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Abstract

Current advances in molecular biology enable us to access the rapidly increasing body of genetic information. It is still challenging to
model gene systems at the molecular level. Here, we propose two types of reaction kinetic models for constructing genetic networks. Time
delays involved in transcription and translation are explicitly considered to explore the effects of delays, which may be significant in
genetic networks featured with feedback loops. One type of model is based on delayed effective reactions, each reaction modeling a
biochemical process like transcription without involving intermediate reactions. The other is based on delayed virtual reactions, each
reaction being converted from a mathematical function to model a biochemical function like gene inhibition. The latter stochastic models
are derived from the corresponding mean-field models. The former ones are composed of single gene expression modules. We thus design
a model of gene expression. This model is verified by our simulations using a delayed stochastic simulation algorithm, which accurately
reproduces the stochastic kinetics in a recent experimental study. Various simplified versions of the model are given and evaluated. We
then use the two methods to study the genetic toggle switch and the repressilator. We define the “on” and “off” states of genes and
extract a binary code from the stochastic time series. The binary code can be described by the corresponding Boolean network models in
certain conditions. We discuss these conditions, suggesting a method to connect Boolean models, mean-field models, and stochastic
chemical models.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Advances in experimental genetics and molecular biol-
ogy have brought about a flood of genomic data. This
creates a new challenge to understanding how genes and
proteins work collectively, i.e. the analysis of these data.
This challenge leads to a significant increase of computer
applications for modeling and data interpretation methods.
The aim is to develop computer simulations that mimic
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biological phenomena, data or patterns, such as complex
biochemical reactions and gene networks in cellular media
(Turner et al., 2004).

One interesting biological phenomenon observed in the
experiments is that a genetically identical (isogenic)
population of cells exposed to the same environmental
conditions can have phenotypically distinct individuals
(Raser and O’Shea, 2005). The question that arises is: How
does the phenotypic variability arise from identical genetic
networks? A simple answer is that cells are intrinsically
stochastic systems. This is because biochemical processes
involved in gene expression and regulations are the source
of variability due to intrinsically stochastic essence of
chemical reactions. Besides intrinsic molecular fluctuations,
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extrinsically related stochastic factors, such as environ-
mental differences and state differences between cells,
contribute to the cell—cell variability as well. Also, genetic
variation (including genetic mutations and DNA duplica-
tion errors) is another important factor. Naturally extrinsic
factors and genetic variation all finally function as sources
of variability through stochastic reaction events. Accord-
ingly, constructing a modeling framework for gene net-
works based on stochastic reaction kinetics is critical to
explore stochastic life phenomena.

Recent studies on gene expression analysis (Ozbudak
et al., 2002; Blake et al., 2003; Raser and O’Shea, 2004;
Kern et al., 2005; Cai et al., 2006; Yu et al., 2006) and
simple genetic network synthesis (Elowitz and Leibler,
2000; Gardner et al., 2000; Atkinson et al., 2003; Kramer
et al.,, 2004; Hooshangi et al., 2005; Pedraza and van
Oudenaarden, 2005; Rosenfeld et al., 2005; Guido et al.,
2006) provided considerable experimental information
about phenotypic variability and stochasticity of gene
expression. The corresponding theoretical investigations
incorporating the stochastic nature of chemical reactions
indeed gave reasonable explanations for the experi-
mental observations. One of the most used theoretical
methods is the stochastic simulation of the chemical
master equation which simply requires a chemical reaction
mechanism (model) and a stochastic simulation
algorithm (SSA) (Gillespie, 1976, 1977, 1992). This
simulation mimics the evolution of a reaction system by
carrying out single steps which specify the next effective
random collision and when this event will happen. This
method assumes that in a cell all the interactions involved
in a gene network are pure chemical reaction processes,
which are in a homogeneous state. While physical processes
like diffusion and transportation are also important in gene
network kinetics, and cells are by no means homogenous
compartments, using this method has proved to be a useful
tool to investigate stochasticity in gene networks (McA-
dams and Arkin, 1997, 1998; Arkin et al., 1998), especially
in prokaryotes.

Real gene network systems are composed of a large
number of reactions and reacting species. There are too
many items to include them all in models, due to our
current limited knowledge and understanding. Even if we
had a complete model consisting of all the reactions and
species, it is also rather difficult to find an effective method
to analyze such a complex model. Thus, we are currently
using simplified models. Two widely used simplification
ideas are: designing effective reactions and making virtual
reactions. The effective reactions are designed to include
the inputs and outputs of a biochemical process without
explicitly considering a series of intermediate reactions. For
example, we can use one effective first-order reaction,
mRNA — Protein, to model the whole translation process
without considering the multi-step elongation process. In
contrast to effective reactions, virtual reactions do not
explicitly correspond to real biochemical processes. They
are built from the mathematical functions that model

biochemical functions such as gene inhib}ction. For
example, a virtual zeroth-order reaction like LN P, with
K =a/(l —l—Pg) can be used to model the expression of
gene | which is inhibited by the expressed products of gene
2. Here, P, and P, are the expressed products of genes 1
and 2, respectively, and a and b are constants. The
purposes of using effective reactions and virtual reactions
are the same, i.e. to use simple single-step reactions to
model complex multiple-step biochemical processes. While
current models in the literature based on these ideas are
very simple in comparison with the complexity of real gene
systems, it seems that these simplified models work well to
capture key features of the studied gene systems.

However, most of the methods using effective reactions
and virtual reactions neglect temporal delays that inevi-
tably exist due to the time lags between the inputs and
outputs of the modeled events. Especially, for the two core
processes in gene expression, transcription and translation,
it may take considerable time for a RNA polymerase/
ribosome to generate an RNA /polypeptide depending on
the length of a gene, which varies significantly from gene to
gene. It should be noted that these delays seem to be
unimportant to the stochastic kinetics of the gene systems
in previous studies where only the non-delay models were
used. We note that previously studied systems are simple
synthetic genetic systems, such as the toggle switch
(Gardner et al., 2000), and that most of the interesting
states are steady states. It is understandable that, for a
delayed reaction and a non-delay reaction with the same
input rate, the rates of their outputs would become the
same when their steady states are reached after some
transients. Using non-delay reactions is thus enough to
study the equilibrium states of such simple synthetic gene
systems. In these cases, the transients are simple. But, in
real genetic regulatory networks, the regulation is so
complex (associated with many feedback loops) that gene
activation and gene inhibition could occur very frequently.
In such cases, time delays, especially for transcription and
translation (Lewis, 2003; Monk, 2003; Gaffney and Monk,
2006), should be included in the model to capture the
features of transients (Bratsun et al., 2005; Veflingstad
et al., 2005). These transients can be very long so that the
behavior of gene systems could depend critically on
transients rather than steady states. For example, the
protein production delays have proven able to create long
transients between attractors, even for simple genetic
networks (Ribeiro et al., 2006a).

More importantly, the introduction of delays makes the
complex network systems much ecasier to theoretically
study at the molecular level. This allows us to easily study
the kinetics of the systems by exploring the delay effects.
This not only can help us to understand better the
properties of real genetic networks, but also may help
guide the design of robust genetic devices. Since transcrip-
tion and translation are two core processes in genetic
regulatory networks, in this work we will focus on the time
delays involved in these two processes.
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To simulate delayed reactions, the commonly used
Gillespie SSA, must be modified. There are several options
available. Gibson and Bruck proposed a method to impose
the delay effect into their version of Gillespie’s algorithm
(Gibson and Bruck, 2000). Ramsey et al. (2005) also
reported that single-output delayed reactions can be
introduced in stochastic simulations performed in their
software Dizzy. Very recently, Bratsun et al. (2005)
provided a detailed delayed Gillespie algorithm. Here, we
use a generalized delay algorithm (Roussel and Zhu, 2006),
which can handle more than one delayed output event for
one input event.

The focus of this article is put on the stochastic reaction
modeling approach. Yet, the Boolean network method
(Kauffman, 1993), which has a higher level of description
in models of genetic networks, comes with a tightly related
issue of great interest: in the Boolean network description,
how should one interpret “0” and “1” in the stochastic
time series obtained from the corresponding stochastic
model? Accordingly, we investigate the connection between
the two kinds of models through two examples. The text of
this article is organized as follows. In Section 2, we
introduce two kinds of delayed reactions: delayed effective
reactions and delayed virtual reactions, and describe the
methods we use to construct two types of genetic network
models from these two kinds of reactions, respectively. In
Section 3, we first propose a single-gene expression model
and employ it to study the dynamics of a gene which is
expressed in a certain repressed condition. Next, we derive
various simplified versions from this model and evaluate
their performances under given conditions. Then, we study
two simple genetic regulatory networks, a two-gene toggle
switch and a three-gene oscillator, using the proposed
methods. Finally, the studied stochastic models are
compared with the corresponding Boolean network mod-
els. In Section 4, we conclude with the key features of the
delayed models and the issues of using these models in
further studies of gene networks. For simplicity, extrinsic
fluctuations and genetic variations are not considered in
this work.

