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Abstract. We consider a stochastic network where the arcs are associ-
ated to discrete random variables which represent the delay. We need to
compute the shortest delay (or equivalently the distance) from the source
to the sink in the network. Due to the randomness, this problem is known
to be hard while it has many polynomial algorithms when the arcs have
deterministic lengths (or durations). We provide three approaches and
algorithms to obtain stochastic bounds of the distribution of the dis-
tance. We present several examples to compare the precision and the
time. The approach based on association of random variables gives very
accurate results on the examples and has the smallest complexity.

1 Introduction

In the transportation systems in smart cities, due to the large number of sensors
available, we collect a huge volume of data. The data could not be seen as
deterministic anymore and we have to deal with the apparent randomness of our
measures due to noise, contention, incidents. Here we propose a method to deal
with this randomness for a classical problem: the computation of the distance
between two nodes.

We consider a directed graph G = (V, E) (digraph) which does not contain
any directed cycle, such that each arc (4, j) is associated with a random delay (or
distance) W (4, j) to join j from i. These r.v. will be denote as W,,, where m is the
arc label. We assume that these random variables are discrete and their supports
Sy (m is the index of the r.v.) are finite subsets of RT. We also assume that these
random variables are independent. As the digraph does not contain any directed
cycle, it is associated to a topological ordering of the nodes. The graph contains
N nodes and M directed edges (or arcs). Among these nodes, we distinguish
the first node (labelled s and numbered 1). We want to compute the distance
(or delay) between s and any node ¢ in the graph. Let X = (Xy,.., X3, ., Xn)
be the random variables associated with the distance or the delay from s to
all the nodes t. By construction, X, has a distribution with a single atom in 0
associated with a probability equal to 1.

Let P (s,t) be the set of paths P(t) from s to t in the graph G. We assume
without loss of generality that Pg(s,t) is not empty. As G is a DAG, there exist



a finite number of paths from s to ¢ and these paths have a finite number of
edges. Let L(P(t)) be the delay to reach ¢ departing from s.

L(P(t))= Y W(ab) and d(s,t) = Minpepg (s L(P)
(a,b)eP(t)

Computing d(s,t) is a difficult problem due to the randomness of W (%, j) while
many polynomial algorithms exist in the deterministic case. The two reasons are
the size of the resulting distributions and the dependence of the path lengths
when they share an arc. Indeed, even if the arcs lengths are supposed to be inde-
pendent, the paths lengths are not independent. Therefore a simple computation
of addition and minimum requires conditioning. Furthermore, a convolution of
two distributions with size S (associated with the addition of the independent
r.v.) may lead to a distribution with size S?. Thus each new arc added in a path
may geometrically increase the number of atoms in the resulting distribution.
Such problem was ignored in a recent approach [5] where distributions were mod-
eled by polynomials: during the computation the number of monomials increase
geometrically and the approach quickly becomes intractable.

A simple algorithm (with non polynomial complexity) can however be de-
signed, using conditioning on the random variables to solve the problem for
small instances when the discrete variables take values in very small sets. It is
sufficient to use the Total Probability Theorem after conditioning on the states
of all the random variables. Clearly

M
Pr(d(s,t) =k) = Z 1D (s,t,k1 ke kias)=k H Pr(Wp, = kn)
k1,k2,....knm m=1

where D(s,t, ki, ko, ..., kp) is the distance from s to ¢ when the length of arc
m is kp,. D(s,t, k1, ko, ...,kyn) can be obtained by any deterministic algorithm
(with complexity o(M)) to compute the distances in a directed graph. Clearly
the complexity of this approach is M Hf\:f:l Sm| (see [2] for a survey on the
complexity for various delays and flow problems for networks or graphs with
random discrete costs or durations).

Thus we develop several algorithms to derive stochastic bounds on the distri-
bution of the distance. The technical part of the paper is as follows. In Section
2, we introduce strong stochastic bounds and increasing concave bounds. Based
on monotonicity of d(s,t), we propose two algorithms based on a reduction of
the size of the supports of W (i, 7). This first approach based on the fact that the
distance is an increasing and concave function was already used to bound max
flow problem for a stochastic network [3]. Section 3 is devoted to associated ran-
dom variables to present a new and more efficient approach. We prove that the
distances between nodes are associated as some paths share arcs. Then we pro-
pose an algorithm to obtain lower bounds on the distance based on this property.
We also develop an upper bound algorithm which relies on arc disjoint paths.
To the best of our knowledge associated random variables have been considered
for PERT networks but their application to the shortest distance problem is



original. These algorithms are then numerically compared on some examples in
Section 4.

