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Abstract—In this paper, we show how some musical objects
and some algorithmic problems arising in musical theory can
be rephrased in spatial terms. This leads to the development of
meaningful spatial representations and of efficient spatial pro-
grams. The corresponding developments have been implemented
in MGS, a rule-based spatial programming language.

Keywords-spatial programming; musical theory; MGS pro-
gramming language; simplicial complex; GBF;

I. INTRODUCTION

Spatial computing has proven to be a fruitful paradigm for
the (re-)design of algorithms tackling problems embedded in
space or having a spatial extension. While music can be seen
according to various viewpoints, we propose in this paper a
few studies of paradigmatic theoretical music problems from
a spatial computing perspective.

Musical theory has received much interest by mathemati-
cians that have found a field to develop algebraic methods
to solve, in a very elegant way, problems of enumeration
and classification of musical structures. Indeed, the algebraic
nature of many musical formalizations has been very early
assessed: from the equal temperament to combinatorial prop-
erties of the integral serialism and modal techniques. However,
the topological properties of those objects have been rarely
considered (nevertheless, see [1]).

Spatial computing distinguishes spaces in computations
either as a resource or a result. In the following, we propose
to illustrate each of these two points of view in the field of
theoretical music. This paper is organized as follows: Sec-
tion II provides a breve introduction to the MGS programming
language that is used to illustrate examples given in this paper;
Section III describes a spatial representation of harmonic
relations based on a hexagonal lattice and investigates how
it can be modified to fit better the harmonic structure of a
musical piece; Section IV proposes a self-assembly algorithm
for the construction of a topological representation of a chord
series; the last section summarizes our approach based on a
spatial point of view on musical theory and proposes future
work.

II. A VERY SHORT INTRODUCTION TO MGS

MGS is an experimental programming language (see [2],
[3]) investigating the use of rules to compute with spatial

data structures. MGS concepts rely on well established notions
in algebraic topology [4] and have been validated through
applications in autonomic computing and in the modeling of
complex dynamical systems.

A. Topological Collections

In MGS, all data structures are unified under the notion of
topological collection [5]. A topological collection is a cellular
complex labeled with arbitrary values. The cellular complex
acts as a container and the values as the elements of the data
structure.

A cellular complex is a space built by gluing together more
elementary spaces called cells. A cell is the abstraction of a
space with some dimension: a cell of dimension 0, also called
0-cell, corresponds to a point, a 1-cell corresponds to a line
or an edge, a 2-cell is a surface (e.g. a polygon), etc. For
example, a graph is a cellular complex built only with 0-cells
and 1-cells: hence it is a 1-dimensional complex. An other
example is pictured on the left of Figure 1.

In a cellular complex, cells are organized following the
incidence relationship. This relation (defining a partial order
on the cells) is close to the intuitive notion of boundary: the
boundary of a cell is the set of cells of smaller dimension
that surround it in the complex. For instance, the boundary of
an edge (i.e. a 1-cell) is composed of two vertices (i.e. two
0-cells). The boundary of a triangular surface are three 1-cells
and three 0-cells. Two cells are said incident if one lies in the
boundary of the other. Particularly, a p-cell c is a face of a q-
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Figure 1. On the left, an example of cellular complex: it is composed of
three 0-cells (v1, v2, v3), of three 1-cells (e1, e2, e3) and of a single 2-cells
(f ). The boundary of f is constituted of its incident cells v1, v2, v3, e1, e2
and e3. The three edges are the faces of f , and therefore f is a common
coface of e1, e2 and e3. On the right, data are associated with topological
cells: positions with vertices, lengths with edges and area with f .



cell c′, denoted c < c′, if they are incident and p = q−1. The
cell c′ is called a coface of c. See Figure 1 for an example.

More elaborated neighborhoods can be defined from the
incidence relationship. In this article, we use the <n, p>-
neighborhood: two cells c and c′ are <p>-neighbor if there
exists a p-cell that is commonly incident to c and c′. If the
two cells are of dimension n, we say that they are <n, p>-
neighbor. A <n, p>-path is a sequence of n-cells such that
two consecutive cells are <n, p>-neighbor. For example, the
usual notion of path in a graph corresponds to the notion of
<0, 1>-path: a sequence of vertices linked by edges.

Finally, a topological collection is a labeled cellular com-
plex. An example of a topological collection is given on the
right of Figure 1.