2. Methods

As stated in Section 1, we are exploring genetic systems
using the stochastic reaction kinetics method. This method
requires a chemical reaction model and an SSA. We first
provide in detail two types of delayed models and then
briefly describe the SSA used here to perform stochastic
simulations. All the models are reaction-based models
which consist of only simple chemical reactions, such as
zeroth-order, first-order (unimolecular), and second-order
(bimolecular) reactions.

2.1. Process-based effective chemical reactions

Our effective chemical reactions are designed to model
multiple-step biochemical processes with single-step

delayed reactions. A regular reaction equation has two
sides: the reactant side and the product side. The delayed
reaction equation has the same reactant side as a regular
reaction does, but has a different product side. We start
this section from a single-gene expression model that
explicitly includes two parts, i.e. transcription and transla-
tion. For the transcriptional part, we have

RNAP(7) + Pro(f) — Pro(t + 11) + RBS(‘ + 71)
+ RNAP(¢ + 13) + R(t + 12). )

This reaction is represented using the delayed mass-action
representation of chemical mechanisms (Roussel, 1996).
On the reactant side, an RNA polymerase (RNAP) binds
to the promoter region (Pro), forming an elongation
complex (an intermediate product, not given explicitly).
This process is the first step of transcription initiation
which is modeled as a bimolecular reaction with the
probability rate constant k;. Here, RNAP and Pro are
the inputs of the transcription process; their reaction is the
corresponding input event. The elongation complex is
then ready to walk along the DNA strand. On the product
side, the corresponding output events are: 7; time units
later, the promoter is cleared; 7,>71; later, the RNAP is
ready to release the DNA, producing a primary mRNA
transcript (R). Also, the leader region of the transcript
containing the ribosome binding site (RBS) is assumed to
be produced at the same time as the promoter is cleared.
Pro, RBS, RNAP, and R are the outputs of the
transcription process.

Note that the transcription initiation frequency, which
determines the input rate of the transcription process, is
controlled by k; and 7;. The former determines how
frequently the binding event happens if the Pro is available
(assuming that the RNAP is abundant), and the latter
determines how long it takes for the Pro to be available
again after its shut-off due to the binding event.
Statistically, after a transient of 7,, the output rates of
RNAP and R reach the input rate if the input rate is kept
unchanged. For a non-delay reaction, on the contrary, all
the output rates reach the input rate immediately. This is
how the production delay 7, makes the original difference
compared with the non-delay case. If the average time for
one input event (determined by (RNAP x k\)~'+1,, where
RNAP is the number of free RNAPs) is much larger than t,,
T, can be neglected. This follows because the input rate is so
slow that it takes a long time compared with the
production delay to obtain the outputs. In such situations,
the effect of the production delay may not be significant. In
addition, 7, can be omitted as well if it is much smaller than
(RNAP x k)~ "

In fact, the transcription process involves many reaction
steps which can be classified into three stages: initiation,
elongation and termination (von Hippel, 1998). Especially
in the elongation stage, there are at least two repeating
steps: A phosphodiester bond forms between two ribonu-
cleotides, generating chemical energy for the RNAP to step
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forward to the next position; one NTP paired with the
nucleotide in that position binds to the RNAP. The two
elongation steps repeat until the last nucleotide of the gene
is reached. In most dynamic studies concerning systems
biology, these detailed intermediate reactions are not of
interest. What interests us is to know how long/often,
statistically, the two key species, i.e. the Pro and the RBS,
would be produced since the populations of these species
are tightly related to the population of expressed proteins
(see below for the explanation). The delayed transcription
reaction (1) is designed for this purpose.

For the translational part, we have a delayed reaction
analogous to reaction (1)

k
Ribosome(7) + RBS(7) —> RBS(7 + 13)
+ Ribosome(? + t4) + P(t + 15). (2)

Once a free ribosome successfully binds to the RBS, after
73, the RBS is cleared; and 74>73 time units after the
binding, a protein (P) is produced and the ribosome
releases the mRNA. £k, is the probability rate constant for
Ribosome-RBS binding events. The parameters, k», t3,
and 14, have the same relationships as ki, 7;, and 7, do for
the transcription reaction. In addition, the RBS loses its
ability of binding to ribosomes through the following
degradation process of RBS:

k
RBS —> decay. (3)

The degradation mechanism is that the RBS is attacked by
ribonuclease E (Yarchuk et al., 1992). For simplicity, we
assume that the population of ribonuclease E is constant.
The degradation of proteins can be modeled as another
unimolecular reaction

ky
P —> decay. “4)

We propose reactions (1)—(4) for a model of gene
expression mainly based on the model given by Kierzek
et al. (2001) for prokaryotes. The main biological feature of
the prokaryotic gene expression is shown in the model:
mRNA is translated during transcription. For eukaryotes,
one of the major differences in gene expression from
prokaryotes is that the mRNA is processed before
transport to the cytoplasm where it is translated. Thus,
we could also have a simple model for eukaryotic gene
expression by replacing reaction (1) with

RNAP(7) + Pro(t) = Pro(t + 1) + RBS(1 + 7))
FRNAP(r+ 1) + R+ 1), (5)

where 7 is the time it takes to form an RBS, including the
time for the processing of primary transcripts and
transport of the processed transcripts to cytoplasm
imposing always 7’1 >1,. Note that the models mentioned
below refer to prokaryotic cases only unless otherwise
stated.

As seen from reactions (1) and (2), the transcription and
translation processes are modeled in a similar way due to

their biological similarity: an RNAP binds to the Pro in
transcription, while a ribosome binds to the RBS in
translation. Note that the Pro represents the state of a
gene. For the current single-gene case, its value can be
either one or zero, denoting the on or off states of the gene.
Here, the “on state’” means that the Pro can freely bind to
an RNAP, while the “off state” means that the Pro is
unavailable for binding due to some reason, for example,
the Pro is not released yet or it is blocked by a repressor.
On the product side of reaction (1), what really dominates
the kinetics of proteins is RBS rather than R. Once an RBS
forms, proteins can start being produced through reaction
(2). Thus, the Pro controls the production of RBSs which
successively controls the production of proteins. Besides
the Pro and the RBS, another two species, RNAP and
ribosome, also affect the gene expression. However, only
Pro and RBS play a dominant role in gene expression
kinetics because their populations are much smaller than
those of RNAPs and ribosomes, and therefore act as the
limiting factors for the gene expression process. It is
biologically reasonable that only the leader regions of a
gene and an mRNA are most associated with the kinetics
of gene expression. The other two species, R and P, are
included so that we can compare the kinetics of R and P
directly with those of experimental systems or other
models.

We can derive various simplified versions from the model
(reactions (1) and (2)). For example, by assuming that
RNAPs and ribosomes both are in a steady state, 7, > 1,
and that 74> 13, reactions (1) and (2) become, respectively,

Pro(f) —> Pro(f) + RBS() + R(t + 12), ©6)
RBS(1) —> RBS(1) + P(i + 2). )

The effects of RNAP and ribosome are absorbed into k;
and k;,, respectively, since their populations are fixed. We
note that Pro and RBS in reactions (6) and (7) behave like
catalysts: One Pro/RBS is repeatedly used to produce more
than one product. For reaction (6), it means the gene is
always “on”, so it is actually a zeroth-order reaction

ky
—> RBS, 8)

where we delete R and keep the dynamics-related species
only. In reaction (7), the production rate of proteins
depends on the number of RBSs which changes over time.
Thus, reaction (7) is a first-order self-catalytic reaction. It is
worth mentioning that the reactions commonly used in the
literature for transcription and translation are:

kl

—> RNA, 9)
ka
RNA — P. (10)

Comparing them with our simplified model (reactions (8)
and (7)), we get the following results. RNA in the literature
model (reactions (9) and (10)) stands for RBS in our model.
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Reaction (9) is then the same as reaction (8), but reaction
(10) is quite different from reaction (7). There exist two
differences: Unlike reaction (7), reaction (10) is not a self-
catalytic reaction so that one transcript can only produce
one product; once the input rate of translation drops due to
the decrease in the number of transcripts, the production
rate of proteins drops at the same time (no delay/transient).
To improve the literature model, for the former difference,
we introduce the protein burst size, n, the average
production rate of proteins per transcript (Ozbudak
et al., 2002); for the latter, we need to add a delay for the
protein production. Reaction (10) is thus updated to, in
terms of reaction (7)

RBS(1) ~2 nP( + 14). (1)

Reactions (8) and (11) are a simplified version of the gene
expression model for prokaryotes that we directly
derive from our first model (reactions (1) and (2)). It is
worth emphasizing that commonly the protein production
delay, 14, cannot be neglected since the time it takes for
one input event to happen is commonly smaller than 4.
For example, in Escherichia coli, the interval between
translation initiations ranges from 1.7 to 16s (Kennell
and Riezman, 1977); the speed for ribosomes to walk along
the mRNA ranges from 8 to 15amino acids/s (Talkad
et al., 1976), and the average length of an mRNA molecule
is about 1200 bases (Stryer, 1988), giving 14 = 26-50s.
In addition, 74 would be much larger if it includes the
time for the post-translational protein assembly process
(Yu et al., 2006). Reaction (11) could work for eukaryotes
as well, but the transcription reaction (8) should be
modified to

L, RBS(1+ 7). (12)

Reaction (12) accounts for the long delay to form an RBS
in eukaryotes, compared to prokaryotes.

