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Abstract models have been proposed, for instance Suspension Au-
tomata [17], Hierarchical Timed Automata [12], Task Au-
Interrupt Timed Automata (ITA) have been introduced to tomata [14] or Interrupt Timed Automata (ITA) [5]. We
model multi-task systems with interruptions. They form a consider here the ITA model, specifically adapted to the de-
subclass of stopwatch automata, where the real valued vari-scription of multi-task systems with hierarchical intgytu
ables (with rate) or 1) are organized along priority levels. levels in a single processor environment, like operatirsg sy
While reachability is undecidable with usual stopwatches, tems. As proved in [5], untiming languages accepted by
the problem was proved decidable for ITA. ITA yields regular languages with the effective constroicti
In this work, after giving answers to some questions left of a class graph generalizing the region automaton from [2].
open about expressiveness, closure, and complexity for ITA  While untimed properties like reachability GTL model
our main purpose is to investigate the verification of real checking [13, 19, 11] are useful for such models, real time
time properties over ITA. While we prove that model check- verification allows to obtain more precise results, for in-
ing a variant of the timed logi@CTL is undecidable, we  stance quantitative response time properties. Therefore,
nevertheless give model checking procedures for two rele-timed extensions oETL have been defined, leading to dif-
vant fragments of this logic: one where formulas contain ferent versions of Timed€TL (TCTL) [1, 16] for which
only model clocks and another one where formulas have aseveral tools on TA have been developed [4, 9].

single external clock. Contribution.  Starting with studying closure properties

and settling an expressiveness conjecture from [5], we im-
. prove complexity of reachability on ITA. We then focus on
1 Introduction the verification of real time properties for ITA. These prop-
erties are expressed WCTL,, a timed extension o€TL
Context. Scheduling problems in multi-task systems are where formulas involve model clocks as well as external
usually modeled with stopwatchesg. variables which  clocks. This logic is a variant of the one in [16], also stutlie
evolve with rate0 or 1 and can be tested and updated |ater from the expressivity point of view [8]. Unfortunagel
when discrete transitions are fired. Thus stopwatches modelve prove here that, contrary to reachability, model chegkin
clocks that can be suspended and restarted with their for-TCTL, over ITA is undecidable. The result holds for a fixed
mer value, which makes them useful to express delay actwo-clock formula, showing its robustness (which is not al-
cumulation. However, adding such variables to finite au- ways the case in similar proofs). However, we propose two
tomata yields the powerful model of Stopwatch Automata fragments for which decidability procedures can be found.
(SwA) [15, 10] where reachability has been proved un- |n the first one, only model clocks are involved and we can
decidable. On the other hand, reachability is PSPACE- express properties lik¢P1) a safe state is reached before
complete in the now classical model of Timed Automata spending 3 t.u. in handling some interruptioBecidabil-
(TA) [2, 3], where all variables are clocks, with single rate jty is obtained by a generalized class graph construction in
L. 2-EXPSPACE (PSPACE if the number of clocks is fixed).
Restricting SwA to gain decidability, while retaining part - Since the corresponding fragment cannot refer to global
of the power of stopwatches, is a difficult problem. A few time, we consider a second fragment in which it is possi-
*“Work partially supported by projects CoChaT (Digiteo 2@FHD) ble to reason on minimal or maximal delays. Properties like
and DOTS (ANR-06-SETI-003) (P2) the system is error free for at least 50 tar.(P3) the




system will reach a safe state within 7 taan be expressed.

Given a set of tasks with different priority levels, a higher

In this case, the decidability procedure relies on a new spe-level task represents an interruption for a lower level task

cific technique involving infinite runs.
Outline. Section 2 gives definitions for ITA, expressive-

At a given level, exactly one clock is active (rdfg while
the clocks for tasks of lower levels are suspended (rate

ness, closure, and complexity results. We prove in Section 3and the clocks for tasks of higher levels are not yet activate

that model checkingCTL. over ITA is undecidable and

and thus contain value. The mechanism is illustrated in

Section 4 presents model checking procedures for two frag-':igure 1.

ments of TCTL...

