
May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Channel Synthesis for Finite Transducers∗

Gilles Benattar1, Béatrice Bérard2, Didier Lime1,

John Mullins3, Olivier H. Roux1 and Mathieu Sassolas2

1LUNAM Université, École Centrale de Nantes, IRCCyN, CNRS UMR 6597
2Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606

3École Polytechnique de Montréal, Dept. of Computer & Software Eng.

Email: gilles.benattar@clearsy.com, mathieu.sassolas@lip6.fr

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

We investigate how two agents can communicate through a noisy medium modeled as
a finite non deterministic transducer. The sender and the receiver are also described by

finite transducers which can respectively encode and decode binary messages. When the

communication is reliable, we call the encoder/decoder pair a channel.
We study the channel synthesis problem which, given a transducer, asks whether

or not such sender and receiver exist and builds them if the answer is positive. To

that effect we introduce the structural notion of encoding state in a transducer which
is a necessary condition for the existence of a channel. It is not, however, a sufficient

condition. In fact, we prove that the problem is undecidable. Nonetheless, we obtain

a synthesis procedure when the transducer is functional. We discuss these results in
relation to security properties.

Keywords: Synthesis, transducers, covert communication.

1. Introduction

Given an architecture defined by processes and communication links between them

or with the environment, and a specification on the messages transmitted over these

links, distributed synthesis aims at deciding the existence of local programs, one

for each process, that together meet the specification, whatever the environment

does. In the case of synchronous communication, the problem was proved decidable

(but non-elementary) for LTL properties over pipeline architectures [14, 10], or more

generally [4], when the processes are sorted in a linear preorder with respect to

the information received from the environment. In the asynchronous setting, this

problem is undecidable for total LTL specifications [16] as soon as there are two

processes.

∗Extended version of [2] presented at the 13th International Conference on Automata and Formal

Languages (AFL’11).

1

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

2 G. Benattar, B. Bérard, D. Lime, J. Mullins, O. H. Roux, M. Sassolas

In view of these negative results, we investigate another setting with only two

processes (sender and receiver), modeled by finite transducers, that respectively

encode and decode finite binary messages. They are organized in a pipeline ar-

chitecture and communicate asynchronously through a medium that acts as noise

over the link between them and also described by a fixed non deterministic finite

transducer. Moreover, we consider a particular basic external specification express-

ing faithful communication over finite binary words: the message received is equal

to the message emitted, possibly modulo some slight modifications or delays. The

synthesis problem then asks if, given the noisy process, the encoder and decoder

can be synthesized. We call such an encoder/decoder pair a reliable channel (or

channel for short), and thus call this problem the channel synthesis problem.

We first establish properties of such channels as well as verification results (Sec-

tion 3). In particular, we give in Section 4 a necessary condition for the existence

of a channel. We then prove (Section 5) that the channel synthesis problem is un-

decidable. However, we exhibit a restricted case where the problem can be decided:

when the noisy process is a functional transducer (Section 6). We finally discuss the

possible relations of these results with security properties in Section 7.

2. Preliminaries

Notations. The set of natural numbers is denoted by N and the set of words over

a finite alphabet A is denoted by A∗, with ε for the empty word; A+ = A∗ \ {ε} is

the set of non-empty words over A. The length of a word u is written |u| and for

1 ≤ i ≤ |u|, the ith letter of u is denoted by u[i]. For a subset B ⊆ A, |u|B is the

number of letters from B in u. A language is a subset of A∗. For two words u and

v with same length n, the distance between u and v is the number of letters that

are different in u and v: d(u, v) = |{i | 1 ≤ i ≤ n, u[i] 6= v[i]}|, where |X| is the size

of the finite set X.

For two words u and v, we write v 4 u when v is a prefix of u: there is some

word w such that u = vw. For k ∈ N, the set of k-bounded prefixes of u contains

the prefixes v of u whose length differs from the length of u by at most k letters:

Prefk(u) = {v ∈ A∗| v 4 u and |u| − |v| ≤ k}.
A word w is a factor of u if there are some words u1 and u2 such that u = u1wu2.

For a word v with same length as u, the corresponding factor of v is the word w′

such that u = u1wu2, v = v1w
′v2, |u1| = |v1| and |w| = |w′|. For two natural

numbers m, p with p ≤ m ≤ |u|, the word v is (m, p)-close to u if |v| = |u| and for

any factor w of u of length |w| ≤ m, the distance between w and the corresponding

factor w′ of v is less than or equal to p. The set of (m, p)-substitutions of u is defined

by: Submp (u) = {v ∈ A∗| v is (m, p)-close to u}.
Both notations are extended in a natural way to a language L ⊆ A∗ as

Prefk(L) =
⋃
u∈L Prefk(u) and Submp (L) =

⋃
u∈L Sub

m
p (u).

Codes of cardinality 2. Recall that a subset X of A∗ is a code if any word in X∗

admits a unique decomposition over X. We use the following properties ([12, 7]).

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

Channel Synthesis for Finite Transducers 3

Proposition 1. The three following conditions are equivalent for two words u and

v over alphabet A:

(i) the set {u, v} is not a code,

(ii) u and v commute: uv = vu,

(iii) there is a word w in A∗ and p, q in N such that u = wp and v = wq.

Moreover, for a non empty word u ∈ A+, let Com(u) = {v ∈ A∗ | uv = vu}
be the set of words which commute with u. Then there exists w ∈ A∗ such that

Com(u) = w∗.

Finite automata. A finite automaton, or automaton for short, is a tuple A =

〈S, I, Lab,∆, F 〉, where S is a finite set of states, I is a subset of S of initial states,

Lab is a finite set of labels, ∆ ⊆ S×Lab×S is a finite transition relation and F ⊆ S
is a set of final states. We allow Lab to be an alphabet but also a finite subset of a

monoid, although here only direct products of word monoids are considered. A run

from s ∈ S is an alternating sequence of states and letters written as ρ = s0
a1−→

s1
a2−→ · · · an−−→ sn, such that s0 = s and (si, ai+1, si+1) ∈ ∆ for 0 ≤ i ≤ n − 1. The

trace of ρ is trace(ρ) = a1 · · · an. We write s
u
=⇒ s′ if there is a run ρ from s to s′

with trace u. A run ρ as above is accepting if s ∈ I and sn ∈ F , and the language

of A, denoted by L(A), is the set of traces of accepting runs. A state s ∈ S is useful

if it belongs to some accepting run. Since the accepted language is the same when

removing non useful states, we assume in the sequel that the set S contains only

useful states. A regular language over an alphabet A is a subset of A∗ accepted by

a finite automaton with set of labels Lab = A.