In addition, we can simplify our first gene expression
model by combining transcription and translation in a
single-step delayed reaction as follows (Ribeiro et al.,
2006b):

RNAP(7) + Pro(t) — Pro(t + 7,) + RNAP(‘ + 1)
+ R(t + 12) + nP(t + 13). (13)

In this delayed reaction, the translation process is viewed
as a delayed output event of the transcription process.
Those parameters in reaction (13) except n and 75 are the
same in reaction (1). n is used to model the bursts of
protein production and 13 is the delay of protein
production in this reaction. The two parameters are
obtained by fitting the average kinetics of reaction (13)
with that of the first model. With the same reasoning used
above, we can have a further simplified model obtained
from reaction (13)

K P+ 13). (14)

Here, k; is the transcription initiation probability rate
constant, n determines the burst size of protein production,
and 13 is the protein production delay.

We presented above several versions of models of gene
expression. The next question is: how can we connect up
these basic components to build a reasonable genetic
regulatory network model? Many theoretical and experi-
mental techniques have been used to study this issue. In our
framework of chemical reactions, we assume that all the
genetic regulations are realized through chemical reactions
and that signals are transmitted via chemical species. We
provide below a strategy to construct simple genetic
networks by including some additional reactions and
reacting species.

Generally there are two basic regulatory mechanisms in
genetic networks: gene inhibition and gene activation
(Alberts et al., 2002). Regulations can happen in transcrip-
tion and/or translation. We consider only transcriptional
regulation due to its dominant role in gene expression. In a
regular transcriptional inhibition, a repressor binds to an
operator site which is close to the promoter region,
blocking the RNAP from walking on the DNA strand
(Cowell, 1994), while in a regular transcriptional activation
process, an activator binds to some part of the DNA
resulting in faster transcription initiation through a
recruitment mechanism (Ptashne and Gann, 1997). One
can have several distinct effectors (repressors and activa-
tors) involved in a single gene regulation process. For
simplicity, only one effector per gene regulation is
considered at this point. We note that, in both the
inhibition and activation processes, one common point is
that the state of the promoter is changed by an effector. We
thus include the following two reactions of gene regulation:

k

Pro + P —> ProP, (15)
k

Pro+ P —> ProP, (16)

where P denotes effector which is a protein expressed from
some gene and ProP denotes the changed state of the
promoter. Reaction (16) allows the changed state to be
reversible to the normal state. For a gene inhibition
process, ProP is the repressed state of the Pro. Once the
ProP forms through reaction (15), transcription stops until
the Pro (normal state) recovers through reaction (16). For
a case of gene activation, ProP is the activated state of the
Pro; besides, we need to add another ‘high-speed”
synthetic channel for this activated Pro. For example,
once this activated Pro forms, reaction (1) is replaced by
the following reaction:

K
RNAP(¢) + ProP(t) —> ProP(t + 1) + RBS(¢ + 11)
+ RNAP(¢ + 13) + R(t + 12),
(17)

where k' > k. In addition, if the effector P is abundant so
that its population is almost fixed, we can simplify
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reactions (15) and (16) to a first-order reversible state
change reactions like Pro<>ProP. For this simplified case,
we may also assign a “low-speed” channel like (17) with
k’'1 <k to the repressed Pro. This is another way to model
gene inhibition, which is commonly used in the literature
(Kern et al., 2005). In our strategy, we do not consider this
channel since we assume that the repressed Pro is
completely turned off. A slightly simpler version of the
above regulatory equations was also proposed (Ribeiro
et al., 2006b) to build gene regulatory networks of any
size, which can be used to do an ensemble approach
study (Kauffman, 2004) instead of Boolean networks
(Kauffman, 1969).

In summary, the two basic transcriptional regulation
mechanisms are implemented by this strategy: the tran-
scription initiation frequency is regulated by changing the
state of the Pro. Note that this strategy only applies to
those models explicitly including the Pro. It is worth
emphasizing that the natural transcriptional regulation in
cells is far more complex than the mechanisms proposed
above. Using this strategy is a sensible first step toward
constructing simple synthetic networks. We will use this
method in the next part to build a model of single gene
expression in a repressed condition and a model of toggle
switch.

The above proposed reactions for gene expression and
genetic regulations are simple chemical reactions. Besides
being used in the framework of stochastic reaction kinetics,
these reactions seem to serve in the framework of
deterministic reaction kinetics as well. In the deterministic
framework, ordinary differential equations (ODEs) for
non-delay reactions and delayed differential equations
(DDEs) for delayed reactions can be easily written down
based on the mass-action law. However, for those reactions
consisting of Pro, the deterministic kinetics will give an
incorrect description. This problem arises because the
deterministic equations can provide a good approximation
to the average kinetics of a stochastic description only if the
number of reacting molecules of each type is large enough
(Gillespie, 2001). This requirement can never be met when
we study genetic systems, especially single-gene systems,
where the number of each Pro is either one or zero at any
given time. Even in real gene networks, it is unusual to have
more than two copies of the same gene (Alberts et al.,
2002). Accordingly, the above transcription reactions
involving a Pro actually are not workable in the
corresponding deterministic kinetics studies. Some deter-
ministic models (also called mean-field models) of genetic
regulatory networks employ mathematical functions ob-
tained from biochemical reaction equations under some
assumptions to model the regulations among genes without
explicitly considering single gene expression. These mean-
field models appear to be helpful in understanding some
simple genetic regulatory networks, such as the genetic
toggle switch (Gardner et al.,, 2000) and the genetic
oscillator (Elowitz and Leibler, 2000). We note that these
models are easily converted to virtual chemical reactions,

which can be studied in the same stochastic kinetics
framework mentioned above. We next introduce the virtual
chemical reactions and use them to construct stochastic
models of genetic regulatory networks.

2.2. Function-based virtual chemical reactions

The second type of gene network models is based on
virtual chemical reactions. We illustrate this modeling
method with a simple example, a two-gene toggle switch
system. The toggle switch consists of two repressors and
two genes. Each gene is inhibited by the repressor
transcribed by the opposing gene. A synthetic genetic
toggle switch in E. coli has been constructed and shows
robust flipping between two stable states in certain
conditions (Gardner et al., 2000). The following ODE
model was used to predict these conditions, reasonably
explaining the experimental observations:

dp

=P (18)
14 P,

dp

= P (19)
1+ P,

where P; and P, are the concentrations of the two
repressors, a; and a, are their synthesis rate constants,
and b; and b, are the corresponding cooperativities of
repression. The second terms in Egs. (18) and (19) are
degradation of the repressors. In this mean-field model, the
Hill function, a/(14 P’), is employed to model the
repression interaction between the two genes. The larger
the value of b, the higher is the cooperativity. b can also be
a self-repression cooperativity in a single gene expression
system where the Hill function serves as a self-inhibition
mechanism (Monk, 2003).

We now transform Egs. (18) and (19) into a set of
chemical reactions. It is reasonable to convert the degrada-
tion terms to unimolecular decay reactions like reaction (4).
Yet, one must be careful when doing the conversion for the
inhibition parts due to the existence of the Hill functions.
A simple, direct method is to convert them to zeroth-order
virtual reactions with time-dependent probability rate
constants obeying the Hill functions. We call them virtual
reactions because they do not explicitly correspond to any
real biochemical process. We can now write down the
following reactions for the above mean-field model:

K1 (D) ai

— Pi(0), Kki(t)=—F+, 20

0 0= (20)

P, 2, decay, k=1, (21)

K3(2) a

— Py(0), () =—T"——, 22
(0, 0= (22)

Py % decay, Ky=1. (23)
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These reactions can be reconverted to the mean-field model
in terms of the mass-action law. With delays included,
virtual reactions (20) and (22) are rewritten as

Cptn). k@=—3 (24)
1 4+ Py()™
K3(7) ar
S P(t+ 1), Ki(f)=— . 25
(w0 =t (25)

While the above virtual reactions correspond to no real
biochemical processes, they seem dynamically reasonable
since the inhibition relation between the two genes is
embedded in the varying probability rate constants. Of
course, the extent to which these virtual reactions are
reasonable should be justified by comparing the stochastic
kinetics of this model with that of the corresponding
process-based model. We will do the comparison in the
next part of this paper.

