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Chapter 1

Introduction

In view of the new importance of technology using connected smart device and the new
policies to build smart cities, with the objective to create more ecological citites, we are
facing a new technological challenge. Indeed it will be necessary to build a netword of
devices whom constantly share data in a vast area and on a long term.

To solve this issue a solution already exist in the form of the internet of thing, indeed
internet of thing technology such as LoRa, SIgfox and Weigthless have been created in the
objective of wireless data exchange on long range. Another objective of this technology is
to reduce the consumption of energy to save the battery of the device because one of the
main point of using internet of thing network is to minimize the contribution of human
input once the network is set.

During this internship we will be focusing on improving the performance of a LoRa
network which we will first implement in a simulator before applying them to our exper-
imental model.
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Chapter 2

Specifications of LoRa technology

We therefore need to understand the specifications of LoRa technology, LoRa is an inter-
net of thing technology using a star of star topology where each end devices is equiped
with a LoRa chip to communicates with gateways whom then communicates with server.
Although what interests us in particularity are the parameters used for the transmissions
which are highly configurables directly at the level of the device.

The first of the modifiable parameter that impact performance in the device is the
transmission power which can be adjusted from -4 dBm to 20 dBm in steps of 1 dBm,
this modification is often limited by the equipment of the legislation of the region where
the network is located.

The main modifiable parameter of LoRa technology is the spreading factor SF which
is the ratio of the symbol rate (the original message to transmit) to the chip rate (the
modulated message to transmitted).

The spreading factor can take 6 values between SF7 and SF12, their use presents a
compromise, indeed the use of a small value increases the throughput which permit to
reduce the transmission time and therefore the energy cost but when using this small value
it leads to a reduction of the possible range, we are thus faced with a compromise between
the energy efficiency of the transmission against the transmission range, by opposition high
value of SF give a longer transmission range but have a high energy cost.

We have to tke into account a third parameters : the bandwidth which,in the case of
LoRa technology, can take three different values 125 kHz, 250 kHz or 500kHz. As for the
use of spreading factor there is a link between the bandwidth, the speed data and the
receiver sensibility, indeed when using a high value of banwidth the data speed will be
better, which will reduce the airtime, but the sensibility will be reduced which once again
lead to a reduction of the transmission range.

The fourth parameter is the carier frequency which can be included between 137MHz
and 1020 MHz, but must be include between 863 MHz and 870MHz with at least the three
channel which are 868.1, 868.3 and 868.5 MHz to be in accord of european legislation.

Once we know the parameters that can be chaqnged, we have to understand how
changing them can upgrade the performance of our network. For that we have to look
into the differents types of events that will make us lose our packet because two or more
collide, in particular we need to look into SF collisions and the frequency collisions.

First we need to define the SF collision, during a transmission if several packets arrive
at the base station at the same time, the use of different SF allows the reception of the
two messages, but if the messages use the even SF there are then collisions which induces
the loss of the two messages, it is thus in theory possible if one distributes the SFs on the
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devices to reduce the risks of collisions due to an abundant use of one and the same SF.
The other collision that we have to take care of is the frequency collision, this collision

can take place despite the use of different SF if several messages arrive at the same instant
on the same channel (therefore using the same carrier frequency), it is It is therefore
conceivable to standardize the use of the channels to reduce the risks of having several
messages arriving on the same channel.

For this we first have to look for a method for the choice of the SF at each attempt
by setting up at each node a table which for each of the SFs gives the probability, which
changes over the transmissions, of choosing this last. In a second steps to ensure good
performance, we must give good values whean creating the table of initial probabilities
that would reduce the time necessary for learning to obtain optimal performance for this
we decided to use a Markovian Decision Process.
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Chapter 3

Different ways to choose SF

3.1 Calculation of minimal SF

The minimum SF represents the SF ∈ {7, 8, 9, 10, 11, 12} for which the receiver will be
able to receive the transmission this SF depends on the distance between the node and
the base station it is for We are interested in the reception power, which depends on the
transmission power, and in the sensitivity of the receiver, which depends on the SF and
the bandwidth because indeed the transmission can only be successfully received if the
receiving power is greater than the sensitivity.

First, we must observe the reception power Prx which is given to us with the equation:

Prx = Ptx +GL− Lpl

where Ptx is the transmission power which is configurable at the level of each transmitter
and is theoretically adjustable from -4dBm to 20 dBm in steps of 1dB but is limited by
hardware implementations and frequency regulation. GL is the sum of the transmission
and reception gains and losses and Lpl is the following path loss calculation obtained:

Lpl = Lpld0 + 10n log10

(
d

d0

)
where Lpld0 and n are respectively the loss at the reference distance d0 and the path loss
coefficient and are obtained experimentally, d is the distance between the node and the
base station.

Now that we have seen how the reception power is obtained, we must check that it is
much higher than the sensitivity of the receiver, the sensitivity depends on the chosen SF
as well as on the bandwidth.