Types of collections differ from the specification of their
underlying cellular complex. In the current implementation of
the MGS language, usual data structures (sets, sequences, trees,
arrays, etc.) are represented by vertex-labeled graphs: elements
of the data structure are attached to the vertices and the edges
represent the relative accessibility from one element to another
in the data structure. MGS also handles more sophisticated
spatial structures corresponding to arbitrary combination of
cells of any dimensions. Sections III and IV uses two different
types of MGS collections: GBF and simplicial complexes.

Group Based Fields (GBF). A GBF [6] is a topological
collection that generalizes the usual notion of array, by labeling
a cellular complex generated by a mathematical group. Such
a group G is specified by a finite presentation (i.e. in terms
of generators and relations) and can be represented by a 1-
dimensional cellular complex called a Cayley graph [7]: each
vertex in the graph corresponds to a group element; there exists
an edge between two vertices h and h′ if h′ = h+ g where g
is a generator of the presentation of G.

For example, the following presentation
< Fifth, MThird ; 4*Fifth=MThird, 12*Fifth=0 >

corresponds to the cyclic Cayley graph of Figure 3. Two
generators are defined: Fifth and MThird corresponding re-
spectively to the diagonal and the downward directions on
the figure. The structure of group provides the opposite
directions of the generators. Therefore each vertex has four
<0, 1>-neighbors. In this paper, we only consider abelian
groups; hence each pair of generators commutes. Here we
have Fifth+MThird=MThird+Fifth meaning that starting from
a vertex, the same vertex is reached by following either
directions Fifth and then MThird, or directions MThird and
then Fifth. Without anymore relations between generators,
this presentation would generate an infinite square grid. The
two additional relations allow us to make the graph periodic.
Following 12 times direction Fifth is equivalent to not mov-
ing; Following 4 times direction Fifth is similar to following
direction MThird one time.

Simplicial Complexes. A simplicial complex is a cellular
complex where the topological cells are simplexes. A p-simplex
is a p-cell that has exactly p+1 faces. For instance, a bounded
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Figure 2. Some simplexes

line is a simplex but a hexahedron is not (a hexaedron is a
3-cell but has 6 faces). These objects are often represented
geometrically as the convex hull of their vertices as shown
in Figure 2 for p-simplexes with p ∈ {0, 1, 2}. A complex
made only of simplexes is a simplicial complex. A graph or the
Möbius strip of Figure 6 are examples of simplicial complexes.

B. Transformations

Topological collections are transformed using sets of
rules called transformations. A rule is a pair pattern =>

expression. When a rule is applied on a topological col-
lection, the sub-collections matching with the pattern are
replaced by the topological collection computed by the evalu-
ation of expression. There exists several ways to control the
application of a set of rules on a collection but these details
are not necessary for the comprehension of the work presented
here. A formal presentation of the rewriting mechanism is
given in [8]. We focus on the specification of patterns.

A basic pattern specifies a cell to be matched in the
topological collection together with some (optional) guard. For
example the expression c / c = 3 matches a cell labeled with
the value 3. The guard is the predicate after the symbol /.
The variable c can be used in the guard (and elsewhere in
the rule) to denote the value of the matched cell or the cell
itself, following the context (in case of ambiguity, the variable
always denotes the associated value).

A pattern is a composition of basic patterns. There are three
composition operators:

1) The composition denoted by a simple juxtaposition
(e.g. “x y”) does not constraint the arguments of the
composition.

2) When two basic patterns are composed using a comma
(e.g. “x, y”), it means that the cells matched by x and
y must be p-neighbors. The dimension p depends on
the topological collection or can be explicitly specified
during the application of the transformation if needed.
The default value for p is 1.

3) The last composition operator corresponds to the face
operator: a pattern “x < y” (resp. “x > y”) matches two
cells x and y such that x < y (resp. x > y).

Patterns are linear: two distinct pattern variables always refer
to two distinct cells.

III. LATTICES OF NOTES AS GBF

In this first application, we illustrate how a musical piece
can be seen as a computation taking place on specific resource



space. We focus here on the notion of Tonnetz and its use
for the characterization of tonal music. We show that the
topological collection of GBF, when carefully defined, makes
it possible to describe chords progressions.

A. The Neo-Riemannian Theory
In standard Western music, the usual notation is based

on the concept of staff. This notation makes spatially closer
notes separated by smallest intervals. This emphasizing of the
chromatism is well shown with the chromatic scale:
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Chromatic scale 
All-interval series of the Lyric Suite of Alban Berg 

In this score, each of the twelve notes (C, C], D, . . . , A,
A], B) is identified by an integer (starting from C = 0)
such that the difference (modulo 12) between two notes
exactly corresponds to the number of semitones – the smallest
interval – constituting the interval between them. For example,
between E = 4 and G = 7, the interval is a minor third
corresponding to 7− 4 = 3 semitones.

