

Andy Lewis-Pye

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

joint work with

Thomas Kent

DEGREE SPECTRA OF Π_1^0 **CLASSES**

Underlying set: $\{0,1\}^{\omega}$.

Underlying set: $\{0,1\}^{\omega}$.

Topology:

Basic open sets are of the form

$$[\sigma] =$$

- Underlying set: $\{0,1\}^{\omega}$.
- Topology:
- Open sets are countable unions of basic open sets

 σ_1

 σ_0

 σ_2

Underlying set: $\{0,1\}^{\omega}$.

Topology:

A Σ_1^0 class (subset of Cantor space) is one defined by an existential formula:

$$X \in \mathcal{P} \leftrightarrow \exists n R[X, n].$$

Equivalently, a Σ_1^0 class is an open set specified by a set of defining strings $\{\sigma_0, \sigma_1, \sigma_2, ...\}$ which is c.e..

Underlying set: $\{0,1\}^{\omega}$.

Topology:

A Π_1^0 class (subset of Cantor space) is one defined by a universal formula:

 $X \in \mathcal{P} \leftrightarrow \forall n R[X, n].$

Equivalently, \mathcal{P} is a Π_1^0 class iff it is the set of infinite paths through a downward closed and computable set of finite binary strings Λ .

FACT 1 [Weak König's Lemma]. If $\Lambda \subseteq 2^{<\omega}$ is downward closed and infinite then there is an infinite path through Λ .

FACT 1 [Weak König's Lemma]. If $\Lambda \subseteq 2^{<\omega}$ is downward closed and infinite then there is an infinite path through Λ .

FACT 2 Any isolated member of a Π_1^0 class is computable.

FACT 1 [Weak König's Lemma]. If $\Lambda \subseteq 2^{<\omega}$ is downward closed and infinite then there is an infinite path through Λ .

FACT 2 Any isolated member of a Π_1^0 class is computable.

FACT 3 We call a Π_1^0 class *special* if it is non-empty and has no computable members. Any special Π_1^0 class is of cardinality the continuum.

FACT 1 [Weak König's Lemma]. If $\Lambda \subseteq 2^{<\omega}$ is downward closed and infinite then there is an infinite path through Λ .

FACT 2 Any isolated member of a Π_1^0 class is computable.

FACT 3 We call a Π_1^0 class *special* if it is non-empty and has no computable members. Any special Π_1^0 class is of cardinality the continuum.

FACT 4 [Low Basis Theorem]. We call a Turing degree a low if a' = 0'. Every non-empty Π_1^0 class has a member of low degree.

Proving the Low Basis Theorem

We suppose \mathcal{P} is non-empty and is the set of infinite paths through $\Lambda \subseteq 2^{<\omega}$ which is downward closed and computable.

We run a construction which makes use of an oracle for \emptyset' . At stage 0 we define $\Lambda_0 = \Lambda$, and at each stage s + 1 we define $\Lambda_{s+1} \subseteq \Lambda_s$ such that $[\Lambda_{s+1}]$ (the set of infinite paths through Λ_{s+1}) is non-empty.

 $\Lambda_0 \supseteq \Lambda_1 \supseteq \Lambda_2 \supseteq \cdots$

Ultimately we can then consider $\mathcal{Q} = \bigcap_s [\Lambda_s]$, which by compactness will be non-empty.

At stage s + 1 we define Λ_{s+1} so as to decide whether $\Psi_s^A(s) \downarrow$ for all $A \in \mathcal{Q}$ once and for all. Since we compute A' for all $A \in \mathcal{Q}$ as the construction progresses (using only our oracle for \emptyset'), \mathcal{Q} must have precisely one member, and this must be of low degree.

Proving the Low Basis Theorem

Convention: we shall suppose that $\Psi_s^{\sigma}(n) \downarrow$ only if this computation converges in at most $|\sigma|$ many steps.

Stage 0. Define $\Lambda_0 = \Lambda$. Stage s + 1. We are given Λ_s such that $[\Lambda_s]$ is non-empty. We ask:

"Does there exist an n such that $\Psi_s^{\sigma}(s) \downarrow$ for all $\sigma \in \Lambda_s$ of length n?"

If so: Then we can define $\Lambda_{s+1} = \Lambda_s$, and we already know that $s \in A'$ for all $A \in Q$. If not: Then we can define Λ_{s+1} to be all those strings σ in Λ_s for which $\Psi_s^{\sigma}(s) \uparrow$. Since there exist such σ of every length, it follows by WKL that $[\Lambda_{s+1}]$ is non-empty. In this case we have established that $s \notin A'$ for all $A \in Q$.

FACT 1 [Weak König's Lemma]. If $\Lambda \subseteq 2^{<\omega}$ is downward closed and infinite then there is an infinite path through Λ .

FACT 2 Any isolated member of a Π_1^0 class is computable.

FACT 3 We call a Π_1^0 class *special* if it is non-empty and has no computable members. Any special Π_1^0 class is of cardinality the continuum.

FACT 4 [Low Basis Theorem]. We call a Turing degree a low if a' = 0'. Every non-empty Π_1^0 class has a member of low degree.

We say a degree a is hyperimmune-free if for every $f: \omega \to \omega$ computable in a, there exists a computable function g which majorises f, i.e. such that g(n) > f(n) for all n.

FACT 1 [Weak König's Lemma]. If $\Lambda \subseteq 2^{<\omega}$ is downward closed and infinite then there is an infinite path through Λ .

FACT 2 Any isolated member of a Π_1^0 class is computable.

FACT 3 We call a Π_1^0 class *special* if it is non-empty and has no computable members. Any special Π_1^0 class is of cardinality the continuum.

FACT 4 [Low Basis Theorem]. We call a Turing degree a low if a' = 0'. Every non-empty Π_1^0 class has a member of low degree.

