
The Complexity of Admissibility in
Omega-Regular Games ∗

Romain Brenguier
Département d’informatique, Université
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Abstract
Iterated admissibility is a well-known and important concept in
classical game theory, e.g. to determine rational behaviors in multi-
player matrix games. As recently shown by Berwanger, this con-
cept can be soundly extended to infinite games played on graphs
with ω-regular objectives. In this paper, we study the algorithmic
properties of this concept for such games. We settle the exact com-
plexity of natural decision problems on the set of strategies that
survive iterated elimination of dominated strategies. As a byprod-
uct of our construction, we obtain automata which recognize all the
possible outcomes of such strategies.

Categories and Subject Descriptors F.1.2 [Modes of computa-
tion]: Interactive and reactive computation; D.2.4 [Software/Program
Verification]: Model checking; I.2.8 [Problem Solving, Control
Methods, and Search ]: Control theory

Keywords Games; Admissible strategies; Synthesis; Safety; Muller
games; LTL.

1. Introduction
Two-player games played on graphs are central in many applica-
tions of computer science. For example, in the synthesis problem
for reactive systems, implementations are obtained from winning
strategies in games with a ω-regular objectives [19]. To analyze
systems composed of several components, two-player games are
extended to multi-player games with non zero-sum objectives, i.e.
each player has his own objective expressed as a ω-regular speci-
fication which is not necessarily adversarial w.r.t. the objectives of
the other players.

C D
A (0, 2) (1, 1)
B (1, 1) (1, 2)

Figure 1: A two-player
matrix game.

To analyze multi-player
games in normal form (a.k.a. ma-
trix games), concepts like the cel-
ebrated Nash equilibrium [16]
have been proposed. Another
central concept is the notion of
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dominated strategy [17]. A strat-
egy of a player dominates another
one if the outcome of the first strategy is better than the outcome
of the second no matter how the other players play. In two-player
matrix game of Figure 1, strategies of player 1 (of player 2 respec-
tively) are given as rows of the matrix (as columns respectively),
and the payoffs to be maximized, are given as pairs of integers
(the first for player 1 and the second for player 2). Strategy B of
player 1 dominates strategy A: no matter how player 2 plays, B
provides an outcome which is larger than or equal to the one of A,
and if player 2 plays C then the outcome provided by B is strictly
larger than the outcome of A. On the other hand, player 2 at first
sight has no preference between C and D. But if player 2 knows
that player 1 prefers strategy B to strategy A, then he will in turn
prefer D to C, and it is then reasonable to predict that (B,D)
will be played. This process is called the iterated elimination of
dominated strategies, and it is valid under the hypothesis that ratio-
nality is common knowledge among the players [1]. Strategies that
survive the iterated elimination of strategies are called iteratively
admissible strategies.

In [2], Berwanger initiated a fundamental study of the notion of
rational behaviour in infinite duration games played on graph by
generalising the notion of strategy dominance and iterated elimina-
tion of dominated strategies to that setting. This solution concept is
a clear potential alternative to Nash equilibria for those games. As
pointed out by Berwanger, one important advantage of admissible
strategies is that they are compatible with the sequential nature of
games played on graphs: “in any position reachable with an ad-
missible strategy, a strategy is admissible in the sub-game rooted
in that position if, and only if, it is the restriction of an admissi-
ble strategy in the original game.” As a consequence, admissibility
does not feature non-credible threats while it is well known that it
is the case for Nash equilibria. Nonetheless, the extension of iter-
ated strategy elimination to infinite duration games is challenging
as the set of strategies is infinite and may lead to infinite dominance
chains. Berwanger’s main technical results are as follows: all iter-
ation stages are dominated by admissible strategies, the iteration
is non-stagnating, and, under regular objectives, admissible strate-
gies form a regular set. In particular, for the last result, Berwanger
suggests a procedure that uses tree automata to represent sets of
strategies. The closure of tree automata to projection and Boolean
operations naturally provides an algorithm to compute admissible
strategies in parity games but this algorithm has non-elementary
complexity.

In order to represent a viable alternative to Nash equilibria from
a computational point of view, it is fundamental to better under-
stand the complexity of iterated elimination of dominated strate-
gies in ω-regular games, and see if the non-elementary complexity
of the tree-automata based procedure can be avoided. We prove



here that this is indeed the case and that iterated elimination of
dominated strategies has a computational complexity similar to the
one of Nash equilibria. More precisely, we study games with weak
Muller and (classical) Muller winning conditions given as circuits.
Circuits offer a concise representation of Muller conditions and are
closed (while remaining succinct) under Boolean operations. Weak
Muller conditions define objectives based on the set of states that
occur along a run, they generalize safety and reachability objec-
tives. (Classical) Muller conditions define objectives based on the
set of states that appear infinitely often along a run. They general-
ize Büchi and parity objectives and are canonical representations
of ω-regular objectives as every regular language can be accepted
by a deterministic Muller automaton. We study the winning coali-
tion problem: given a game and two subsets W,L of players, to
determine whether there exists an iteratively admissible profile of
strategies that guarantees that (i) all players of W win the game,
and (ii) all players of L lose the game (other players may either
win or lose). For weak and classical Muller objectives, we provide
a procedure in PSPACE, with matching lower-bounds for safety,
reachability, and Muller objectives. For Büchi objectives, we pro-
vide an algorithm that calls a polynomial number of times an oracle
solving parity games (hence this would lead to a polynomial time
solution if a polynomial time algorithm is found for parity games –
the current best known complexity is UP ∩ coUP [12], although a
deterministic subexponential algorithm exists [13]).

As a byproduct of our constructions, we obtain an automaton on
infinite words which recognizes all the possible outcomes of itera-
tively admissible strategies. Any regular query on this language can
be solved using classical automata techniques. As a consequence,
we can solve any variant of the winning coalition problem defined
above, if this variant can be expressed as such a query. For exam-
ple, we can solve the model-checking under admissibility problem:
given ϕ, an LTL formula [18, 21], does the outcome of every iter-
atively admissible profile satisfy ϕ? We show that this problem is
complete for the class PSPACE, so it retains the same complexity
as the “classical” model-checking problem for this logic. Model-
checking under admissibility is useful to reason about properties
that naturally emerge in a system from the interaction of rational
agents that purse their own objectives.

Related work Dominance can be expressed in strategy logics [6,
15] but not unbounded iterated dominance. Bounded iterated dom-
inance is expressible but leads to classes of formulas with a non-
elementary model-checking algorithm. Other paradigms of ratio-
nality have been studied for games on finite graphs, like Nash-
equilibria [3, 14, 23] or regret minimization [10]. In [14], the au-
thors build an automaton that recognizes outcomes of Nash equi-
libria. In turn-based game, finding a Nash equilibrium with a partic-
ular payoff is PSPACE-complete for Muller objectives [24], which
is the same complexity we obtain for admissibility. In the case of
Büchi objectives, a polynomial algorithm exists for Nash equilib-
ria [23], while we have a NP ∩ coNP algorithm for admissibility.