Using the LoRa SX1272 calculator [1] we obtain the following sensitivity table 3.1 (in
dBm):

The minimal SF is therefore the smallest SF for which the reception power is greater
than the sensitivity of the receiver, so we have for each node a set of available SFs S such
that S ∈ [SFmin, 12]

3.2 Estimate the rewards

Each node uses a table containing estimated rewards, Eri for each of the 6 available SFs,
the table is initialized either from the database experiments or according to the distance
from the node to the gateway if the database is empty.
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Bandwidth
125 250 500

7 -123 -120 -117
8 -126 -123 -120

SF 9 -129 -126 -123
10 -132 -129 -126
11 -134.5 -131.5 -128.5
12 -137 -134 -131

Table 3.1: Sensibility of recevier depending of SF and BW

On each transmission the node will receive a reward R equal to 1 in the event of
acknowledgment and to 0 in all other cases. After the transmission the Eri reward estimate
for i chosen in the transmission will be updated according to the formula:

Eri = Eri + α (R− Eri)

where α is the learning factor and α ∈ (0, 1] can be choose by the user.

3.3 ε-Greddy

When selecting an SF for the transmission attempt, a SF ∈ S will be chosen at random
with a probability ε, otherwise the SF with the best Er will be chosen. We therefore have
Pi the probability of choosing the SF i such that:

Pi =

{
1− ε+ ε

K
if i = argmaxEri

ε
K

else

where ε ∈ (0, 1] is choose by the user and K is the cardinal of S.

3.4 Boltzmann exploration

When selecting an SF for the transmission attempt, the SF will be chosen at random
according to a probability Pi depending on the estimate Eri of each SF as well as on a
parameter τ ∈ ℜ+ such that:

Pi =
e

Eri
τ∑6

k=SFmin−7 e
Erk
τ

where τ is choose by the user, plus τ approaches infinity the more the algorithm behaves
randomly and the closer τ is to 0 the more the algorithm behaves like a greedy algorithm.
for all SF < SFmin we have Pi = 0.

3.5 BaseSTEPS

In the BaseSTEPS method each node has an array that represents the probability of
choosing each of the SFs during a transmission attempt, for any SFi < SFmin we have
Pi = 0.
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At each transmission attempt, the probability of the SF used k is modified depending
on the result of the transmission, but also on a random draw ε which aims to increase the
punishment of SFs having a low probability, after each attempt we have:

Pk =


Pk ∗ (1 + 3e|k−minSF |) si ACK

Pk ∗ 0.8 si ε > Pk

Pk ∗ (0.9 ∗ e|k−minSF | sinon

We then need to normalize the table so that the sum of the probabilities is equal to 1.
We then set up simulations of 100 nodes to compare performance using the following

set of parameters:

• Bandwidth BW = 125 kHz

• Transmit power Pi = 14 dBm

• Loss Coefficient η = 2.32

• Deviation σ = 7.8

• Reference distance d0 = 1000m

• Traject loss at distance d0, PL0 = 128.95

• Pauload pl = 10 bytes

• Average transmission time τ = 5 s

Figure 3.1: Collisions in greedy, Boltzmann and STEPS

Although having more collisions and a slightly lower acknowledgment rate, we notice
that the number of total packets acknowledged using the BaseSTEPs method is greatly
greater than the other two methods over short distances, so we will favor this method when
setting up the initial probability table using the predictions of the Markovian decision
process.

6



Figure 3.2: Number of ACK for greedy,Boltzmann and STEPS

Figure 3.3: Ratio of ACK for greedy, Boltzmann and STEPS
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Chapter 4

Description du processus de décision
Markovien

In our objective to improve the transmission performance of nodes in a LoRaWAN net-
work, we propose a method which allows to choose different SFs according to the SFs
used in the previous attempts for the different transmission attempts in case of failure.
The goal of changing SF during the various attempts is a priori to reduce collisions to
allow a better acknowledgment ratio to be obtained and therefore better performance in
the system in the long term.

In order to obtain a prediction for the choice of SF at each retransmission attempt,
we propose to represent the transmission process by a Markovian decision process, which
will then allow us to obtain by the iteration by value algorithm , which we will explain
later, the optimal strategy, that is to say a prediction of the SFs to be chosen to minimize
the cost of transmissions while maximizing the success of the transmission procedure.

A Markovian decision process is defined by a set of states, a set of actions, as well as
for each combination of state and action the state transitions for the action as well as the
cost associated with this transition. .

It is therefore possible to formally describe the Markovian decision process as a tuple
M =< S,A, P,R >, such as:

• S is a finite set of states ;

• A is a finite set of actions ;

• P : S × S × A is the matrix of transitions between states S, which for each state s inS
and given an action a ∈ A gives us the probability P (s, a, s′) to be at state s′ ∈ S, it
is noted that for all and for all a inA available in state s we have sumS

s′=0P(s, a, s′) =
1 such that the sum of the probabilities of transitions of action a in state s is equal
to 1;

• R : S × S × A is the reward matrice which given each state s ∈ S and and action
a ∈ A give the reward R(s, a, s′) which is the expected reward when we reach the
state s′ ∈ S from the state s using action a.

In the following sub-parts we will focus on the definition as well as on the construction of
the different elements of M.
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4.1 Finite state of states

The goal of the Markovian decision process being to represent the mechanism of choice of
SF and transmission by devices using LoRaWAN technology, we must therefore separate
the states into two distinct groups.