Compared with the effective reactions, the virtual
reactions have two main different features. First, an
effective reaction is chemically designed to model a certain
biochemical process like transcription, while a virtual
reaction is derived from a mathematical function, modeling
a certain biological function like inhibition. Thus, the latter
is at a higher modeling level than the former. This indicates
that fewer virtual reactions than effective reactions are
used to model the same genetic networks. Second, the
probability rate constant of an effective reaction is kept
constant, while that of a virtual reaction is time dependent.
The time-dependent term is in fact a correction factor to
the fixed constant for the virtual reaction. However, the
purposes of using effective and virtual reactions are
the same: to allow the use of simple reactions to reasonably
model complex biochemical processes. Furthermore, our
effective and virtual reactions include delays. This feature
is absent in regular reactions where the outputs are
obtained at the same time as inputs are consumed.
Since the Gillespie SSA was originally designed to handle
regular reactions, we briefly describe a general delay SSA
below that we use to simulate the delayed models.
This algorithm was recently proposed by Roussel and
Zhu (2006).

2.3. The delay SSA

Compared with the non-delay SSAs, the main difference
is that we need to create a waiting list to store the delayed
output events.

SSA with time delays:

1. Initialize: set initial numbers of molecules; set <« 0; form
a group of input events and a separate group of output
events from the list of reactions; create an empty waiting
list L for delayed output events.

2. Do an SSA step for the input events to get the next
reacting event R, and the corresponding occurrence time #;.
3. Compare ¢ with the least time, 7,,;,, in L.

— If 1 <7, generate the delay t for R; (Note that there
may be several delayed output events for one input event.)
Then,

a.sett <« t+1y;

b. update the number of molecules by performing R;;

c.if t =0, do Gy;

e. decrement all the delays in L by #4;

d. if 1#£0, add {G; t} into L.
—1If 11> Tinin,

a. set 1t <t + Tmin;

b. update the number of molecules by performing the
output event G,,;,, which is associated with t,,,,;

c. delete [Gnin Tmin] from L;

d. decrement all the delays in L by 7.
4. Go to step 2.

Note that the SSA step in step 2, i.e. the selection of the
next reacting event and occurrence time, can be carried out by
any exact version of the SSA (Gillespie, 1976, 1977; Gibson
and Bruck, 2000). Naturally the delay corresponding to one
delayed output event of a reaction is a random variable,
fluctuating based on some probability distribution, with a
mean value that can be tuned from experimental data. Here,
we use fixed delays for simplicity, unless otherwise stated. In
addition, the SSA steps for the case with varying probability
rate constants are simply carried out by this means: at each
time step, update the probability rate constants in terms of
the corresponding mathematical functions.

In the next part, we first use this delay SSA to study the
gene expression models presented above, and then to study
two simple genetic networks. All stochastic simulations in
this work are calculated using MATLAB (2005).

3. Results and discussion

We focus here on modeling prokaryotic genetic systems,
especially E. coli.

3.1. Single-gene expression simulations

Very recently, the real-time production of single protein
molecules under the control of a repressed /ac promoter in
individual E. coli cells was directly monitored through an
epifluorescence microscope (Yu et al., 2006). It was found
that the protein molecules are produced in bursts, with the
distribution of the bursts per cell cycle fitting well a Poisson
distribution, and that protein numbers in the bursts follow
a geometric distribution. The model of gene expression
proposed by Roussel and Zhu (2006), which is the same as
ours (reactions (1)—(3)) except that it involves more
transcriptional details, has been demonstrated to match
well the observed stochastic kinetics. We show below that
the reaction information in our simpler model is enough to
reproduce the stochastic kinetics. To model this repressed
condition, we simply use the following two reactions:

~ k N
Pro + P — ProP, (26)
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Lk N
ProP —> Pro + P, 27)

where P is the repressor. Once the repressed state of the
promoter, ProP, forms through reaction (26), transcription
stops until the normal state of the promoter recovers
through reaction (27).

Now we can build a model with reactions (1)—(3), (26)
and (27) to model the gene expression in the repressed

Table 1
Parameters and initial conditions used in the gene expression models

condition. We denote this by “Model 1”. The parameter
values and initial conditions are given in Table 1. Some of
the parameters and initial conditions estimated from
experimental data are kept fixed; others are tuned to
match the average kinetics of the experimental system
following the methods below. In the experiments, the
average number of gene expression bursts per cell cycle is
1.2. The bursts last from 3 to 15min, which are much

Parameter Initial conditions

Model 1"

RNAP(¢) + Pro(?) L) Pro(z + 71) + RBS(? + 71) + RNAP(7 + 12) + R(? + 12)

ks

Ribosome(#) + RBS(f) — RBS(7 + 13) + Ribosome(t + 4) + P(t + 15)
k3

RBS — decay

~ k ~
Pro + P—% ProP

ProP ﬁ) Pro+ P

ki 0.01s!

k> 0.00042s~!
ks 0.01s!

k4 1 Sil

ks 0.1s7!

T1 40s

(%) 90s

T3 2s

T4 58s

Ts 420+140s

Model 2 is Model 1 excluding reactions (26) and (27)
Note: A fixed 5 of 4205 is used

)

@

A3)

(26)

@7

RNAP = 40, Pro = 1, R = 0, Ribosome = 100, RBS =0, P = 0, ProP =0, P = 100

Note: We renumber the delays in this model and also in the following models. Some delays in different models
have the same names but may have different meanings. All the delays are fixed except that the delay for
protein production is set to 75 = 420+ 140s with a normal distribution

Model 3
k
—L RBS ®)
k
RBS(f) —> nP(t +11) 1n
k3
RBS — decay 3)
ki 0.023s~" RBS =0, P =0.
ks 0.042s™"
k3 0.01s! Note: The transcript R is not explicitly shown in the model. The formation of an RBS indicates the
n 5 production of an R
T1 500s
Model 4 is Model 3 except that n =1 and 7, =0
Model 5
k
RNAP(¢) + Pro(?) N Pro(z + 11) + RNAP(? + 12) + R(t + 12) + nP(t + 13) (13)

ki 0.01s7! RNAP =40, Pro=1,R=0,P=0
n 4

T1 40s

T2 50s

1 5008
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Table 1 (continued)

Parameter Initial conditions

Model 6

L Pt + 1) (14)
ky 0.023s7! P=0

n 4

T3 500s

*The settings of parameters and initial conditions for Model 1 are described as follows:

We study single gene expression, so the number of Pro is initially set to 1. The initial number of RNAPs is set to 40 so that the average number of available
RNAPs in the simulations is the order of magnitude observed in experiments (Record et al., 1996). The number of repressors is set larger than the number
of RNAPs, considering the inhibition is very strong in the studied system. The value of k, is set to 0.01 s™! so that the average time it takes for an RNAP to
bind the promoter is 1/(k; x 40s) = 2.5s, which is reasonably less than the reported transcription initiation interval of 3.3 s (Kennell and Riezman, 1977).
Note that the transcription initiation process includes the transition from the closed promoter complex to the open promoter complex (in Model 1, 1,
accounts for this process), which is usually slower than the binding event (McClure, 1980). Thus, we set the value of 7y to 40s, which is among the range
from 10s to several min (McClure 1980).

A similar model (Kierzek et al., 2001) used the average number of free ribosomes of 350 to produce the protein synthesis rate of 26s~". An initial number
of ribosomes of 100 in Model 1 reasonably produces the low protein synthesis rate of 11s~". The time of the RBS clearance in translation initiation, 73, is
set to 2s, which is close to the experimentally estimated rate of RBS clearance (Draper, 1996).