Finite Transducers. A finite transducer (or transducer for short) is a finite au-

tomaton A with a finite set of labels Lab ⊆ A∗ ×B∗ for two alphabets A and B. A

label (u, v) ∈ A∗×B∗ is often written as u|v in the figures (see transducer example

in Figure 2). A subset of A∗ × B∗ is a rational relation from A∗ to B∗ if it is the

language L(A) of a finite transducer A [15]. The transducer A is said to realize the

relation L(A).

For a rational relation M, we denote by AM a transducer which realizes M.

For a word u ∈ A∗, we write M(u) = {v ∈ B∗ | (u, v) ∈ M} for the image of u,

M−1(v) = {u ∈ A∗ | (u, v) ∈ M} for the inverse image of v, possibly extended to

subsets of A∗ or B∗ respectively, Dom(M) = {u ∈ A∗ | ∃v ∈ B∗, (u, v) ∈ M} for

the domain of M and Im(M) = {v ∈ B∗ | ∃u ∈ A∗, (u, v) ∈ M} for the image of

M. When M(u) is a singleton, it will also denote its only element, with a slight

misuse of notation. If the domain of M is A∗, then M is said to be complete. The

transducer is functional if it realizes a partial function: for each word u ∈ A∗, there

is at most one word in M(u).

For a subset P of A∗, the identity relation {(w,w) | w ∈ P} on A∗ × A∗ is

denoted by Id(P) and Idk(P) is the relation between words and their k-bounded

prefixes in P : Idk(P) = {(u, v) ∈ P × P | v ∈ Prefk(u)}. Note that Id0 = Id.

The composition of rational relations M on A∗ × B∗ and M′ on B∗ × C∗,

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

4 G. Benattar, B. Bérard, D. Lime, J. Mullins, O. H. Roux, M. Sassolas

denoted by M·M′, is a rational relation on A∗ ×C∗ [3]. Moreover, the image and

inverse image of a regular language by a rational relation is a regular language [15].

3. Channels

We consider communication between two processes, respectively called an encoder

and a decoder. The encoder E reads binary input and produces an output in A∗,

while the decoder D reads words in B∗ and produces a binary word. These two

processes communicate through a noisy medium, modeled by a non deterministic

transducer with labels in A∗ × B∗ (see Figure 1). The definition below states that

a channel corresponds to reliable communication: the binary message is correctly

transmitted. An example of such communication is given in Section 7, particularly

in Figure 8.

Private space Public space

System

M⊆ A∗ ×B∗
Encoder

E ⊆ {0, 1}∗ ×A∗
Decoder

D ⊆ B∗ × {0, 1}∗
{0, 1}∗ A∗ B∗ {0, 1}∗

Figure 1. Implementation of a channel by transducers.

Definition 2. Let M⊆ A∗×B∗ be a rational relation. A channel for M is a pair

C = (E ,D) such that E and D are rational relations in {0, 1}∗×A∗ and B∗×{0, 1}∗
respectively, and E ·M · D = Id({0, 1}∗).

We first prove that, given three transducers realizing rational relations M, E
and D, verification is decidable:

Proposition 3. Let M be a rational relation in A∗ × B∗ and let E and D be two

rational relations on {0, 1}∗×A∗ and B∗×{0, 1}∗, respectively. Given the associated

transducers AM, AE , AD, it can be decided whether or not (E ,D) is a channel for

M.

Proof. It can be decided whether or not a transducer is functional. Moreover, the

equality of languages is decidable for functional transducers [15, 1]. If the transducer

for relation E ·M ·D is not functional, there is no channel forM. If the transducer

is functional, it can be decided whether E · M · D is equal to Id({0, 1}∗), because

the identity relation is functional. Therefore it can be decided if (E ,D) is a channel

for M.

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

Channel Synthesis for Finite Transducers 5

Equality is a strong requirement regarding communication, which corresponds

to an external LTL specification (for finite words): “the output is always equal to

the input”. We investigate the impact of slightly weakening this condition by admit-

ting a bounded amount of either communication delays or substitutions. Namely, a

certain number of substitutions are allowed in a sliding window of fixed size.

Definition 4. Let M be a rational relation in A∗ × B∗ and let k,m, p be three

natural numbers with p ≤ m. The pair (E ,D), where E and D are rational relations

in {0, 1}∗ ×A∗ and B∗ × {0, 1}∗ respectively, is a channel for M

• with delay k if Id({0, 1}∗) ⊆ E ·M · D ⊆ Idk({0, 1}∗);

• with (m, p)-substitutions if Id({0, 1}∗) ⊆ E ·M · D ⊆ Submp ({0, 1}∗).

With these definitions, we can prove the following:

Proposition 5. Let M be a rational relation.

• If there is a channel with delay k for M, then there is a channel for M.

• If there is a channel with (m, p)-substitutions for M, such that m > 2p,

then there is a channel for M.

Proof. For the first point, since Id0 = Id, assume there is a channel of delay k > 0

for M. The result is obtained by modifying the encoder so that it transmits k + 1

bits together, while the decoder keeps only the first bit. Let repk be the morphism

from {0, 1}∗ to {0, 1}∗ defined by repk(b) = bk for b ∈ {0, 1}∗. Seen as relation, repk
is rational and it is easy to see that if Id({0, 1}∗) ⊆ E ·M · D ⊆ Idk({0, 1}∗) then

repk+1 · E ·M · D · unrepk+1 = Id({0, 1}∗). Where unrepk is defined as follows:

For x ∈ {0, 1},
{

unrepk(xk · w) = x · unrepk(w)

unrepk(xj) = x, for j ≤ k

For the second point, we also modify the encoder to transmit m bits together,

while the decoder will choose the bit with majority. Let majm : {0, 1}m → {0, 1}
be the function that associates with a sequence w of length m, the bit b such that

|w|{b} > m/2. The relation defined by votem = {(w,majm(w)) | w ∈ {0, 1}m}∗ is a

rational relation. If Id({0, 1}∗) ⊆ E ·M · D ⊆ Submp ({0, 1}∗) then repm · E ·M · D ·
votem = Id({0, 1}∗).

The two operations can be combined for m > 2(p+k), treating delays as errors.

Note that the decidability result for channel verification cannot be easily ex-

tended to these two types of channels, since inclusion of the identity relation in a

rational relation is undecidable [6].