2 Interrupt Timed Automata

Notations. The sets of natural, rational and real numbers
are denoted respectively By, Q andR. For a finite setX

of clocks, a linear expression ovér is a term of the form

> wex @z - T+ bwhereb and thea, s are inQ. We denote

by C(X) the set of constraints obtained by conjunctions of
atomic propositions of the for' < 0, whereC' is a linear
expression oveX andie {>,> = < <}. The subset
Co(X) of C(X) contains constraints of the form+- b > 0.

An update overX is a conjunction of assignments of the
formz := C for a clockz € X and a linear expressiafi
overX. The set of all updates ovef is writtenZ/ (X ), with
Up(X) for the subset containing only assignments of the
form z := 0 (reset) or of the fornx := x (no update). For

a linear expressio@ and an update containingz := C,,

the expressio@|[u] is obtained by substituting by C,. in

C.

A clock valuation is a mapping : X — R and we
denote by0 the valuation with valu® for all clocks. The
set of all clock valuations i®X and we writev |= ¢ when
valuationv satisfies the clock constraipt For a valuation
v, a linear expressio@' and an update, the valuev(C) is
obtained by replacing eachin C by v(z) and the valuation
v[u] is defined byv[u](z) = v(C,) for z in X if 2 := C,
is the update fox in .

Interrupt timed automata and timed automata. Inter-
rupt Timed Automata (ITA) were introduced in [5] to model
multi-task systems with interruptions.
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Figure 1. Interrupt levels and clocks in an ITA.

We extend the definition by associating with states a tim-
ing policy which indicates whether time may (Lazy, de-
fault), may not (Urgent) or must (Delayed) elapse in a state.
This feature could not be enforced by additional clock con-
straints like in TA and is needed to obtain the translation
from ITA to ITA_ (see below). We also add a labeling of
states with atomic propositions, in view of interpretingito
formulas on these automata.

Definition 1. Aninterrupt timed automatois a tuple
A=(2, AP Q,qo, F,pol, X, \,lab, A), where:

e Y is a finite alphabetAP is a set of atomic proposi-
tions

Q is afinite set of stategy is the initial state,F’' C Q
is the set of final states,

pol : Q@ — {Lazy,Urgent, Delayed} is the timing
policy of states,

o X ={x4,...,z,} consists of interrupt clocks,

the mapping\ : @ — {1,...,n} associates with each
state its level, andab : Q — 247 labels each state
with a subset ofd P of atomic propositions,

ACQ@QXxIC(X)x(ZU{e}) xU(X)] x Q is the set
of transitions. We calk,,) the active clock in state
q. Letqg 2% ¢/ in A be a transition withk = A(q)
and k¥’ = X(¢’). The guardy contains only clocks
from levels less than or equal fo it is a conjunction
of constraints of the forni:l;:1 a;x; +b a2 0. The
updateu is of the formn}"_; z; := C; with:

— if k' < k, i.e. the transition decreases the level,
thenC; is of the formzz;ll ajz; +borC; =
x; (unchanged clock value) far < ¢ < &’ and
C; = 0 otherwise;

— if ¥ > k then(; is of the formZ;;ll a;r; +b
orC;, =x;for1 <i<k,C; =0fork < 1.

The class ITA is the subclass of ITA where updates are
restricted as follows. For a transitign>2"; ¢’ of an au-
tomatonA in ITA_, with & = A(¢) andk’ = A\(¢’), there is
no updatei(e. z; := z; forall i) if ¥’ < kandifk’ > k, the
updateu is of the formA?_, z; := C; with Cj, of the form
Zf;ll ajz; +borCy =z, C; = 0if k < iandC; = x;
if 2+ < k. Thus, in an ITA_, the only non trivial update.e.



not enforced by the semantics of the model) is an update ofCy(X) x ¥ x Uy(X) x Q, with guards inCq(X) and up-
the clock of the current level, when the transition does not dates int/,(X).
decrease the level.