2 Stochastic bounds based on stochastic monotonicity

The complexity of the exact calculation of the distribution comes from the num-
ber of atoms. Therefore it is appealing to derive bounds when we decrease the
number of atoms. In [1] we have proposed some methods which keep some quanti-
tative and qualitative information on the results after a reduction of the number
of atoms. This is obtained through the use of stochastic orderings. We begin
with the definition of the orders we will use in this paper (see [6] for more
information).

Definition 1 (strong stochastic ordering). Let X and Y be two random
variables, X <z Y if for all increasing function @, E[p(X)] < E[¢(Y)] if the
expectations erist.

The stochastic comparison of random variables also implies that a strict
inequality between their expectations as seen below.

Property 1 Let X and Y be two random wvariables, such that X <g Y. If
E[X]=E[Y] then X = Y.

We also use some orders associated with variability of the random variables
to obtain tighter bounds. Let us first consider convex order which are defined as
follows.

Definition 2 (stochastic convex ordering). Let X and Y be two random
variables, X <., Y if E[X] = E[Y] and for all convex function ¢, E[¢(X)] <
E[¢(Y)] if the expectations exist.

Here we will use the concave ordering which is easily derived from the convex
ordering.

Definition 3 (stochastic concave ordering). Let X and Y be two random
variables, X <¢ Y if Y <o X

And finally,

Definition 4 (increasing concave ordering). Let X and Y be two random
variables, X =, Y if for all increasing concave function ¢, E[¢(X)] < E[¢p(Y)]
if the expectations exist.

The distance from s to t in the network is the define as the minimum of the
path lengths from s to t. And the length of a path is the sum of the length of
the arcs inside the path. Therefore the distance is defined using operators ” Min”
and ”+”. And both operators are increasing and concave. More formally, we can
define:

d(S, t) = f(Wl, WQ, ceey WM),

and we know that f is increasing and concave. We now define monotonicity for
some ordering and we mention the key property for approach.



Definition 5 (¢—Monotony). A function [ is W—monotone if for all X and
Y random variables such that X <, Y, then f(X) =y f(Y).

Due to the definitions of the orderings we considered by set of functions, the
following property holds:

Property 2 If function f is increasing, then it is st — monotone. Similarly,
if function f is increasing and concave then it is monotone for the increasing
concave ordering.

Algorithms for st-bounds: Computing st-bounds of d(s,t) is very simple (see [3]
for more details). It is sufficient to replace the distributions for the length of an
arc by a ”"st” bound of this distribution as stated in Algo 2. If we consider a
smaller support, the bound will be easier to compute. The first step consists in
building ”st” bounds (upper and lower for the input distributions of W,,. This
can be done with a very simple algorithm we know describe:

Algorithm 1 Simple ”st” Bounds for input discrete distributions
1: Chose the size of the bounding distribution (say K) for W,,. Of course K < S, .
2: Divide the set Sy, into K proper subsets S,(qi) (i between 1 and K) such that all the
atoms in Sf,? are smaller than atoms in Sﬁf;ﬂ). Let lﬁf;) (resp. uﬁfl)) be the smallest

(resp. largest) atom in S{Y.

3: The distribution with K atoms {2 with probability Zaes“) Pr(Wm = a) is a
lower st-bound of W,,. "

4: Similarly the distribution with K atoms u'y) and the same probability vector is an
upper st-bound of W,,.

In Algo. 2, we give a short presentation of the algorithm for st-lower bounds.
The upper bounds are obtained by a similar arguments. We also present in Table
1 and Table 2 the results for the first example we present in section 4. Remark
that upper and lower bounds share the same probability vector but they do not
have the same support.

Algorithm 2 St Bounds for the distance distributions.

1: Derive L, stochastic lower bound for W,,, for all m € [1..M] with the former
algorithm.