In the rest of the paper, we address the channel synthesis problem: “given a finite

transducer realizing a rational relation M, is there a pair C = (E ,D) of rational

relations such that C is a channel forM?”. Sections 5 and 6 are respectively devoted

to the proofs of the following results:

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

6 G. Benattar, B. Bérard, D. Lime, J. Mullins, O. H. Roux, M. Sassolas

Theorem 6. The channel synthesis problem is Σ0
1-complete.

Theorem 7. The channel synthesis problem is decidable in polynomial time for

a functional relation M. Moreover if there is a channel for M, the transducers

realizing E and D can be built.

The proofs of Theorems 6 and 7 partly rely on a structural necessary condition

for the existence of a channel, which is established in the following section.

4. Encoding states and canonical channels

The condition is based on the notion of encoding state: such a state admits two

cycles such that the respective sets of labels over alphabets A and B form codes.

Definition 8. Let A = 〈S, I, A∗×B∗,∆, F 〉 be a transducer. An encoding state is

a useful state s ∈ S such that there exist words u0, u1 ∈ A∗ and v0, v1 ∈ B∗ such

that:

(i) s
u0|v0
===⇒ s and s

u1|v1
===⇒ s;

(ii) The two sets {u0, u1} and {v0, v1} are codes on A∗ and B∗ respectively.

This section is devoted to the proof of the following result:

Theorem 9. Let M be a rational relation in A∗ × B∗. If M has a channel then

the corresponding transducer AM has an encoding state.

First note that the condition is not sufficient as shown by the example of system

N of Figure 2. States s3 and s4 are encoding states, but an input u can lead to

s3, which simulates s4, but where no word can be encoded. In this case, the non-

functionality of N breaks the locality of the encoding state property.

s0s1 s2

s3 s4

s5 s6 s7 s8

u|ε ε|v

ε|v u|ε

ε|v0 ε|v1

u0|ε u1|ε
u1|ε

ε|v1

ε|v0

u0|ε

ε|v0

ε|v1

Figure 2. Transducer N with encoding states but no channel.

To prove Theorem 9, we first establish that the existence of a channel implies

the existence of a channel under some “canonical” form, which in turn yields an

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

Channel Synthesis for Finite Transducers 7

encoding state in the corresponding transducer. Both proofs rely on the follow-

ing combinatorial lemma. Informally, it states that, starting from a code and an

automaton, a new code can be built, related to a particular encoding node.

Lemma 10. Let A = 〈S, I, Lab,∆, F 〉 be a finite automaton, where Lab is a subset

of a monoid with simplification (i.e., such that xy = xy′ implies y = y′ and xy =

x′y implies x = x′ for all x, x′, y, y′ ∈ Lab) and let x, x0, x1, x
′ ∈ Lab, such that

x · {x0, x1}∗ · x′ ⊆ L(A) and {x0, x1} is a code.

Then, there exist states s0 ∈ I, s ∈ S and sf ∈ F , and words y ∈ x · {x0, x1}∗,
y0 ∈ {x0}∗, y1 ∈ {x0, x1}∗ · x1 · {x0, x1}∗, y′ ∈ {x0, x1}∗ · x′ such that {y0, y1} is a

code and there are runs s0
y
=⇒ s, s

y0
=⇒ s, s

y1
=⇒ s and s

y′

=⇒ sf in A.

Proof. Let p = |S| be the number of states in A. A simple cycle in A is a run

s1
a1−→ s2

a2−→ · · · sn
an−−→ s1 where all states in {s1, . . . , sn} are distinct and n ≥ 1.

There are at most (p+1)!|∆|p such simple cycles in A. For any m > p, any run in A
labeled by xm0 contains at least a simple cycle with trace in x+0 , called an x0-cycle

in the sequel. Let k be the number of x0-cycles in A, then k ≤ (p+ 1)!|∆|p.
Now we consider u = xp+1

0 · x1 and v = x · uk+1x′. Since x · {x0, x1}∗ · x′ ⊆ L(A),

v belongs to L(A). Let ρ be an accepting run in A for v, written as s0
x
=⇒ s′0

xp+1
0===⇒

s1
x1=⇒ s′1 · · ·

xp+1
0===⇒ sk+1

x1=⇒ s′k+1
x′

=⇒ sf , with sf ∈ F .

For each i, 1 ≤ i ≤ k, the subrun ρi of ρ defined by s′i
xp+1
0===⇒ si+1 contains an

x0-cycle, hence there are k + 1 such cycles, and two of them must be identical, say

s
xr
0=⇒ s, with r ≥ 1, within distinct subruns ρi and ρj . Then the run ρ can also be

written as s0
y
=⇒ s

y0
=⇒ s

y1
=⇒ s

y0
=⇒ s

y′

=⇒ sf , with y0 = xr0 and y1 contains x1 at least

once. Since Lab is a subset of a monoid with simplification, the two words y0 and

y1 do not commute, which yields the conclusions of the lemma.

We now turn to canonical forms for channels. Let U = (u, u0, u1, u
′) and V =

(v, v0, v1, v
′) be tuples of words in A∗ and B∗ respectively. The rational relations

E(U) and D(V) on {0, 1}∗ ×A∗ and B∗ × {0, 1}∗ respectively are defined by:

E(U) = (ε, u) · {(0, u0), (1, u1)}∗ · (ε, u′), D(V) = (v, ε) · {(v0, 0), (v1, 1)}∗ · (v′, ε),

which correspond to the transducers in Figure 3.

When {u0, u1} (respectively {v0, v1}) is a code, we call relation E(U) (respectively

D(V)) the canonical encoder (respectively decoder) associated with U (respectively

V). A channel of the form (E(U),D(V)) for a rational relation is denoted by C(U, V)

and called a canonical channel.

Definition 11. Let M ⊆ A∗ × B∗ be a rational relation. A canonical channel for

M is a channel of the form C(U, V) = (E(U),D(V)) for a pair of canonical encoder

and decoder associated with tuples U = (u, u0, u1, u
′) and V = (v, v0, v1, v

′) in A∗

and B∗ respectively.

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

8 G. Benattar, B. Bérard, D. Lime, J. Mullins, O. H. Roux, M. Sassolas

p0 p1 p2
ε|u

1|u1

0|u0

ε|u′

(a) Transducer E(u, u0, u1, u′)

q0 q1 q2
v|ε

v1|1

v0|0

v′|ε

(b) Transducer D(v, v0, v1, v′)

Figure 3. Canonical encoder and decoder.

The next lemma shows that canonical encoders can be composed.

Lemma 12. Let E(X) and E(U) be canonical encoders for tuples of words X =

(x, x0, x1, x
′) over {0, 1} and U = (u, u0, u1, u

′) over A.