In this paper, we concentrate on n-player turn-based perfect in-
formation finite game graph with ω-regular objective. This is the
basic setting that needs to be studied before looking at richer mod-
els, like games with incomplete information [20], games with quan-
titative objectives like mean-payoff objectives [25], or concurrent
games [8]. Our results and techniques are clearly prerequisites to
study those richer settings.

Organization of the paper We first formalize the setting and nota-
tions in Section 2. Safety objectives are solved in Section 3. Muller
objectives are solved in Section 4. We conclude by giving other ap-
plications of our techniques for Büchi or weak Muller objectives,
and to the model-checking under admissibility problem, in Sec-
tion 8.

A comprehensive example of iterated elimination of dominated
strategies is provided in Appendix A.

Due to space constraints, most proofs have been omitted from
this paper; they can be found in the full version [5].

2. Definitions
2.1 Multiplayer Games
Definition 1 (Multiplayer games). A turn-based multiplayer (non
zero-sum) game is a tuple G = 〈P, (Vi)i∈P , E, (WINi)i∈P 〉
where:

• P is the non-empty and finite set of players;
• V =

⊎
i∈P Vi and for every i in P , Vi is the finite set of player

i’s states;
• E ⊆ V × V is the set of edges1; we write s→ t for (s, t) ∈ E

when E is clear from context.
• For every i in P , WINi ⊆ V ω is a winning condition.

A path ρ is a sequence of states (ρj)0≤j<n with n ∈ N ∪ {∞}
s.t. for all j < n−1, ρj → ρj+1. The length |ρ| of the path ρ is n. A
history is a finite path and a run is an infinite path. Given a run ρ =
(ρj)j∈N and an integer k, we write ρ≤k the history (ρj)0≤j<k+1,
that is, the prefix of length k + 1 of ρ. For a history ρ and a (fi-
nite or infinite) path ρ′, ρ is a prefix of ρ′ is written ρ < ρ′. The
last state of a history ρ is last(ρ) = ρ|ρ|−1. The set of states oc-
curing in a path ρ is Occ(ρ) = {s ∈ V | ∃i ∈ N. i < |ρ|, ρi = s}.
The set of states occuring infinitely often in a run ρ is Inf(ρ) =
{s ∈ V | ∀j ∈ N. ∃i > j, ρi = s}.
Definition 2 (Strategies). A strategy of player i is a function σi :
(V ∗ · Vi) → V , such that if σi(ρ) = s then (last(ρ), s) ∈ E. A
strategy profile for the set of players P ′ ⊆ P is a tuple of strategies,
one for each player of P ′.

Let Si(G) be the set of all strategies of player i in G; we write
Si when G is clear from the context. We write S =

∏
i∈P Si for

the set of all strategy profiles for P , and S−i for the set of strategy
profiles for all players but i. If σ−i = (σj)j∈P\{i} ∈ S−i, we
write (σi, σ−i) for (σj)j∈P . Similarly, if S is a set of profiles, Si
denotes the i-th projection of S, i.e. a set of strategies for player i. A
rectangular set of strategy profiles is a set that can be decomposed
as a Cartesian product of sets of strategies, one for each player.

A strategy profile σP ∈ S defines a unique outcome from
state s: Outs(σP ) is the run ρ = (ρj)j∈N s.t. ρ0 = s and for
j ≥ 0, if ρj ∈ Vi, then ρj+1 = σi(ρ≤j). If Si is a set of
strategies for player i, we write Outs(Si) for {ρ | ∃σi ∈ Si, σ−i ∈
S−i.Outs(σi, σ−i) = ρ}. For a tuple of sets of strategies SP ′ with
P ′ ⊆ P , we write Outs(SP ′) =

⋂
i∈P ′ Outs(Si). A strategy σi

of player i is said to be winning from state s against a rectangular
set S−i ⊆ S−i, if for all σ−i ∈ S−i, Outs(σi, σ−i) ∈ WINi. It is
simply said winning from state s if S−i = S−i. For each player i,
we write WINsi (σP ) if Outs(σP ) ∈ WINi.

2.2 Winning conditions
Winning conditions for each player are given by accepting sets
either on the set of states occurring along the run, or the set of states
occurring infinitely often. Particular cases are safety, reachability,
and Büchi winning conditions.

• A safety condition is defined by a set Bad i ⊆ V : WINi =
(V \ Bad i)ω .
• A reachability condition is defined by a set Good i ⊆ V :

WINi = V ∗ ·Good i · V ω .

1 It is assumed for convinience and w.l.o.g. that each state in V has at least
one outgoing edge.



• A Büchi condition is defined by a set Fi ⊆ V : WINi =
(V ∗ · Fi)ω .
• A Muller condition is given by a family F of sets of states:

WINi = {ρ | Inf(ρ) ∈ F}. For a succinct representation, we
assume F is given by a Boolean circuit whose inputs are the
states of V , and which evaluates to true on valuation vS : s 7→
1 if s ∈ S; 0 otherwise; if, and only if, S ∈ F [11].
• A weak Muller condition is given by a familyF of sets of states:

WINi = {ρ | Occ(ρ) ∈ F}. We again assume that F is given
by a Boolean circuit.

Muller conditions generalize Büchi and other classical condi-
tions such as parity: these can be encoded by a circuit of polynomial
size [11]. Note that Muller conditions are prefix-independent: for
any finite path h and infinite path ρ′, h · ρ′ ∈ WINi ⇔ ρ′ ∈ WINi.
In two-player zero-sum games with circuit conditions, deciding the
winner is PSPACE-complete [11]. Weak Muller conditions gener-
alize safety and reachability.

2.3 Admissibility
Definition 3 (Dominance for strategies). Let S =

∏
i∈P Si ⊆ S

be a rectangular set of strategy profiles. Let σ, σ′ ∈ Si. Strategy
σ very weakly dominates strategy σ′ with respect to S, written
σ <S σ′, if from all states s:

∀τ ∈ S−i,WINsi (σ
′, τ)⇒ WINsi (σ, τ).

Strategy σ weakly dominates strategy σ′ with respect to S,
written σ �S σ′, if σ <S σ′ and ¬(σ′ <S σ). A strategy σ ∈ Si
is dominated in S if there exists σ′ ∈ Si such that σ′ �S σ. A
strategy that is not dominated in S is admissible in S. A profile σP
such that for all i ∈ P , σi is admissible is called an admissible
profile.

The set S∗ of iteratively admissible strategies is obtained by
iteratively eliminating dominated strategies, starting from set S.
Formally, we consider the sequence:

• S0 = S;
• Sn+1 =

∏
i∈P {σi ∈ S

n
i | σi admissible in Sn}.