The length of the gene studied in E. coli is ~2500nt (Yu et al., 2006). The average rate of transcriptional elongation in E. coli is ~50nt/s. We get
7, = 71 +2500nt/(50 nt/s) = 90's. The average translation rate is ~15 amino acids/s. So, 14 = 73 +2500 nt/(45 nt/s) = 58 s. The other parameters, k,—ks, are

tuned to match the average kinetics of the experimental system. See the text for details.

smaller than the cell cycle (about 55 min). That means most
of the bursts are finished in one cell cycle. Thus, it is
reasonable to do the stochastic simulations without
necessarily considering the cell division. We do each
stochastic simulation for 50 min, corresponding to a cell
cycle, and then count the promoter binding occurrences
(transcription initiation) by reaction (1) for each simula-
tion. According to the experimental study, the promoter
binding frequency should be close to the burst frequency
since each burst arises from one transcript. Accordingly, we
tune k4 for reaction (26) and ks for reaction (27) to attain
the average promoter binding frequency close to 1.2s57'.
For the translational part, the average number of protein
molecules per burst is 4.2 in the experiments. In the
simulations, we count the events of ribosome binding to
RBS in reaction (2) (translation initiation) between the
generation and decay of an RBS. We match the average of
this binding frequency close to 4.2s™' by tuning k, for
reaction (2) and k; for reaction (3).

Another important experimental observation is that the
bursts display particular temporal spreads. Yu et al. (2006)
attributed these spreads to the long post-translational
protein assembly process which takes about 7.0+ 2.5 min.
Rather, Roussel and Zhu have showed that the statistical
distribution of the protein production delay causes the
wide temporal spreads (unpublished results). Following
this line, we now separate in reaction (2) the ribosome
release delay from the protein production delay, and name
the latter 75. We set 75 =420+140s with a normal
distribution. Note that we choose the normal distribution
since we do not know exactly what the distribution is. The
other delays are kept fixed.

We show three example time traces of gene expression in
Fig. 1 and statistical analyses of simulated gene expression

in Fig. 2. In good agreement with the experimental
observations, the protein molecules are produced in bursts
with particular temporal spreads, and the transcription of
one transcript is responsible for one burst. Besides the
common gene expression bursts shown in Fig. 1, we also
observe cases where more than one transcript is responsible
for a burst (not shown) and that no protein is produced for
a transcription initiation (for example, the transcription
initiation that happened between the first and second
bursts in the lower panel of Fig. 1). However, these events
happen with low probabilities under the simulating
conditions. In addition, just as obtained in the experiments,
the distribution of transcription initiations per 50 min fits
well a Poisson distribution, and the number of translation
initiations for each transcription follows a geometric
distribution as well. The above simulations reproduce the
key features of the stochastic kinetics of the experimental
system. It also indicates that Roussel et al.’s model can be
further simplified to the current version without losing
stochastic kinetics of interest.

We now remove the repressed reactions, i.e. reactions
(26) and (27), from Model 1 and build a pure single-gene
expression model, called Model 2. Using the same
parameters and initial conditions as used in Model 1, we
get an unrepressed gene expression kinetics characterized
by the transcript and protein productions. We find that in
the unrepressed condition the gene expression kinetics is
not sensitive to the statistical distribution of protein
production delay. Thus, all the delays are set fixed in the
following simulations. We evaluate below the simplified
gene expression models presented above, by comparing
their kinetics with that of Model 2.

First, Model 2 is simplified to Model 3 which includes
reactions (8), (11), and (3) (see Table 1). k; and k, for
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reactions (8) and (11) in Model 3 are different from those
for reactions (1) and (2) in Model 2, but they are easily
tuned to allow Model 3 to have close transcription and
translation initiation frequencies to Model 2. k3 is kept the
same in both models. To match the average kinetics of
protein production, the burst size and the protein produc-
tion delay in Model 3 are carefully tuned. As shown in
Fig. 3, the average gene expression kinetics (both protein

and transcript) of Models 2 and 3 match very well, and the
standard deviations of expressed proteins also have a
reasonable agreement, but the standard deviations of
transcripts have large deviations. This indicates that in
this case the simplified Model 3 correctly describes protein
production, but does not give a good description for
transcript production. Model 4 is a special case of Model 3,
where the burst size and the protein production delay are
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3. For Model 4, only the average and standard deviation of proteins are given; its transcript production is similar to that of Model 3. See Table 1 for the

details of the models and the parameter values used in each model.

simply set to 1 and 0, respectively. The kinetics of protein
for Model 4 is also given in Fig. 3 as a comparison. Neither
the average nor the standard deviation looks reasonable.
We can predict that the deviations in the kinetics between
Models 4 and 2 would get larger as the protein synthesis
rate of Model 2 increases. Note that the average rate of
protein production of Model 2 is about 11 protein
molecules per s, which is low compared with the value of
20 protein molecules per s for regular gene expression in
E. coli (Kennell and Riezman, 1977). We present the
kinetics of Model 4 since this model is a commonly-used
model of gene expression in the current literature. This
comparison implies that Model 4 may cause significant
errors in quantitative studies.

Second, we evaluate another type of gene expression
model proposed above, i.e. one single reaction of gene
expression. Model 5 consists of reaction (13) only.
Compared with Model 2, Model 5 keeps k; and all the
delays for the transcriptional part. Only two parameters,
the burst size and the protein production delay, need to be
tuned to match the average kinetics of Model 2. Note that

this protein production delay is involved in the whole gene
expression process, which is longer than the previously
mentioned protein production delay involved only in the
translational process. The comparison results are given in
Fig. 4. Since Model 5 maintains the transcriptional part of
Model 2, its kinetics of transcript matches well with that of
Model 2. However, their standard deviations of proteins
are very different even though their averages match well. It
indicates that Model 5 is good for transcription modeling,
but not valid for translation modeling in this case. Finally,
Model 5 is simplified to Model 6, which contains protein
kinetics only. This is the simplest model of gene expression
presented in this work. Interestingly, it describes well the
protein kinetics.

From the above comparisons, we conclude that Models
3 and 6 both are good in protein production modeling,
Model 5 is good in transcription modeling, and Model 4 is
the worst one among the simplified models. Model 3 may
be better than Model 6 since the former maintains the
average kinetics of transcripts even though the stochastic
kinetics of transcripts is not well described. Model 5
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captures well the transcriptional kinetics, but the fluctua-
tions of proteins are underestimated in the studied case.
We find that the fluctuations of proteins grow with the
protein burst size, so the protein production modeling of
Model 5 can be improved for cases with high protein
production rate. In summary, all these simplified models
could be used to model single gene expression, causing
some errors compared with Model 2. Choosing a suitable
model depends on what the study is focused on. One
should keep in mind the features of these models when
using them.

We intend to use Models 2-6 to construct genetic
regulatory networks. To this end, we also need to include
additional reactions for transcriptional and translational
regulations. Since the Pro and the RBS are two important
kinetics-controlling species in transcription and transla-
tion, respectively, the models including Pro (Models 2
and 5) could be directly used for transcriptional regulations
and the models including RBS (Models 3 and 4) could be
directly used for translational regulations (not studied in
this work). As for Model 6 with neither Pro nor RBS, it

could be used to model stable or basal gene expression in
gene networks.

3.2. The genetic toggle switch

We are now ready to study the genetic toggle switch, a
simple genetic network. The switch consists of two genes,
where each gene can be inhibited by the repressor
transcribed by the other gene. Based on Model 1, we can
readily build a toggle switch model. We assume that
RNAPs and ribosomes are both in a steady state for
simplicity, so we get two first-order reactions (28) and (29)
listed in Table 2 from reactions (1) and (2). To model the
repression, we add, like in Model 1, the reversible
inhibition reaction pair (32) and (33) for each gene. Also,
the protein decay reactions (31) are included. Reactions
(28)—(33) constitute the toggle switch model 1. A genetic
toggle switch of this kind was experimentally synthesized in
E. coli (Gardner et al., 2000). Two conditions were found
from the mean-field model (Egs. (18) and (19)) to achieve
bistable switching: Both repressors must act cooperatively,
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Table 2
Parameters and initial conditions used in the two symmetrical toggle
switch models

Parameter Initial conditions

Toggle switch

model 1
k
Pro;(1) —> Proi(t + 1) + RBS(1 + 71) (28)
53
RBS;(f) — RBS;( + 12) + Pi(t + 13) (29)
k3
RBS; — decay (30)
kg
P; —> decay (1)
k
Pro; + P; = Pro;P; (32)
k
Pro;P; —> Pro; + P; (33)
ki 045! Pro;=1
ks 0.0425™! RBS; =0
ks 0.01s™" Pro;,P;=0, P;=0
ks 0.001, 0.01s7" i, j=1and 2; for Pro; P;, the
values of 7 and j are different
ks 0, 0.0001,
0.01s™"
ke 0.01s™"
T Is Note: Some parameters have
T 2s multiple values used in different
T3 4, 420s cases shown in Fig. 5
Toggle switch
model 2
N T S L — (24)
’ 14 Py
K3
Py — decay (21)
P4, k= (25)
R T NP
Ky
P, —> decay (23)
a 6, 100 P=0,P,=0
b 0.5,1,2
T 0.001, 9 Note: Some parameters have
K 1 multiple values used in different
K4 1 cases shown in Fig. 6. Time is in

arbitrary units (¢) and probability
rate constants are in units of !

and the effective rate of synthesis of the two repressors
must be balanced. Here, we study the toggle switch model 1
in a different way. We consider only the symmetrical case
where both genes are identical. In this particular case, we
would also ask: What are the conditions for bistability of
the symmetrical toggle switch? Various toggle switch
kinetic models were recently studied to explore this issue
without considering any delays (Cherry and Adler, 2000;
Warren and ten Wolde, 2004, 2005; Kaznessis, 2006;

Lipshtat et al., 2006). In contrast to these studies, we
mainly focus on effects of the delays present in our model.