Then, there exists a tuple W = (w,w0, w1, w
′) of words over A such that E(W) is

a canonical encoder and E(W) = E(X) · E(U).

Proof. We set k = |x|, n = |x0|, m = |x1| and ` = |x′| and we identify elements of

{0, 1} with indices. The result is easily obtained for:

w = u · ux[1] . . . ux[k], w0 = ux0[1] . . . ux0[n], w1 = ux1[1] . . . ux1[m]

and w′ = ux′[1] . . . ux′[`] · u′.

The transformation from a channel to a canonical channel is then obtained by:

Proposition 13. If a rational relation M in A∗ × B∗ has a channel, then there

exist tuples of words U = (u, u0, u1, u
′) in A∗ and V = (v, v0, v1, v

′) in B∗, such

that C(U, V) is a canonical channel for M.

Proof. Assume the pair C = (E ,D) of rational relations is a channel for M. We

proceed by successive transformations.

Transforming the encoding over {0, 1}. First, without loss of generality, we can

assume that the image of E is contained in the domain of M · D. Otherwise, the

desired property is obtained by considering the relation E ′ = E · Id(Dom(M ·D)).

Let AE = 〈S, I, Lab,∆, F 〉 be the transducer realizing E , where Lab is a finite subset

of {0, 1}∗×A∗. We consider the finite automaton AinE obtained by projection of AE
on its input: the structure is the same and a transition s

x|u−−→ s′ in AE becomes

s
x−→ s′ in AinE . From the hypothesis on E , the automaton AinE accepts all words

over {0, 1}. Therefore, applying lemma 10 (with x0 = 0 and x1 = 1) yields states

s0 ∈ I, s ∈ S and sf ∈ F , and a tuple of words Y = (y, y0, y1, y
′) over {0, 1}

such that {y0, y1} is a code and AinE contains runs s0
y
=⇒ s, s

y0
=⇒ s, s

y1
=⇒ s and

s
y′

=⇒ sf . In turn, this provides a tuple W = (w,w0, w1, w
′) of words over A in the

corresponding runs of AE : s0
y|w
==⇒ s, s

y0|w0
===⇒ s, s

y1|w1
===⇒ s and s

y′|w′

===⇒ sf . The fact

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

Channel Synthesis for Finite Transducers 9

that {w0, w1} is a code results from the corresponding property for {y0, y1} and

E ·M · D = Id({0, 1}∗). In addition, remark that E(W) ⊆ E(Y) · E .

Transforming encoder E into a canonical encoder. The next step consists in

replacing E by an encoder using the tuple W = (w,w0, w1, w
′) above (and modifying

D accordingly). This is done by composition with the canonical encoder/decoder

pair C(Y, Y) in {0, 1}∗ × {0, 1}∗ for the tuple Y above, for which we clearly have:

(E(Y) · E) · M · (D · D(Y)) = Id({0, 1}∗).

Defining Ein = E(W) and Dout = D · D(Y), it can be easily seen that the pair

(Ein,Dout) is also a channel for M.

Transforming decoder D into a canonical decoder. We still need to transform

Dout into a canonical decoder, by restricting its behavior to the core of the decoding

relation. For this, we consider the transducer Aenc realizing the relation Menc =

Ein · M · Id(Dom(Dout)). Since Menc · Dout = Id({0, 1}∗) and Menc is complete

over {0, 1}∗, Lemma 10 can be applied again to the projection Ainenc of Aenc on its

input. Retrieving the corresponding runs, we obtain an initial state r0, a state r

and a final state rf , and tuples Z = (z, z0, z1, z
′) in {0, 1}∗ and V = (v, v0, v1, v

′) in

B∗ of words with runs r0
z|v
==⇒ r, r

z0|v0
===⇒ r, r

z1|v1
===⇒ r and r

z′|v′
===⇒ rf in Aenc, such

that {z0, z1} and {v0, v1} are codes.

The canonical encoder E(Z) and decoder D(V) satisfy:

E(Z) · Menc · D(V) = Id({0, 1}∗) and Id(Dom(Dout)) · D(V) = D(V).

Finally, composing the canonical encoders E(Z) and Ein = E(W) according to

Lemma 12 yields a canonical encoder E(U) = E(Z) · E(W) for some tuple U =

(u, u0, u1, u
′) of words in A∗, and C(U, V) is the required canonical channel for M,

which concludes the proof.

We end this section with the proof of Theorem 9:

Proof of Theorem 9. From Proposition 13, it suffices to prove that if a rational

relation M has a canonical channel C(U, V) = (E(U),D(V)) for tuples of words

U = (u, u0, u1, u
′) in A∗ and V = (v, v0, v1, v

′) in B∗, then the corresponding trans-

ducer AM has an encoding state.

The relation E(U) (respectively D(V)) is a bijection from {0, 1}∗ onto u·{u0, u1}∗ ·u′
(respectively from v ·{v0, v1}∗ ·v′ onto {0, 1}∗). Since E(U) ·M·D(V) = Id({0, 1}∗),
the relation M contains M0 = (u, v) · {(u0, v0), (u1, v1)}∗ · (u′, v′), hence all

words in M0 are accepted by AM. Moreover, the set {(u0, v0), (u1, v1)} is a code

in A∗ × B∗, because its components are themselves codes. Applying once again

Lemma 10 to AM, we obtain w0 ∈ (u0, v0)∗ and w1 ∈ {(u0, v0), (u1, v1)}∗ · (u1, v1) ·
{(u0, v0), (u1, v1)}∗, and a state s of AM, such that s

w0==⇒ s and s
w1==⇒ s are runs

in AM. Since {w0, w1} is a code, we can conclude that s is the required encoding

state.

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

10 G. Benattar, B. Bérard, D. Lime, J. Mullins, O. H. Roux, M. Sassolas

5. Channel synthesis is undecidable

This section is devoted to the proof of Theorem 6. Proposition 3 states that the

channel synthesis problem is in Σ0
1. The proof of Σ0

1-hardness is done by a reduction

from Post’s Correspondence Problem (PCP). Recall that an instance of PCP is a

tuple I = 〈(x1, y1), . . . , (xn, yn)〉 of pairs of words over an alphabet A. A (non

trivial) solution is a non empty sequence of indices i1, . . . , ik such that xi1 · · ·xik =

yi1 · · · yik . With alphabet N = {1, . . . , n} of indices, an instance I can also be seen

as a pair of morphisms x and y from N∗ into A∗ defined respectively by x(i) = xi
and y(i) = yi for each i ∈ N . Hence a solution is a non empty sequence σ ∈ N+

such that x(σ) = y(σ). The problem of the existence of a solution is undecidable.

