say, there exists a
degree a such that, for any k € w, if a € S(Qy) then S(Qx) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

Proof (continued) At stage s we act according to the first of
the following situations which applies. Let s = (1, j, k).

(2) Since the previous case does not apply we may let TV
be a computable, 2-branching and V;-splitting subset of
Ts containing o, (we shall eventually define Ts,; to be
a subset of T?). There exists 0 € TY such that either
U, (U;(0)) is incompatible with o or else for no string
T D o in T} is it the case that ¥, (¥,(7)) properly extends
U, (U;(0)). In this case we define o511 to be the first such
o properly extending o5 and we define 75,1 to be the set

of strings in T? extending o. In so doing we have ensured
it is not the case that ¥,;(¥;(A4)) = A.



For any countable sequence of F,; sets, { Ok } e, say, there exists a
degree a such that, for any k € w, if a € S(Qy) then S(Qx) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

Proof (continued) At stage s we act according to the first of
the following situations which applies. Let s = (1, j, k).

(3) Since the previous case does not apply we may let T
be a computable and 2-branching subset of T? containing
o, such that, whenever 7,7/ € T! and 7 D 7, we have
that U,;(W,;(7")) properly extends W, (¥;(7)). There exists
o € T} such that ¥;(0) is not in Y. In this case we define
0511 to be the first such o properly extending o, and we
define T 1 to be the set of strings in T! extending o. In
so doing we have ensured that W;(A) ¢ Pk.



For any countable sequence of F,; sets, { Ok } e, say, there exists a
degree a such that, for any k € w, if a € S(Qy) then S(Qx) = D.
In fact a can be chosen to be hyperimmune-free and minimal.

Proof (continued) At stage s we act according to the first of
the following situations which applies. Let s = (1, j, k).

(4) Since none of the previous cases apply we have that, for
all B € [Tsl], \IJZ(B) & Pk and \Ifj(\IfZ(B)) — B. Since Tsl
is 2-branching and computable it follows that Ps contains
a member of every Turing degree. In this case we define
0,411 to be some proper extension of o, in T} and we define
Ts+1 to be the set of strings in T} which extend o, 1.



The invisible degrees and cupping

If we restrict ourselves to the arithmetical hierarchy, then we
can do a little better:

There exists a hyperimmune-free minimal degree a below 0”, such
that no X9 class contains a member of degree a unless it contains
a member of every degree.



The invisible degrees and cupping

If we restrict ourselves to the arithmetical hierarchy, then we
can do a little better:

There exists a hyperimmune-free minimal degree a below 0”, such

that no X9 class contains a member of degree a unless it contains
a member of every degree.

If we analyse these proofs a little further, then we reach some
interesting conclusions:

An F, set Q contains a member of every degree above b iff there
exists some b-computable perfect and pointed T with [T'] C Q.

A X3 class P contains a member of every degree above b iff there
exists some b-computable perfect and pointed T with [T] C P.



The invisible degrees and cupping

An F, set Q contains a member of every degree above b iff there
exists some b-computable perfect and pointed T" with [T'| C O.

Proof. Let Q = J, Pr where each Py is closed. Given B of
degree b, consider running the previous construction but begin-
ning with 7y as the set of strings of the form 75 & 7 such that
7o C B—=so that all the T, are now computable in B. Let the set
A constructed be of degree a. If O contains a member of every
degree above b then, in particular, some P, must contain a mem-

ber of degree a.
case (4) applies.

perfect and pointec

I

T'herefore, for some s = (i, j, k) it must be that

P

Then T'={W,;(0) : 0 € Ts11} is B-computable

, and [T| C Q.



The invisible degrees and cupping

We say that a degree a is inwvisible if any IIj class which contains
a member of degree a contains a member of every degree.

The existence of invisible degrees immediately suffices to give
the following corollary: There do not exist @ < 1z and 8 < 1
with a V ,8 — 1q3.

Proof. If neither of o or B contain any invisible degrees then
neither does their union.




The invisible degrees and cupping

We say that a degree a is inwvisible if any IIj class which contains
a member of degree a contains a member of every degree.

The existence of invisible degrees immediately suffices to give
the following corollary: There do not exist @ < 1z and 8 < 1
with a V ,8 — 1q3.

Proof. If neither of o or B contain any invisible degrees then
neither does their union.