2: Compute f(L1,...,Lar) by conditioning and the total probability theorem. The
stochastic monotonicity implies that f(L1, ..., Lar) <s¢ d(s,t).

Algorithms for increasing concave bounds: The approach is similar. It is sufficient
to build ”icv”-bounds of the input distributions. However the derivation of these



Algorithm 3 ”icv” Bounds for the distance distributions.
1: while The number of atoms in the bound of distribution W,, is larger than the
objective do

2:  To obtain an upper bound, consider two atoms in the actual distribution, replace
these atoms by a new atom which is the barycenter of the atoms.

3:  To obtain a lower bound, consider a subset of at least three atoms in the actual
distribution and replace them with the two extreme atoms keeping the same
expectation.

4: end while

bounds differs significantly from the st-bound algorithm (see [3] for the details).

Again, for the sake of conciseness we just state the algorithm for ”icv”-lower
bounds.

Algorithm 4 ”icv” lower bounds for the distance distributions.

1: Derive V;, increasing concave lower bound for W,,, for all m € [1..M].
2: Compute f(V1,...,Vum) by conditioning and the total probability theorem. The
increasing concave monotonicity implies that f(V1,...,Var) <ico d(s,t).

Corollary 1 Replacing all random variables W (i,j) by their expectation pro-
vides an increasing concave upper bound for the distance (like in Jensen inequal-
ity). Thus, this strategy to eliminate the randomness have a systematic bias. In
the following, this bound will be denoted as Fulkerson bound.

Property 3 (Complexity) Let M be the number of arcs in the graph. Assum-
ing that oll input distributions have size |S|, that we compress the distributions to
obtain input bounds with size K, then the algorithm needs O(M |S|) operations
to derive the input bounds and O(M 2K) to get the bounds on the distance.

Arcs Atoms Probability vector
e0,e2,e4| {25810 121518 20} {{0.10.10.10.20.10.10.10.2}
el,ell | {510 15 20 25 30 35 40} [{ 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.1 }

e3 {123478912) [{020102010.1010.10.1}
ehel0 | {23781011 1516 [{0.10.10.20.10.1 0.20.10.1}
c6 {1234891013} [{0.10.20.10.10.20.10.10.1}
7 {1234691116} [{01020.101010.10.102}

e8,e9 ({3 10152022 253035 }{{0.10.30.10.10.10.10.10.1}
Table 1. Input Distributions, model 1.




Arc Atoms |Probability| Atoms Atoms | Probability | Atoms |Probability
Arc |"st” lower ”st” upper||”icv” lower 7icv” upper
e0,e2,e4| 2 12 |1 0.5 0.5 10 20 2 20 1]0.444 0.556] 10 15 06 04
elell | 5 25 | 0.6 041 20 40 5 40 1]0.543 0.457] 15 30 06 04
el 1 7 10.6 04| 4 12 1 12 |0.636 0.364 27 04 0.6
e5el0| 2 10 (05 05| 8 16 2 16 0.5 0.5 8 13 0.8 0.2
eb 1 8 |05 05| 4 13 1 13 |0.583 0.417) 6 11 0.8 0.2
ev 1 6 |05 05| 4 16 1 16 0.6 04 3 13 0.6 0.4
e8e9 | 3 22 |06 04|20 35 3 35 1]0.531 0.469| 15 30 0.8 0.2

Table 2. Stochastic Bounds with two atoms.

Note that both approaches simplify the computation to obtain bounds and
that we obtain distinct bounds when we change the partition (finding the most
accurate partition (and bound) is still an open problem). However the complexity
remains exponential if we consider distributions which have more than one atom.
The theory of associated random vectors will be used to derive less complex
bounds. In many cases they are also much more accurate (at least for the lower
bound).

3 Bounds based on associated random vectors

For a more detailed presentation of associated random variables, see [4].

Definition 1 The random variables X1, .., X,, are associated if, given two coor-
dinatewise nondecreasing functions f and g: R — R,

CO’U(f(Xl, "7Xn)ag(Xla 7Xn)) > 0.

Remark 1 One can also consider non increasing functions, as Cov(f(X), (X)) =
Cov(—f(X),—g(X)) and f is non increasing implies that — f is non decreasing.