Then S∗ =
⋂
n∈N S

n. When for all player i ∈ P , WINi is
ω-regular winning conditions, S∗ is reached after finitely many
iterations and is not empty [2].

Note that our strategies are defined from all states while in [2]
they are defined only for history starting from the initial state. A
strategy here can be seen as a tuple of strategies (in the sense of [2]):
one for each state. The set Sn we compute is then the cardinal
product of admissible strategies from each state.

Example 1. Figure 2(a) presents a safety game that starts in q0.
Strategies of player 1 that from q0 go to q4 are losing. Whereas
for those that go to q1, there is a strategy of player 2 which
helps player 1 to win by playing back to q0. Hence the former
are dominated by the later, and so they are eliminated at the first
elimination of dominated strategies and do not appear in S1

1 . In
the second step of iteration, if player 2 plays from q1 to q0, he
is ensured to win if player 1 plays a strategy of S1

1 . Therefore
the strategies of player 2 that go to q2 are dominated: there are
strategies in S1

1 that make them lose. These latter strategies are
therefore removed and do not appear in S2

2 . The process then
stabilizes: S∗ = S2.

2.4 Decision problems
Winning coalition problem Given a game G and two subsetsW,L
of players, does there exist an iteratively admissible profile s.t. all

q0 q1 q2 ∈ Bad1

q3 ∈ Bad2q4

(a) A safety game.

q′0q′1q′2

q′3 q′4

q1q0

q4

Bad1

Bad2

(b) Its unfolding. Transitions eliminated after two steps of elimination are
dotted.

Figure 2: A safety game and its unfolding. States controlled by
player 1 are represented with circles and states controlled by
player 2 with squares. We keep this convention through the paper.
The objective of player 1 is to avoid q2 and that of player 2 is to
avoid q3.

players of W win the game, and all players of L lose the game
(other players may either win or lose)?

Model-checking under admissibility problem Given a game and
an LTL [18, 21] formula ψ, does the outcome of every iteratively
admissible profile satisfy ψ?

2.5 Values
Our algorithms are based on the notion of value of a history. It
characterizes whether a player can win (alone) or cannot win (even
with the help of other players), restricting the strategies to the ones
that have not been eliminated so far. This notion is also a central
tool in [2] to characterize admissible strategies. However, [2] gives
no practical way to compute values. We will show in this paper,
that these are indeed computable.

Definition 4 (Value). The value of history h for player i after the
n-th step of elimination, written Valni (h), is given by:

• if there is no strategy profile σP in Sn whose outcome ρ from
last(h) is such that h<|h|−1 · ρ is winning for player i then
Valni (h) = −1;
• if there is a strategy of σi ∈ Sni such that for all strategy profiles
σ−i in Sn−i, the outcome ρ of (σi, σ−i) from s is such that
h<|h|−1 · ρ is winning for player i then Valni (h) = 1;
• otherwise Valni (h) = 0;

By convention, Val−1
i (h) = 0.

The following lemma illustrates a property of values and admissible
strategies:

Lemma 1. For all n ∈ N, if last(h) ∈ Vi and σi ∈ Sn+1
i then

Valni (h) = Valni (h · σi(h)).

Hence a player that plays according to an admissible strategy
cannot go to a state that changes the value of the current history.
This condition is not always sufficient, but in the following sections



we characterize runs of admissible strategies relying on this notion
of value.

3. Safety objectives
The main result of this section is a PSPACE algorithm for the
winning coalition problem in safety games. This is based on a
notion of dominance for transitions. We show that by iteratively
removing dominated transitions of the game, we describe exactly
the set of admissible strategies.

3.1 Making explicit the losing players
Let h be an history, the players losing on h are the players in

λ(h) = {i ∈ P | ∃k < |h|, hk ∈ Bad i}.
Proposition 1. For safety winning conditions, the value of a history
h only depends on λ(h) and last(h).

We can therefore write Valni (λ(h), s) for Valni (h), when
last(h) = s. We encode the set λ(h) of losing players in the
state of the game, at the price of an exponential blowup (in the
number of players). The new game has states in 2P × V and set
of transitions (λ, s) → (λ ∪ {i | s′ ∈ Bad i}, s′) for any λ ⊆ P ,
if s → s′. In this partially unfolded game, the value depends only
on the current state, hence is written Valni (s). For example, the
game of Figure 2(a) is unfolded as the game of Figure 2(b); states
q′0, . . . , q

′
4 are states where player 1 has already lost. Now, let us

assume for the remainder of this section that the losing players in
the game G are explicit.

3.2 Dominance of transitions
In the case of safety winning condition, the necessary condition of
Lemma 1 becomes sufficient, as shown below. This yields a local
notion of dominance, that can be expressed directly on transitions:

Definition 5. We write Tni for the set of transitions s → s′ ∈ E,
such that s is controlled by player i and Valni (s) > Valni (s′).
Such transitions are said to be dominated after the n-th step of
elimination. We write Tn for the union of all Tni .

Definition 6 (Subgame). Let G = 〈P, V,E,WINP 〉 be a game and
T ⊆ E a set of transitions. If each state s ∈ V has at least one
successor by E \ T , the game G \ T = 〈P, V,E \ T,WINP 〉 is
called a subgame of G. We write Si(G \ T ) the set of strategies
σi ∈ Si(G) such that for all history h of G \ T , if last(h) ∈ Vi
then (last(h), σi(h)) 6∈ T .

This notion yields a polynomial procedure in the size of the
game where losing players are explicit, to compute the set of all
iteratively admissible strategies, described in Algorithm 1. The
loop is executed at most |E| times, where |E| is the number of
transitions in the partially unfolded game.

However, this procedure assumes that the information of which
players have already violated their safety condition is encoded in
the state. So in the general case, the procedure has a complexity
which is exponential in the number of players and polynomial in the
number of states of the game. In the case of the winning coalition
problem, we can however reduce this complexity to PSPACE.

We now show the correctness of the procedure. We first prove
a link between the notions of dominance for strategies and for
transitions. Note that since all states s have at least one successor
with a value greater or equal to that of s, removing transitions of
Tni yield what we call a subgame.

Proposition 2. All admissible strategies w.r.t. Sn of player i are
strategies of Si(G \ Tni ).