Starting from an instance I of PCP, we build a rational relation MI such that

I has a solution if and only if MI has a channel.

The construction extends the undecidability proof for transducer equality [5]

with an additional construction to obtain the channel property. The main idea is

the following: given an input sequence bσ such that b is a bit and σ is a solution of

I, MI will output anything except x(σ) = y(σ) followed by b, the complement of

the input bit. Detecting this “missing word” makes the deduction of the input bit

possible, and also the transmission of a message.

Construction. In addition to alphabets A and N above, we consider B = {>,⊥},
which represents the bits, for the sake of readability. Hence, for b ∈ B, b is defined

by > = ⊥ and ⊥ = >.

RelationMI has input alphabet NB = N∪B and output alphabet AB = A∪B.

It is defined for b ∈ B and σ ∈ N∗ by:

MI(b · σ) =
(
A+ · b

)
∪
(
(A+ \ {x(σ)}) · b

)
∪
(
(A+ \ {y(σ)}) · b

)
and extended to N∗B by:

MI(v) =


ε if v = ε,

MI(b1 · σ1) · · ·MI(bp · σp) if v = b1 · σ1 · · · bp · σp
with b1, . . . , bp ∈ B, σ1, . . . , σp ∈ N∗,

∅ if v /∈ (B ·N∗)∗.
Now we can prove:

Lemma 14. The relation MI is a rational relation.

Proof. The finite transducer AI = 〈Q, q0, N∗B × A∗B ,∆, {q0}〉 which realizes MI
is composed of two symmetrical parts, linked by the (initial and final) state q0,

that keep in memory one bit b of information (see Figure 4 for the global structure

of AI). These two parts are called respectively the >-half and ⊥-half of AI , the

structure within the >-half being depicted in Figure 5.

In state q∗, the sequence of indices in the input is ignored and an arbitrary non

empty word over A is produced, together with the input bit. Thus, this state is used

to generate the language A+ · b from input b · σ.

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

Channel Synthesis for Finite Transducers 11

q0 >⊥ >|ε⊥|ε

ε|>

ε|⊥ε|>

ε|⊥

Figure 4. Symmetrical structure of AI .

q0(>, q∗) (>, q>) (>, q6=) (>, q<)

>, x

>, y

>|ε

{(ε|a · >)|a ∈ A}

{(i|ε)|i ∈ N}
{(ε|a)|a ∈ A}

>|ε

>|ε

ε|⊥

ε|⊥

ε|⊥

Figure 5. Structure of the >-half of AI .

The rest of this >-half is divided into two similar parts called the (>, x)-quarter

and the (>, y)-quarter respectively. The (>, x)-quarter produces any word which

is not x(σ), followed by b, corresponding to the language (A+ \ {x(σ)}) · b (and

similarly for the (>, y)-quarter with language (A+ \ {y(σ)}) · b). For z ∈ {x, y},
avoiding z(σ) in the (>, z)-quarter is achieved by:

• either outputting a strict prefix of z(σ), reaching state q<,

• or appending letters after z(σ), reaching state q>,

• or introducing an error in z(σ), reaching state q6=.

From these three states, arbitrary input and output can occur and return in state

q0 produces the output b. Note that in these three states it is not relevant whether z

represents x or y. The (>, x)-quarter is depicted in Figure 6. The formal description

can be found in the appendix.

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

12 G. Benattar, B. Bérard, D. Lime, J. Mullins, O. H. Roux, M. Sassolas

q0 (>, q>)

(>, qx)

(>, qεx)

(>, q<)

(>, q6=)

(
>, q1,1x

)

(
>, qn,1x

)

(
>, q1,2x

)
. . .

. . .

. . .

(
>, q1,εx

)

(>, qn,εx)

. . .

to
(
>, q 6=

)

>|ε

ε|⊥

ε|⊥

ε|⊥

1|ε

n|ε

··
·

ε|x1[1]

ε|x1[|x1|]

1|ε

n|ε

..
.

ε|x1[1]

{(ε|a)|a ∈ A}

{(ε|a)|a ∈ A}

{(ε|a)|a ∈ A}

ε|ε ε|ε

{(i|ε)|i ∈ N}
{(ε|a)|a ∈ A, a 6= x1[1]}

{(ε|a)|a ∈ A, a 6= x1[2]}{(i|ε)|i ∈ N}

{(ε|a)|a ∈ A}

Figure 6. Structure of the (>, x)-quarter of transducer AI : it accepts the relation{
(> · σ, u · ⊥)

∣∣ u ∈ A+ \ {x(σ)}
}∗

.

Example 15. Consider the following instance I0 of PCP: 1 2 3

x abb b a

y a abb bb



May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

Channel Synthesis for Finite Transducers 13

This instance has a solution σ = 1311322 which yields the word w =

abbaabbabbabb. On input >σ, transducer AI0 can output any string followed by

a >, along a run looping in state q∗. In particular, w> is a possible output. On the

same input, some other strings followed by a ⊥ may be an output, but not w⊥.

The correspondence between a solution of the PCP instance and the channel is

proved by the two following lemmata.

Lemma 16. If instance I has a solution, then there is a channel for MI .

Proof. Let σ be this solution, with |σ| > 0, and w = x(σ) = y(σ). We can assume

that there is no index i such that xi = yi = ε, hence w 6= ε. Then w is not generated

by the “error” part of transducer AI . Hence, for input b · σ, with b ∈ {>,⊥}, w · b
is an output whereas w · b is not.

The key point in the proof is to build the channel for MI . Let Eσ =

{(0|⊥ · σ), (1|> · σ)}∗ and Dσ = {(w · ⊥|0), (w · >|1)}∗ realized by the transducers

of Figure 7.

s0 s1

0|>, 1|⊥

ε|σ

(a) Transducer Eσ from {0, 1}∗ to N∗B

r0 r1

w|ε

>|0,⊥|1

(b) Transducer Dσ from A∗B to {0, 1}∗

Figure 7. Encoder and decoders Eσ and Dσ , where σ is a solution of the instance I of PCP and w
the corresponding word.

Let β ∈ {0, 1}∗ be a word of length n. The only image of β by Eσ is the word

u = β[1] ·σ · · ·β[n] ·σ. For each factor β[j] ·σ, transducer AI produces the language(
A+ · β[j]

)
∪
((
A+ \ {w}

)
· β[j]

)
since w is produced neither by the (β[j], x)-quarter, nor by the (β[j], y)-quarter. So

the image of u by MI is the set

MI(u) = {v1 · b1 · · · vn · bn | ∀1 ≤ j ≤ n : vj ∈ A+ ∧ bj ∈ {>,⊥}
and (vj = w ⇒ bj = β[j])}.