All weakly 2-generics are invisible. In fact they are all strongly
invisible:

We say a is strongly invisible if any II{ class which has a member
of non-zero degree below a has a member of every degree.



The invisible degrees and cupping

We say a is strongly invisible if any II{ class which has a member
of non-zero degree below a has a member of every degree.

QUESTION: Are all invisible degrees strongly invisible? This
holds iff the invisible degrees are downward closed avoiding O.



The invisible degrees and cupping

We say a is strongly invisible if any II{ class which has a member
of non-zero degree below a has a member of every degree.

QUESTION: Are all invisible degrees strongly invisible? This
holds iff the invisible degrees are downward closed avoiding O.

In order to answer this, we need to consider a third category of
invisibility (and then things will work out nicely):

We say that a degree a is weakly invisible if any II{ class which
contains a member of every degree above a contains a member of

every degree.



The invisible degrees and cupping

We say a is strongly invisible if any II{ class which has a member
of non-zero degree below a has a member of every degree.

QUESTION: Are all invisible degrees strongly invisible? This
holds iff the invisible degrees are downward closed avoiding O.

In order to answer this, we need to consider a third category of
invisibility (and then things will work out nicely):

We say that a degree a is weakly invisible if any II{ class which
contains a member of every degree above a contains a member of

every degree.

There exists a non-zero weakly invisible degree which is not invis-
ible.



The invisible degrees and cupping

A degree is weakly invisible iff it is bounded by an invisible degree.

Proof. Any degree bounded by an invisible degree is clearly weakly
invisible, so it suffices to show that any weakly invisible degree is
bounded by an invisible degree. In order to see this suppose given
B of degree b which is weakly invisible, let P}, be the £ T1Y class
and consider running the construction of an invisible degree but
beginning with 7y as the set of strings of the form 7o & 71 such
that 79 C B. Now whenever case (4) applies we may deduce that
Py contains |T'| for some perfect pointed b-computable T'. Since
b is weakly invisible, P, therefore contains a member of every
degree.

..s0 there exist invisible degrees which are not strongly invisible.



Minimal Elements

We say that o # Oy is subclass invariant if for any 1Y class P
with S(P) = a and any nonempty IIY class P’ C P, S(P') = «a.
We say that a # Oy is weakly subclass invariant if there exists a
I1Y class P with S(P) = « and for any nonempty II{ class P’ C P,
S(P) = a.



Minimal Elements

We say that o # Oy is subclass invariant if for any 1Y class P
with S(P) = a and any nonempty IIY class P’ C P, S(P') = «a.
We say that a # Oy is weakly subclass invariant if there exists a
I1Y class P with S(P) = « and for any nonempty II{ class P’ C P,
S(P) = a.

Clearly any o which is minimal must be subclass invariant.
Now suppose that « is subclass invariant, let P be a IIY class
with S(P) = a and suppose that P’ is a nonempty I1Y class with
S(P') C . Then {0xA: Ae PtU{lxA:AecP}lisall
class with degree spectrum o and witnesses the fact that « is not
subclass invariant, a contradiction. Thus being subclass invariant
is equivalent to minimality:.



We say that o # Oy is subclass invariant if for any 1Y class P
with S(P) = a and any nonempty IIY class P’ C P, S(P') = a.
We say that a # Oy is weakly subclass invariant if there exists a

I1Y class P with S(P) = a and for any nonempty I1Y class P’ C P,
S(P) = «a.

Suppose that «a is weakly subclass invariant. If a IIY class con-
tains any member of any hyperimmune-free degree in o then it
contains a member of every degree in o.



We say that o # Oy is subclass invariant if for any 1Y class P
with S(P) = a and any nonempty IIY class P’ C P, S(P') = a.
We say that a # Oy is weakly subclass invariant if there exists a
I1Y class P with S(P) = a and for any nonempty I1Y class P’ C P,
S(P") = a.

Suppose that «a is weakly subclass invariant. If a IIY class con-
tains any member of any hyperimmune-free degree in o then it
contains a member of every degree in c.

Proof. Let Py be a IIj class with S(Py) = a and such that for
any nonempty IIY class P C Py, S(P) = a. Let P; be a IIY
class which contains A of hyperimmune-free degree in . Then
there exists B =;; A and which is in Py. Let ¢, 7 be such that the
total functionals ®; and ®; satisfy ®;(A) = B and ®;(B) = A.
Now let Py be the II7 class {C : C € Py & (D € P1)[®;(D) =
C & ®,(C) = D|}. Then S(P2) C S(P;1). Since P is nonempty
and Py C Py, S(P2) and S(P1) contain every degree in .