Proof. We show that if player i plays a strategy σi admissible w.r.t.
Sn, i.e. σi ∈ Sn+1

i , then the value cannot decrease on a transition

Algorithm 1: Computing the set of iteratively admissible
strategies

1 n := 0 ; T−1
i := ∅ ;

2 repeat
3 forall the s ∈ V do
4 if there is a winning strategy for player i from s in

G \ Tn−1 then Valni (s) := 1;
5 else if there is no winning run for player i from s in

G \ Tn−1 then Valni (s) := −1;
6 else Valni (s) := 0;

7 forall the i ∈ P do
8 Tni := Tn−1

i ∪ {(s, s′) ∈ E | s ∈ Vi ∧Valni (s) >
Valni (s′)};

9 n := n+ 1 ;
10 until ∀i ∈ P. Tni = Tn−1

i ;

controled by player i. Let ρ ∈ Out(σi, σ−i) with σ−i ∈ Sn−i and
σi ∈ Sn+1

i , and ρk ∈ Vi. Let s′ = σi(ρ≤k):

• If Valni (ρk) = 1, then σi has to be winning against all strategies
of Sn−i, otherwise it would be weakly dominated by such a
strategy. Since there is no such strategy from a state with value
Valni ≤ 0, Valni (s′) = 1.
• If Valni (s) = 0, then there is a profile σ−i ∈ Sn−i such that ρ =
Out(σi, σ−i) ∈ WINi. Note that h·s·s′<ρ. If Valni (s′) = −1,
there can be no such profile, thus Valni (s′) ≥ 0.
• If Valni (s) = −1, the value cannot decrease.

Example 2. In Figure 2(a), initially, q4 has value−1 for player 1,
but q0 has value 0 since it is possible to loop in q1 and q0 (if
player 2 helps). So, the transition to state q4 is dominated and
removed at the first iteration. Then, player 2 has a winning strategy
from q1, by always going back to q0, whereas the state q′2 has value
0 for him. Hence q1 → q′2 is removed after this iteration. The fix-
point is obtained at that step, it is represented in Figure 2(b).

We have seen that removing dominated transitions only removes
strictly dominated strategies. The converse is also true, all strategies
that remain are not dominated:

Proposition 3. All strategies of Sni ∩ Si(G \ Tni ) are admissible
with respect to Sn.

Proof. Let σi, σ′i ∈ Sni ∩ Si(G \ Tni ) and assume σ′i �Sn σi.
Then there is a state s and strategy profile σ−i ∈ Sn−i such that
WINsi (σ

′
i, σ−i) ∧ ¬WINsi (σi, σ−i). Let ρ = Outs(σi, σ−i) and

ρ′ = Outs(σ
′
i, σ−i). Consider the first position where these runs

differ: write ρ = w · s′ · s2 ·w′ and ρ′ = w · s′ · s1 ·w′′. Note that
s′ belongs to player i.

First remark that since WINi(σ
′
i, σ−i), it is clear that Valni (s1) ≥

0. Moreover, since s′ → s1 and s→ s2 do not belong to Tni , states
s′, s1 and s2 must have the same value.

Assume Valni (s′) = 0. We show that there is a profile2 σ2
−i ∈

Sn−i such that WINi(σi, σ
2
−i) from s2. Let h be a history such

that last(h) /∈ Vi, if for all σ2
−i ∈ Sn−i, Valni (σ2

−i(h)) = −1
then Valni (last(h)) = −1. Therefore it is possible to define a
strategy profile σ2

−i ∈ Sn−i that never decreases the value from
0 or 1 to −1. The strategy σi itself does not decrease the value of

2 Although the definition of the value yields the existence of a profile
winning for i, it remains to be shown that there is such profile where i
plays strategy σi.



player i because it does not take transitions of Tni . So the outcome
of (σi, σ

2
−i) never reaches a state of value −1. Hence it never

reaches a state in Bad i and therefore it is winning for player i.
Now, Valni (s1) = 0 so there is no winning strategy for player i
from s1 against all strategies of Sn−i. Then there exists a strategy
profile σ1

−i ∈ Sn−i such that σ′i loses from s1. Now consider
strategy profile σ′−i that plays like σ−i if the play does not start
with w, then σ1

−i after s1 and σ2
−i after s2. Given a history h:

σ′−i(h) =

 σ1
−i(h

′) if w · s1 < h and w · s1 · h′ = h
σ2
−i(h

′) if w · s2 < h and w · s2 · h′ = h
σ−i(h) otherwise

Clearly we have WINsi (σi, σ
′
−i)∧¬WINsi (σ

′
i, σ
′
−i), which contra-

dicts σ′i <Sn σi.
Now assume Valni (s2) = 1. Since ¬WINi(σi, σ−i), the pro-

duced outcome ρ reaches a state of Bad i, hence the value of states
along ρ is−1 after some point. Consider the first state ρk which has
value smaller or equal to 0: k = mink′{ρk′ | Valni (ρk′) ≤ 0}. The
state ρk−1 has value 1, it is necessarily controlled by a player j dif-
ferent from player i, since transitions of Tni cannot be taken by σi.
Since there exists a winning strategy σi ∈ Sni from ρk−1 against
strategies of Sn−i, then this strategy is still winning at ρk. Therefore
Valni (ρk) = 1, which is a contradiction.

3.3 The winning coalition problem for safety objectives
Theorem 1. The winning coalition problem with safety winning
conditions is PSPACE-complete. However, if the number of players
is fixed, the problem becomes P-complete.

Proof sketch. To decide the winning coalition problem, only the ex-
istence of a particular profile is required and the explicit construc-
tion of the unfolded graph is not necessary. By guessing a lasso path
produced by such a profile, and checking recursively that it does not
contain dominated transition, we get PSPACE membership.

The hardness proof is done by encoding instances of QSAT. In-
stead of detailing the whole construction, we illustrate it on an ex-
ample in Figure 3 for the following formula µ = ∃x1∀x2∃x3(x1∨
x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3). There are two players x and ¬x
for each variable x, plus two players Eve and Adam. The moves of
Eve and Adam in the left part of the game determine a valuation:
xi is said to be true if Bad i was reached. If a player xi has not
yet lost, in the right part of the game, it is better for this player to
visit the losing state of Eve than its own. Hence, at the first step of
elimination, the edges removed in the unfolded game correspond to
the ones going to a state Badxi if xi is false (and ¬xi if xi is true).
At the second step of elimination, Eve should avoid whenever pos-
sible, states corresponding to a literal whose valuation is not true,
since those states will necessarily lead to Bad∃. If the valuation
satisfies each clause, then she has the possibility to do so, and one
admissible profile is winning for her: so µ is true if, and only if,
there is a admissible profile where Eve is winning.

4. Muller objectives
Our main result for this section is stated in the following theorem:

Theorem 2. The winning coalition problem with a Muller con-
dition for each player is PSPACE-complete. The problem is
PSPACE-hard even when restricted to two players.

PSPACE-hardness follows from PSPACE-hardness of two-
player games with Muller conditions [7].

The idea of the algorithm is to construct a graph representation
of the outcomes of admissible profiles. While the construction also

∃
x1¬x1

∀
x2¬x2

∃
x3¬x3

∃

x1x2¬x3

x1∃x2∃¬x3∃

∃

¬x1x2x3

¬x1∃x2∃x3∃

∀

Figure 3: Game Gµ with µ = ∃x1∀x2∃x3(x1∨x2∨¬x3)∧(¬x1∨
x2 ∨ x3). A label y inside a state s denotes that s ∈ Bady; a label
y below a state s denotes that s ∈ Vy . Note that Eve is abbreviated
to ∃ and Adam is abbreviated to ∀.

relies on the notion of value, it is more involved than for safety
conditions.