In particular, the word v = w · β[1] · · ·w · β[n] belongs to MI(u), while any word

of the form w · b1 · · ·w · bn, with (b1, . . . , bn) 6= (β[1], . . . , β[n]), is not in MI(u).

On the decoding side, a word of the form w ·b1 · · ·w ·bm is decoded into b1 · · · bm
by relation Dσ. Words that do not belong to (w · {>,⊥})∗ have no image by Dσ.

Therefore,

Dσ (MI(u)) = Dσ(v) = β[1] · · ·β[n] = β.

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

14 G. Benattar, B. Bérard, D. Lime, J. Mullins, O. H. Roux, M. Sassolas

Hence Eσ · MI · Dσ(β) = β for every word β, and (Eσ,Dσ) is a channel for MI .

Example 15 (continued) Encoding 0 with >σ and 1 with ⊥σ, while decoding 0

with w> and 1 with w⊥, yields a channel for MI0 .

Lemma 17. If I has no solution, then there is no channel for MI .

Proof. This is proved by contradiction. Assume that I has no solution, thenMI(b·
σ) = A+ · {>,⊥} for any σ ∈ N∗ and any bit b ∈ {>,⊥}. Now if there is a channel

for MI , using Proposition 13, we obtain tuples of words U = (u, u0, u1, u
′) and

V = (v, v0, v1, v
′) such that {u0, u1} and {v0, v1} are codes and (E(U),D(V)) is a

canonical channel for MI .

Consider the two words β = 01 and β′ = 10. Their respective images by E(U)

are n = uu0u1u
′ and n′ = uu1u0u

′. Since n and n′ have images byMI , they belong

to (B ·N∗)p for some p > 0, hence MI(n) =MI(n′) = (A+ · {>,⊥})p. We obtain

(E(U) · MI · D(V))(β) = (E(U) · MI · D(V))(β′) which is a contradiction.

6. Decidability for functional transducers

Theorem 7 is proved by establishing that the necessary condition from Theorem 9

is in fact sufficient for a functional transducer, and building the channel. The proof

relies on Lemmata 18, 19 and 20.

Lemma 18. Let M be a function realized by transducer AM. There is a channel

for M if and only if there exists an encoding state in AM.

Proof. Let s be an encoding state in AM = 〈S, I, A∗ × B∗,∆, F 〉, with

codes {u0, u1}, {v0, v1}, and runs s
u0|v0
===⇒ s and s

u1|v1
===⇒ s. Then the pair

(E(ε, u0, u1, ε),D(ε, v0, v1, ε)) is a (canonical) channel for relation Ms realized by

AMs
= 〈S, {s}, A∗×B∗,∆, {s}〉, which differs from AM only by its initial and final

states, and is also functional.

Since s is a useful state, there exist some runs s0
u|v
==⇒ s and s

u′|v′
===⇒ sf , with

s0 ∈ I, sf ∈ F , u, u′ ∈ A∗ and v, v′ ∈ B∗. Since both M and Ms are functional,

for any word w ∈ {u0, u1}∗, we have M(u ·w · u′) = v ·Ms(w) · v′ . Hence the pair

(E(u, u0, u1, u
′),D(v, v0, v1, v

′)) is a channel for M.

In order to find encoding states in the transducer AM realizing functionM, we

define for any word u ∈ Dom(M) the set NCI(u,M) = {u′ ∈ A∗ | M(u) ·M(u′) 6=
M(u′) · M(u)} of words whose image by M do not commute with the image of u.

Then, we have:

Lemma 19. For any function M and any word u ∈ Dom(M), NCI(u,M) is a

regular subset of A∗.

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

Channel Synthesis for Finite Transducers 15

Proof. Let v = M(u). Consider the language C(v) = {v′ ∈ B∗|v · v′ = v′ · v}
of words commuting with v. Applying a classical result ([12] or [7]) we obtain a

word z ∈ B∗ such that C(v) = z∗ (z is the shortest word which commutes with v),

hence C(v) is a regular language. Then C(v) = {v′ ∈ Im(M) | v · v′ 6= v′ · v} =

Im(M) \ C(v) is also regular, as well as NCI(u,M) =M−1(C(v)).

We now give a characterization for an encoding state:

Lemma 20. Let AM = 〈S, {s}, A∗ ×B∗,∆, {s}〉 be a functional transducer realiz-

ing a function M, with s ∈ S the only initial and final state. Then:

• If there exists w ∈ M−1(Im(M)\{ε}) such that NCI(w,M) 6= ∅, then s is

an encoding state.

• On the other hand, if s is an encoding state, then for any word w ∈
M−1(Im(M)\{ε}), NCI(w,M) 6= ∅.

Proof. First suppose that there is a word w ∈ M−1(Im(M)\{ε}) such that

NCI(w,M) 6= ∅. Then, since M is functional, w 6= ε and we can conclude that

s is an encoding state inM by choosing any u1 ∈ NCI(w,M), and setting u0 = w,

v0 =M(u0), and v1 =M(u1).

Conversely, suppose that s is an encoding state inM for some words u0, u1, v0,

v1, then for i ∈ {0, 1}, vi =M(ui). Consider now any w ∈M−1(Im(M)\{ε}), again

with w 6= ε, and define v = M(w). If NCI(w,M) is empty, then u0 /∈ NCI(w,M)

and u1 /∈ NCI(w,M), hence v · v0 = v0 · v and v · v1 = v1 · v. Therefore, there exists

z ∈ B∗ such that v, v0 and v1 all belong to z∗ which is a contradiction.

We finally give the proof of Theorem 7 with the complexity.

Proof of Theorem 7: decision procedure for a functional transducer. The

decision and synthesis procedure is as follows: starting from the functional trans-

ducer AM = 〈S, I, A∗ × B∗,∆, F 〉 realizing function M, consider for each state

s ∈ S the transducer As = 〈S, {s}, A∗ × B∗,∆, {s}〉 and the associated relation

Ms.

The procedure computes a word u whose image by Ms is not ε. This can be

done by looking for states s1, s2 ∈ S, such that s1
ue|ve−−−→ s2 with ue ∈ A∗ and

ve ∈ B+ and finding a run ρ = s⇒ s1
ue|ve−−−→ s2 ⇒ s. If no such word can be found,

then Im(Ms) = {ε} and s is not an encoding state. Pruning S (to remove unuseful

states in As) can be done in O(|M|2). The run ρ can be found from s1 and s2 in

O(|M|2) too. So computing a word u whose image by Ms is not ε can be done in

O(|M|2).