The first state group will represent the states during which the devices transmit while
the second group will represent the standby states, that is to say the states following a
transmission failure and during which the device will choose the SF to use on the next
attempt.

4.1.1 Transmit subset

We will denote by T the finite state subset representing the states representing trans-
mission attempts such as T ⊂ S, the technology on which we are working being the
LoRaWAN technology each transmission has the right to a maximum of 8 attempts be-
fore d ’be abandoned, so we can denote by k the current transmission attempt such that
1 ≤ k ≤ 8.

The long-term goal being to change our choice of SF according to previous transmission
failures we will therefore have for each transmission state s ∈ T at the transmission
attempt k the information of the SF used for the current attempt but also the number of
times that each SF will have been used during the attempts preceding the attempt k.

Each state of the subset T will therefore allow the system to know the spreading factor
for the current transmission attempt as well as to allow the analysis of past failures to
know a priori the best SF to use.

The state for the transmission attempt k = 3 using SF10 and having used 7 and 12
during the second attempt during the first attempt will be represented for example by “T
/ 7,12,10” or even by “T / 10,11,9,7 ”the state for the transmission attempt k = 4 using
SF7 and having used SFs 11, 9 and 7 respectively during attempts 1, 2 and 3.

4.1.2 Waiting subset

We will denote by W the finite state subset representing the waiting times between two
transmission attempts such as W subsetS, waiting time between 2 transmission attempts
during which the device will decide which SF to use for transmission k + 1 with k the
last transmission attempt made and having failed where 1 leqk leq7.

The goal is always to choose the best theoretical SF from the point of view of the
apparatus, each waiting state S ∈ W will have the information of the SF used during
the attempt k but also of the number of times each SF will have been used during the
attempts preceding the attempt k.

We will therefore have for each state s ∈ W the knowledge of the SF of the last
attempt made k as well as of all the previous attempts at k which will make it possible
to know the previous failures in order to make a better choice of SF during transmission
k + 1. In the same way as for the states of the transmission sub-space, the states of
the waiting sub-space will be represented by the SF of the attempt k as well as all the
spreading factors used during the attempts previous ones.

We will therefore denote for example by “W / 7,12,10” the waiting state after a failure
during the attempt 3 using the SF 10 following the first two attempts using respectively
the spreading factors 7 and 12. .
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Likewise, the notation “W9,8,11,12” represents the state of waiting after a failure
during the attempt number 4 using the SF 12 and having used the factor 9 during the
first attempt, the factor 8 during the the second attempt and the factor 11 on the third
try.

4.1.3 Initial state, success and failure

After having defined the two subsets of states T and W, we must now look at the last
three states belonging to the finite set of state S:

• L’état S0 which represents the state before the first transmission attempt in which
the device will choose the SF to use for the first attempt;

• The ”Success” state which is one of the two terminal states that will be reached if
the transmission is successful during one of the attempts;

• The ”Failure” state which is the second terminal state and which will be reached if
all 8 transmission attempts are unsuccessful.

4.2 Finite action state

To best represent the transmission mechanism in a LoRaWAN technology device, we have
decided to represent the set of actions by
A = {Tr, a7, a8, a9, a10, a11, a12},these actions can be subdivided into two categories and
are only available depending on the current state.

First, we have the first category made up of the action Tr, which is the action rep-
resenting a transmission attempt, for this the action Tr will be the only action available
in the states of the subspaces T which represents the states during which we carry out
transmission attempts.

The second category is made up of the remaining actions (a7, a8, a9, a10, a11, a12)
each of these actions represents the choice of a certain SF by the device (ie a7 represents
the selection of SF n ° 7) these actions will therefore be the actions available in the waiting
states of the sub-spaces W as well as during the initial state S0.

4.3 Probabilities of transition

Just like the action space, we must subdivide the probabilities of transitions into two
groups, these two groups being the same as for the action space with on one side the
probabilities of transitions during transmissions and l the other is the probabilities of
transitions when choosing the spreading factors.

We recall that the probability of reaching state s from state s as a function of the
action a is denoted by P(s, a, s′).

4.3.1 Choose of SF

When choosing SF, which is an action a ∈ {a7, a8, a9, a10, a11, a12}, in a wait state s ∈ W
or in the initial state S0 the probability of transitions between state s and associated state
s’ is equal to 1.
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We must therefore define what is the associated state s ’, we recall that each state
carries the information of the SF used for the current attempt but also of all the SFs used
for the previous attempts, a state s’ associated with a state s by the action a is therefore
the transmission state having the same SF for the previous attempts and using for the
new attempt the SF of the action a ie the transmission state s’ = T / 7 , 10 is a state
associated with the waiting state s = W / 7 by the action a = a10 and we have:

P(s, a, s′) = 1

4.3.2 Probability of success at transmission

We have therefore just seen that the probability of transition in the case of a choice of SF
is easy to define, it is not the same for the probability of successful transmission.

In fact, during a transmission in the absence of acknowledgment, the node can only
assume that the attempt to transmit the message was successful, so we will theoretically
obtain the probability of success of a transmission in order to know the probabilities of
transitions between a state of transmission and the state of success (and therefore the
probability of transitions to the associated wait state or to the state of failure).