A configuration of the system consists of a state of
the ITA, a clock valuation and a boolean value expressing
whether time has elapsed since the last discrete transition

The semantics of a timed automaton is also defined as a
timed transition system, with the s@tx R¥ of configura-
tions (no additionnal boolean value). Discrete steps afe si
ilar to those of ITA but in time steps, all clocks evolve with
same raté: (¢, v) 4 (g,v")iff Vo € X, v'(x) =v(x)+d.

A run of an automatord in TA or in ITA is a path in
the associated timed transition system, where time steps
and discrete steps alternate. Ancepting runis a finite
run ending in a state of’. For such a run with label
Time steps: Only the active clock in a state can evolve, all 4,4,d, . ..d,a,, we say that the worda,, d;)(as,d; +

other clocks are suspended. For a statwith active d3)...(an,dy + --- + dy) (Wheree actions are removed)
clockzy (), atime step of duratiod > 0 is defined by is accepted byd. The setZ(.A) contains the timed words
(q,v,5) 4, (g, 0", T) With v/ (z5(g)) = v(zr()) +d accepted byA. Interrupt Timed Languages or ITL (resp.
andv/(z) = v(x) for any other clock:. A time step  Timed Languages or TL) denote the family of timed lan-
of duration0 leaves the systeffi; in the same config- ~guages accepted by an ITA (resp. a TA). We also consider
uration. Whenpol(q) = Urgent, only time steps of maximal runswhich are either infinite or such that no dis-
duration0 are allowed fromy. crete step is possible from the last configuration. We use the
notion of (totally ordered) positions (which allow to con-
sider multiple discrete actions simultaneously) along &ma

Definition 2. The semantics of an ITA is defined by the
transition systen¥V4 = (5, so,—). The setS of config-
urations is{(q,v,8) | ¢ € Q, v € RX, B € {T,1}},
with initial configuration(go, 0, L). The relation— on S
consists of two types of steps:

Discrete steps: A discrete stefiq, v, 5) = (¢/,v’, L) can

occur if there exists a transition === ¢’ in A'such  imal run [16]: for a runp, we denote by, the strict order
thatv |= ¢ andv’ = v[u]. Whenpol(q) = Delayed  on positions and for position alongp, the corresponding
andg = 1, discrete steps are forbidden. configuration is denoted by

An ITA A, is depicted in Figure 2(a), with two interrupt
levels (and two interrupt clocks), with a geometric view of Expressiveness, closure, and complexity results.We

a possible trajectory in Figure 2(b). end this section by closing some questions left open in [5]
and improve complexity bounds for the reachability prob-
T <1, lem on ITA. In particular, while it was known that ITL is

Ty 4229 = 2, not contained in TL, the converse was not proved. We have:

a7
(.%'2 = 0) b
Proposition 1. The families TL and ITL are incomparable.

ITL is neither closed under complementation, nor under in-
(a) An ITA A; with two interrupt levels tersection.

2 These proofs rely on a specifiwmping lemméor ITA.

Note that incomparability of languages accepted by TA and

1 ITA also proves that ITA are not in the same class than Hi-
b erarchical Timed Automata (HTA) from [12], since it was
also proved that these HTA can be flattened into a network
- of TA.
0 a 1 2 ! Finally, we prove that ITA and ITA have the same expres-
(b) A possible trajectory imd; sive power:
Figure 2. An example of ITA and a possible Proposition 2. Any ITA can be translated into an ITAac-
execution. cepting the same language, with the same set of clocks. The

number of states and transitions is doubly exponentialén th

We now briefly recall the classical model of timed au- number of clocks.
tomata (TA) [3] (in which timing policies can be enforced

\ This transformation allows to reduce reachability for ITA
by clock constraints).

to the same problem for ITA, where it is solved by bound-
Definition 3. A timed automatonis a tuple A = ing the length of a minimal path. The bound is exponential
(3,Q,q0, F, X, A), whereX, Q, qo, F, and X are de- for ITA _, but stays only doubly exponential for ITA, due to
fined as in an ITA and the set of transitionds C @Q x the conservation of the number of clocks. Thus, we have:



Proposition 3. Reachability on ITA can be done in 2-
NEXPTIME and in NP when the number of clocks is fixed.