4.1 Characterizing outcomes of admissible strategies using
the sequence of their value

Proposition 4. For prefix-independent objectives, the value de-
pends only on the last state of the history.

Hence we write Valnj (s) instead of Valnj (h) when last(h) = s.
Since Valnj is here a function from V to {−1, 0, 1}, it can be
extended to runs: ValRn

j (ρ) is the word w ∈ {−1, 0, 1}ω such
that wk = Valnj (ρk) for all k.

The following lemma shows that in terms of the sequence of
value for a player, we can distinguish three types of plays that are
outcome of admissible strategies.

Lemma 2. Let s ∈ V , ρ ∈ Outs(Sn), and i ∈ P .

If ρ ∈ Outs(Sn+1
i ) then ValRn

i (ρ) ∈ 0∗1ω + 0ω + 0∗(−1)ω.

Now, we characterize outcomes of admissible strategies according
to whether they end with value 1,−1, or 0. We do so for each player
individually.

Value 1 To be admissible in Sn from a state of value 1, a strategy
has to be winning against all strategies of Sn:



Lemma 3. Let s ∈ V , i ∈ P and ρ ∈ Outs(Sn) be such that
ValRn

i (ρ) ∈ 0∗1ω .

ρ ∈ Outs(Sn+1
i ) if, and only if, ρ ∈ WINi.

Value -1 If the run reaches a state of value −1, then, from there,
there is no possibility of winning, so any strategy is admissible but
the state of value−1 must not have been reached by player i’s fault:

Lemma 4. Let s ∈ V , i ∈ P and ρ ∈ Outs(Sn) be such that
ValRn

i (ρ) ∈ 0∗(−1)ω . Let k be the index such that Valni (ρk) =
0 ∧Valni (ρk+1) = −1.

ρ ∈ Outs(Sn+1
i ) if and only if, ρk 6∈ Vi.

Example 3. As an illustration of Lemmata 3 and 4, consider the
left game in Figure 4. Both runs s0 ·s1 ·s2 ·Goodω1 and s0 ·s1 ·s2 ·sω3
are outcomes of non dominated strategies of player 1. Indeed, the
play that goes to Good1 is winning and the value of the path
that goes to s3 belongs to 0∗(−1)ω and the value decreases on
a transition by player 2.

Value 0 This case is more involved. From a state of value 0,
an admissible strategy of player i should allow a winning run
for player i with the help of other players. We write Hn

i for set
of states s controlled by a player j 6= i that have at least two
successors that (i) have value 0 or 1 for player i and (ii) have the
same value for player j than s after iteration n − 1. Formally, for
n ≥ 0, the “Help!”-states of player i are defined as:

Hn
i =

⋃
j∈P\{i}


s ∈ Vj

∣∣∣∣∣∣∣∣∣∣∣

∃s′, s′′, s′ 6= s′′

∧ s→ s′ ∧ s→ s′′

∧ Valni (s′) ≥ 0
∧ Valni (s′′) ≥ 0
∧ Valn−1

j (s) = Valn−1
j (s′)

∧ Valn−1
j (s) = Valn−1

j (s′′)


These states have the following property.

Lemma 5. Let s ∈ V , i ∈ P and ρ ∈ Outs(Sn) be such that
ValRn

i (ρ) = 0ω .

ρ ∈ Outs(Sn+1
i ) if, and only if, ρ ∈ WINi or Inf(ρ) ∩Hn

i 6= ∅

Proof sketch. Let σP ∈ Sn such that ρ = Outs(σP ). Assume
first that there is only a finite number of visits to Hn

i and that ρ
is not winning for player i. Let k be the greatest index such that
ρk ∈ Hn

i . After the prefix ρ≤k no profile of Sn can make σi win,
since no “Help!”-state is visited. While since Valni (ρk) = 0 there
is a strategy profile σ′′P of Sn whose outcome is winning for i from
ρk. Hence the strategy that follows σi until the prefix ρ≤k and then
switches to σ′′i weakly dominates σi, and σi 6∈ Sn+1

i .

Assume now that either ρ ∈ WINi or there is an infinite number
of indexes k such that ρk ∈ Hn

i . We define a strategy σi that
follows ρ when possible and otherwise plays a non-dominated
strategy. Assume that there is a strategy profile σ′P ∈ Sn such that
ρ′ = Out(σ′−i, σ

′
i) ∈ WINi and ρ′′ = Out(σ′−i, σi) /∈ WINi. We

show that there is a profile that makes σi win and σ′i lose, so that
σ′i does not weakly dominate σi.

For instance in the case where ρ′′ continues to follow ρ after it
has diverged from ρ′, we know it will encounter a “Help!”-state ρk.
From there there is a strategy profile σd−i that is in Sn−i thanks to the
condition Valn−1

j (ρk) = Valn−1
j (s′′) with s′′ 6= ρk+1, and which

is winning for σi thanks to the condition Valni (s′′) ≥ 0, and the
fact that σi reverts to a non-dominated strategy outside of ρ. This
strategy profile can moreover be made losing for σ′i from the point
where it deviates from ρ, since this deviation is on a state controled
by player i and its value for player i is 0.

s0 s1 s2

Good1 s3

(a) A first reachability game

s0 s1 s2

s4

Good1 s3

(b) A second reachability game

Figure 4: Two games. The goal for player 1 is to reach Good1.

Example 4. As an illustration of Lemma 5, consider the two games
in Figure 4. In the game of Figure 4(a), a strategy of player 1 that
stays in the loop (s0 · s1) forever is weakly dominated. The value
of this run is 0ω and visits no “Help!”-state, since in that game
H0

1 = ∅. Intuitively, the strategy is dominated because it has no
chance of winning, while getting out after k steps can be winning if
player 2 helps.

However, in the game of Figure 4(b), the strategy that always
chooses s4 from s1 is admissible. The run (s0 · s1 · s4)ω also has
value 0ω , but this time H0

1 = {s4}, which is visited infinitely often
by the loop.

4.2 Automata for Out(Sn)

Our goal is to obtain an automaton which recognizes Out(Sn). We
decompose this construction for each player by noting that:

Out(Sn−1) ∩
⋂
i∈P

Out(Sn−1
−i ,Sni ) = Out(Sn)

From the characterization of admissible strategies w.r.t. values of
state, we define an automaton Ani that selects Out(Sni ) within
Out(Sn−1), i.e. such that L(Ani ) ∩ Out(Sn−1) is equal to
Out(Sni ,Sn−1

−i ). This construction relies on values at previous
iterations. For n > 0, Ani is the automaton where:

• The set of states is V , i.e. the same states as in G;
• From the transitions in G we remove those controlled by

player i that decrease his value. Formally:

T = E \ {(s, s′) | s ∈ Vi ∧Valn−1
i (s) > Valn−1

i (s′)}.