FACT 5 [Hyperimmune-free Basis Theorem]. Every non-empty Π_1^0 class has a member of hyperimmune-free degree.

The hyperimmune-free degrees

0′

0

hyperimmune-free degrees

low degrees

Defining the Structure

For $\mathcal{P} \subseteq 2^{\omega}$ we define $S(\mathcal{P})$, the *degree spectrum* of \mathcal{P} , to be the set of Turing degrees \boldsymbol{a} such that there exists $A \in \mathcal{P}$ of degree \boldsymbol{a} .

We define $\mathfrak{P} = \{S(\mathcal{P}) : \mathcal{P} \text{ is a } \Pi_1^0 \text{ class}\}$ and we consider the elements of \mathfrak{P} to be ordered by inclusion.

The following facts are easily derived:

(i) (𝔅, <) has a greatest element 1_𝔅 = 𝔅 and a least element 0_𝔅 = ∅.
(ii) (𝔅, <) is an uppersemilattice.
(iii) There is at least one minimal element {0}.

The set of PA degrees is an element of the structure, as is the set of Martin-Löf random degrees.

Stephan has shown that the degrees which are PA and Martin-Löf random are precisely the degrees above $\mathbf{0}'$. This suffices to show that when $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, their intersection $\boldsymbol{\alpha} \cap \boldsymbol{\beta}$ need not be a degree spectrum. This *does not* mean than $\boldsymbol{\alpha} \wedge \boldsymbol{\beta}$ doesn't exist though...

Question: Is $(\mathfrak{P}, <)$ a lattice?

The hf and low basis theorems combine to show that no non-trivial upper conner can be a degree spectrum. The question becomes more interesting when we add in **0**: for which a is it the case that $\{\mathbf{0}\} \cup \{b : b \ge a\}$ is a degree spectrum?

We construct $\mathcal{P} \subseteq \{0, 1, 2\}^{\omega}$. We construct Λ which is downward closed and computable – at stage *s* we decide which strings of length *s* are in Λ .

We suppose given an approximation $\{\sigma_s\}_{s\in\omega}$ to $A \in a$ (and suppose σ_s is of length s). For any $\tau \in 3^{<\omega}$ we let $g(\tau)$ be the binary string obtained by removing all 2s. The idea is that we construct Λ so that all infinite paths B either end with infinitely many 2s, or else satisfy g(B) = A.

We suppose given an approximation $\{\sigma_s\}_{s\in\omega}$ to $A \in a$ (and suppose σ_s is of length s). For any $\tau \in 3^{<\omega}$ we let $g(\tau)$ be the binary string obtained by removing all 2s. The idea is that we construct Λ so that all infinite paths B either end with infinitely many 2s, or else satisfy g(B) = A.

We suppose given an approximation $\{\sigma_s\}_{s\in\omega}$ to $A \in a$ (and suppose σ_s is of length s). For any $\tau \in 3^{<\omega}$ we let $g(\tau)$ be the binary string obtained by removing all 2s. The idea is that we construct Λ so that all infinite paths B either end with infinitely many 2s, or else satisfy g(B) = A.

such that $g(\tau) \subset \sigma_s$ is longest.

We suppose given an approximation $\{\sigma_s\}_{s\in\omega}$ to $A \in a$ (and suppose σ_s is of length s). For any $\tau \in 3^{<\omega}$ we let $g(\tau)$ be the binary string obtained by removing all 2s. The idea is that we construct Λ so that all infinite paths B either end with infinitely many 2s, or else satisfy g(B) = A.

We suppose given an approximation $\{\sigma_s\}_{s\in\omega}$ to $A \in a$ (and suppose σ_s is of length s). For any $\tau \in 3^{<\omega}$ we let $g(\tau)$ be the binary string obtained by removing all 2s. The idea is that we construct Λ so that all infinite paths B either end with infinitely many 2s, or else satisfy g(B) = A.

Stage 0. Enumerate \emptyset into Λ . Stage s > 0. Choose that leaf τ such that amongst those leaves τ' with $g(\tau') \subset \sigma_s$, $g(\tau)$ is the longest. Enumerate $\tau * \sigma_s(g(|\tau|))$ and $\tau * 2$ into Λ . For every other leaf τ' enumerate $\tau' * 2$ into Λ .

We suppose given an approximation $\{\sigma_s\}_{s\in\omega}$ to $A \in a$ (and suppose σ_s is of length s). For any $\tau \in 3^{<\omega}$ we let $g(\tau)$ be the binary string obtained by removing all 2s. The idea is that we construct Λ so that all infinite paths B either end with infinitely many 2s, or else satisfy g(B) = A.

Stage 0. Enumerate \emptyset into Λ .

Stage s > 0. Choose that leaf τ such that amongst those leaves τ' with $g(\tau') \subset \sigma_s$, $g(\tau)$ is the longest. Enumerate $\tau * \sigma_s(g(|\tau|))$ and $\tau * 2$ into Λ . For every other leaf τ' enumerate $\tau' * 2$ into Λ .

Here we used 2s as the 'filler', but for any Π_1^0 class \mathcal{P} , we could have used \mathcal{P} as the filler instead, to give a new class with degree spectrum $S(\mathcal{P}) \cup \{a\}$.

This proof is easily modified to show that for any $a \leq 0'$, $\{0\} \cup \{b : b \geq a\}$ is a degree spectrum.

...rather than simply coding A into one path, we now have one coding path for each set of the form $A \oplus B$, where:

 $A \oplus B(2n) = A(n)$

 $A \oplus B(2n+1) = B(n).$

Recall that a degree is fixed point free iff it contains a DNC (diagonally non-computable) function, where f is DNC if for all nwe have $f(n) \neq \Psi_n(n)$.

Simpson has shown that the fixed point free degrees are a degree spectrum.

The set of all c.e. degrees is the degree spectrum of a Π_1^0 class.