We say that o # Oy is subclass invariant if for any 1Y class P
with S(P) = a and any nonempty IIY class P’ C P, S(P') = a.
We say that a # Oy is weakly subclass invariant if there exists a

I1Y class P with S(P) = a and for any nonempty I1Y class P’ C P,
S(P) = «a.

Suppose that «a is weakly subclass invariant. If a IIY class con-
tains any member of any hyperimmune-free degree in o then it
contains a member of every degree in o.



We say that o # Oy is subclass invariant if for any 1Y class P
with S(P) = a and any nonempty IIY class P’ C P, S(P') = a.
We say that a # Oy is weakly subclass invariant if there exists a
I1Y class P with S(P) = a and for any nonempty I1Y class P’ C P,
S(P") = a.

Suppose that «a is weakly subclass invariant. If a IIY class con-
tains any member of any hyperimmune-free degree in o then it
contains a member of every degree in c.

« is minimal iff it is weakly subclass invariant.

Proof. If o is weakly subclass invariant then, by the hyperimmune-
free basis theorem, any nonempty II{ class which contains only
members of degree in @ contains a member of hyperimmune-iree
degree in o« and therefore, by the previous result contains a mem-
ber of every degree in o.




Minimal Elements

This immediately gives us nice examples of minimal elements..

The Martin-Lof random degrees are a minimal element of the
structure.

Proof. Any nonempty II{ class containing only random sets is
witness to the fact that this class is weakly subclass invariant
since any II{ class containing a random set is of positive measure
and any IIY class of positive measure contains a member of every
random degree.




Minimal Elements

This immediately gives us nice examples of minimal elements..

The Martin-Lof random degrees are a minimal element of the
structure.

Proof. Any nonempty II{ class containing only random sets is
witness to the fact that this class is weakly subclass invariant
since any II{ class containing a random set is of positive measure
and any IIY class of positive measure contains a member of every
random degree.

..and so are the PA degrees.



Minimal Elements

Any non-empty II9 class containing only {0, 1}-valued DNC func-
tions contains a member of every PA degree.

Proof. If A is computable and downward closed then consider
U, (0) such that W;(();7) |= n iff there exists some [ > i such
that 7(2) = n for all 7 € A of length [. By the uniformity of the
recursion theorem it follows that there exists computable f such
that, whenever |A;| is non-empty and contains only {0, 1}-valued

DNC functions, there exist A, B € [A;] with A(f(j)) = 0 and
B(f(j)) = 1.
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Any non-empty II9 class containing only {0, 1}-valued DNC func-
tions contains a member of every PA degree.

Proof. If A is computable and downward closed then consider
U, (0) such that W;(();7) |= n iff there exists some [ > i such
that 7(2) = n for all 7 € A of length [. By the uniformity of the
recursion theorem it follows that there exists computable f such
that, whenever [A ] is non-empty and contains only {0, 1}-valued

DNC functions, there exist A, B € [A;] with A(f(j)) = 0 and
B(f(j)) = 1.

Now suppose given jo such that [A,,] is non-empty and con-
tains only {0, 1}-valued DNC functions. Let A be a {0, 1}-valued

DNC function. We construct B = | J, o, which is in [Aj,| and is
of the same degree as A.



Minimal Elements

Stage 0. Define g = .

Stage s > 0. We have already decided js_1 and os_1. There
exists C € [A;,_,| with C(f(js—1)) = A(s — 1). Using the oracle
for A we can therefore compute o of length f(js_1)+ 1 such that
o(f(js—1)) = A(s — 1) and which is an initial segment of some
C' € [A;._,] (this follows using the standard argument that any
{0, 1}-valued DNC function computes a member of any non-empty
I19 class). Define o; = o and define j, so that [A, ] is the set of
all C' € |[A;,_,] which extend o.

That B computes A follows from the fact that an oracle for B
allows us to retrace every step of the construction defining B.




Minimal Elements

So now we have a number of minimal elements..but are there in-
finitely many? For every «, does there exist some 3 such that
alF= Oslg?