• A run ρ is accepted by Ani if one of the following conditions is
satisfied:

1. ValRn−1
i (ρ) ∈ 0∗(−1)ω;

2. ValRn−1
i (ρ) ∈ 0∗1ω and ρ ∈ WINi;

3. ValRn−1
i (ρ) ∈ 0ω and ρ ∈ WINi or ρ ∈ (V ∗Hn−1

i )ω .

Note that the structure of the automaton is a subgame of G.
Since the transitions of G bear no label, the “language” L(A) of
an automaton A is here considered to be the set of accepting runs.
The following lemma shows the relation between automaton Ani
and outcomes of admissible strategies at step n.

Lemma 6. Out(Sn−1) ∩ L(Ani ) = Out(Sni ,Sn−1
−i )



Sketch of proof. For all run ρ, thanks to Lemma 2, there are three
cases to distinguish, based on ValRn−1

i (ρ). The case 0∗1ω is
solved by Lemma 3, the case 0∗(−1)ω by Lemma 4, and the case
0ω by Lemma 5.

The following property is a direct consequence of Lemma 6.

Lemma 7. Out(Sn−1) ∩
⋂
i∈P L(Ani ) = Out(Sn)

As Out(S0) is the set of all runs over G, the previous lemma
allows the construction of Out(Sn) by induction, for any n. Note
that the size of the automaton accepting Out(Sn) does not grow
since all automata in the intersection share the same structure as
G (although some edges have been removed). The accepting con-
dition, however, becomes more and more complex. Nonetheless, if
for all j ∈ P , WINj is a Muller condition given by a Boolean
circuit, the condition of the automaton accepting Out(Sn) is a
Boolean combination of such conditions, thus it is expressible
by a Boolean circuit, of polynomial size. For example, condition
ValRn−1

i (ρ) ∈ 0∗1ω can be expressed by a circuit that is the dis-
junction of all states of value 1 at step n− 1.

4.3 Inductive computation of values
Now, we show how to compute the values of the states for all
players. Initially, at “iteration −1”, all values are assumed to be
0, and S−1 = S. Computing the values at the next iteration
relies on solving two-player zero-sum games with objectives based
on outcomes of admissible strategies. For example, in order to
decide whether a state s has value 1 for player i at iteration 0,
i.e. whether Val0i (s) = 1, one must decide whether player i has
a winning strategy from s when playing against all other players.
This corresponds to the game with winning condition WINi where
vertices of all players but i belong to a single opponent. To decide
whether Val0i (s) > −1, all players try together to make i win.
Therefore this is a one-player game (or emptiness check) on G with
condition WINi. All the other states have value −1.

This idea is extended to subsequent iterations, but the objectives
of the games become more complex in order to take into account
the previous iterations: the objectives need to enforce that only out-
comes of admissible strategies (at previous iterations) are played.
Hence the construction relies on the automata Ani built above. As-
suming that winning conditions for all players are Muller condi-
tions, this yields a polynomial space algorithm to compute the val-
ues.

4.3.1 Characterizing states of value -1
A state s has a value > −1 for player i at step n if there is a
strategy profile σP ∈ Sn s.t. Outs(σP ) ∈ WINi. This is expressed
by: ∃σP ∈ S. σP ∈ Sn ∧ Outs(σP ) ∈ WINi. This prompts the
definition of the following objective:

Ψn
i (s) = Outs(Sn) ∩WINi.

Lemma 8. If Ψn
i (s) 6= ∅, then ∃σP ∈ Sn : Outs(σP ) ∈ WINi.

Therefore, since the set Outs(Sn) and WINi can both be ex-
pressed as the language of an automaton, testing whether a state
has value −1 boils down to check emptiness.

4.3.2 Characterizing states of value 1
A state s has value 1 for player i at step n if he has a strategy σi in
Sni such that for all strategies σ−i in Sn−i, Outs(σi, σ−i) ∈ WINi.
This is expressed by the formula:

∃σi ∈ Si, ∀σ−i ∈

S−i, (σi ∈ Sni ∧ (σ−i ∈ Sn−i ⇒ WINsi (σi, σ−i))) .

This prompts the definition of the following objective:

Ωni (s) = Outs(Sni ) ∩ (Outs(Sn)⇒ WINi) .

We show that there is indeed a correspondence between this objec-
tive Ωni and states s such that Valni (s) = 1.

Proposition 5. A strategy of player i is a strategy of Sni which is
winning from state s against all strategies of Sn−i if, and only if, it
is winning for objective Ωni (s).

Note that we cannot directly obtain a description of Ωni (s) in
term of automata using Lemma 6, since we need to recognize
Outs(Sni ). To characterize runs of Outs(Sni ) we will both use a
condition on transition similar to the safety case, and a condition
on the long run. Recall that Tn = ∪i∈PTni , where:

Tni = {(s, s′) ∈ E | s ∈ Vi ∧Valn−1
i (ρk+1) < Valn−1

i (ρk)}.

If a player j 6= i takes a transition that decreases its value,
then we immediately know that player i wins for objective Ωni by
playing an admissible strategy. We thus define:

Cni = {ρ ∈ V ω | ∃k, ∃j 6= i, (ρk, ρk+1) ∈ Tnj };

We also define C≤ni =
⋃n
m=1 C

m
i and Out(G \ T≤n) =⋂n

m=1 Out(G \ Tn). Objective Ωni can be further decomposed
with respect to Cni and Tn.

Proposition 6. Player i, has a winning strategy for Ωni (s) in G if,
and only, if he has one for:

Θn
i (s) = C≤ni ∪

(
Out(G \ T≤n) ∩ Ωni (s)

)
.

4.3.3 Using the automata
We can now use the acceptance conditions of automata (Amj )m≤n,j∈P
to rewrite Θn

i . If we expand the definition of Ωni in Θn
i , we obtain

that Θn
i (s) equals:

C≤ni ∪
(
Out(G \ T≤n) ∩Outs(Sni ) ∩ (Outs(Sn)⇒ WINi)

)
.

The set C≤ni and WINi are easily definable by an automaton. An
automata for Out(Sn) is constructed through an intersection of
automata (Amj )m≤n,j∈P , as shown in Lemma 7. Hence, we now
have to construct automata recognizing and Out(Sni ) ∩ Out(G \
T≤n).

Computing Out(Sni ) ∩ Out(G \ T≤n) This construction is also
based on the automatonAni . For this, we show that it can be defined
through a combination of Out(Sni ,Sn−1

−i ) and of outcomes of
admissible strategies at the previous iteration. Namely:

Lemma 9. Out(Sni ) ∩Out(G \ T≤n) is equal to:
Out(Sn−1

i ) ∩ Out(G \ T≤n−1)i ∩
(
Out(Sn−1)⇒ L(Ani )

)
∩

Out(G \ T≤n).