When attempting to transmit there are two important conditions to be met [2] :

• The message send by the node is not lost

• The message send by the node did not enter in collisions

We will therefore see the models and the prediction functions which make it possible
to verify these two conditions.

4.3.3 Probabilities of not losing the packet

So that the transmitted message is not lost, it is sufficient that the signal to noise ratio
(SNR) received is greater than a threshold specific to the SF used this factor is noted qSF
and is available in the table 4.1 [3].

SF qsf(dB)
7 -7.5
8 -10
9 -12.5
10 -15
11 -17.5
12 -20

Table 4.1: SNR by SF

We thus have a probability Hi(sf) that the message sent by our node i at the distance
di using the SF is not lost which can be expressed by the equation (4.1) [4]:

Hi(SF ) = P [SNR ≥ qSF |di] (4.1)
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[2],[4] et [5] give the theoretical calculation of the formula (4.1),thus assuming that we
have hi ∼ exp (1), the probability of Hi(SF ) that the message sent by our node i is not
lost can thus be expressed as:

Hi(SF, di) = exp

(
− Nqsf
Pig(di)

)
(4.2)

Where we have Pi the transmit power of device i in milliwatts, where |hi|2 is the gain
of the channel which is modeled as an exponential random variable with an average of 1,
N = −174 + NF + 10 logBW dBm with NF the receiver noise figure which is equal to
6 dB for our device, -174 dBm / Hz is the noise spectral density and where g(di) is the
function of path loss attenuation.

The path loss attenuation function g(di) is derived from the Friis transmission equation
which can be written as:

Pr =
PTGTGRc

2

(4πf)2
∗
(
1

d

)η

where Pr is the received signal power, PT is the transmitted signal power, GT and GR are
respectively the gains of the transmit and receive antennas, c is the speed of light, f is
the transmission frequency, d is the distance between the transmitting antenna and the
receiving antenna and finally η is the path loss exponent which depends on the environ-
ment and can be given by the table4.2 [6]

Environment Loss path coefficient
Free space 2
Urban area 2.7 - 3.5

Dense urban area 3-5
In a building with line of sight 1.6-1.8

In a building without line of sight 4-6
In a factory without line of sight 2-3

Table 4.2: Loss path for different environment

After modifying the Friis equation, by considering the transmission and reception gains
to be equal to 1, the authors of the articles [2] and [4] obtain g(di) = λ/ (4πdi)

η for their
part the authors of [6] obtain as a result, in addition to having two different equations
these present a dimension inconsistency.

To be able to perform our calculation of the probability of not having a loss Hi we
therefore had to find another model, this is how we found the logarithmic path loss model
which is used in [7], [8], [4] and [9] and which calculates the SNR with the formula (4.3).

SNR = Prx −N = Ptx −
(
PL0 + 10η log10

(
di
d0

)
+Xσ

)
−N (4.3)

Where Ptx and Prx are the transmit power and receive power in dBm respectively, PL0

is the path loss at the reference distance d0, η is the loss exponent of path and X sigma is
the decibel attenuation which is modeled by a Gaussian random variable Xσ ∼ N(µ, σ2)
with µ = 0. Thanks to the formula (4.3) it is therefore possible to write the probability
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Hi as such:

Hi(SF, di) = P [SNR ≥ qSF |di]

= P
[
Ptx −

(
PL0 + 10η log10

(
di
d0

)
+Xσ

)
−N ≥ qSF |di

]
= P

[
Xσ ≥ qSF +N − Ptx + PL0 + 10η log10

(
di
d0

)
|di
]

With the function of repartion: Fxσ (x) =
1
2

(
1 + erf

(
x

σ
√
2

))
, the probability Hi can

be noted as (4.4).

Hi(SF, di) = 1− 1

2

1 + erf

qSF +N − Ptx + PL0 + 10σ log10

(
di
d0

)
σ
√
2

 (4.4)

The value of PL0, η et σ can be calculated empirically by performing experiments as
well in [5] and [7] the results of the measurement experiments give the following values
such as PL0 = 129.95 dB, η = 2.32 and σ = 7.8 dB with distance d0 = 1000m and
Ptx = 14dBm. It is important to note that the calculation of the probability Hi of non-
loss of the message does not take into account the distribution of nodes in space and that
is why in the following section we will take it into account.

4.3.4 Probability of no collisions

During a communication in LoRaWAN technology it is possible for a collision to occur
between several terminal devices, so that the collision between the messages of the node
i studied and of the node k induces the loss of the message i there. some conditions must
be satisfied [4]:

1. Frequencyi = Frequencyk

2. SFi = SFk

3.
Prxi

Prxk
< 4 mW ⇔ Prxi

− Prxk
< 6 dB where Prx is the receive power, this condition

is called the capture effect

4. tpreami
− tfink

< tc où tpreami
is the time that the receiver takes to finish processing

the preamble of packet i, tendk is the time that the receiver needs to finish processing
packet k and tc is the minimum time that is often defined as the duration of the
receiver to process 5 preamble symbols [4]

To be able to check these conditions we must therefore have a distribution of the
nodes, when creating the MDP the only information we will know about the nodes is
their distance from the base.