Let v = Ms(u). The subset Com(v) of B∗ of words that commute with v is

of the form z∗ and a deterministic automaton Az of size O(|z|) accepts z∗. An

automaton AIm(Ms) of size O(|M|) recognizes Im(Ms). Therefore the automaton

B for the intersection of these languages, of size O(|z| × |M|) and with a single

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

16 G. Benattar, B. Bérard, D. Lime, J. Mullins, O. H. Roux, M. Sassolas

initial state, recognizes Com(v) = Im(Ms) \ z∗. The emptiness problem for this

automaton can be solved in linear time in the size of the product, hence in O(|M|2).

If Com(v) is empty, then so is its preimage by M, and therefore NCI(u,M) = ∅
and there is no channel (by Lemma 20). Otherwise, since Com(v) ⊆ Im(Ms), we

have M−1s (Com(v)) = NCI(u,Ms) 6= ∅, and there is a channel in Ms, which can

be synthesized by the construction in the proof of Lemma 20. This construction

implies computing a word w in NCI(u,Ms) and its image by Ms. The word w

obtained as a witness by the emptiness check is thus of size O(|Ms|2), and the

computation of Ms(w) takes O(|Ms| × |w|). Hence the whole synthesis part is in

O(|Ms|3).

By Lemma 18, the existence of a channel for one transducerMs is equivalent to

the existence of a channel for M, and the construction of the encoder and decoder

for M from the ones for Ms can be done as in the proof of Lemma 18, in linear

time with respect to |Ms|. Since |z| ≤ |v| ≤ |Ms| ≤ |M|, the whole procedure goes

in O(|M|4).

7. Security properties for transducer systems

The above technique allows to discover in a system ways to transmit information.

Although this transmission can be legitimate and thus of no worry, it may be the

case that the channel is covert [11]. This decision has to be made by the modeler,

as pointed out by Millen [13]. Covert channels comprise all protocols that bypass

the intended behavior of the system in order to transmit information. Practical

examples have been shown in the past, such as using TCP/IP headers [17]. Some

models of such channels have been devised [9, 8] although the authors define covert

channels by the existence of an encoding state while we obtain this feature as a

necessary condition.

The model of rational transducers offers a setting in which to study a system

seen as a black-box process reading actions of users with high level of credentials

(alphabet H), and outputting public or low-level actions (alphabet L). Note that

any transition system over an alphabet H] L] I (where] stands for the disjoint

union) with a set I of internal actions can syntactically be transformed into a

transducer over H∗ × L∗.
Typically, high-level actions are executed by a user inside the system, while

low-level actions are read from outside it. For instance, high-level actions can be

triggered by a Trojan horse in the system, trying to communicate a secret key to an

external agent. The communication has to be stealthy in order not to be detected

by the system, hence cannot use obvious communication channels which can be

monitored. The communication also has to be reliable in order for the key to be

transmitted correctly. Our model is well suited for the analysis of such threats.

Future work should investigate the relation between the absence of channel and the

validation of some security policies.

Let us consider the following example, inspired from [9], where a packet trans-

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

Channel Synthesis for Finite Transducers 17

mission device can transmit data in two ways (see Figure 8(a)). Upon receiving a

small amount of data, it can transmit it in a single (complete) packet. However,

upon receiving a large amount of data, it transmits an incomplete packet followed

by a complete one. An attacker can take advantage of this discrepancy in order to

transmit data not inside the packets, but through the way complete and incomplete

packets will be received, as shown by the encoder/decoder pair of Figure 8(b)-(c).

OpenServer|OpenClient

LongData|ε

ε|DataInc ε|Data

ShortData|ε

ε|Data

CloseServer|CloseClient

(a) Transducer for packet transmission medium.

ε|Op
enS

erv
er

0|LongData

1|ShortData

ε|CloseServer

(b) Encoder E

Op
enC

lien
t|ε

DataInc|ε Data|0

Data|1

CloseClient|ε

(c) Decoder D

Figure 8. A channel of delay 0 for the packet transmission protocol.

8. Conclusion

The model presented in this paper allows to describe reliable channels in the simple

framework of transducers. Although the problem of synthesis of a channel is un-

decidable in general, it becomes polynomial in the case of a functional transducer.

This complexity gap seems to indicate that decidability may be achieved for larger

classes of transducers. We conjecture that it is the case for the class of relations de-

fined as finite unions of functions. The case of infinite words, with on-line detection,

as well as relations with security properties should also be more deeply investigated.

Acknowledgments. This work was partially supported by project ImpRo (ANR-

2010-BLAN-0317), project CoChaT (Digiteo-2009-HD27) and NSERC discovery

grant 13321-2010 (Government of Canada). We also would like to thank reviewers

of AFL’11 and IJFCS for their insightful comments.

Bibliography

[1] Béal, M.P., Carton, O., Prieur, C., Sakarovitch, J.: Squaring transducers: An effi-
cient procedure for deciding functionality and sequentiality of transducers. In Gonnet,

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

18 G. Benattar, B. Bérard, D. Lime, J. Mullins, O. H. Roux, M. Sassolas

G.H., Panario, D., Viola, A., eds.: Proceedings of the 4th Latin American Symposium
on Theoretical Informatics (LATIN’00). Volume 1776 of Lecture Notes in Computer
Science, London, UK, Springer-Verlag (2000) 397–406.

[2] Bérard, B., Benattar, G., Lime, D., Mullins, J., Roux, O.H., Sassolas, M.: Channel
synthesis for finite transducers. In Dömösi, P., Iván, S., eds.: Proceedings of the 13th
International Conference on Automata and Formal Languages (AFL’11). (August
2011) 79–92.

[3] Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM
Journal Res. Develop. 9 (1965) 47–68.

[4] Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc. of LICS’05. (2005)
321–330.

[5] Gurari, E.: An introduction to the theory of computation. Computer Science Press,
New York (1989).

[6] Harju, T., Hoogeboom, H., Kleijn, H.: Identities and transductions. In Karhumäki, J.,
Maurer, H., Rozenberg, G., eds.: Results and Trends in Theoretical Computer Science.
Volume 812 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg
(1994) 140–144.

[7] Harrison, M.A.: Introduction to formal language theory. Addison-Wesley (1978).
[8] Hélouët, L., Roumy, A.: Covert channel detection using information theory. In

Chatzikokolakis, K., Cortier, V., eds.: Proc. of the 8th Int. Workshop on Security
Issues in Concurrency. (August 2010).