The previous lemma provides a recurrence relation to compute
the intersection Out(Sni )∩Out(G \ Tn), with base case being all
the runs of G.

4.4 Bounding the number of iteration phases
We can show that Valni (s) = 1 ⇒ Valn+1

i (s) = 1 as winning
strategies are admissible and Sn+1

−i ⊆ Sn−i implies that winning
strategies remain winning. Similarly, we can show Valni (s) =
−1 ⇒ Valn+1

i (s) = −1. So the number of times that the value
function changes is bounded by |P | · |V |. This allows us to bound
the number of iterations necessary to reach the fix-point:

Proposition 7. S∗ = S|P |·|V |.



4.5 Algorithm for Muller conditions
The above construction yields procedures to compute the values,
and in turn to solve the winning coalition problem. The algorithm
works as follow, starting from n = 0 and incrementing it at each
loop:

1. compute an automaton representing Out(Sn) with the help of
L(An), as described in Section 4.2;

2. compute for each player i the objective Θn
i as explained in

Sections 4.3.3 and 4.3.3;

3. compute for each player i the objective Ψn
i (see Section 4.3.1);

4. compute for each player i and state s, Valni (s): we will show
how to do this in the remainder of this section;

5. compute for each player i the set Hn
i .

Proposition 8. Checking whether Valni (s) = 1 is in PSPACE.

Proof. We define the following two-player game Gni as follows.
Gni has the structure of G, except that the edges corresponding to
a player decreasing his own value at any previous iteration have
been removed (thus avoiding T≤n syntactically). The players are
Eve and Adam, the states of Eve are Vi and the states of Adam are⋃
j 6=i Vj . The winning condition for Eve is Θn

i , which is a Muller
condition.

If Eve has a winning strategy starting from state s, then
Valni (s) = 1, as shown by Propositions 5 and 6. Recall that for
Muller condition, deciding whether there exists a winning strategy
for Eve is in PSPACE [11].

Proposition 9. Checking whether Valni (s) = −1 is in coNP.

Proof. This is equivalent to the emptiness of Ψn
i when starting

from state s. Again, Ψn
i is a circuit condition on G where edges

decreasing the value of their owner are removed. Testing non-
emptiness amounts to guessing a lasso path starting from s, and
checking that the states visited infinitely often correspond to a set
of F . This NP algorithm answers true when Valni (s) 6= −1. We
therefore have a coNP algorithm.

Proof of Theorem 2. Let W,L be the set of players that must win
and lose, respectively, in the instance of the winning coalition
problem. The winning coalition problem is thus equivalent to the
non-emptiness of

Φ = Out(S∗) ∩
⋂
i∈W

WINi ∩
⋂
i∈L

¬WINi

over G, which is a Muller condition. This check is done in NP.
This however requires the computation of the condition corre-

sponding to Out(S∗), hence of the values for all intermediate iter-
ations before the fix-point. Each iteration means solving a Muller
game, which is done in polynomial space. Moreover, by Proposi-
tion 7, there are at most |P | · |V | iterations. Thus the overall com-
plexity is in PSPACE.

5. Büchi objectives
In this section, We assume that each winning condition WINi
is given by a Büchi set Fi. A careful analysis of condition Θn

i

shows that it can be reformulated as a parity condition. Hence
computing the value of a state boils down to solving two-player
parity games. Parity games are known to be in UP∩ coUP, but the
question whether a polynomial algorithm exists for parity games
has been open for several years [9, 12]. Our algorithm thus works
in polynomial time with call to oracles in NP∩coNP, hence is also

in NP∩coNP [4]. This idea is the basis for the proof of Theorem 3,
which is detailed in the remainder of the section.

Theorem 3. The winning coalition problem with Büchi objectives
is in NP ∩ coNP. Moreover, if there exists a polynomial algorithm
for solving two-player parity games, then the winning coalition
problem with Büchi objectives is in P.

Definition 7. A parity condition is given by a coloring function
χ : V → {0, . . . ,M} with M ∈ N. Accepted runs with respect to
the coloring functions are the ones where the maximal color visited
infinitely often is even:

WINχ = {ρ |max(Inf(χ(ρ))) is even} .

5.0.1 Expressing Θi as a parity condition
First note that the acceptance condition of L(Ani ) can be expressed
by the following Büchi set, assuming that we remove all the edges
that decrease the value of player i:

Kn
i ={s | Valn−1

i (s) = −1} ∪ {s | Valn−1
i (s) = 1 ∧ s ∈ Fi}

∪ {s | Valn−1
i (s) = 0 ∧ s ∈ (Fi ∪Hn−1

i )}

Note that Fi ⊆ Kn
i for every n.

Out(S0) is accepted by the automaton with the same struc-
ture as G and where the Büchi set is V . Since Out(Sn−1) ∩⋂
i∈P L(Ani ) = Out(Sn) by Lemma 7, Out(Sn) is recognized

by an automaton whose acceptance condition is a conjunction of
n× |P | Büchi conditions. By taking a product of the game with an
automaton of size n× |P |, a condition Out(Sn) can be expressed
as a single Büchi set that we write Dn.

Recall that condition Θn
i is

C≤ni ∪
(
Out(G \ Tn−1) ∩Out(Sni ) ∩ (Out(Sn)⇒ WINi)

)
.

We isolate the prefix-independent part of Θn
i by defining

Γni = Out(Sni ) ∩ (Out(Sn)⇒ WINi)

which, by unfolding the recurrence relation of Lemma 9, can be
rewritten:

Γni =

n−1⋂
m=0

(
Out(Sm)⇒

(
L(Am+1

i ) ∩Out(Sm)
))
∩

(Out(Sn)⇒ WINi)

Also remark that the “prefix-dependent” part of Θn
i can be ex-

pressed by either removing edges (to avoid sets Tni ) or adding an
additional winning state (for sets Ci).

Each set Out(Sm) is expressed by the Büchi condition Dm.
Similarly, condition

(
L(Am+1

i ) ∩Out(Sm)
)

is a conjunction of
m × |P | + 1 Büchi conditions. Therefore, in order to consider all
these different conditions on the same game, it can be assumed that
G is synchronized with a product of size3 O(n2 · |P |). Then each
condition

(
L(Am+1

i ) ∩Out(Sm)
)

can be expressed as a single
Büchi set that we write Em+1

i .
Notice that we have a “chain” of inclusion of the various objec-

tives. For each index m and player i:

Out(Sm) ∩ L(Am+1
i ) ⊆ Out(Sm) ⊆ Out(Sm−1) ∩ L(Ami ).