During the creation of the model, knowing only the distance compared to the base, it
will be necessary to attribute to each node values of frequency and SF, for the value of
frequency this one is given in a random way and is included in 868.1,868.3,868.5 which
are the 3 frequencies in MHz implemented by all LoRa devices for the European region,
the frequency used by the node that we are studying is on its side chosen and not random.
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The allocation of SFs for each device is done from the calculation of Hi, for each node
the probability of no loss Hi will be calculated for each of the SFs, the SF that will be
assigned to the node will be the smallest SF for which Hi(SF ) ≥ threshold where the
threshold is a value that we will set during resolutions.

Not being able to know the transmission time of the other nodes, our device can only
assume that it will compete on each transmission attempt, knowing this and knowing the
conditions if we consider them independent we can denote by Qi(k) the probability that
the message from node i is not lost as a result of the collision with the message from node
k as in (4.5)

Qi(k) = 1− (XSFi
(SFk)Xfreqi(freqk)P (condition3)P (condition4)) (4.5)

where Xa(x) = 1 if a=x,0 otherwise.
The probability P(condition 3),which is the probability of gaining the capture effect

can be obtained as proposed in [4] :

P(Condition3) = P
[
|hi|2g(di)
|hk∗ |2g(dk∗

≥ 4|di
]

(4.6)

Where k∗ = argmaxk ̸=i

(
PkXkSF |hk|2g(dk)

)
is the node with the strongest received

signal except node i which we are studying, for the SF currently in use. This probability
therefore depends on the distribution of the nodes that we have seen.

We can obtain the analytic value P(condition 3) which can be found in [4] :

P(Condition 3) = E|hi|2

[
FXk∗

(
|hi|2g(di)

4

)]
=

∫ ∞

0

e−zFXk∗

(
zg(di)

4

)
dz (4.7)

This probability is an analytical formula for a random number of nodes distributed at
random locations. It is therefore possible for us, knowing the number of nodes as well as
their distances to the base of transformed the formula 4.7 by the following formula:

P(Condition 3) =

∫ ∞

0

e−zFXk∗

(
zg(di)

4

)
dz =

∏
k ̸=i,SFk=SFi

{∫ ∞

0

e−zFXk

(
zg(di)

4

)
dz

}
(4.8)

Where FXk
(z) is the cumulative distribution function(CDF) ofXk andXk = |hk|2g(dk).

The equation (4.8) allow us to obtain P(condition 3) using the formulas in mW but it
is also possible to obtain it by using the formulas of dBm:

P(Condition 3) = P(Prxi
− Prxk

< 6)

= P
(
−10η log10

(
di
d0

)
−Xσi

+ 10η log10

(
dk
d0

)
+Xσk

< 6

)
= P

(
10η log10

(
dk
di

)
−Xσi

+Xσk
< 6

)
(4.9)

To obtain the analytical value of (4.9) we must use the following formula:

P(condition 3) = FXσk
−Xσi

(
6 + 10η log10

(
di
dk

))

= FX√
2σ

(
6 + 10η log10

(
di
dk

))
=

1

2

1 + erf

6 + 10η log10

(
di
dk

)
2σ

 (4.10)
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Where FX√
2σ
(z) if the cumulative distribution function of X√

2σ ∼ N(0,
√
2σ).

The equation (4.10) therefore makes it possible to know the probability of gaining the
capture effect for node i facing another node k, we must now proceed to the analysis of
the condition 4, which allows to know if another message is already processed and if our
message coming from node i can be processed by the database or if it is lost due to a
temporal collision. To calculate the probability P(condition4), we must assume that the
nodes transmit according to an exponential distribution with the time τ as the average.

If we suppose that the packet i is weaker than the packet k (compared to the capture
effect of condition 3), then we can thanks to the figure 4.1 know the duration during
which the packet i would be lost if a new k packet arrives.

Figure 4.1: Loss of packet i if transmit of k in TC

When calculating this probability we will have to assume that the size of the packets
is the same as well as the parameters used to send it (which is the case since we are doing
the calculation SF by SF), so we get a constant value denoted by Trec which represents
the time necessary to process a packet, the collision duration is therefore the duration
during which the two packets will be processed even if we lose the information concerning
one of the preambles, so we have Tc = 2Trec − Tpream.
The calculations for the processing time of packets Trec and the processing time of a
preamble Tpream are given in cite LoRaScale and are as follows:

Tpream = (Npream + 4.25) ∗ Tsym (4.11)

Tpayload =

[
8 + max

(
ceil

(
8pl − 4SF + 28 + 16

4 (SF − 2DE)

)
∗ (cr + 4) , 0

)]
Trec = Tpream + Tpayload (4.12)

Where Tsym = 2SF

BW
, Npream is the number of preamble symbols which is often 8, pl is

the packet size in bytes, cr is the CodingRate which in our model is 1 and DE = 1 if BW
= 125kHz and SF ∈ 11,12, 0 otherwise.