From the tonal music point of view, this representation has
two main drawbacks: (1) notes that “sound well” when played
together are distant from each other (consider for example C
and G), and (2) each note only has two neighbors (e.g. B and
C] for the note C) while the dominant role of the perfect triads
(three-note chords, see Section IV for more details) exhibits
more than two notable harmonic neighbors.

The Neo-Riemannian representation (named after Hugo
Riemann, a musicologist) has the ambition to show proximity
between notes in terms of harmony instead of chromatism [9],
[10]. The multi-neighborhood of a note leads to the idea of
adding dimensions in the notes representation. For example,
using a plane surface instead of the chromatic axis allows us
to have more than two neighbors. L. Euler [11] was one of
the first to propose such a representation, building his Tonnetz
(see Figure 3), based on the two intervals of fifth (7 semitones)
and major third (4 semitones).
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Figure 3. The Tonnetz after L. Euler (1739). Diagonal direction corresponds
to the interval of fifth, downward direction to the major third.

B. Musical Notes as a Mathematical Group
The Neo-Riemannian approach consists in associating with

each note n, a set of neighbors Sn = {n1, n2, . . . }. We assume
that this association
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Figure 4. A Neo-Riemannian hexagonal lattice for the analysis of tonal
music.

• is defined up to a transposition, that is moving all the
notes up or down by a constant interval: for any interval
i and any note n, we have Sn+i = {n1 + i, n2 + i, . . . };

• is symmetric (for instance, if C and G “sound well”
together, G and C also do): n ∈ Sn′ implies n′ ∈ Sn.

Thanks to the first assumption, the neighborhood has to be
homogeneous for every note and can be characterized by a set
I = {i1, i2, . . . } of intervals such that for any note n, we have
Sn = {n+ i1, n+ i2, . . . }. Moreover the interval between two
notes n1 and n2 is not in general the same than the interval
between n2 and n1: for instance, the interval between C and
G is a fifth (7 semitones) and the interval between G and C
is a fourth (5 semitones). As a consequence, considering the
second assumption, the neighborhood I has to gather intervals
and their inverses: i ∈ I implies (12− i) ∈ I. For example, in
the Tonnetz of Figure 3, the neighborhood is specified by the
intervals of major third (4 semitones) and fifth (7 semitones):
I = {4, 5, 7, 8}.

Knowing that the intervals are elements of Z12, a neighbor-
hood I = {i, . . . , (12 − i), . . . } can easily be equipped with
a group structure whose presentation has the general form:
< i, . . . ; all the relations in Z12 between i, . . .>

The corresponding MGS GBF allow us to handle such Neo-
Riemannian representations easily in a context of spatial
programming.

This point of view generalizes many different existing
musical representations. The Tonnetz is an example; its group
presentation is given in Section II. The chromatic representa-
tion is also an instance corresponding to the presentation
< Semitone ; 12*Semitone = 0 >

where only the semitone interval is taken into account.
Looking back to the very motivation of the Neo-Riemannian
approach for tonal music, one could choose the intervals of
the fundamental triads for a representation that suits well the
traditional harmony [12]:
• the minor third (3 semitones) and its inverse, the major

sixth (9 semitones),
• the major third (4 semitones) and its inverse, the aug-

mented fifth (8 semitones),
• the fifth (7 semitones) and its inverse, the fourth (5

semitones).
This leads to the following GBF specification:
< mThird, MThird, Fifth ;

mThird + MThird = Fifth, 4 mThird = 0,
3 MThird = 0, 12 Fifth = 0 >
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Figure 5. Representations on chord progressions: on the left the second movement of L. van Beethoven’s 9th Symphony on a lattice generated by the
intervals of minor third, major third and fifth, on the right the Prelude Op28 n◦4 of F. Chopin on a lattice generated by the intervals of minor third, major
third and semitone. Notes of the chords are in dark gray, notes previously played in the sequence are represented in light gray.

The corresponding Cayley graph, given Figure 4, is a hexag-
onal lattice (deeply studied by musicologists) that captures
many aspects of tonal music. As an example, we observe in
this lattice that the three notes C, E, G, composing a perfect
major chord, form the most compact possible part of the space.