Proof. We let W_i denote the i^{th} c.e. set according to some fixed effective listing. Let f be a computable function such that, for any $i \in \omega$, $S([\Lambda_{f(i)}]) = \{\mathbf{0}, \mathbf{a}_i\}$ where \mathbf{a}_i is the degree of W_i . Now let Λ be the computable set of strings which contains a copy of $\Lambda_{f(i)}$ above each string $0^i \star 1$, where 0^i is the sequence of i many zeros.

So here we have a degree spectrum α which has non-empty intersection with every other non-empty degree spectrum β . The analogue of this doesn't hold for the special degree spectra though..

For any special Π_1^0 class \mathcal{P}_0 there exists a special Π_1^0 class \mathcal{P}_1 such that no member of \mathcal{P}_1 computes any member of \mathcal{P}_0 .

Proof. Suppose given downward closed and computable Λ such that $\mathcal{P}_0 = [\Lambda]$. We define an approximation to a 2-branching T such that $\mathcal{P}_1 = [T]$ satisfies the statement of the theorem. Those τ in T of level 2i + 1 will be defined so as to satisfy requirement:

 Θ_i : If $A \in \mathcal{P}_1$ then $A \neq \Psi_i(\emptyset)$.

Those τ in T of level 2i + 2 will be defined so as to satisfy requirement: Ξ_i : If $A \in \mathcal{P}_1$ and $\Psi_i(A)$ is total then $\Psi_i(A) \notin \mathcal{P}_0$.

Stage 0. Enumerate λ into T.

Stage s > 0. Consider all the strings in T to be ordered first according to their level in T and then lexicographically. Find the least string $\tau \in T$ (if any) such that either:

(1) τ is of level 2i + 1 and τ ⊂ Ψ_i(Ø)[s]. In this case let τ₀ be the immediate predecessor of τ in T and let τ₁ be a leaf of T extending τ₀ and incompatible with τ. Remove all strings properly extending τ₀ from T and then enumerate in two incompatible extensions of τ₁.
 (2) τ is of level 2i + 2, Ψ_i(τ) is compatible with some string in Λ of length s and there exists a leaf τ' of T extending τ such that Ψ_i(τ') properly extends Ψ_i(τ). In this case remove all strings extending (and including) τ from T, other than τ'.

Once these instructions are completed, choose two incompatible strings extending each leaf of T, and enumerate these strings into T.

The invisible degrees and cupping

Next we want to want to answer questions of the form, is it the case for every $\alpha > 0_{\mathfrak{P}}$ there exists $\beta < 1_{\mathfrak{P}}$ with $\alpha \lor \beta = 1_{\mathfrak{P}}$? Do there exist any $\alpha, \beta < 1_{\mathfrak{P}}$ with $\alpha \lor \beta = 1_{\mathfrak{P}}$?

We'll be able to answer this by establishing the existence of *invisible* degrees – degrees which don't belong to any spectrum other than $\mathbf{1}_{\mathfrak{P}}$.

The invisible degrees and cupping

Next we want to want to answer questions of the form, is it the case for every $\alpha > 0_{\mathfrak{P}}$ there exists $\beta < 1_{\mathfrak{P}}$ with $\alpha \lor \beta = 1_{\mathfrak{P}}$? Do there exist any $\alpha, \beta < 1_{\mathfrak{P}}$ with $\alpha \lor \beta = 1_{\mathfrak{P}}$?

We'll be able to answer this by establishing the existence of *invisible* degrees – degrees which don't belong to any spectrum other than $\mathbf{1}_{\mathfrak{P}}$.

The principal theorem here is this:

For any countable sequence of F_{σ} sets, $\{Q_k\}_{k \in \omega}$ say, there exists a degree **a** such that, for any $k \in \omega$, if $a \in S(Q_k)$ then $S(Q_k) = \mathfrak{D}$. In fact **a** can be chosen to be hyperimmune-free and minimal.

Proof. We will in fact show that the conclusion holds for a countable sequence of closed sets. That this is sufficient to imply the full theorem is immediate since any F_{σ} set is the union of a countable sequence of closed sets. More specifically, let $\{\mathcal{Q}_k\}_{k\in\omega}$ be a sequence of F_{σ} sets, with $\mathcal{Q}_k = \bigcup_{j\in\omega} \mathcal{P}_{k,j}$ with $\mathcal{P}_{k,j}$ closed for each $k, j \in \omega$, and let **a** be such that if $\mathbf{a} \in S(\mathcal{P}_{k,j})$ then $S(\mathcal{P}_{k,j}) = \mathfrak{D}$. If $\mathbf{a} \in S(\mathcal{Q}_k)$ then there exists a j such that $\mathbf{a} \in S(\mathcal{P}_{k,j})$, giving $S(\mathcal{Q}_k) = \mathfrak{D}$ as required. So suppose we are given a sequence $\{\mathcal{P}_k\}_{k\in\omega}$ of closed sets.

Proof (continued) .. so now we have to construct A, such that no \mathcal{P}_k has a member of degree $\mathbf{a} = \deg(A)$ unless it has a member of every degree. This means that sometimes we will have to be able to demonstrate that \mathcal{P}_k does contain a member of every degree..

...it suffices to show that $[T] \subseteq \mathcal{P}_k$ for some 2-branching computable $T \subseteq 2^{<\omega}$.

For future reference, in order to show that \mathcal{P}_k contains a member of every degree above \boldsymbol{b} (for some \boldsymbol{b}) it also suffices to show that $[T] \subseteq \mathcal{P}_k$ for some 2-branching \boldsymbol{b} computable pointed $T \subseteq 2^{<\omega}$.