Once the processing times have been calculated, it is possible to obtain P(condition4)
by the following formula:

P(Condition4) = P(tk ∈ Tc) = FXk
(Tc) = 1− e−

Tc
τ (4.13)

Now that we have defined the probabilities of not colliding for the conditions 3 (4.10)
and 4 (4.13) we can denote the probability Qi of not colliding as:

Qi =
∏
k ̸=i

SFk=SFi
freqk=freqi

(1− P(condition 3)P (condition 4))
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∏
k ̸=i

SFk=SFi
freqk=freqi

1−

1

2

1 + erf

6 + 10η log10

(
di
dk

)
2σ

(1− e−
Tc
τ

) (4.14)

However, it should be noted that the duration τ must respect a regional duty-cycle
limit, so we will take as value τ :

τ = max

(
τ,

Trec

p0

)
Where p0 is the regional duty cycle limit and is 0.01 in Europe.

4.4 Success probability

Now that we have calculated the probability of not losing the packet Hi as well as the
probability of not collidingQi, we can calculate the probability of success Pi as the product
of the two probabilities.

As we need for the studied node the probability of success for each SF, we will have
to calculate Hi and Qi by assigning to the studied node in turn the SFs from 7 to 12,
without changing the distribution of the other node, we will thus obtain the probabilities
of success individually for each of the SFs.

So for any state s ∈ T we have the probability of transition to the successful state
using the transmission action Tr which is:

P(s, Tr, Succes) = Hi(SF ) ∗Qi(SF )

Likewise the probability of transition to the state of failure or associated waiting noted
s’ is:

P(s, Tr, s′) = 1−Hi(SF ) ∗Qi(SF )

For example, when attempting to transmit the ”T / 7” state, we have the probability
of success :

P(T/7, T r, Success) = Hi(7) ∗Qi(7)

and the probability of success:

P(T/7, T r,W/7) = 1−Hi(7) ∗Qi(7)

4.5 Cost and Rewards

In order to be able to evaluate the best policy in our CDM, therefore the best spreading
factors to choose for each k transmission attempt, we need to find a reward function on
successes and at the same time a cost function on failures.

To fix our reward function we base ourselves on the energy cost of each transmission
attempt, knowing that the energy cost depends on the transmission time and we have
seen that this transmission time depends on the symbol time such as:

Tsym =
2SF

BW
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An attempt to transmit on SF12 therefore has an energy cost over transmission airtime
approximately 25 times greater than when using SF7.

To represent this we then have to during the resolutions assign values V to each SF
such as V (7) > V (8) > V (9) > V (10) > V (11) > V (12)

On success during a transmission attempt the system will therefore receive a reward
V (i) with i the SF used in the transmission. On a successful transmission we therefore
have the reward R, for a state s ∈ T and using the SF i:

R(s, Tr, Success) = V (i)

But the objective being to succeed in our transmission, we must sanction the failures
with a cost function, the sanction will be proportional to the gain V (i) due to a success
and dependent on the number of past uses of the SF i.

We therefore have for any state s ∈ T, for any SF i, for any associated state s’ ∈ W, for
any punishment rate α ∈ [0; 1], and n ( i) the number of uses of the SF during previous
attempts, the reward function in case of failure (which is therefore a sanction):

R(s, Tr, s′) = −α ∗ n(i) ∗ V (i)

This cost is intended to penalize continued use of the same SF if it fails and therefore
reduce the total value of using a small SF and gradually increasing the punishment in
order to tip the system on the use of a SF having less value but having a theoretically
higher chance of success.

Figure 4.2: Model of MDP
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Chapter 5

Mise en place et résolution du MDP

All MDP construction and resolution is done on Scilab using the cite MDPScilab MDP
toolbox.

Before coming to the complete construction of the MDP, we must come back to the
form it takes, in fact we initially planned to have for each of the states the SF used for the
current attempt as well as the set of SFs used by previous attempts, but during the initial
creation of this model we reached a technical limit for the resolution, in fact this initial
model had a number of states which exceeded two million which prevented the resolution
due to a lack of memory. We therefore decided to change the model, although we no
longer have the information on the order of use of the SFs during the previous attempts,
each state still knows the SF of the current attempt and this time knows the number of
using each of the SFs during the previous attempts, this change of model made it possible
to divide by approximately 100 the number of states present without changing the reward
and probability matrices.

It is then possible for us to create and resolve an MDP for each of the nodes of the
distribution and to retrieve the best possible policy as we will see below.

As we have seen a number of parameters are considered for the formation of the CDM
in the rest of this report we will use the following values:

• Bandwidth : BW = 125 kHz

• transmit power : Pi = 14 dBm

• Loss path coefficient η = 2.32

• Deviation σ = 7.8

• Reference distance d0 = 1000m

• Loss at d0, PL0 = 128.95

• Payload pl = 10 Bytes

• Average transmission time τ = 5 s

5.1 Nodes distribution

Before building the MDP, we need a set N of nodes which is the distribution, we decided
in our results first to create a distribution of 100 nodes.
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The distribution of the nodes is done uniformly in a circle having for radius a maximum
distance maxDist = 8921.35m, this value of the maximum distance is calculated with the
following equation:

maxDist = d0 ∗ 10
PL−PL0

10η

Where PL is the maximum pathloss for which a sent message can arrive using SF12
with antenna sensitivity using BW = 125kHz which is sensi = -137 dBm and is obtained
by the calculation given by the equation:

PL = Pi − sensi

Once the 100 nodes have been placed, each one is assigned a frequency which is chosen
uniformly from among the 3 frequencies which are 868.1 MHz, 868.3 MHz and 868.5MHz.