(qavaﬁaw):

_ (¢;v,8,w) Ep iff p € lab(q)
These results improve the ones of [5] where the upper (q,v, 8,w) =y + b0 iff wk=y+bxa0
bounds were in 2-EXPSPACE and in PSPACE when the (¢, v, 3, w) = Sisg @i it 0

number of clocks is fixed. iff v =)0 ai-2i+b>0
Detailed proofs for these results can be found in [6]. -
and inductively:

(s,w) E ya iff y € Y and(q,v,wly:=0]) E¢
(5,w) = AU iff ¥p € Exec(s,w), p = U
(s,w) E E@Uiff 3p € Exec(s,w)s. t.p = Uy

3 Model checkingTCTL over ITA
3.1 Timed logicTCTL..

At least two different timed extensions of the branching with p = ¢ U ¢ iff there is a positionr € ps. t.s; = ¢
time logicCTL have been proposed. The first one [1] adds andvn’' <, m, s =@V
subscripts to tha) operator while the second one consid-
ers formula clocks [16]. Model checking of timed automata
was proved decidable in both cases and compared expre

the cases for boolean operators are omitted.

3.2 Undecidability of TCTL. model checking.

siveness has been revisited later on [8].
In the variant belowCTL is enriched with both model

clocks (setX), used in linear constraints, and formula

clocks (setY” disjoint from X), used only in comparisons

to constants and resets. Such linear constraints yield a mor
expressive logic, which raises the question of decidabilit haorem 1. Model checking CTLe
" C

both for TA and ITA.

Definition 4. Formulas of the timed logi@CTL, are de-
fined by the following grammar:

Yu=ply+bea0] Y a;-mi+ba0]y.)|
iel

AYUY[EYUY [P AY [t

wherep € AP is an atomic propositiony € Y is aformula
clock, z; are model clocksg; and b are rational numbers
such that(a;);c; has finite supporf C N, and<ie {>, >

y T Sa <}

LetA = (X, AP, Q, qo, F,pol, X, \,lab, A) be an inter-
rupt timed automaton anfl = {(¢,v,5) | ¢ € Q, v €
RX, 8 € {T,L}}, the set of configurations. The for-

mulas of TCTL, are interpreted over extended configura-

tions of the form(q, v, 8, w), also written ags, w), where
s = (q,v,B) € Sandw € RY is a valuation of the formula

We now prove that model checkifidCTL,. over ITA is
undecidable. More precisely, IFBCTLS be the fragment
of TCTL. containing only formula clocks, we have:

over ITA is undecid-
able.

The first step of the proof is the construction of automa-
ton A, as a synchronized product between an interrupt
timed automaton and a timed automaton, to simulate a two
counter machine\. In the second step, BCTL, formula
with two external clocks is built to simulate the timed au-
tomaton part of the product. This formula does not depend
on the two counter machine.

First step. We consider the class ITATA of automata
built as a synchronized product between an interrupt timed
automaton and a timed automaton over the same alphabet.
Note that if accepted languages are considered, the lan-
guage of such an automaton is the intersection of the lan-
guage of an ITA and the language of a TA.

Lemma 1. Reachability is undecidable in the class
ITAXTA.

clocks. The notions of (maximal) run and position are ex- Sketch.We build an automaton in ITATA which simu-
tended to these configurations in a natural way: the clocklates a deterministic two counter machine. Recall that such

valuationw becomesu + d in a time step of delay and is
unchanged in a discrete step. We denotélyc(s, w) the
set of maximal runs starting fros, w).