[9] Hélouet, L., Zeitoun, M., Degorre, A.: Scenarios and Covert channels: another game...
In L. de Alfaro, ed.: Proc. of Games in Design and Verification (GDV’04). Volume
119 of ENTCS, Elsevier (2005) 93–116.

[10] Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In Halpern, J.Y., ed.:
Proc. of LICS’01, Washington, DC, USA, IEEE Computer Society (2001) 389.

[11] Lampson, B.: A note on the confinement problem. Commun. ACM 16(10) (1973)
613–615.

[12] Lothaire, M.: Combinatorics on words. Volume 17 of Encyclopedia of Mathematics.
Addison-Wesley, Reading, MA (1983).

[13] Millen, J.K.: 20 years of covert channel modeling and analysis. In: Proc. of the 1999
IEEE Symposium on Security and Privacy. (May 1999) 113 –114.

[14] Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Proc.
of FOCS’90. Volume II, IEEE Computer Society Press (1990) 746–757.

[15] Sakarovitch, J.: Éléments de théorie des automates. Vuibert Informatique (2003).
[16] Schewe, S., Finkbeiner, B.: Synthesis of asynchronous systems. In: Proc. of LOP-

STR’06. Volume 4407 of LNCS, Springer (2006) 127–142.
[17] Trabelsi, Z., El Sayed, H., Frikha, L., Rabie, T.: A novel covert channel based on the

IP header record route option. Int. J. Adv. Media Commun. 1(4) (2007) 328–350.

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

Channel Synthesis for Finite Transducers 19

Appendix A. Construction of transducer AI corresponding to an

instance I of PCP

The set of states of AI is:

Q = {q0} ∪
(
{>,⊥} ×

(
{q∗, qx, qy, qεx, qεy, q>, q<, q6=} ∪QI ∪QεI

))
where

QI =

 n⋃
i=1

|xi|⋃
j=1

{
qi,jx
} ∪

 n⋃
i=1

|yi|⋃
j=1

{
qi,jy
}

and

QεI =

(
n⋃
i=1

{
qi,εx
})
∪

(
n⋃
i=1

{
qi,εy
})

are sets containing respectively one state per letter of each word in I and one state

per word in I. State q0 is the unique initial and final state.

The set ∆ of transitions in AI is built with the following rules, with b ∈ {>,⊥},
z ∈ {x, y}, i ∈ N , and a ∈ A:

(R1) For q ∈
{
q∗, q

ε
x, q

ε
y

}
, q0

b|ε−−→ (b, q) ∈ ∆.

The transducer AI reads input bit b and (non deterministically) chooses if

it will output:

- either a (non empty) word followed by b (state q∗),

- or a (non empty) word different from x(σ) followed by b (state qεx),

- or a (non empty) word different from y(σ) followed by b (state qεy).

(R2) (b, q∗)
ε|a·b−−−→ q0 ∈ ∆.

At least one letter is produced from q∗ (to avoid the empty word) followed

by the input bit b.

(R3) (b, q∗)
i|ε−→ (b, q∗) ∈ ∆ and (b, q∗)

ε|a−−→ (b, q∗) ∈ ∆.

With these two rules, it is possible from q∗ to read (over N) and output

(over A) arbitrary words.

(R4) If |zi| > 0, then (b, qεz)
i|ε−→
(
b, qi,εz

)
∈ ∆.

If |zi| > 1, then
(
b, qi,εz

) ε|zi[1]−−−−→
(
b, qi,2z

)
∈ ∆.

If |zi| = 1, then
(
b, qi,εz

) ε|zi−−→ (b, qz) ∈ ∆.

If |zi| = 0, then (b, qεz)
i|ε−→ (b, qεz) ∈ ∆.

These transitions output the beginning of word zi (or zi itself) from input

index i, just after reading the input bit b.

(R5) If |zi| > 0, then (b, qz)
i|ε−→
(
b, qi,1z

)
∈ ∆.

For 1 ≤ j < |zi|, (b, qi,jz)
ε|zi[j]−−−−→

(
b, qi,j+1

z

)
∈ ∆.(

b, q
i,|zi|
z

)
ε|zi[|zi|]−−−−−→ (b, qz) ∈ ∆.

May 22, 2012 15:9 WSPC/INSTRUCTION FILE ijfcs

20 G. Benattar, B. Bérard, D. Lime, J. Mullins, O. H. Roux, M. Sassolas

If |zi| = 0, then (b, qz)
i|ε−→ (b, qz) ∈ ∆.

With these rules, AI can read index i in state qz and produce zi, reaching

state qz.

(R6) For 1 ≤ j < |zi|,
(
b, qi,jz

) ε|ε−−→ (b, q<) ∈ ∆ and (b, q<)
i|ε−→ (b, q<) ∈ ∆.

With these transitions, the production of zi is interrupted before its end,

reaching state q<. There, no ouput occurs while reading the rest of the

input.

(R7) (b, qz)
ε|a−−→ (b, q>) ∈ ∆ and (b, q>)

ε|a−−→ (b, q>) ∈ ∆.

These transitions correspond to adding a suffix without reading anything

(input is complete).

(R8) Si a 6= zi[1],
(
b, qi,εz

) ε|a−−→ (b, q6=) ∈ ∆.

For 1 ≤ j < |zi|, and if a 6= zi[j],
(
b, qi,jz

) ε|a−−→ (b, q6=) ∈ ∆.

(b, q6=)
i|ε−→ (b, q6=) ∈ ∆ and (b, q6=)

ε|a−−→ (b, q6=) ∈ ∆.

With these transitions, an error is inserted in zi, reaching q 6= from which it

is possible to read (over N) and output (over A) arbitrary words.

(R9) For q ∈ {q<, q>, q6=}, (b, q)
ε|b−−→ q0 ∈ ∆.

Return from an error state produces the complement of the input bit.

Thus, transitions obtained from rules R4 and R5 build a part ofAI that produces

z(σ). However, since qεz and qz are not final states, the word z(σ) itself cannot be

obtained in this part. Indeed, rules R6, R7 and R8 respectively produce a strict

prefix, or a word strictly containing z(σ), or insert errors.

If nothing was produced from the beginning of the input sequence, execution

stays in states qεz et qi,εz , left by reading the first letter of zi. Note that there is no

counterpart to rule R6 from qi,εz , to avoid producing the empty word. Transitions

corresponding to rules R2 and R9 reach state q0, which yields the required extension

of relation MI to any input word in ({>,⊥} ·N∗)∗.