The last step necessary for the creation of the distribution of nodes concerns the
attribution of the use of an SF to each of the nodes, indeed as we have seen it is necessary
for us to know the SF used by the other node during the probability calculations for
the creation of the MDP, we perform others for our 100 nodes a calculation of Hi for all
the SFs, the SF which will be allocated will be the smallest SF which exceeds a certain
threshold that we have fixed at 0.7, in the case where no H (SF) exceeds the fixed threshold
then the SF assigned to the name will be as large as possible, i.e. the SF12 this SF will
be used later in the simulations and will be named minSF.

5.2 MDP Resolve

To solve the MDP we use the iteration by value algorithm which allows to assign to
each state the action having the best expected reward in the long term using Bellman’s
equations such that the algorithm tries to find the action a for which the value V (s) is
the greatest:

V i(s) = max
a

(∑
s′

P (s, a, s′) ∗R (s, a, s′)) + γV i−1 (s′)

)
Where R (s, a, s ’) is the reward value of the transition from state s to state s’ using

action a, γ is a discount value that we set at 0.95, P(s, a, s′) is the probability of reaching
state s’ by action a from state s and where V i(s′) is the value of s’ during iteration i. Solver
will iterate through to a maximum number of iterations or until there is no significant
change in any V (s) value.

Once the algorithm is finished, the action that will be assigned to each state as the
best action will therefore be the action a for which we have obtained the best value V (s).

5.3 Data recovery and usage

To have the ability to use the data obtained by the MDP, it is above all necessary to
know which data to recover, as we have seen a transmission in LoRaWAN technology can
perform up to 8 attempts without acknowledgments before abandoning the sending, this
is what we represented in our model.

Now that we have solved the CDM we know for each of the states that it is the best
action to take in terms of reward, the actions that interest us are the actions of choice
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of SF, to recover the plan on the 8 transmission attempts we will therefore follow the
optimal path, i.e. recover the optimal action for state s and continue by following the
transition linked to the action, in the case of transmission states the transition that we
will follow will be that due to a failure, to be able to recover the optimal action during
the previous attempt.

For example if the optimal action in the initial state ”S0” is to take SF7 ,we will
recover this value of 7 the go to the state linked to the transition by the action a7 which
is the transmission state ”T/7”, in a transmission sate the only possible action being to
transmit we do not recover any data and we the return to the state linked to the state
”T/7” by a failure,that is to say the state of waiting ”W/7”, in this state we will one
again recover the optimal action, and as we are this time in a waiting state we will keep
this value which is a choise of SF and so on until we get an array that contains the 8
values of the chosen SFs.

The objective being to fix an initial table for the nodes of the simulation, it is thus
necessary for us to recover these values for the whole of the nodes which is why we must
carry out an MDP and its resolution for the 100 nodes of our distribution in order to the
exploit the results during the simulation, for this we recover all the information concerning
the position, the minSF, the frequency, as well as the prédiction given by hte MDP in a
file which will be used for the creation of the distribution and initial probability tables in
the simulations.

20



Chapter 6

Simulation results

Once the MDP resolutions are done, we need to perform simulations using different meth-
ods of initializing the SF choice probability table, this table represents the probability for
each of the 100 nodes to choose a SF to each attempt, we will denote by C (i) the proba-
bility of choosing SF i.

The different methods used will be as follows:

6.1 Differents ways to initialize the SF table

6.1.1 BaseSTEPS

In the baseSTEPS method, the table of probabilities of choosing SF depends on the minSF
of the node with all the SFs less than the minSF having a probability of being chosen
equal to 0.

C(i) =

{
0 if i < minSF

e−2∗|minSF−i| otherwise

To know the probability, we then need to normalize the table C such that for each SF
i:

C(i) =
C(i)∑
j C(j)

This method ensures a reduction in the probability of choosing an SF the further it is
from the minSF.

6.1.2 Proportionnal

In this method the initial probability table will be defined thanks to the table obtained
with the MDP, each time the value of a certain SF appears in the choice of strategy
of the MDP prediction, the value C(i) will be incremented by 1, once the eight SFs of
the prediction pass and the values assigned to C(i) we normalize table C(i) to have the
probabilities.

For example if in the prediction the SF7 is used twice then the initial probability of
choosing the SF7 C(7) = 2/8 = 0.25.
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6.1.3 Ordder of appearance

Just like the previous method this method uses the results of the MDP for the initial
probability table, the difference between this method and the previous method is that
the score of each SF in the prediction depends on its placement, if we used the SF i at
attempt k then we have C(i) = C(i) + k, again to obtain probabilities we will have to
normalize the table.

We therefore have whether for example the SF10 was predicted during attempts 5 and
7:

C(10) =
5 + 7

36
=

1

3

6.1.4 50% premium

This method uses the same process as the proportional method each of the appearances
of SF i increments C(i), but in this method we want to make sure that C(minSF ) ≥ 0.5,
for this before normalizing the array we add at C(minSF) the sum of C(i), this ensures
that during normalization we have C(minSF ) ≥ 8/16.