Proof (continued) For every k, let $\mathcal{P}_k = [\Upsilon_k]$ for some downward closed $\Upsilon_k \subseteq 2^{<\omega}$. We shall use a simple forcing argument in order to construct $A = \bigcup_s \sigma_s$ which is of hyperimmune-free minimal degree. Initially we define $\sigma_0 = \lambda$ and we define T_0 to be the identity tree. At every stage s, given computable 2-branching T_s and σ_s which is the string of level 0 in T_s , we define $\sigma_{s+1} \supset \sigma_s$ and $T_{s+1} \subset T_s$.

For each $\langle i, j, k \rangle$ we must ensure:

If Ψ_i^A is total and belongs to \mathcal{P}_k and if $\Psi_j(\Psi_i^A) = A$ then \mathcal{P}_k contains a member of every degree.

Proof (continued) At stage s we act according to the first of the following situations which applies. Let $s = \langle i, j, k \rangle$.

(1) There exists $\sigma \in T_s$ such that no two strings extending σ in T_s are Ψ_i -splitting. In this case we define σ_{s+1} to be the first such σ properly extending σ_s and we define T_{s+1} to be the set of strings in T_s extending σ . In so doing we have ensured that $\Psi_i(A)$ is either computable or partial.

Proof (continued) At stage s we act according to the first of the following situations which applies. Let $s = \langle i, j, k \rangle$.

(2) Since the previous case does not apply we may let T_s^0 be a computable, 2-branching and Ψ_i -splitting subset of T_s containing σ_s (we shall eventually define T_{s+1} to be a subset of T_s^0). There exists $\sigma \in T_s^0$ such that either $\Psi_j(\Psi_i(\sigma))$ is incompatible with σ or else for no string $\tau \supset \sigma$ in T_s^0 is it the case that $\Psi_j(\Psi_i(\tau))$ properly extends $\Psi_j(\Psi_i(\sigma))$. In this case we define σ_{s+1} to be the first such σ properly extending σ_s and we define T_{s+1} to be the set of strings in T_s^0 extending σ . In so doing we have ensured it is not the case that $\Psi_j(\Psi_i(A)) = A$.

Proof (continued) At stage s we act according to the first of the following situations which applies. Let $s = \langle i, j, k \rangle$.

(3) Since the previous case does not apply we may let T_s^1 be a computable and 2-branching subset of T_s^0 containing σ_s such that, whenever $\tau, \tau' \in T_s^1$ and $\tau' \supset \tau$, we have that $\Psi_j(\Psi_i(\tau'))$ properly extends $\Psi_j(\Psi_i(\tau))$. There exists $\sigma \in T_s^1$ such that $\Psi_i(\sigma)$ is not in Υ_k . In this case we define σ_{s+1} to be the first such σ properly extending σ_s and we define T_{s+1} to be the set of strings in T_s^1 extending σ . In so doing we have ensured that $\Psi_i(A) \notin \mathcal{P}_k$.
For any countable sequence of F_{σ} sets, $\{Q_k\}_{k \in \omega}$ say, there exists a degree **a** such that, for any $k \in \omega$, if $a \in S(Q_k)$ then $S(Q_k) = \mathfrak{D}$. In fact **a** can be chosen to be hyperimmune-free and minimal.

Proof (continued) At stage s we act according to the first of the following situations which applies. Let $s = \langle i, j, k \rangle$.

(4) Since none of the previous cases apply we have that, for all $B \in [T_s^1]$, $\Psi_i(B) \in \mathcal{P}_k$ and $\Psi_j(\Psi_i(B)) = B$. Since T_s^1 is 2-branching and computable it follows that \mathcal{P}_s contains a member of every Turing degree. In this case we define σ_{s+1} to be some proper extension of σ_s in T_s^1 and we define T_{s+1} to be the set of strings in T_s^1 which extend σ_{s+1} .

If we restrict ourselves to the arithmetical hierarchy, then we can do a little better:

There exists a hyperimmune-free minimal degree \boldsymbol{a} below $\boldsymbol{0}''$, such that no Σ_3^0 class contains a member of degree \boldsymbol{a} unless it contains a member of every degree.

If we restrict ourselves to the arithmetical hierarchy, then we can do a little better:

There exists a hyperimmune-free minimal degree a below 0'', such that no Σ_3^0 class contains a member of degree a unless it contains a member of every degree.

If we analyse these proofs a little further, then we reach some interesting conclusions:

An F_{σ} set \mathcal{Q} contains a member of every degree above \boldsymbol{b} iff there exists some \boldsymbol{b} -computable perfect and pointed T with $[T] \subseteq \mathcal{Q}$.

A Σ_3^0 class \mathcal{P} contains a member of every degree above \boldsymbol{b} iff there exists some \boldsymbol{b} -computable perfect and pointed T with $[T] \subseteq \mathcal{P}$.

An F_{σ} set \mathcal{Q} contains a member of every degree above \boldsymbol{b} iff there exists some \boldsymbol{b} -computable perfect and pointed T with $[T] \subseteq \mathcal{Q}$.

Proof. Let $\mathcal{Q} = \bigcup_k \mathcal{P}_k$ where each \mathcal{P}_k is closed. Given B of degree \boldsymbol{b} , consider running the previous construction but beginning with T_0 as the set of strings of the form $\tau_0 \oplus \tau_1$ such that $\tau_0 \subset B$ —so that all the T_s are now computable in B. Let the set A constructed be of degree \boldsymbol{a} . If \mathcal{Q} contains a member of every degree above \boldsymbol{b} then, in particular, some \mathcal{P}_k must contain a member of degree \boldsymbol{a} . Therefore, for some $\boldsymbol{s} = \langle i, j, k \rangle$ it must be that case (4) applies. Then $T = \{\Psi_i(\sigma) : \sigma \in T_{s+1}\}$ is B-computable perfect and pointed, and $[T] \subseteq \mathcal{Q}$.

We say that a degree **a** is *invisible* if any Π_1^0 class which contains a member of degree **a** contains a member of every degree.