The semantics of TCTL. is defined as follows.
For atomic propositions and a configuratids, w) =

1The boolean value in the configuration is not actually uséug Ibgic
could be enriched to take advantage of this boolean, to sgoe example
that a run lets some time elapse in a given state.

a machineM consists of a finite sequence of labeled in-
structionsL, which handle two counteksandd, and ends
at a special instruction with labélalt. The other instruc-
tions have one of the two forms below, where= {c,d}
represents one of the two counters:

e ¢:= ¢+ 1;gotol’

e if e > 0then(e := e — 1; goto?’) else gota?”



Without loss of generality, we may assume that the coun-
ters have initial value zero. The behaviour of the machine
is described by a (possibly infinite) sequence of configura-
tions: (¢, 0,0){(¢1,n1,p1) ... {{;i,ni, p;) ..., wheren; and
p; are the respective counter values @nds the label, af-
ter thei'” instruction. The problem of termination for such
a machine (“is theHalt label reached?”) is known to be
undecidable [18].

The automatonA (3,AP,Q, qo, F,pol, X U
Y, A, lab, A) is built to reach its final locatiot#f alt if and
only if M stops. It is defined as follows:

e Y consists of one letter per transitiohP is defined in
the sequel.

Q = LU (L x {ko}) U (L x {ki,ka,r1,... 15} x
{>,<}), @0 = £ (the initial instruction of M) and
F = {Halt}.

pol : Q — {Urgent, Lazy, Delayed} is such that
pol(q) = Urgent iff either ¢ € L orq = (¢, q2,),
andpol(q) = Lazy in most other cases: some states
(¢, k;,<1) areDelayed as shown on Figure 4.

X = {x1,22,23} is the set of interrupt clocks and
Y = {y., ya} is the set of standard clocks with rate

A Q — {1,2,3} is the interrupt level of each state.
All states inL are at levell; so do all states corre-
sponding tdkg, k1, ko andr,. States corresponding to
ro andrs are in level2, while the ones corresponding
tor, andrs are in level3.

e Jab will be defined in the second step of the proof.

e A is defined through basic modules in the sequel.

The transitions ofd ., are built within small modules,
each one corresponding to one instructiop\df The value
n of ¢ (resp.p of d) in a state ofL is encoded by the value
1 — 5= of clocky. (resp.1 — 55 of yg).

The idea behind this construction is that for any standard
clocky, itis possible to mimic the copy of the value/of-y
in an interrupt clocke;, for some constant, provided the
value ofy never exceeds. To achieve this, we start and
reset the interrupt clock, then stop it whee= k. Note that
by the end of the copy, the value gfhas changed. Con-
versely, in order to copy the content of an interrupt clock
x; into a clocky, we interruptz; by z;; and resey at the
same time. When;; = x;, clock y has the value of;.
Remark that the form of the guards op,; allows us to
copy any linear expression day, ..., z;} iny.

For instance, consider an instruction labeled/bycre-
mentingc then going to?’, with the respective values of
c andp of d, from a configuration where > p. The cor-
responding module’: 7 (¢, ¢') is depicted on Figure 3. In

Figure 3. Module AL (¢,¢') incrementing the
value of ¢when ¢ > d.

this module, interrupt clock; is used to record the value
5= while z, keeps the valug;. Assuming thay, = 1— -,
yg =1— 2% andz; = 0 in state(¢, r1, >), the unique run
in ASL (¢, ¢') will end in state” with y. = 1 — 5+ and
Ya = 1-— 2%.

The module on Figure 3 can be adapted for the case
of decrementing: by just changing the linear expressions
in guards forzs, provided that the final value afis still
greater than the one af. It is however also quite easy
to adapt the same module when< p: in that case we
store 5 in 1 and 5+ in z2, sincey, will reach 1 before
y.. We also need to staift; beforey. when copying the
adequate values in the clocks. The case of decrementing
while n < p is handled similarly. In order to choose which
module to use according to the ordering between the values
of the counters, we use the module of Figure 4 which repre-
sents the case when at lalfele have an increment ef or
a similar one for decrementation. In that last case the value
of ¢ is compared not only to the one @f but also ta0, in
order to know which branch of thi¢ instruction is taken.
Note that only one of the branches can be taken until the
end of the modufe Instructions involvingl are handled in
a symmetrical way.