6.1.5 25% premium

This method uses the same process as the proportional method each of the appearances
of SF i increments C(i), but in this method as in the previous method we want to en-
sure a minimum probability for the minSF which is in this method of 25% such that
C(minSF ) geq0.25, for that before normalizing the array we add to C (minSF) a third
of the sum of C(i), this ensures that during the normalization we have C(minSF ) ≥
2.33/10.33.

6.2 First Result

One of the last parameters to set to perform the MDP resolution and therefore the recovery
of the values for the initialization of the probability tables are the values assigned to the
successes for each of the SFs, for this we will again use the calculator [1] to obtain the
average energy hit of a device over a day using each of the SFs, once these values have
been obtained we will compare the energy ratio between the SF12 and all the other SFs.
After using the calculator we obtain the results given in the table 6.1 with the bandwidth
parameter 125kHz, a duty cycle of 5 seconds and a battery voltage of 3 V.

SF Energy(mJ)
7 77.72
8 132.03
9 263.99
10 527.93
11 868.94
12 1737.82

Table 6.1: Average energy consumption in a day
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SF V(i)
7 22.36
8 13.16
9 6.58
10 3.29
11 1.99
12 1

Table 6.2: value given to a success using SF i

To obtain the values, we will therefore make for each of the SFs the ratio between the
energy consumed by the use of SF12 with all of the other energy.

V (i) =
E(12)

E(i)

where E(i) is the average consumption of energy by the device in a day using the SF i.
We obtain the value in the table 6.2

Figure 6.1: Number of collisions using the MDP with α = 0.10

We see in figures 6.1, 6.2 and 6.3 that the first two methods, the proportional and that
of order of appearance, which ensure no probability of choosing the minSF have results
much lower than the other methods and especially the baseSTEPS method, for their part
the methods ensuring a minimum on the minSF, the premium of 50% and 25%, have
results that are close to baseSTEPS, for the following results we will therefore only keep
these 2 methods and we will change the penalty value such that α = 0.2, we have also
reduced the number of nodes of the simulations to 50. .

We notice on these second results (figure 6.4, 6.5 and 6.6) that when we increase
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Figure 6.2: Number of ACK using the MDP with α = 0.10

the penalty rate α the results of the different methods are come together, and are even
sometimes almost confused which is very encouraging for our method of prediction.
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Figure 6.3: Ratio of ACK using the MDP with α = 0.10

Figure 6.4: Number of collisions using the MDP with α = 0.20
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Figure 6.5: Number of ACK using the MDP with α = 0.20

Figure 6.6: Ratio of ACK using the MDP with α = 0.20
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Chapter 7

Model Checking

To analyze the performance of our MDP, we will use probabilistic model checking tech-
niques which allows to obtain the probabilities of occurrence of certain events, here the
events that interest us concern the arrival or not of the packet sent by the node to the
base station level.

To do this Model Checking we will use PRISM [10] which is a tool developed at the
University of Birmingham. PRISM allows the implementation and analysis of Markovian
decision models by describing the model with guarded commands. The system is made
up of one or more modules interacting with each other, the modules themselves being
made up of a list of variables indicating their state and kept commands indicating their
behavior in the form:

[] < garde >→< commande >

The guard being a predicate on the variables of the system and the command being
a transition which is applied in the case where the guard is valid. If the transition is
probabilistic it will be specified in the form:

< prob >:< commande > +...+ < prob >:< commande >

Moreover PRISM accepts PCTL specifications which will allow us to obtain the prob-
abilities that certain events occur.

To represent our MDP in PRISM in will use several variables, one of the variables
allows to know if we are in a state of waiting, transmission, success or failure as well as
variables which allows to know the number of use of each of the SFs.

The results that we will not give below were given using the probabilities of the table
7.1 that we calculated from the equations given in 4.3.2 and 4.3.4 for a node located 2600
m from the base station.

SF P(i)
7 0.39
8 0.56
9 0.70
10 0.80
11 0.89
12 0.92

Table 7.1: Probabilities
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First, we will see the minimum and maximum probabilities of reaching a state of
success in at most k attempts, namely:

Pminmax =? [true U (”success” &Numberoftry <= k)]

We obtain the results of the figure 7.1.

Figure 7.1: Probabilities to reach a success State

We can also be interested in the probabilities of reaching a state of failure:

Pminmax =? [true U ”Failure”]

We find the following probabilities : Pmax = 0.019 and Pmin = 1.9E − 9
Once the probabilities of success and failure have been obtained, it may be interesting

to look at the probability of being in a state where the number of transmission attempts
is equal to k either:

Pmaxmin =? [true U NombreTentatives = k]

with result being in figure 7.2

Figure 7.2: Probabilities to reach success at the try k
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Chapter 8

Conclusion

In our objective of improving the performance of a LoRaWAN network we have imple-
mented a method that changes the SFs during transmission attempts in order to reduce
collisions based on probabilities that depend on previous attempts, but a One of the prob-
lems with this method was to initialize the probability table before the slightest attempt.

To solve this problem we have tried to propose a method of predicting the SF array
using a Markovian decision process. The first results we are getting are encouraging but
we need to keep experimenting by changing the number of nodes as well as potentially
the alpha penalty ratio to confirm the first results we got.

Following the confirmation, we will therefore have to set up our method in real condi-
tions by setting up a model using transmitters and an antenna using LoRa technology to
confirm our experimental results.
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