The existence of invisible degrees immediately suffices to give the following corollary: There do not exist $\alpha < 1_{\mathfrak{P}}$ and $\beta < 1_{\mathfrak{P}}$ with $\alpha \lor \beta = 1_{\mathfrak{P}}$.

Proof. If neither of α or β contain any invisible degrees then neither does their union.

We say that a degree **a** is *invisible* if any Π_1^0 class which contains a member of degree **a** contains a member of every degree.

The existence of invisible degrees immediately suffices to give the following corollary: There do not exist $\alpha < 1_{\mathfrak{P}}$ and $\beta < 1_{\mathfrak{P}}$ with $\alpha \lor \beta = 1_{\mathfrak{P}}$.

Proof. If neither of α or β contain any invisible degrees then neither does their union.

All weakly 2-generics are invisible. In fact they are all strongly invisible:

We say \boldsymbol{a} is strongly invisible if any Π_1^0 class which has a member of non-zero degree below \boldsymbol{a} has a member of every degree.

We say \boldsymbol{a} is strongly invisible if any Π_1^0 class which has a member of non-zero degree below \boldsymbol{a} has a member of every degree.

QUESTION: Are all invisible degrees strongly invisible? This holds iff the invisible degrees are downward closed avoiding **0**.

We say \boldsymbol{a} is strongly invisible if any Π_1^0 class which has a member of non-zero degree below \boldsymbol{a} has a member of every degree.

QUESTION: Are all invisible degrees strongly invisible? This holds iff the invisible degrees are downward closed avoiding **0**.

In order to answer this, we need to consider a third category of invisibility (and then things will work out nicely):

We say that a degree **a** is *weakly invisible* if any Π_1^0 class which contains a member of every degree above **a** contains a member of every degree.

We say \boldsymbol{a} is strongly invisible if any Π_1^0 class which has a member of non-zero degree below \boldsymbol{a} has a member of every degree.

QUESTION: Are all invisible degrees strongly invisible? This holds iff the invisible degrees are downward closed avoiding **0**.

In order to answer this, we need to consider a third category of invisibility (and then things will work out nicely):

We say that a degree **a** is *weakly invisible* if any Π_1^0 class which contains a member of every degree above **a** contains a member of every degree.

There exists a non-zero weakly invisible degree which is not invisible.

A degree is weakly invisible iff it is bounded by an invisible degree.

Proof. Any degree bounded by an invisible degree is clearly weakly invisible, so it suffices to show that any weakly invisible degree is bounded by an invisible degree. In order to see this suppose given B of degree \boldsymbol{b} which is weakly invisible, let \mathcal{P}_k be the $k^{th} \Pi_1^0$ class and consider running the construction of an invisible degree but beginning with T_0 as the set of strings of the form $\tau_0 \oplus \tau_1$ such that $\tau_0 \subset B$. Now whenever case (4) applies we may deduce that \mathcal{P}_k contains [T] for some perfect pointed \boldsymbol{b} -computable T. Since \boldsymbol{b} is weakly invisible, \mathcal{P}_k therefore contains a member of every degree. \Box

...so there exist invisible degrees which are not strongly invisible.

We say that $\boldsymbol{\alpha} \neq \mathbf{0}_{\mathfrak{P}}$ is subclass invariant if for any Π_1^0 class \mathcal{P} with $S(\mathcal{P}) = \boldsymbol{\alpha}$ and any nonempty Π_1^0 class $\mathcal{P}' \subseteq \mathcal{P}, S(\mathcal{P}') = \boldsymbol{\alpha}$. We say that $\boldsymbol{\alpha} \neq \mathbf{0}_{\mathfrak{P}}$ is weakly subclass invariant if there exists a Π_1^0 class \mathcal{P} with $S(\mathcal{P}) = \boldsymbol{\alpha}$ and for any nonempty Π_1^0 class $\mathcal{P}' \subseteq \mathcal{P},$ $S(\mathcal{P}') = \boldsymbol{\alpha}$.

We say that $\boldsymbol{\alpha} \neq \mathbf{0}_{\mathfrak{P}}$ is subclass invariant if for any Π_1^0 class \mathcal{P} with $S(\mathcal{P}) = \boldsymbol{\alpha}$ and any nonempty Π_1^0 class $\mathcal{P}' \subseteq \mathcal{P}, S(\mathcal{P}') = \boldsymbol{\alpha}$. We say that $\boldsymbol{\alpha} \neq \mathbf{0}_{\mathfrak{P}}$ is weakly subclass invariant if there exists a Π_1^0 class \mathcal{P} with $S(\mathcal{P}) = \boldsymbol{\alpha}$ and for any nonempty Π_1^0 class $\mathcal{P}' \subseteq \mathcal{P},$ $S(\mathcal{P}') = \boldsymbol{\alpha}$.

Clearly any $\boldsymbol{\alpha}$ which is minimal must be subclass invariant. Now suppose that $\boldsymbol{\alpha}$ is subclass invariant, let \mathcal{P} be a Π_1^0 class with $S(\mathcal{P}) = \boldsymbol{\alpha}$ and suppose that \mathcal{P}' is a nonempty Π_1^0 class with $S(\mathcal{P}') \subset \boldsymbol{\alpha}$. Then $\{0 \star A : A \in \mathcal{P}\} \cup \{1 \star A : A \in \mathcal{P}'\}$ is a Π_1^0 class with degree spectrum $\boldsymbol{\alpha}$ and witnesses the fact that $\boldsymbol{\alpha}$ is not subclass invariant, a contradiction. Thus being subclass invariant is equivalent to minimality.

Suppose that α is weakly subclass invariant. If a Π_1^0 class contains any member of any hyperimmune-free degree in α then it contains a member of every degree in α .

Suppose that $\boldsymbol{\alpha}$ is weakly subclass invariant. If a Π_1^0 class contains any member of any hyperimmune-free degree in $\boldsymbol{\alpha}$ then it contains a member of every degree in $\boldsymbol{\alpha}$.