Remark 2 As Cov(f(X),9(X)) = E[f(X)g(X)] — E[f(X)]|E[g(Y)], one can
also define associated random wvector as E[f(X)g(X)] > E[f(X)][g(X)].

As a large of the theory came from reliability, one have more results when
the r.v. are Boolean.

Property 4 (Barlow et Proschan) Let Xi,...,X,, be n Boolean r.v., then
([ X0 =1=]]Prixi=

and
Prl(max X;) = 1] > max Pr[X; = 1]

Taking into account that the r.v. are boolean, we have: (max; X;) = 1 —
[L;(1 = X;). This elementary property is used to derive useful inequalities.



Property 5 Let X a random vectors with n associated random variables. We
have:
Pr(X; >x1,X2 > x9,., X, > xp)) > HP’I“(Xk > X)),
k

and
Pr(X, <z,Xo <z9,..X, <z,)) > HPT’(Xk < zy).
%

Proof: we define T;(t) = 1x,>: for all i. T; is increasing in X; and is a boolean.
The random vector (X;) is associated. Thus random vector (75) is also associated.
We apply both inequalities of Prop 4 on T; to prove inequalities on X.

Corollary 2 Thus, Pr(min;(X;) > x) > [[, Pr(X; > x).

Proof: it is sufficient to remark that Pr(min;(X;) > z) = Pr(X; > z, Xy >
z, .., Xn > x)).

To the best of our knowledge, proving an algorithm to check that discrete
random variables are associated is still an open problem. Therefore association
is proved using the following properties (see the next section on distance in a
stochastic network). Starting with a given set of associated random variables (in-
dependence is useful here), it is rather simple to obtain new families of associated
random variables with increasing transformation.

Property 6 FEvery random variable X is associated with itself.

Property 7 If X = (X1, Xs,..., XN) is a random vector such that all the X;
are independent random variables, then X is associated.

Property 8 Fvery subset of an associated random vector is associated.

Property 9 Let X1,Xs, ... X,, be independent of the variables Y1, Ya, ..., Y,,.
Assume that X1,Xs, ... X, are associated random variables. Assume also that
Y1, Ys, ..., Y, are associated random variables. Then X1,Xo, ... X, Y1, Ya, .
Y,. are associated random variables.

ey

Property 10 Let X1,X5, ... X, be n associated random variables, and con-
sider coordinatewise nondecreasing functions fi,.., fx: R® — R. Then random
variables Y1 = f1(X1, X2, ...X»),.., [K(X1,X2,..X,), are associated.

3.1 Links with < ordering and independence

Notation 1 In the following, let us denote by =4 the equality of the distribu-
tions. Let X = (X1,..,X,) an associated random vector. For all i between 1 and
n, let us denote by X; a random variable such that X; =4 X; while X; and Y]
are independent for all j # i. X; will be denoted as the independent version of
X;.



We begin with a well-known property which was used in [7,8] to obtain
bounds for PERT networks. As we do not use "Max” operator in this paper we
do not give the proof of this property.

Property 11 Let X = (X1, .., X,,) an associated random vector. Then,
Pr(mazy(Xg)) > Pr(mazy(Xg)).

Equivalently mazy(Xg) <5 maxy(Xy). The independent versions of the random
variables provide a strong stochastic upper bound of the maz (a guarantee).

Here, the operator we use for the path length is the "Min” operator. Thus
we derive a similar result for the distance.

Property 12 Let X = (X1, .., X,,) an associated random vector. Then, mink(Xk) <st
ming(Xg). The independent versions of the random wvariables provide a strong
stochastic lower bound of the min.

Proof : we consider the first relation of Prop 5, taking for all i z; = x.

Pr(X; >z, Xo>x,.,X, >x)) > l_IPr(X;C > x).
k

The left part of the inequality is Pr(ming(Xy) > x)) while the right part is:

HPT(Xk >x) = l_IPr(Xi;f >x)=Pr(X; >z,Xo >m,..,X, >1z) = Pr(ming(Xy) > ).
k 3

Thus,

Pr(ming(Xy) > x)) > Pr(ming(Xy) > x).

or equivalently

mmk(Xk) <st mmk(Xk)

3.2 Distance and Association

We now prove that in a stochastic network with independent random variables
for the length, the distances between nodes are associated random variables. We
begin with a technical lemma which also provides an intuition about associated
random variables.