A 1S obtained by joining the modules described above
through the states af. The automatom ,, can actually
be viewed as the product of an ITAand a TAT, synchro-
nized on actions. It can be seen in all the modules described
above that guards never mix a standard clock with an inter-
rupt one. Since each transition has a unique label, keeping
only guards and resets on either the clockX'adr on those
of Y yields an ITA and a TA whose producti$. O

Note that another notion of synchronized product be-
tween ITA and TA leads to the class ITAwhere reacha-
bility is decidable [5].

2state policies are used to treat the special casgsy. = yq = 0.



Figure 4. Module taking into account the or-

der between the values of ¢ and d when incre-

menting c.

Second step. To prove Theorem 1, we build from the au-
tomatonA, above a formulg in TCTL, simulating the
TA T, so that the ITAZ satisfiesy iff M terminates. For-
mula ¢ expresses that (1) there is a runZimreaching the
Halt state, and (2) for each module &f this run satisfies
the constraints on the clocks andy, of 7.

The full proofs that the above construction is correet (
halts iff A, reaches thélalt state) and for this second step
are given in [7]. Observe that state policies allow an encod-
ing with two TA clocks; an additional one would be needed
to simulate policies.

4 Decidable fragments
4.1 Model checkingTCTLM

In this section we consider formulas with only model
clocks, the corresponding fragment being denoted by
TCTLI"™. For example property’1 in the introduction is
expressed by zo < 3 U safe Model checking is achieved
by adapting a class graph construction for untiming ITA and
adding information relevant to the formula. The problem
is thus reduced to €TL model checking problem on this
graph.

Theorem 2. Model checkingTCTL!™ on interrupt timed
automata can be done i2-EXPSPACE, and in PSPACE
when the number of clocks is fixed.

Proof. The proof relies on a refinement of the class graph
construction in [5], each class being divided into sub@ass
corresponding to truth values of comparisons in the given

sists in computing: sets of expressionsy, ..., F,. Each
setEy is initialized to{xy, 0} and expressions in this set are
those which are relevant for comparisons with the current
clock at levelk. The sets are then computed top down from
n to 1. In that process, we use tlienormalization opera-
tor: for an expressioft’ =Y., a;x; + b, if a;, = 0, then

norm(C, k) Zf:_ll a;z; + b, otherwisenorm(C, k) =
Tho+ Yy L+ L

e Atlevel k, we may assume (by normalization) that ex-
pressions in guards of an edge leaving a state are of the
formaxy + >, aiz; + b with o € {0,1}. We add
— Zi<k a;r; — bto .

To take into account the constraints of formylawe
add the following step: For each comparigGn= 0
in o, and for eachk, with norm(C, k) = ax, +
> icr @i + b (o € {0,1}), we also add expression

— i<kaixi—thEk.

Then we iterate the following procedure until no new
termis added to ang; for1 < < k.

1. Letq =25 ¢/ with M\(¢/) > k and\(q) > k. If
C € Ej, then we add’[u] to E.
©,a,U

. Letq —— ¢ with A\(¢’) > k andX(q) < k.
ForC,C’ € E}, we comput&”’ = norm(Clu]—
C'lul, Mq))- If C" = axy(g) +22, () @iTi+b
witha € {0,1}, thenwe add-3_, ) @iz —b
to E)\(q)-

The proof of termination for this construction is similar to
the one in [5].