Proof. Let \mathcal{P}_0 be a Π_1^0 class with $S(\mathcal{P}_0) = \boldsymbol{\alpha}$ and such that for any nonempty Π_1^0 class $\mathcal{P} \subseteq \mathcal{P}_0$, $S(\mathcal{P}) = \boldsymbol{\alpha}$. Let \mathcal{P}_1 be a Π_1^0 class which contains A of hyperimmune-free degree in $\boldsymbol{\alpha}$. Then there exists $B \equiv_{tt} A$ and which is in \mathcal{P}_0 . Let i, j be such that the total functionals Φ_i and Φ_j satisfy $\Phi_i(A) = B$ and $\Phi_j(B) = A$. Now let \mathcal{P}_2 be the Π_1^0 class $\{C : C \in \mathcal{P}_0 \& (\exists D \in \mathcal{P}_1) | \Phi_i(D) =$ $C \& \Phi_j(C) = D \}$. Then $S(\mathcal{P}_2) \subseteq S(\mathcal{P}_1)$. Since \mathcal{P}_2 is nonempty and $\mathcal{P}_2 \subseteq \mathcal{P}_0$, $S(\mathcal{P}_2)$ and $S(\mathcal{P}_1)$ contain every degree in $\boldsymbol{\alpha}$.

Suppose that α is weakly subclass invariant. If a Π_1^0 class contains any member of any hyperimmune-free degree in α then it contains a member of every degree in α .

Suppose that α is weakly subclass invariant. If a Π_1^0 class contains any member of any hyperimmune-free degree in α then it contains a member of every degree in α .

 α is minimal iff it is weakly subclass invariant.

Proof. If α is weakly subclass invariant then, by the hyperimmunefree basis theorem, any nonempty Π_1^0 class which contains only members of degree in α contains a member of hyperimmune-free degree in α and therefore, by the previous result contains a member of every degree in α .

This immediately gives us nice examples of minimal elements..

The Martin-Löf random degrees are a minimal element of the structure.

Proof. Any nonempty Π_1^0 class containing only random sets is witness to the fact that this class is weakly subclass invariant since any Π_1^0 class containing a random set is of positive measure and any Π_1^0 class of positive measure contains a member of every random degree.

This immediately gives us nice examples of minimal elements..

The Martin-Löf random degrees are a minimal element of the structure.

Proof. Any nonempty Π_1^0 class containing only random sets is witness to the fact that this class is weakly subclass invariant since any Π_1^0 class containing a random set is of positive measure and any Π_1^0 class of positive measure contains a member of every random degree.

...and so are the PA degrees.

Any non-empty Π_1^0 class containing only $\{0, 1\}$ -valued DNC functions contains a member of every PA degree.

Proof. If Λ is computable and downward closed then consider $\Psi_i(\emptyset)$ such that $\Psi_i(\emptyset; i) \downarrow = n$ iff there exists some l > i such that $\tau(i) = n$ for all $\tau \in \Lambda$ of length l. By the uniformity of the recursion theorem it follows that there exists computable f such that, whenever $[\Lambda_j]$ is non-empty and contains only $\{0, 1\}$ -valued DNC functions, there exist $A, B \in [\Lambda_j]$ with A(f(j)) = 0 and B(f(j)) = 1.

Any non-empty Π_1^0 class containing only $\{0, 1\}$ -valued DNC functions contains a member of every PA degree.

Proof. If Λ is computable and downward closed then consider $\Psi_i(\emptyset)$ such that $\Psi_i(\emptyset; i) \downarrow = n$ iff there exists some l > i such that $\tau(i) = n$ for all $\tau \in \Lambda$ of length l. By the uniformity of the recursion theorem it follows that there exists computable f such that, whenever $[\Lambda_j]$ is non-empty and contains only $\{0, 1\}$ -valued DNC functions, there exist $A, B \in [\Lambda_j]$ with A(f(j)) = 0 and B(f(j)) = 1.

Now suppose given j_0 such that $[\Lambda_{j_0}]$ is non-empty and contains only $\{0,1\}$ -valued DNC functions. Let A be a $\{0,1\}$ -valued DNC function. We construct $B = \bigcup_s \sigma_s$ which is in $[\Lambda_{j_0}]$ and is of the same degree as A.

Stage 0. Define $\sigma_0 = \lambda$.

Stage s > 0. We have already decided j_{s-1} and σ_{s-1} . There exists $C \in [\Lambda_{j_{s-1}}]$ with $C(f(j_{s-1})) = A(s-1)$. Using the oracle for A we can therefore compute σ of length $f(j_{s-1}) + 1$ such that $\sigma(f(j_{s-1})) = A(s-1)$ and which is an initial segment of some $C \in [\Lambda_{j_{s-1}}]$ (this follows using the standard argument that any $\{0, 1\}$ -valued DNC function computes a member of any non-empty Π_1^0 class). Define $\sigma_s = \sigma$ and define j_s so that $[\Lambda_{j_s}]$ is the set of all $C \in [\Lambda_{j_{s-1}}]$ which extend σ .

That B computes A follows from the fact that an oracle for B allows us to retrace every step of the construction defining B.

So now we have a number of minimal elements..but are there infinitely many? For every α , does there exist some β such that $\alpha \wedge \beta = 0_{\mathfrak{P}}$?

For any $\alpha < 1_{\mathfrak{P}}$ there exists β which is minimal and such that $\beta \not\leq \alpha$.

So now we have a number of minimal elements..but are there infinitely many? For every α , does there exist some β such that $\alpha \wedge \beta = 0_{\mathfrak{P}}$?

For any $\alpha < 1_{\mathfrak{P}}$ there exists β which is minimal and such that $\beta \not\leq \alpha$.