(1)
Hence, if the left operand of an implication Out(Sm)⇒

(
Out(Sm) ∩ L(Am+1

i )
)

is satisfied, then all such implications are satisfied for indexes
k < m. And if the right operand is satisfied, then it is the case
for indexes k ≤ m. The condition Γni can then be defined by the
parity condition given by the following coloring function χni :

3 Precisely |P | · (n− 1) · (n− 2) + n.



• if s ∈ Fi then χni (s) = 2n+ 2

• otherwise χni (s) is the maximum value between 0,
2 ·max {m | s ∈ Emi }, and 2 ·max {m | s ∈ Dm} + 1, with
the convention that max ∅ = −∞.

Lemma 10. For all index n and player i, ρ ∈ Γni if, and only if, ρ
satisfies the parity condition χni .

5.0.2 Solving the winning coalition problem for Büchi
objectives

We showed that all objectives encountered in the computation of
values boil down to parity objectives. This yields the following
proof:

Proof of Theorem 3. By reformulating Θn
i as a parity condition,

checking whether the value of a state is 1 amounts to solving a
two player game with parity condition. This is known to be in
UP∩coUP, although suspected to be in P. Similarly, condition Ψn

i

is a conjunction of Büchi objectives, hence solving its emptiness —
which means deciding whether the value of a state is−1 — is in P.

Let n0 be the index where the sets of admissible strategies sta-
bilize (we have n0 ≤ |P | · |V |). Let W,L be the set of players that
should win and lose, respectively. Solving the winning coalition
problem amounts to solving emptiness of

Φ = Out(Sn0) ∩
⋂
i∈W

WINi ∩
⋂
i∈L

¬WINi.

As the conjunction of n0 + |W | Büchi conditions and a coBüchi
condition, it can be expressed as a parity condition with 3 colors.

6. Weak Muller conditions
Assuming that the winning conditions are weak Muller conditions,
we can show the following theorem, which generalizes Theorem 1:

Theorem 4. The winning coalition problem for weak Muller con-
ditions is PSPACE-complete. However, if the number of players is
fixed, the problem becomes P-complete.

Proof sketch. The core of the argument consists in proving that
the value of a history only depends on the set Occ(h) of states
that have been visited and on the last state of the history. Then,
as in the case of safety conditions, we unfold the game, yielding
prefix-independent winning conditions. Therefore we can reuse the
techniques of previous section to compute the values. A recursive
algorithm taking advantage of the structure of the unfolding limits
the complexity and allows a computation in PSPACE.

7. Model-checking under admissibility
Given a LTL formula φ, the model-checking under admissibility
problem is equivalent to the emptiness of Φ = L(¬φ)∩Out(S∗).
It was proven in [22] that the language L(¬φ) can be represented
by a Büchi automaton A¬φ which can be accessed (i.e. the ex-
istence of a transition, whether a state is initial, accepting. . . ) in
polynomial space.

Nondeterministically guessing a path (the length of which can
be bounded) in the product ofA¬φ and (G, ψ), the automaton with
Muller condition for Out(S∗(G0)), yields a polynomial space al-
gorithm to solve the model-checking under admissibility problem.
Conversely LTL model-checking is PSPACE-hard [21], hence pro-
viding the lower bound:

Theorem 5. The model-checking under admissibility problem is
PSPACE-complete.

8. Conclusion
This paper provides new fundamental complexity and algorith-
mic results on the iterated elimination of dominated strategies in
the context of turn-based n-player perfect information ω-regular
games. We have shown that the non-elementary complexity of
the plain tree-automata-based procedure suggested in [2] can be
avoided, and our precise complexity results show that iterated elim-
ination of dominated strategies is a computationally viable alterna-
tive to Nash equilibria.

Future directions include investigating extensions with imper-
fect information, with quantitative objectives, or richer interaction
models like concurrent games.
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A. Example: a metro system
A.1 The model of the system
We illustrate the use of model-checking under admissibility over
the following metro system. The metro track is composed of a
directed ring divided in n slots (one can assume for example that
even-numbered slots represent a station, while odd-numbered slots
represent a section of track between two stations). There are p trains
numbered 1 to p on the track, initially at positions p − 1, . . . , 0
(hence train number 1 starts in front of the others (see Figure 6). In
the sequel we study the case of a track of length 6 with two trains
t1 and t2.

0 1

4 3
25 12

Figure 6: Metro track with n = 6 and p = 2, at their initial position
(1, 0).

At each step, all the trains successively declare whether they
want to advance or not. Once everyone has chosen, all trains try
to move synchronously. However, there is an evil environment env
that can prevent trains from moving (for example by activating an
alarm on the section the train is trying to move in). That means
some trains that wanted to move may in fact remain in their posi-
tion. Nevertheless, all other trains must comply with their original
choice, modeling the fact that trains cannot communicatein real-
time. Additionally, if at any point two trains are on the same track
section, they collide and the game stops. (Part of) the game graph

for this protocol is depicted in Figure 5. In this game, the config-
uration of the track is given by the pair of positions for t1 and t2,
and their respective wish to move or stay in place by the symbols
“→” (advance) or “↓” (stay in place).

The objective of both trains is to loop infinitely often, which can
be expressed by a generalized Büchi winning condition4 requiring
visiting infinitely often both sections 0 and 1. The objective of the
environment is to give rise to a collision: since collision are sink
states it is equivalent to a Büchi winning condition over the set of
collision states. Globally, we are interested in knowing whether the
LTL formula ψ¬coll that expresses that no collision ever happens is
satisfied under admissibility. Remark that here:

• no player has a winning strategy alone;
• the formula ψ¬coll is not verified on all paths of the model;
• that the players are not a priori trying to satisfy ψ¬coll: indeed,

the environment’s objective is to negate ψ¬coll.

A.2 The set of iteratively admissible strategies
After iteratively eliminating dominated strategies (the computation
is detailed in [5]) we obtain the set of strategies with the following
properties.

• If given the opportunity (e.g. two trains following each other
both willing to advance), the environment will create a colli-
sion.
• In this set, one can see that whenever t2 is right behind t1:

t2 never tries to move;

t1 infinitely tries to move;

This prevents giving a collision opportunity to the environment.

As a result, one can see there can be no collision, hence the objec-
tive ψ¬coll is satisfied. Hence, the model-checking under admissi-
bility problem answers positively for ψ¬coll, while the (“classical”)
model-checking problem for the same formula answers negatively.

This also shows for example that the winning coalition problem
with env ∈ W answers negatively: there is no admissible profile
that makes player env win.

On the other hand, it cannot be assured that t1 and t2 will win
for their objective: the environment can choose to always block
their movement, preventing them from looping infinitely often on
the track.

4 This condition can therefore be expressed by a Büchi condition on a graph
with memory of visits to 0 or 1. It can also be expressed by a circuit
condition encoding formula

∨
(0, ) ∧

∨
(1, ).