For any o < 1y there exists 8 which i1s minimal and such that

B £ a



Minimal Elements

So now we have a number of minimal elements..but are there in-

finitely many? For every «, does there exist some 3 such that
alF= Osp?

For any o < 1y there exists 8 which i1s minimal and such that

B £ a

Therefore (3, <) has an infinite number of minimal elements.

Proof. Suppose that (3, <) has only a finite number of minimal
elements, oy, -+ ,ap say. Then agU ---U oy is an element o of
¥ and by the previous result there exists 3 which is minimal and
such that 3 £ a, a contradiction.




For any o < 1y there exists 8 which is minimal and such that

B £ .

Some comments on the proof. First of all, how will we build
P whose degree spectrum is minimal?



For any o < 1y there exists 8 which is minimal and such that
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Some comments on the proof. First of all, how will we build
P whose degree spectrum is minimal?

We say that 1" is homogenous if all strings of the same level in
I" are of the same length and, whenever oy and oy are of the same
level in T and og x7 € T, 01 % 7 is also in T'. Recall that a IIY

class P is thin if for any IIj class P’ C P there exists a clopen set
Q such that P =P N Q.

So in order to construct P whose degree spectrum is minimal,
we ensure that P is thin and that P = [T] for some T C 2<%

which is homogenous.



For any av < 1sp there exists 3 which is minimal and such that

B £ .

Some comments on the proof. Then we also have to ensure
that 3 £ a. We suppose we are given downward closed and
computable A such that |[A] has degree spectrum a. We ensure P
contains a non-computable A such that the following requirements

are satisfied:
=;: If ¥;(A) is total and non-computable then W;(A) & [A].
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computable A such that |[A] has degree spectrum a. We ensure P
contains a non-computable A such that the following requirements

are satisfied:
=;: If ¥;(A) is total and non-computable then W;(A) & [A].

A difficulty with this is that it requires us to search for split-
tings inside the IIY class that we are building. It is quite possible
to have a II7 class Q and A € Q such that ¥;(A) is total and non-
computable, but such that no two initial segments of elements of

Q are V,-splitting.




For any av < 1sp there exists 3 which is minimal and such that

B £ .

Some comments on the proof. Then we also have to ensure
that 3 £ a. We suppose we are given downward closed and
computable A such that |[A] has degree spectrum a. We ensure P
contains a non-computable A such that the following requirements
are satisfied:
=;: If U;(A) is total and non-computable then ¥;(A) & [A].

A difficulty with this is that it requires us to search for split-
tings inside the IIY class that we are building. It is quite possible
to have a IIY class Q and A € Q such that ¥;(A) is total and non-
computable, but such that no two initial segments of elements of
Q are W¥,-splitting.

The solution we adopt is to construct A which is of hyperimmune-
free degree. Then if W,;(A) = B, there exists a total Turing func-
tional ® such that ®(A) = B. The totality of ® means that

{®(C) : C € Q} is a IIY class, and so cannot consist of a single
non-computable member.



1 MATES

The existence of invisible degrees serves to highlight the fact that
there exist degrees a # b such that any II class which contains
a member of degree a must also contain a member of degree b.
Let’s investigate this idea further:

We define the II9 mates of a to be ({a €P : a € al.



1 MATES

The existence of invisible degrees serves to highlight the fact that
there exist degrees a # b such that any II class which contains
a member of degree a must also contain a member of degree b.
Let’s investigate this idea further:

We define the II9 mates of a to be ({a €P : a € al.

What could the II{ mates of a look like?

£y {a} {0,a}



1 MATES

The following theorem provides a wealth of further examples...

For any o < 1gz there exists a ¢ a such that the ITI7-mates of a
are o U {a} and, moreover, such that a U {a} € *B.

This tells us that every element of the structure has a strong
minimal cover.



Sufficiency sets and anti-basis theorems

We say that « is a sufficiency set for a if every II} class that
contains a member of every degree in «@ also contains a member
of degree a.

What can we say about these sufficiency sets?

o If o is a sufficiency set for a then there exists some count-
able 3 C o which is a sufficiency set for a

(for each element of ¥ which does not contain every element of
choose some element of & not in this set).