Therefore $(\mathfrak{P}, <)$ has an infinite number of minimal elements.

Proof. Suppose that $(\mathfrak{P}, <)$ has only a finite number of minimal elements, $\alpha_0, \dots, \alpha_k$ say. Then $\alpha_0 \cup \dots \cup \alpha_k$ is an element α of \mathfrak{P} and by the previous result there exists β which is minimal and such that $\beta \leq \alpha$, a contradiction.

Some comments on the proof. First of all, how will we build \mathcal{P} whose degree spectrum is minimal?

Some comments on the proof. First of all, how will we build \mathcal{P} whose degree spectrum is minimal?

We say that T is *homogenous* if all strings of the same level in T are of the same length and, whenever σ_0 and σ_1 are of the same level in T and $\sigma_0 \star \tau \in T$, $\sigma_1 \star \tau$ is also in T. Recall that a Π_1^0 class \mathcal{P} is *thin* if for any Π_1^0 class $\mathcal{P}' \subset \mathcal{P}$ there exists a clopen set \mathcal{Q} such that $\mathcal{P}' = \mathcal{P} \cap \mathcal{Q}$.

So in order to construct \mathcal{P} whose degree spectrum is minimal, we ensure that \mathcal{P} is thin and that $\mathcal{P} = [T]$ for some $T \subseteq 2^{<\omega}$ which is homogenous.

Some comments on the proof. Then we also have to ensure that $\beta \leq \alpha$. We suppose we are given downward closed and computable Λ such that $[\Lambda]$ has degree spectrum α . We ensure \mathcal{P} contains a non-computable A such that the following requirements are satisfied:

 Ξ_i : If $\Psi_i(A)$ is total and non-computable then $\Psi_i(A) \notin [\Lambda]$.

Some comments on the proof. Then we also have to ensure that $\beta \leq \alpha$. We suppose we are given downward closed and computable Λ such that $[\Lambda]$ has degree spectrum α . We ensure \mathcal{P} contains a non-computable A such that the following requirements are satisfied:

 Ξ_i : If $\Psi_i(A)$ is total and non-computable then $\Psi_i(A) \notin [\Lambda]$.

A difficulty with this is that it requires us to search for splittings inside the Π_1^0 class that we are building. It is quite possible to have a Π_1^0 class \mathcal{Q} and $A \in \mathcal{Q}$ such that $\Psi_i(A)$ is total and noncomputable, but such that no two initial segments of elements of \mathcal{Q} are Ψ_i -splitting.

Some comments on the proof. Then we also have to ensure that $\beta \leq \alpha$. We suppose we are given downward closed and computable Λ such that $[\Lambda]$ has degree spectrum α . We ensure \mathcal{P} contains a non-computable A such that the following requirements are satisfied:

 Ξ_i : If $\Psi_i(A)$ is total and non-computable then $\Psi_i(A) \notin [\Lambda]$. A difficulty with this is that it requires us to search for splittings inside the Π_1^0 class that we are building. It is quite possible to have a Π_1^0 class \mathcal{Q} and $A \in \mathcal{Q}$ such that $\Psi_i(A)$ is total and noncomputable, but such that no two initial segments of elements of \mathcal{Q} are Ψ_i -splitting.

The solution we adopt is to construct A which is of hyperimmunefree degree. Then if $\Psi_i(A) = B$, there exists a total Turing functional Φ such that $\Phi(A) = B$. The totality of Φ means that $\{\Phi(C) : C \in \mathcal{Q}\}$ is a Π_1^0 class, and so cannot consist of a single non-computable member.

Π_1^0 **MATES**

The existence of invisible degrees serves to highlight the fact that there exist degrees $a \neq b$ such that any Π_1^0 class which contains a member of degree a must also contain a member of degree b. Let's investigate this idea further:

We define the Π_1^0 mates of a to be $\bigcap \{ \alpha \in \mathfrak{P} : a \in \alpha \}$.

Π_1^0 **MATES**

The existence of invisible degrees serves to highlight the fact that there exist degrees $a \neq b$ such that any Π_1^0 class which contains a member of degree a must also contain a member of degree b. Let's investigate this idea further:

We define the Π_1^0 mates of a to be $\bigcap \{ \alpha \in \mathfrak{P} : a \in \alpha \}$. What could the Π_1^0 mates of a look like? \mathfrak{D} $\{a\}$ $\{0, a\}$

Π_1^0 **MATES**

The following theorem provides a wealth of further examples...

For any $\alpha < 1_{\mathfrak{P}}$ there exists $a \notin \alpha$ such that the Π_1^0 -mates of a are $\alpha \cup \{a\}$ and, moreover, such that $\alpha \cup \{a\} \in \mathfrak{P}$.

This tells us that every element of the structure has a strong minimal cover.

We say that $\boldsymbol{\alpha}$ is a *sufficiency set* for \boldsymbol{a} if every Π_1^0 class that contains a member of every degree in $\boldsymbol{\alpha}$ also contains a member of degree \boldsymbol{a} .

What can we say about these sufficiency sets?

• If α is a sufficiency set for a then there exists some countable $\beta \subseteq \alpha$ which is a sufficiency set for a

(for each element of \mathfrak{P} which does not contain every element of α choose some element of α not in this set).

We say that $\boldsymbol{\alpha}$ is a *sufficiency set* for \boldsymbol{a} if every Π_1^0 class that contains a member of every degree in $\boldsymbol{\alpha}$ also contains a member of degree \boldsymbol{a} .

What can we say about these sufficiency sets?

- If α is a sufficiency set for a then there exists some countable $\beta \subseteq \alpha$ which is a sufficiency set for a
- For every countably infinite sufficiency set *α* for *a* there exists some proper subset which is also a sufficiency set for *a*.