Lemma 1. Let Y, Z1 and Z2 three independent r.v., then Y + Z1 and Y + Z2
are associated.

Proof : Y, Z1 and Z2 are independents. Thus (Y, Z1, Z2) is an associated random
vector. We consider functions f1, 2 and f3: R? — R defined by:

FUY,Z1,22) =Y, f2(Y,21,22)=Y +Z1, f3(Y,Z1,22) =Y + Z2.

Clearly these three functions are increasing. Thus according to Prop. 10, random
vector (f1(Y,Z1,722), f2(Y,Z1,22), f3(Y,Z1,722)) = (Y, Y + Z1,Y + Z2) is
associated. Due to Prop. 8, (Y + Z1,Y + Z2) is also associated.



Property 13 Let Yp = L(P(t)) a r.v. equal to the length of path P(t) from s
to t in digraph G, Y = (Yp) peps(s,) 95 an associated random vector.

Proof : Let P1 et P2 two paths from s to £. We have two cases to consider:

1. P1 and P2 are arc-disjoint.
2. The intersection of P1 and P2 contains some arcs.

In the first case, L(P1) and L(P2) are independent as they are summations of
distinct independent random variables (the length of the arcs which belong to
the path). As they are independent, they are also associated according to Prop.
7.

Now assume that the intersection of P1 and P2 contains some arcs and
let @ = P1N P2. As the ”4” operator in the definition of the path length is
commutative, one can separate each path into two subsets of arcs such that

L(P1) = L(Q) + L(P1\ Q) and L(P2)=L(Q)+ L(P2\ Q)

As Q = P1N P2, we have (P1\ Q)N (P2\ Q) = 0, thus L(P1\ Q) and L(P2\Q)
are independent random variables. Similarly L(Q) is independent of these two
r.v. and we can apply Lemma 1 to prove that L(P1) and L(P2) are associated.

3.3 Algorithm for a lower bound

Let d*(j) represent the distance from node 1 to node j when all the nodes between
1 and ¢ have been taken into account to find paths. In general we cannot compute
the distribution of d’(j) because of Prop. 13 without conditioning and using an
exponential complexity algorithm. Instead we compute a stochastic bound I°(j).
The algorithm proceeds by iteration adding one node at each iteration. Each
node allows to add new paths and to decrease the shortest distance computed
so far. Remember that the directed graph is a DAG and we use this property
to consider the nodes in the topological order associated to the DAG. Note that
d(s,t) = d™(t) (i.e. we have considered all the nodes to build paths from 1 to t).

Algorithm 5 St lower bounds based on association of paths.

: Tnit 7' (u) = W(1,u) for all nodes u which are neighbor of node s = 1.
: for all k& (node number) from 2 to N do
for all all node u neighbor of node £k — 1 do

1
2
3
4: let ¥ (u) = min (l’“*l(u)7 F=1(k—-1)+W(k -1, u))
5
6

end for
: end for

By definition {¥~1(u) as the same distribution and is independent. Further-
more we know how to numerically compute the minimum of two independent
distributions.



Theorem 1 [*(u) is a "st” lower bound for the distance: for all node index k
and u, 1*(u) <g d¥(u). And IV (t) <q d(s,t).

Proof : by induction on k.

— k = 1. We consider the neighbors (say u) of node 1. The distance to reach
node u is exactly the length of the arcs W (1, u). Therefore d*(u) = W (1, u)
and thus ' (u) < d'(u) for all these nodes u.

— k= k+ 1. Adding new arc from k to u allows to decrease the distance (see
Fig. 1). By construction we have:

d*(u) = min (" (u),d* ' (k — 1) + W(k - 1,u)) .

By Prop. 13, we know that the path lengths are associated. Thus for all u,

min (dk—l(u)), (k- 1)+ Wk -1, u)) <o d"(u)

As "min” and "+” are increasing functions, if z <g y and z independent of
y and x then min(z, ) <g min(z,y) and x + z <5 y + z. By induction, we
have : I*=1(k — 1) <y d*~!(k — 1). Therefore:

min (z’H(u), =10k — 1) + W(k — l,u)) <s¢ min (dkfl(u), (k- 1)+ W(k— 1,u)) .