There are three different delays involved in the toggle
switch model 1: the Pro clearance/RBS production delay,
the RBS clearance delay, and the protein production delay.
To perform the following comparisons between short- and
long-delayed cases, we start with small values for these
delays. Specifically, they are set to 1, 2, and 4s,
respectively. With these delays, we first study the effect of
inhibition strength by changing the promoter—repressor
binding probability constant, ks. As shown in Figs. SA-C,
we increase ks from 0 to 0.01s™', keeping the other
parameters fixed. As the inhibition is weak, the switching
between the two stable states happens frequently due to
molecular fluctuations (the single run in Fig. 5B); as the
inhibition gets strong, the switching appears to happen
rarely (the single run in Fig. 5C). On the other hand, the
standard deviation in Figs. 5A and B soon reaches an
equilibrium state, while it takes a long transient for Fig. 5C
to do so. The equilibrium standard deviation is increased
rapidly, from 66 (Fig. 5SA) to 139 (Fig. 5B) to 307 (Fig. 5C),
indicating the increasingly stronger effect of repression
between the two genes. Note that in Fig. 5C the single run
deviates far from the mean plus standard deviation, also
implying large fluctuations in this case. While the case in
Fig. 5C does not often display switching spontaneously, we
can force the system to change to a new state by
temporarily turning off the repression function of the
dominant gene and then, after turning on the gene, the
system remains in the new state. See the inset of Fig. 5C for
an example of such manual switching, showing the key
feature of bistability. Moreover, for this case, as we
increase the protein decay rate, the switching probability
seems to increase again (Fig. SD). Though the switching
stochastic dynamics are not statistically studied here, we
draw these results by carefully observing time patterns
from many individual stochastic simulations.

What happens as the protein production delay grows?
Fig. 5E shows a case which is the same as in Fig. 5D except
that the protein production delay increases from 4 to 420s.
Figs. 5F and C are another pair of this comparison but
with a lower protein decay rate. Both Figs. SE and F show
an interesting behavior: the two genes seem to be both on
and off at some moments. For the low protein decay rate
case, the long protein production delay leads to a long
transient, as illustrated in Fig. 5F, before the system
reaches a stable state. The long protein production delay
does not affect the switching dynamics much but the
transient dynamics in this case. For the high protein decay
rate case, however, the long protein production delay
totally changes the dynamics as shown in Fig. SE, which is
characterized by short-period, high- and low-amplitude
peaks. The bistability in this case is almost destroyed by the
long protein production delay. Another interesting phe-
nomenon that can be clearly seen in Figs. SE and F and
also in Figs. 5B and D is that the two expressed proteins
seem to oscillate. There are two modes of oscillations
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Fig. 5. Examples of protein time series simulated from the toggle switch model 1. (A)—(C) All the parameters are the same for each case except the
repression binding constant ks which is specified on each panel; the protein decay rate constant k4 = 0.001s~". Bold lines are mean and +standard
deviation (std) values of gene 1 over 100 runs except for (C) which was averaged over 500 runs. The corresponding values of gene 2 are the same since gene
2 is identical to gene 1. (A)~(D) The delay for protein production is set to a small value: 73 = 4s. (D) The same case as (C) except that k, = 0.01s~".
(E) The same case as (D) except that 73 = 420s. (F) The same case as (C) except that 73 = 420s. The inset in (C) shows an example of manual switching,
where the first arrow indicates that the value of ks for gene 1 is changed from 0.01 to 0, and the second arrow that it is set back to 0.01. See Table 2 for the
details of the model and the other parameter values used.

observed: antiphase oscillations and inphase oscillations  shown, respectively, in Figs. 5B and D indicate that the
(previously referred to as the both on and off state). These strong inhibition between the two genes assists the
oscillations are originally caused by molecular fluctuations antiphase state to last longer; the fact that antiphase
as they can also more or less be observed in the non- oscillations dominate in Figs. 5B and D and inphase
repression case shown in Fig. SA. The two repression cases oscillations dominate in Figs. SE and F implies that a
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long protein production delay makes the inphase state
relatively stable.

As for the Pro clearance/RBS production delay, we find
that a long delay would destroy the bistability as well. For
example, as this delay is set to 40 s, the same value used in
Model 1, the toggle switch does not show bistability
(results not shown). Since this delay controls the transcrip-
tion initiation frequency, increasing the delay leads to a
decrease in the synthesis rate of proteins. Similar to the Pro
clearance delay, the RBS clearance delay also affects the
dynamics since it also controls the protein synthesis rate.
However, it does not influence the dynamics as much as the
Pro clearance delay does, because the number of available
RBSs is larger than that of available Pro for the gene
expression of each gene.

The above results indicate three conditions for bistability
of the symmetrical toggle switch: (i) the inhibition must be
strong, (ii) the synthesis rate of proteins must be high, and
(iii) the protein production delay must be short. Specifi-
cally, weak inhibitions and high protein decay rates can
cause frequent switching due to intrinsic molecular
fluctuations. Note that one condition for bistability from
the mean-field toggle switch model is that each repressor
must act cooperatively, i.e. the cooperative binding of at
least two proteins is required to get bistability. Since we do
not include cooperative effects of multimers here, our first
condition means that the bistability robustness of the
system grows with the inhibition strength. This indicates
that strong inhibition enables bistability of the toggle
switch without cooperative binding, which agrees with a
recent chemical master analysis of a similar toggle switch
model (Lipshtat et al., 2006). The other condition from the
mean-field model is that the effective rates of synthesis of
the two repressors must be balanced. In our model, they
are always balanced since the two genes are identical.
Besides that, conditions (ii) and (iii) indicate that to build a
robust toggle switch with fast switching time, the two genes
must also have a high protein production rate and a fast
response to repressors.

We next study a second toggle switch model which is
converted from the mean-field model (Egs. (18) and (19))
by using the second method proposed above. The model,
called the toggle switch model 2, is given in Table 2. It is
worth stressing that the first model is not quantitatively
comparable with the second one since the latter loses a lot
of reaction details compared with the former. We intend to
qualitatively compare the dynamics of the two toggle
switch models. Thus, the parameters for the second model
are given a little arbitrarily, and the populations of protein
molecules are not matched in the two models. Note that
time in this model is in arbitrary units (¢) and probability
rate constants are in units of 7~ '. In the toggle switch model
2, there exists only one delay, i.e. the protein production
delay. We first set the protein production delay to 0.001
and increase only the cooperativity of repression from 0.5
to 2. Three cases are shown in Figs. 6A—C. As in Fig. 5C,
an example of manual switching is illustrated in the inset of

Fig. 6C. Interestingly, it seems that the cooperativity plays
a similar role as the promoter—repressor binding constant
does in the first model. In addition, as in Figs. SA-C, the
equilibrium standard deviation is increased rapidly, from
4.7 (Fig. 6A) to 18.5 (Fig. 6B) to 50.4 (Fig. 6C). However,
the long transient feature of the first toggle-switch model is
lost in Fig. 6C. We then reduce the protein synthesis rate
from 100 to 6. We get similar patterns illustrated in Fig. 6D
to those obtained by increasing the protein decay rate in the
toggle switch model 1 (Fig. 5D). Note that although we
used two different methods in the two models to change the
dynamics of protein production, they caused similar
effects.

As we did for the toggle switch model 1, we now increase
the protein production delay for both the two cases (Figs.
6C and D). Fig. 6E shows a case which is the same as in
Fig. 6D except that the protein production delay increases
to 9. Figs. 6F and C are another pair of this comparison
but with a higher protein synthesis rate. We obtain the
similar dynamic behavior in Figs. 6E and F as we got in
Figs. 5E and F: the two genes seem to oscillate inphase.
For the high protein synthesis case, the long protein
production delays do not affect much the switching
dynamics but affect significantly the transient dynamics.
It should be mentioned that this effect of time delay is quite
similar to that obtained from a delayed mean-field model
of gene network in multicells (Veflingstad et al., 2005),
which can also produce the homogenous oscillations as
shown in Fig. 6F before the system reaches the steady state.
For the low protein synthesis case, however, the bistability
is almost destroyed by the long protein production
delay (Fig. 6E).