Consider the ITA4; (Figure 2(a)) and the formulg, =
ETU(q1 A (z2 > x1)). We assume tha; is a propo-
sitional property true only in statg . Initially, the set of
expressions ar&; = {xz1,0} andEy = {x3,0}. First the
expression—%xl + 1is added intaE; sincex; + 2z9 = 2
appears on the guard in the transition frgmto ¢>. Then
expression is added toF; becauser; — 1 < 0 appears
on the guard in the transition fromy to ¢;. Finally ex-
pressionz; is added toFs sincex, — x7 > 0 appears in
¢1. After iteration, we obtain®; = {z1,0,1,%,2} and
E; = {3,0,—%z1 + 1,21}. Remark that knowing the
order betweernz; and% will allow us to know the order
between-1z; + 1 andz;.

The next step is to build the class graph as the transi-
tion systemg 4 whose set of configurations are the classes

formula. Thus each comparison can be represented by ak = (¢, {=r}1<r<x(q)), Whereg is a state anek,, is a total

fresh propositional variable. The final step of the alganith
consists in applying standafTL model-checking proce-
dure.

Let ¢ be a formula inTCTL™ and.A an ITA with n lev-
els. In order to build the finite class graph, the first step-con

preorder ovells;,. The classk describes the set of valua-
tions[R]= {(¢,v) | Vk < A(q) V(9.h) € Ex, gl] < hlo]

iff ¢ <k h}. The set of transitions is defined by discrete and
successor steps, whose details are developed in [5]. Just re
mark that the way the set of expressions is computed, and



more notably the inclusion of all differences between other Theorem 3. Model checking TCTLon ITA is decidable.

expressions (up to normalization details), will enableaus t o o ]
know for each level the preorder between expressions af- The proof consists in establishing procedures dedicated

ter firing a discrete transition increasing the interrupele {0 the 4 different subcases for ITA (1) EpU<,r and
The transition systerg 4 is finite and time abstract bisim- EpUcar, (2) EpUs,r andEpUs,r, (3) ApU<ar and

ilar to 7. Moreover, the truth value of each comparison AP VU<a” and (4)ApU>,7 andApU.,r, wherep andr

C = Y. a; -z + b > 0 appearing ing can be set are boolean combinations of atomic propositions. Detailed
for each class?. Indeed, since for every, both0 and ~ Proofs canbe found in [7]. First, we have:

k-1 : ;
2.i>1 @i - i+ barein the set of expressiofs, the truth | emma 2. a. Model checking formulasE pU<,+ and

value of C' < 0 does not change inside a class. Therefore, EpU_,r over ITA_ is decidable in NEXPTIME and NP
introducing a fresh propositional variabje: for the con- when the number of clocks is fixed.
straintC' < 0, each classk can be labeled with a truth

value for eaclyc. Deciding the truth value ap canthenbe  b. Model checking a formul& pU>,r andEpUs,r on
done by a classic&TL model-checking algorithm o6 4. an ITA_ is decidable in NEXPTIME and NP when the
On the example, we obtain the states in which (z2 > number of clocks is fixed.
x1) is true and conclude thap, is trueon A4;. .
The complexity of the procedure is obtained by bounding & Model checking a formul&p U<, andAp U, on
the number of expressions for each lebély max(2, |A| + an ITA_ is decidable in co-NEXPTIME and co-NP when

p])2"" """V +1, thus obtaining a triple exponential bound the number of clocks is fixed.

for the size of the graph, by storing the orderings. The 2- gketch.The main idea underlying these procedures for
EXPSPACE complexity results in a standard way from a cases 1 and 2 is to obtain a maximal (exponential in the
non deterministic search in this graph. u number of clocks) size for the runs on which it is sufficient
to test the formula. Then the decision procedure is as fol-
lows. It non deterministically guesses a path in the ITA
whose length is less than or equal to the bound. In order to
check that this path yields a run, it builds a linear program
whose variables arfr! }, wherez! is the value of clocks;

after thejth step, and d; } whered; is the amount of time
elapsed during thégth step, whery corresponds to a time

The decidability of model-checking TCTLformulas step. The equations and inequations are deduced from the