By transitivity: min (lk—l(u), =1k — 1)+ W(k — 1, u)) <st d*¥(u), and fi-
nally, ¥ (u) < d*(u).

Fig. 1. Considering node 4 allows to modify the distance distribution to node 5 and
to initialize the distance distribution to node 9.

The two basic operations in Algo. 5 is the addition and the minimum of two
independent random variables. These operations obviously depend on the size
of the discrete distributions. Note that each convolution operation leads to an
increase of the size of the distributions and this size has to be controlled to avoid
that the last steps of the algorithm deals with very large distributions.

Corollary 3 In Algo. 5, after each computation of I*(u), we replace 1¥(u) by a
st lower bound of I*(u) with at most K atoms. The algorithm still compute a
7st” lower bound of d(s,t) by transitivity.



Assume that the distributions are represented by sorted lists with size d1 and
d2 and let d = max(dl, d2). The minimum can be computed in O(d) operations
and the output distribution has a size smaller than d. The addition of indepen-
dent random variables is associated with the convolution of their distributions.
Efficient algorithms exist with a complexity in O(d log(d)) and the output have
a size which is at most d2.

Property 14 (Complexity of Algo 5) Assume that each step of the algo-
rithm, the distributions have size K. Each step requires O(K logK) operations
and after calculation, I*(u) have size at most K? (due to the convolution). The
extra step of lower bounds introduced in Cor. 3 has a linear complezity (in K?).
And the number of iterations in the nested loops of the algorithm is M. Therefore
the complexity is O(M K?).

3.4 Algorithms for an upper bound

We combine two arguments:

— When two paths are arc disjoint, the lengths of the paths are independent
(see the first part of the proof of Prop. 13) and we know how to compute
them.

— If we only consider a subset of paths, we compute a st-upper bound. More
formally, if A(s,t) C P(s,t), then

d(s,t) = Minpep(s,t) L(P) <st m(s,t) = Minpes(s,t)L(P).

Thus, the algorithm consists in finding arc-disjoint paths (the largest set) and
compute the distance associated with this set of paths.

Algorithm 6 St Upper Bounds based on subgraphs and independence of paths.

1: Find the largest set of arc-disjoint path. This is easily done with a max flow algo-
rithm on the original graph where all the arcs receive capacity 1. The augmenting
paths provided by a max flow algorithm, on such a graph with arc capacity equal
to 1, are by construction arc disjoint. Thus the max-flow algorithm return the
maximal number of arc disjoint paths.

2: Compute the distribution of length for each path. The length of a path is the sum
of arc length which are by assumption independent. Thus one can use convolution
algorithm to obtain the length of any path.

3: Compute the distribution of the "Min” of these random variables. As the paths are
arc-disjoint, the r.v. are independent and the computation of the ”Min” is an easy
task.

Property 15 (Complexity) First step requires O(F M) operations to obtain
a F arc disjoint paths and F < M. During step 2, the distribution of the distance



is obtained by the convolution of independent random variables of size smaller
than K. Each convolution is followed by a compression of the resulting distribu-
tion (whose size is at most K2). Let D of the graph, the complexity of this step
is O(F D K?) using the same arguments as in Prop. 14. The last step consists
in computing the minimum of F distributions with size K and this can be done
with O(F K In(K)) operations. Therefore, the total complezity is O(F D K?).

4 Numerical results

We begin with a toy example where it is feasible to obtain the exact solution
to check the accuracy of the methods. Even if it is possible, the exact algorithm
is really time consuming. The graph has 8 nodes and 12 edges (see Fig. 2). All
the distributions have 8 atoms. The input distributions are given in table 1. The
”st” bounds and "icv” bounds with two atoms for these distributions are given
in Table 2. These distributions with 4 atoms will be given in an appendix of the
full paper.
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New Lower bound
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Fig. 2. Graph for Model 1 (left), Stochastic bounds (right).