In conclusion, the two toggle switch models share the
following key dynamic characteristics: strong interactions
between the two genes assist to stabilize the antiphase state,
while long protein production delays assist to stabilize the
inphase state. Both the antiphase and inphase states are
induced by molecular fluctuations. However, there are also
some dynamic distinctions between them. For example,
compared with the first model, the second model has short
switching times, and its inphase state is relatively regular.
These results indicate that it is reasonable to use function-
based virtual reactions to study genetic networks even
though they lose much reaction detail.

3.3. The repressilator

The repressilator consists of three genes. The protein
from the first gene inhibits the second gene, whose protein
product in turn inhibits the third gene, and finally the
protein from the third gene inhibits the first gene,
completing the cycle. Each gene transcribes the repressor
of one of the other genes. A mean-field model showed that
this configuration can produce oscillating levels of each
repressor (Elowitz and Leibler, 2000). In the same paper,
following the modeling work, Elowitz and Leibler reported
a repressilator, which was constructed in E. coli, to show
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Fig. 6. Examples of protein time series simulated from the toggle switch model 2. (A)—(C) All the parameters are the same for each case except the
cooperativity of repression, b, which is specified on each panel; the protein synthesis rate = 100. Bold lines are mean and +standard deviation values of
gene 1 over 100 runs. (A)—(D) The delay for protein production is set to a small value: t = 0.001. (D) The same case as (C) except that « = 6. (E) The same
case as (D) except that t = 9. (F) The same case as (C) except that 1 = 9. The inset in (C) gives an example of manual switching, where the first arrow
indicates that the value of b for gene 1 is changed from 2 to 0.5, and the second arrow that it is set back to 2. The system state represented by the binary
code is also illustrated in (F). The straight line denotes a threshold, below which, state “0” is assigned and above which, state “1” is assigned. The circle
symbols denote binary states at given time points. See Table 2 for the details of the model and the other parameter values used.
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Table 3
Parameters and initial conditions used in the symmetrical repressilator
model

Parameter Initial conditions

The repressilator model
a

K]

— Pi(t+1), K| =———— 34
1t +7) A (34)

5]

Py —> decay (35)

5, Pyt +1) K a (36)

CN 1), =
: TP

Py = decay 37)

K5 a

— Py(t+1), Ks = —— 38
W O .

K

P; —> decay (39)

a 100 P =0,P,=0,P;=0

b 2

T 0.001, 1, 3,6 Note: The delay t has multiple

K> 1 values used in different cases

K4 1 shown in Fig. 7. Time is in

K¢ 1 arbitrary units (¢) and probability

rate constants are in units of 7!

oscillations. To qualitatively study this genetic oscillator,
we can use the Hill function to construct a repressilator
model the same way as we constructed the toggle switch
model 2. The model is given in Table 3. For simplicity, we
still consider only the symmetrical case where all the three
genes are identical. A detailed repressilator model,
constituting transcriptional and translational elongation,
was intensively studied, but omitting exploring the effect of
the time delay for protein production (Tuttle et al., 2005).
We focus on this effect by simply varying the protein
production delay in our model.

As the protein production delay is as low as 0.001, the
system shows random oscillations with a characteristic
frequency about 0.28, as illustrated in Fig. 7A. As the delay
increases to 1 (Fig. 7B), the oscillations become regular,
and the characteristic frequency drops to 0.067. Increasing
the delay to 3 (Fig. 7C) shows there exists two different
rhythms of oscillations: high-frequency, small-amplitude
oscillations as time <40 and low-frequency, big-amplitude
oscillations as time>40. The former oscillations are a
transient, featured with the ‘““all-on-and-all-off” behavior
of the three genes (the inphase state). The latter are robust
oscillations with the characteristic frequency of 0.037. This
two-rhythm dynamical behavior appears more clearly as
the delay grows to 6 (Fig. 7D). Note that the interesting
transients are obtained by using the initial conditions
where none of the three repressors exist. We thus
summarize the effect of the protein production delay in
the repressilator model as follows: if the delay is small, only

irregular oscillations with one characteristic frequency are
shown; as the delay grows to a certain value, two types of
oscillations appear. One type is of transient dynamics, and
the other is of robust dynamics. Transient oscillations last
longer for longer delays. The characteristic frequency of
robust oscillations decreases with the increase of the delay.

Since this stochastic repressilator model is converted
from a mean-field model, the results obtained above could
be understood by analyzing the corresponding delayed
mean-field model. The bifurcation diagram of the mean-
field model (not given) shows two bifurcations when the
delay is used as the control parameter and the other
parameters are fixed to the values given in Table 3. One
bifurcation happens as the delay is between 0 and 0.2 and
the other between 1 and 2. The oscillations born from the
first bifurcation are stable, and the oscillations from the
second one are unstable. This explains the two rhythms
shown in Figs. 7C and D. The mean-field model shows only
one stable steady state before the system reaches the first
bifurcation. However, in this case the stochastic model
shows irregular oscillations (Fig. 7A). This is because the
system is very close to the first bifurcation so that
molecular noise randomly causes the oscillations (Hou
and Xin, 2003; Li and Zhu, 2004). Another point worth
noting is that the mean-field model does not show
oscillations at all as the delay is zero, but a small protein
production delay will trigger big oscillations (the first
bifurcation). We note that the mean-field model used to
explain the oscillations for the synthetic repressilator does
not include any delay (Elowitz and Leibler, 2000), but it
does include the translation process, which would take
some time. Our mean-field model does not explicitly
include translation, only considering the time it takes for
a protein to mature. This strongly implies that the protein
production time is a significant factor in controlling the
oscillating dynamics of the repressilator, which is in
agreement with the stability analysis of a delayed version
of the Elowitz and Leibler mean field (Chen and
Aihara, 2002).

3.4. Connection with Boolean network models

Some time series of proteins shown above for the two
genetic networks display clear expressing (on) and non-
expressing (off) states of genes. For example, we can
extract, by manually choosing a suitable threshold, the
following discrete temporal binary code (genel, gene2) of
the toggle switch model 2 from the time series shown in
Fig. 6F: (0, 0), (1, 1), (0, 0), (1, 1)..., (1, 0), (1, 0),... . See
the figure for details on how the binary code is obtained.
Also, “0”” can be defined such that the number of proteins
reaches the bottom of a valley and, “1” that the number
reaches the top of a peak. We can see that there are two
different repeating patterns, {(0, 0), (1, 1)} and {(1, 0)}. In
fact, there exists another equivalent pattern {(0, 1)} since
the two genes are identical. It is interesting that the
corresponding Boolean network model for the toggle



742 R. Zhu et al. | Journal of Theoretical Biology 246 (2007) 725-745

>

C

60 A 10 200 A
©=0.001 8 =3 o Py
50 | 2 028 8
Repressilator 5 | 4
gene 3 0 150

Number of protein molecules
Number of protein molecules

100 A
;
50 i
!
¥
O L
0 100 120
200 - 12 200 - 10 10,022
=1 0.067 8
3 ° 8 e (010 6
S 4 = @ (1,1,0) 4
@ 150 - 8§ 150 -+ = (1,00) 2
S 5 = (1,01) 0
£ S 00 02
£ c . e
g 100 S100 48 4 {4 W
a \ a B T
B ! B -i. X T
Pl ! = w I3
5 ' o W n
£ 50 | £ 50 - a il i
> '- 5 A M 0
z z b e
0 0 ST Y AV
0 200 300
Time (arbitrary units) Time (arbitrary units)

Fig. 7. Examples of protein time series simulated from the repressilator model. All the parameters are the same for each case except the protein synthesis
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Table 4
Boolean network models for the toggle switch and the repressilator

Toggle switch
Gene 1 -| Gene 2 -| Gene 1 (-| denotes repression)
Boolean functions and attractors

Input to gene 1 Output from gene 2 Input to gene 2 Output from gene 1
1 0 1 0

0 1 0 1

Attractor 1 (0, 0)—>(1, 1)>(0, 0)...

Attractor 2 0, 1)>(0, 1)—>(0, 1)...

Attractor 3 (1, 0)—(1, 0)—(1, 0)...