Sufficiency sets and anti-basis theorems

We say that « is a sufficiency set for a if every II} class that
contains a member of every degree in «@ also contains a member

of degree a.
What can we say about these sufliciency sets?

o If v is a sufficiency set for a then there exists some count-
able 3 C o« which is a sufficiency set for a

e For every countably infinite sufficiency set « for a there
exists some proper subset which is also a sufficiency set

for a.
In order to see this let ap and a; be distinct elements of a. If

each o — {a;} is not a sufficiency set for a then let each P; be a
I1Y class which contains a member of every degree in a — {a;} but
does not contain a member of degree a. Then Py U P; witnesses
the fact that o 1s not a suthiciencyv set for a. a contradiction.



Sufficiency sets and anti-basis theorems

We say that « is a sufficiency set for a if every II} class that
contains a member of every degree in «@ also contains a member
of degree a.

What can we say about these suflficiency sets?

o If o is a sufficiency set for a then there exists some count-
able 3 C o which is a sufficiency set for a.

e For every countably infinite sufficiency set a for a there
exists some proper subset which is also a sufficiency set
for a.

o If v is a finite sufficiency set for a then there exists some
element b of a such that {b} is a sufficiency set for a.



Sufficiency sets and anti-basis theorems

The following theorem shows, however, that it is possible to find
a and a countable a which is a sufficiency set for a, such that no
finite subset of « is a sufficiency set for a.

[Low Anti-basis Theorem] Any II{ class that contains a member
of every low degree contains a member of every degree.

Proof. Let A be downward closed and computable and such that
'A] does not contain a member of every degree. We define non-
computable A = J. o; which is of low degree and such that for
each ¢, if W,;(A) is total and non-computable then it is not an
element of |A]. The fact that A is of low degree follows because
we run the construction using an oracle for () and decide whether

U,(A;7) | at each stage 2¢ + 2.



Sufficiency sets and anti-basis theorems

In order to define the construction, we make use of a function
o, such that o(i, 7) is defined as follows.

Given inputs ¢ and 7, let T' be the W,;-splitting tree above 7. Let
the strings in 1" be ordered according to their level and then from
left to right. Since A does not contain a member of every degree,
there exists a least string o in I" such that either o is a leaf of T,

or else ¥, (o) ¢ A. We define o(i,7) to be that string.



Sufficiency sets and anti-basis theorems

Stage 0. Define oy = .

Stage 21 + 1. Define 02;4+1 — O'(’i, O'QZ').

Stage 2¢ + 2. If there exists ¢ D 09,41 such that U;(o;7) |
then define o9; 12 to be some extension of ¢ which is not an initial
segment of W;(()). Otherwise define o9; 5 to be some extension of
0911 Which is not an initial segment of W, ().



..and finally..the structure is a lattice.

We noted previously that the intersection of the degree spectra of
two I} classes need not be the degree spectrum of a II9 class. The
following result suffices to show, however, that (I3, <) is a lattice.

The intersection of the degree spectra of two IIY classes is the
degree spectrum of a IIY class if it is the superset of the degree
spectrum of a non-empty IIj class.

Proof. (Vague sketch) Let Py and P; be II} classes with degree
spectra o and 3 respectively, and suppose that Py is a non-empty
119 class with degree spectrum v C a N 3.



..and finally..the structure is a lattice.

For each ¢« < 2 let A; be a downward closed and computable
set of strings with [A;] = P;. For each (¢,7) we define:

Qij=1A€Py: Y;(A) € Py and ¥;(¥;(A4)) = A}.
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In order to define a downward closed and computable set of strings
A such that P = |A| satisfies S(P) = an B3, we proceed as follows.

We begin by putting all strings in Ay into A.



..and finally..the structure is a lattice.

For each ¢« < 2 let A; be a downward closed and computable
set of strings with [A;] = P;. For each (¢,7) we define:

Qij=1A€Py: Y;(A) € Py and ¥;(¥;(A4)) = A}.

In order to define a downward closed and computable set of strings
A such that P = |A| satisfies S(P) = an B3, we proceed as follows.

We begin by putting all strings in Ay into A.

Let us say o ¢ As is terminal in Ao, if all proper initial segments of
o are in Ay. We consider strings to be ordered first by length and
then from left to right. All strings which are terminal in Ay we
place in A and above the 2" terminal string we place a II{ class
P; ; with degree spectrum S(Q; ;) Uy, where x = (7, 7). This is
done using A, as a ‘filler’.






