
Pseudo-merge prototype manual

Mathieu Sassolas

December 1, 2009

1 Foreword

This document presents a prototype tool that implements in Ocaml the algorithm of pseudo-
merge introduced in [1]. All terms related to this approach marked with “†” are defined in this
document. The tool’s aim was more to help us compute pseudo-merges† of MTSs† than for real
users to actually merge real-world models. Thus both the data structure and the programs were
seeking implementation rapidity rather than performance. In that sense, no graphical user interface
was developed either. The interface to the use is discussed in Section 3.

2 Installing

2.1 Requirements

The tool operates through command line, so such an interface, along with basic tools (such as
make) is needed. It was tested on GNU/Linux and MacOS, and should work on Windows through
CygWin at least. Since the prototype is written in Ocaml [2], this program is needed to compile
and run it. In addition, one might want to use this prototype in conjunction with MTSA [3, 4].

2.2 Compiling

Simply decompress the archive containing the source and run make compile. This operation will
build two programs. The first is PseudoMerge which implements the pseudo-merge algorithm.
The second is FspTranslator which translates an FSP model into a model in our internal format.
The latter is meant to have models in the internal format in order to use them in the interactive
interface of OCaml.

3 Input/Output syntax(es)

3.1 Input format

The input to the programs are MTSs in FSP-like specifications. For example, the MTS of Fig-
ure 1(a) is specified by the FSP model of Figure 1(b). This syntax is the one given by MTSA in its
“Transition” tab. Therefore it is possible to use all the power of MTSA to generate models from
more abstract specifications (parallel composition, fluents. . .).

Each model should be in a separate file to be used by PseudoMerge, while FspTranslator
reads models from standard input. For example:

./PseudoMerge LawMakingBlue.trans LawMakingRed.trans

./FspTranslator < LawMakingBlue.trans

Files LawMakingBlue.trans and LawMakingRed.trans are provided as examples in the archive.

3.2 Output format

The output format of the FspTranslator is an OCaml variable definition. Therefore, they are
more intended to be used in Ocaml. For example, the command

1

A: 0

1

2

3

4

5

propose?

propose

debate

accept

reject

applyAct

reject

reject?

debate

amend

accept

applyLaw

(a)

Process:
BlueModel
States:
6
Transitions:
BlueModel = Q0,
Q0 = (propose? -> Q1
|propose -> Q4),

Q1 = (debate -> Q1
|accept -> Q2
|reject -> Q3),

Q2 = (applyAct -> Q2),
Q3 = (reject -> Q3),
Q4 = (amend -> Q0
|reject? -> Q3
|debate -> Q4
|accept -> Q5),

Q5 = (applyLaw -> Q5).
(b)

Figure 1: A MTS model and its FSP syntax

cat LawMakingBlue.trans LawMakingRed.trans
| ../Heuristics/FspTranslator > LawMaking.ml

will create a file containing definitions such as

let blueModel = {
alphabet = [|"propose";"debate";"accept";"reject";"applyAct";"amend";"applyLaw"|];
states = 6;
transitions = [|
(* On action ’propose’. *)
[|[|False;Maybe;False;False;True ;False|];
[|False;False;False;False;False;False|];
[|False;False;False;False; ...

.

.

.
};;

From these models, or directly with PseudoMerge, a FSP specification readable to MTSA can
be produced.

BlueModel__RedModel__ = (propose -> BlueModel__RedModel__3
|propose -> BlueModel__RedModel__2
|propose -> BlueModel__RedModel__1),

BlueModel__RedModel__1 = (amend_1 -> ...
.
.
.
||PseudoMerge__BlueModel__RedModel = (BlueModel__RedModel__).

Since MTSA produces graphical representation, one can observe a pseudo-merge graphically rather
than textually.

Models in the internal representation can also be printed in other formats such as a pgf/Tikz
that can be interpreted by LATEX, although states are aligned and almost certainly require work
on layout before the model can be readable.

Another use of PseudoMerge is to find a distinguishing property† from a given boundary dis-
agreement transition†. This part is experimental and may not always work for theoretical rea-
sons [1]. The transitions must be specified by ‘‘(2,accept 1,6)’’ (the quotes are necessary for

2

the sake of the shell) where the numbers indicate the state of the pseudo-merge. The transition is
suffixed with 1 to denote that it is required† in the first model fed to the program and prohibited†

in the second one. Hence one should first run the program without specifying a transition in or-
der to determine what state numbers have been attributed by the algorithm. Unfortunately, the
graphical rendering of MTSA does not keep the order in which the states are specified (since they
are not actually states for the FSP specification). The result will be a propositional µ-calculus†

property in plain text and LATEX(user-defined macro \senext produces 〈.〉 while \sanext produces
[.]).

/* Distinguishing mu-formula
<propose>(<accept><applyLaw>t ^ <amend>t)
\senext{propose} (\senext{accept} \senext{applyLaw} \mathbf{t}

\wedge \senext{amend} \mathbf{t})
*/

3.3 Ocaml interface

Models produced by FspTranslator and the ones directly specified in Ocaml can, as evoked above,
be directly used (i.e. interpreted, pseudo-merged, “pretty”-printed, . . .) through the various
functions defined in the back-end of the program, namely the file mts.ml. The use of (almost)
each function is explained before its code. For example, one might want to define and display
the Tikz code for a pseudo-merge of models BlueModel and RedModel. The corresponding Ocaml
code is (consist is a consistency relation computed beforehand, it is likely to be an empty list).

let pseudoMerge = pseudo_mergeMtsGen true "_1" "_2" blueModel redModel consist []
in
printMtsTikz true pseudoMerge;;

This example produces a model in which each state of the pseudo-merge is named after the states
it came from. Although more powerful, this use of the prototype is rather complex, and is recom-
mended only in such limited cases.

4 Support and bug reports

Although the prototype is not being developed any further, I welcome any questions and bug
reports: mathieu.sassolas@lip6.fr

References

[1] Mathieu Sassolas. “Exploring Inconsistencies between Modal Transition Systems: Internship
Report”. Technical report, ENS-Cachan, 2008. http://pagesperso-systeme.lip6.fr/Mathieu.Sassolas/

recherche/papers/ReportM2.pdf.

[2] OCaml. http://caml.inria.fr/index.en.html.

[3] Nicolas D’Ippolito, Dario Fishbein, Marsha Chechik, and Sebastian Uchitel. “MTSA: The
Modal Transition System Analyzer”. In Proceedings of International Conference on Automated
Software Engineering (ASE’08), pages 475–476, September 2008.

[4] MTSA. http://www.lafhis.dc.uba.ar/~suchitel/MTSA.html.

3

mathieu.sassolas@lip6.fr
http://pagesperso-systeme.lip6.fr/Mathieu.Sassolas/recherche/papers/ReportM2.pdf
http://pagesperso-systeme.lip6.fr/Mathieu.Sassolas/recherche/papers/ReportM2.pdf
http://www.lafhis.dc.uba.ar/~suchitel/MTSA.html

	Foreword
	Installing
	Requirements
	Compiling

	Input/Output syntax(es)
	Input format
	Output format
	Ocaml interface

	Support and bug reports