Repressilator

Gene 1 -| Gene 2 -| Gene 3 -| Gene 1

Boolean functions and attractors

Input to gene 1 Output from gene 2 Input to gene 2 Output from gene 3 Input to gene 3 Output from gene 1
1 0 1 0 1 0

0 1 0 1 0 1

Attractor 1 (0,0,0)—>(1, 1, 1)>(0, 0, 0)...

Attractor 2 0,0, 1)=(0, 1, )= (0, 1, 0)—(1, 1, 0)=>(1, 0, 0)—(1, 0, 1)=(0, 0, 1)...
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switch provides the same three patterns (Table 4). For the
repressilator, we can, using the same procedure, get the
following binary code for (genel, gene2, gene3) from the
time series in Fig. 7D: (0, 0, 0)—(1, 1, 1)>(0, 0, 0)—(1, 1,
1)...(0, 0, 1)>(0, 1, 1)>(0, 1, 0)—>(1, 1, 0)—(1, 0, 0)—
(1,0, 1)... . The extracting method is illustrated in Fig. 7D.
Two distinct patterns are shown in this case. The
corresponding Boolean network model gives the same
two patterns (Table 4). It is worth noting that for the
second repeating set of the repressilator, there are actually
three different “1°’s. This set can be refined to (0, 0, 1)—
O, 1, )=, 1,0)>(1, |, 00—>(,0,0—>(l,0, 1)—...
“|” means that the number of proteins is dropping down
from a peak and ““1” means the number is growing from a
valley. The states, ““|”’and 1", which are both viewed as
“1” in the Boolean model, are two intermediate states
between the above-defined steady states “1” and 0.
This helps us understand that in the Boolean model, states
0, 1, 1), (1, 1, 0), and (1, 0, 1) are in fact, respectively,
transient states to (0, 1, 0), (1, 0, 0), and (0, 0, 1).

The Boolean models capture in this case the correct path
of states and all the attractors of the two stochastic systems
illustrated above. The mean-field models not only can
detect all the attractors but also can provide information
on stability (robustness) of the attractors. Boolean models
do not seem to be able to directly give the information of
robustness for a given attractor. However, we can reason-
ably guess such information using the following method
(Klemm and Bornholdt, 2005): if the number of states
involved in one attractor (including all states in the basin of
attraction) is much larger than that in the other, the former
attractor may be more stable than the latter one, for
example, the repressilator model. If the two attractors have
similar number of states, like the toggle switch, we can use
the minimal number of simultaneous flipping events to
guess which is more stable (Klemm and Bornholdt, 2005).
In stochastic situations, things get more complex. Figs. 6F
and 7D are two special stochastic cases that can show the
same discrete states as the Boolean models give. This
agreement strongly depends on two factors: the implied
Boolean functions in the stochastic models are faithful
(unchanged) and the stochastic fluctuations are not strong.

For a Boolean network with faithful Boolean functions,
the attractors are intrinsically deterministic even though
the network exists in a stochastic situation. A deterministic
attractor means that it includes deterministic states and
each of the states only goes to a deterministic next state. In
stochastic situations, such system may either jump from
one attractor to another or stay on an attractor, depending
on the strength of molecular fluctuations and the intrinsic
robustness of the attractors (Figs. 6C-F and 7A-D, b = 2).
If the Boolean functions are not faithful, we are dealing
with probabilistic Boolean network (PBN) models (Shmu-
levich et al., 2002). These Boolean models have fuzzy
attractors. In contrast to intrinsically deterministic attrac-
tors, fuzzy attractors are intrinsically noisy. We do not
know exactly what states are involved in the attractor, and

one state may go to different states in different situations.
In this case, the molecular fluctuations would make things
even fuzzier (Fig. 6A, b = 0.5). If the Boolean functions are
just “so—so” in faith (a common PBN), one has an
intermediate case between the two cases stated above.
Fig. 6B with b = 1 illustrates such a case. We provided the
examples above for the three different cases in term of the
Hill coefficients used, since we found that the Hill
coefficient, b, is an important faith index here. The higher
the Hill coefficient, the more faithful are the implied
Boolean functions in the stochastic models.

It is worth noting that the stochastic models will not
show the synchronization of genes if the protein produc-
tion delays are set to zero. The Boolean models do capture
those special cases of synchronization, implying that
Boolean models include some delay effects. The Boolean
modeling method has shown some success to explore gene
networks (Kauffman, 1993) as a first approach, disregard-
ing its limitations. The key question is: are the implied
Boolean functions in real genetic regulatory networks
faithful? If so, how faithful are they? What are the
dominant factors/mechanisms in controlling faithfulness?
We can try to answer these questions by studying more
complex models of genetic networks based on experimental
data using the methods proposed here.

4. Conclusions

We present a general model of gene expression (reactions
(1)-(3)) and its various simplified versions based on the
delayed effective chemical reactions. The key feature of
these reactions is that the complex multiple-step biochem-
ical processes, such as transcription, translation, and even
the whole gene expression, are simplified to single-step time
delayed reactions. We verified our general gene expression
model by showing that it correctly predicts the stochastic
kinetics of a real gene expression in E. coli under the
repressed condition. Using this model as a standard, those
simplified versions were evaluated by comparing their
kinetics. One of the simplified models is a commonly used
gene expression model in the literature. Unfortunately, its
average and stochastic kinetics are quite different from
those of the standard model in the studied case. However,
including two parameters, the protein burst size and the
protein production delay, to the literature model would
greatly improve its modeling performance.

We then proposed a strategy to construct simple genetic
regulatory networks based on these gene expression
models. In particular, we constructed a symmetrical genetic
toggle switch model. We studied the conditions for
bistability of the toggle switch. It was found that in order
to build a robust toggle switch with fast switching time, the
two genes must have strong inhibition ability, a high
protein production rate, and short protein synthesis time.
These conditions cannot be obtained from the mean-field
model (Egs. (18) and (19)). Especially, the stochastic model
shows that strong inhibition enables bistability without
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cooperative binding, which disagrees with the condition for
bistability derived from the mean-field model, i.e. the
cooperative binding of at least two proteins is required to
get bistability. In addition, we find that the long protein
production delay would cause an interesting long transient,
where the two genes appear to synchronize before the
system reaches a stable state.

Besides, we proposed a second method of constructing
gene networks by using the corresponding mean-field
models. Using this method, we built a second version of
the toggle switch model. This model contains delayed
virtual reactions which model the function of gene
inhibition based on the Hill function. This deterministically
related stochastic model gives kinetics similar to that of the
first toggle switch model. We also constructed a three-gene
oscillator model using this approach and studied its
kinetics. The protein production delay is found to be a
key parameter to control the oscillating behavior of the
system.

Though the two methods are both intended to construct
models of gene networks in the framework of stochastic
reaction kinetics, they have quite different features. The
first one is based on biochemical processes, while the
second one is on biochemical functions. Therefore, the
latter is at a higher level of modeling than the former. This
means that fewer virtual reactions than effective reactions
would be used to model the same genetic network. As a
result, there are more details of biochemical processes in
the former models than in the latter ones. Based on these
features, the two methods can develop in two directions in
further studies: the former is used for quantitatively
studying simple gene networks, and the latter for system-
atically studying large-scale genetic regulatory networks.

Our gene expression model under the repressed condi-
tion captures detailed stochastic kinetics of the correspond-
ing real system, demonstrating its ability to model gene
expression quantitatively. This also displays the possibility
of quantitatively modeling simple gene networks. To this
end, there are at least two things we should focus on in
future work: key biochemical reactions and their prob-
ability rate constants. This information now mainly comes
from experiments. On the other hand, computational
chemistry would be potentially another important tool.
So far, the computational chemistry methods have not
been widely used for this purpose. This is partly because
most of the molecules involved in biochemical reactions are
macromolecules which may consist of hundreds and
thousands of atoms and also because most important
interactions among biomolecules are weak interactions.
However, the increasing power of computational chemistry
might change this situation soon (Head-Gordon and
Wooley, 2001).

The biochemical function-based stochastic models can
be guided by the corresponding mean-field models since the
two kinds of models are tightly related in dynamics. Our
repressilator model is a good example. Also, the number of
parameters of the model is much smaller than that of the

biochemical process based model. This makes it easier to
do the systematic analysis. In addition, our studies of the
toggle switch and the repressilator indicate that this type of
models can be connected with the corresponding Boolean
models, which are easily analyzed due to their simplicity.
This would make the systematic analysis much easier.

The introduction of delays into modeling makes it
possible to efficiently study complex cellular processes at
the molecular level based on simple chemical reactions.
Naturally time delays mean intermediate processes. The
simplification comes from omitting the dynamic details of
the intermediate processes, keeping only the time they
consume. This technique should prove very useful to study
dynamical systems like gene networks, where the time
dominantly controls the dynamics.
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