In order to see this let a_0 and a_1 be distinct elements of α . If each $\alpha - \{a_i\}$ is not a sufficiency set for a then let each \mathcal{P}_i be a Π_1^0 class which contains a member of every degree in $\alpha - \{a_i\}$ but does not contain a member of degree a. Then $\mathcal{P}_0 \cup \mathcal{P}_1$ witnesses the fact that α is not a sufficiency set for a, a contradiction.

We say that $\boldsymbol{\alpha}$ is a *sufficiency set* for \boldsymbol{a} if every Π_1^0 class that contains a member of every degree in $\boldsymbol{\alpha}$ also contains a member of degree \boldsymbol{a} .

What can we say about these sufficiency sets?

- If α is a sufficiency set for a then there exists some countable $\beta \subseteq \alpha$ which is a sufficiency set for a.
- For every countably infinite sufficiency set α for a there exists some proper subset which is also a sufficiency set for a.
- If α is a finite sufficiency set for a then there exists some element b of α such that $\{b\}$ is a sufficiency set for a.

The following theorem shows, however, that it is possible to find a and a countable α which is a sufficiency set for a, such that no finite subset of α is a sufficiency set for a.

[Low Anti-basis Theorem] Any Π_1^0 class that contains a member of every low degree contains a member of every degree.

Proof. Let Λ be downward closed and computable and such that $[\Lambda]$ does not contain a member of every degree. We define noncomputable $A = \bigcup_i \sigma_i$ which is of low degree and such that for each i, if $\Psi_i(A)$ is total and non-computable then it is not an element of $[\Lambda]$. The fact that A is of low degree follows because we run the construction using an oracle for \emptyset' and decide whether $\Psi_i(A; i) \downarrow$ at each stage 2i + 2.

In order to define the construction, we make use of a function σ , such that $\sigma(i, \tau)$ is defined as follows.

Given inputs i and τ , let T be the Ψ_i -splitting tree above τ . Let the strings in T be ordered according to their level and then from left to right. Since Λ does not contain a member of every degree, there exists a least string σ in T such that either σ is a leaf of T, or else $\Psi_i(\sigma) \notin \Lambda$. We define $\sigma(i, \tau)$ to be that string.
Sufficiency sets and anti-basis theorems

Stage 0. Define $\sigma_0 = \lambda$. Stage 2i + 1. Define $\sigma_{2i+1} = \sigma(i, \sigma_{2i})$.

Stage 2i + 2. If there exists $\sigma \supset \sigma_{2i+1}$ such that $\Psi_i(\sigma; i) \downarrow$ then define σ_{2i+2} to be some extension of σ which is not an initial segment of $\Psi_i(\emptyset)$. Otherwise define σ_{2i+2} to be some extension of σ_{2i+1} which is not an initial segment of $\Psi_i(\emptyset)$.

...and finally..the structure is a lattice.

We noted previously that the intersection of the degree spectra of two Π_1^0 classes need not be the degree spectrum of a Π_1^0 class. The following result suffices to show, however, that $(\mathfrak{P}, <)$ is a lattice.

The intersection of the degree spectra of two Π_1^0 classes is the degree spectrum of a Π_1^0 class if it is the superset of the degree spectrum of a non-empty Π_1^0 class.

Proof. (Vague sketch) Let \mathcal{P}_0 and \mathcal{P}_1 be Π_1^0 classes with degree spectra $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ respectively, and suppose that \mathcal{P}_2 is a non-empty Π_1^0 class with degree spectrum $\boldsymbol{\gamma} \subseteq \boldsymbol{\alpha} \cap \boldsymbol{\beta}$.

...and finally..the structure is a lattice.

For each $i \leq 2$ let Λ_i be a downward closed and computable set of strings with $[\Lambda_i] = \mathcal{P}_i$. For each (i, j) we define:

 $\mathcal{Q}_{i,j} = \{A \in \mathcal{P}_0 : \Psi_i(A) \in \mathcal{P}_1 \text{ and } \Psi_j(\Psi_i(A)) = A\}.$

...and finally..the structure is a lattice.

For each $i \leq 2$ let Λ_i be a downward closed and computable set of strings with $[\Lambda_i] = \mathcal{P}_i$. For each (i, j) we define:

 $\mathcal{Q}_{i,j} = \{A \in \mathcal{P}_0 : \Psi_i(A) \in \mathcal{P}_1 \text{ and } \Psi_j(\Psi_i(A)) = A\}.$

In order to define a downward closed and computable set of strings Λ such that $\mathcal{P} = [\Lambda]$ satisfies $S(\mathcal{P}) = \boldsymbol{\alpha} \cap \boldsymbol{\beta}$, we proceed as follows. We begin by putting all strings in Λ_2 into Λ .

.. and finally.. the structure is a lattice.

For each $i \leq 2$ let Λ_i be a downward closed and computable set of strings with $[\Lambda_i] = \mathcal{P}_i$. For each (i, j) we define:

 $\mathcal{Q}_{i,j} = \{A \in \mathcal{P}_0 : \Psi_i(A) \in \mathcal{P}_1 \text{ and } \Psi_j(\Psi_i(A)) = A\}.$

In order to define a downward closed and computable set of strings Λ such that $\mathcal{P} = [\Lambda]$ satisfies $S(\mathcal{P}) = \boldsymbol{\alpha} \cap \boldsymbol{\beta}$, we proceed as follows. We begin by putting all strings in Λ_2 into Λ .

Let us say $\sigma \notin \Lambda_2$ is terminal in Λ_2 , if all proper initial segments of σ are in Λ_2 . We consider strings to be ordered first by length and then from left to right. All strings which are terminal in Λ_2 we place in Λ and above the x^{th} terminal string we place a Π_1^0 class $\mathcal{P}_{i,j}$ with degree spectrum $S(\mathcal{Q}_{i,j}) \cup \gamma$, where $x = \langle i, j \rangle$. This is done using Λ_2 as a 'filler'.

Thanks for listening!