. ) guards and updates of discrete transitions in the path &nd th
over ITA has been studied above for two cases: (1) whenOlelay of the time steps.

there are2 formula clocks, in which case the problem is . .
. : The satisfaction of the formula can be checked by sepa-
undecidable (Theorem 1) and (2) when there is no formula e . .
rately verifying on one side that the run satisfidd r, and

clock, in Wh'(.:h. case the problem is demdablg (Theorem 2). on the other side, that the sum of all delajyssatisfies the
The remaining case concerns formulas with ohlffpr- L
mula clock, which can measure elapsing of global time. In constraintin the formula.
this sectior; we prove the decidabiFI)it gf mgdel checkin The size of this linear program is exponential w.r.t. the
' P y 9 size ofthe ITA . As a linear program can be solved in poly-

ITA for a strict subset of this logic. TCTLis the set of for- nomial time [20], we obtain a procedure in NEXPTIME. If

mulas where satisfaction of amtil modality over proposi- - : :
. : L the number of clocks is fixed the number of variables is now
tions can be parameterized by a time interval. Formulas of X )

polynomial w.r.t. the size of the problem.

TCTL, are defined by the following grammar:

Due to the linear constraints we conjecture that model
checkingTCTLI™ on TA is undecidable. This would en-
force the incomparability of TL and ITL from a decidability
point of view.

4.2 Model checking a fragment of TCTL

For formulas in case 3, a specific procedure can

op = Dlep A pplop, and be avoided: the result of case 2 can be reused since
V= p|App U 0p|E@p Usca 0p|t) A1) ApUcar = (ApUr) A=(E—rUs, T),andApU_,r =
(ApUr)A=(E-rUs, T). O

wherep € AP is an atomic proposition; € Q*, and< €
{>,>, <, <} isacomparison operator. This logicisindeed  While a counterexample is a finite path in the three pre-
a subset of'CT L. with only one formula clock since a for-  vious cases, itis potentially infinite in case 4. Therefte,
mula, sayAp U -7, can be rewritten ag.(Ap U (r A (y > proof is more difficult and the decidability procedure rslie
a))). Properties”2 andP3 from introduction are expressed  on a specific technique.

respectively as\ —error Ussq T andA T U<y safe Since

ITA can be translated into ITA, the problem can be sim- Lemma 3. Model checking a formulaApUx,r and
plified by focusing on the subclass ITA We prove that: ApUs,ronanITA is decidable.



Sketch.We start by noticing that formulap Us, r is true
on a configuration of an ITA A if all the following condi-
tions hold for paths starting in this configuration:

¢ all paths do satisfy U r,

e there is no path such that from a certain point where

the time elapsed is strictly less thappropositionr is
falseuntil bothp andr are,

e there is no path such that from a certain point where

the time elapsed is strictly less thanpropositionr is
alwaysfalse

Using maximal paths, which are either infinite or finite but
ending in a state from which no transition can be taken, is

necessary for this last condition. O

5 Conclusion and related work

Several restrictions of stopwatch automata have been
proposed to gain decidability results. For the model of sus-
pension automata [17], reachability is decidable when-stop

(5]

(6]

(7]

(8]

9]

10]

watches have value zero if suspended and satisfy some adf11]

ditional bounds. In the case of preemptive scheduling, the
clocks in task automata from [14] can be updated by sub-
traction, which can be viewed as a kind of stopwatch simu-
lation. Checking schedulability is proved decidable far-se

eral scheduling policies (and undecidable in general).

In this work we consider interrupt timed automata, where

[12]

stopwatches are organized along hierarchical levels. Al- [13]

though model checkin§CTL formulas with explicit clocks

is undecidable, we obtain decidability for two subsets of
real time properties: when only model clocks are used in
the formula, with a complexity in 2-EXPSPACE, and for
a subset offCTL with subscripts. The case of formulas
with internal clocks and only one external clock, remains

open. We also plan to extend these results tofTwhich
subsumes both TA and ITA.
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