We present in the right part of Fig. 2 the cdf of the distributions. We only
present the exact result, the ”st” bounds based on association and the ”st” upper
and lower bounds with 2 and 4 atoms in the input bounds. We do not draw the
”icv” bounds to avoid confusion. Note that as the ”st” bounds are not all based
on the same strategy, the cdf may cross (for instance the purple and the red
curve). The most important point to remark here is the tightness of the lower
bound based on association.

To compare all these strategies, we compute the expectation of the distance
(in Table. 3). The algorithms are very fast for this small graph: computing the
distribution with the algorithms based on association need 0.01s on an ordinary
laptop, while the bounds based on bounding input distributions atoms need
0.02s (resp. 14s) for bounds with 2 (resp. 4) atoms. Note that computing ”st”



Method Association|St Monotonicity |”icv” Monotonicity|Fulkerson| Exact
2 atoms|4 atoms|2 atoms| 4 atoms
Exp.|Lower bound 19.35 10.88 | 16.19 | 15.02 18.80 . 19.385
Upper bound 26 28.29 | 21.99 | 21.23 20.83 23

Table 3. Expectation of the distributions (Modell).

bounds or ”icv” bounds requires the same time as we deal with distributions
with the same number of atoms. Finally, the exact results are obtained after 17h
and 26min on the same laptop.

We now study two examples: a larger graph with 26 arcs and 14 nodes (Fig.
3). As the distributions all have 8 atoms, the number of deterministic cases we
have to solve with the approach based on conditioning is 826 and this precludes
to give the exact solution.

Fig. 3. Graph for Model 2.

For the first method which bounds the input distributions, we consider two
strategies. In the first one, we only keep 2 atoms per input distributions. Thus
the number of deterministic cases generated by the conditioning is 226. To keep
the number of cases smaller than 230, the second strategy consists in bounding
all the input distributions by distributions with 2 atoms, except distributions
for arcs €22, €23, e24 and 25 which have 4 atoms. The first strategy needs 3min
while the second needs 48min. Stochastic bounds based on association are very
easily solved. They require less than 1s.

Remark in Table 4 that the best lower bound is provided by the association
algorithm. But the best upper bound is obtained by the first approach with 23°
deterministic cases. Clearly we have to improve the strategy based on arc-disjoint
paths. This point will be developed in the full version of the paper.

Method Association||Input Bounds: ”st” ||Input Bounds: "icv”
576 530 576 530
Expectation|lower bound| 111.660 || 76.868 | 78.596 92.652 94.198
upper bound| 183.596 [|160.149| 153.877 [[132.016] 131.109

Table 4. Bounds of the expectation for Model2.
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Fig. 4. Probability distribution for the bounds of the distance (Model 2).

Now we consider a Series-Parallel (SP for short) digraph (see Fig. 5) with 48
nodes and 54 arcs. Such a graph has a recursive construction and this provides
a recursive algorithm to compute the distribution of the distance. Note however
that the distributions which appear during the execution of the recursive algo-
rithm still suffers of the size explosion problem due to the convolution operation
and we have to bound them if we want to keep their size smaller than K. The arcs
all have the same distribution of delay with 8 atoms (1,2, 5,6,12,19, 28, 34) and
probability vector (0.1,0.1,0.05,0.3,0.05,0.1,0.2,0.1). As the number of arcs is
too large, we only report the results based on association. The exact algorithm
based on the SP structure only requires 66s, while the bounding algorithms are
faster (1.7s for the upper bound and 3.8s for the lower bound). The exact ex-
pectation is 191.66 while the lower (resp. upper) bounding distribution has an
expectation equal to 174.15 (resp. 234.38). This last example (and many others
we cannot report here due to the lack of space) shows that the lower bound is
still quite accurate. The quality of the upper bound may depend of other graph
properties and may be very bad.

5 Concluding Remarks

These two approaches provides some tradeoff between complexity and accuracy
of the numerical results. They also suggest new approaches combining association
of random variables and graph properties that we will present in the extended
version of this paper. We have now derived new algorithms based on recursive
construction of the graph or a subgraph to combine the ”st” bounds approach
with the associated r.v. results. We have also generalized some of our results to
networks where the delays to cross the arcs are not independent. This allows to
study new models of traffic.
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