C. Generators Signature for a Musical Classification

A musical piece can be seen as a spatial behavior taking
place on a spatial representation of notes. Let consider a
chord progression. Each chord can be represented with a GBF
collection where only the notes of the chord are labelled (for
example with a boolean). Thus, the whole progression corre-
sponds to an ordered sequence of collections. For example,
Figure 5 on the left shows a chord progression included in
the second movement of L. van Beethoven’s 9th Symphony,
using the previously introduced hexagonal representation. The
hexagonal lattices have been voluntary unfolded vertically and
truncated horizontally to underline the very regularity of this
progression: at every step, one note only changes and the chord
seems to spatially move downward.

Although the hexagonal representation spatially captures the
construction rules used by L. van Beethoven to compose this
progression, this is not always the case. For instance, the Pre-
lude Op28 n◦4 of F. Chopin also includes a chord progression
where, like in the previous one, one note only is changing at
every step. Nevertheless, the same experience does not make
appear any spatial coordinated displacement in the evolution
of the chords. In fact, contrary to the Beethoven’s progression,
the changing note follows here a chromatic progression. The
chromatic interval being not part of the generators of the
hexagonal lattice, it is understandable that the local evolutions
do not appear clearly. It is obvious that the generators have
to be carefully “tuned” to the studied piece. Here, a lattice
generated by the minor second (1 semitone), the minor third
and the major third, reveals the logical evolution of this
chord progression (see Figure 5 on the right). Quite naturally
arises the following question to the musicologist: how can
we interpret this change of generator of the fifth, which is
very harmonic, to the generator of the minor second, which
is dissonant? We will not affirm that this change sets the
Prelude of F. Chopin in a less tonal category, compared to
the Symphony of L. van Beethoven. But it may be a sign

announcing the evolution of music towards the emergence of
atonality arriving at the 20th century.

This small experience reveals that the set of generators
defining a network can be associated with the “signature” of
a musical piece and maybe this concept of signature could be
generalized to characterize a composer or a musical era. We
are currently working on this aspect of the Neo-Riemannian
approach.

IV. CHORDS SERIES ANALYSIS

A mathematical analysis of music generally relies on the
definition of a model, that is a mathematical object, whose
specific properties describe faithfully some musical charac-
teristics. In the previous section, we followed this approach
by defining topological spaces used to exhibit some musical
properties. In this section, we focus on the process used to
build such a mathematical model of music. Thus, we consider
here spaces as a results of a spatial computing. In particular,
we describe a self-assembly mechanism used to define a spatial
representation of a tonality based on triadic chords. Then, we
propose to use this mechanism for the study of a tonality
representation based on four-note chords and the analysis of
a chord series to F. Chopin.

A. Tonality and Möbius Strip

A tonality is associated with a scale of notes, including
one note corresponding to the tonic and one to the mode
(e.g. minor or major). For example, the tonality of C major
is characterized by the diatonic scale (C,D,E, F,G,A,B)
starting from the tonic C and including the note E (the major
third of C) defining the mode as major.

From such a scale, the tonality is defined by the covering
of the notes using the seven triadic chords. In C major, these
chords are:

IC = {C,E,G} IIC = {D,F,A} IIIC = {E,G,B}

IVC = {F,A,C} VC = {G,B,D} V IC = {A,C,E}

V IIC = {B,D,F}

This definition of tonality may be interpreted geometrically.
Each note of the scale is represented by a point. Then, if
two notes belong to at least one of the chords defining the
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Figure 6. Representation of tonality C major.

tonality, their corresponding points are linked by an edge.
Finally, the triadic chords are identified in this network by
the triangular surfaces specified by the corresponding triplet
of notes. Figure 6 shows this geometrical interpretation for the
tonality C major.

This interpretation is fruitful in this example since the
obtained mesh corresponds to a Möbius strip [13]. This partic-
ularly remarkable space was first exhibited by A. Schoenberg
and has been deeply studied for music analysis. As an exam-
ple, the boundary of the strip (a closed <0, 1>-path) reveals
the cycle of fifths, one of the main important structure in tonal
harmony. More recently, the strip has been used as one of
the ingredients for the elaboration of a mathematical model of
music based on a functorial point of view [1].

B. Self-assembly of Chords

Since the Möbius strip is a good geometrical representation
of the seven triadic degrees and their harmonic relations, we
propose in this section a self-assembly algorithm for building
systematically such a topological structure representing an ar-
bitrary set of chords. The main idea is to let chords react with
each other, where the reaction rule consists of the identification
of common elements shared by chords. The study of the final
object (obtained at the steady state when no more chord can
react) can enlighten some properties of the chords.

Chord Representation. Chords are the basic elements to
be assembled. Since a chord is a set of notes, we propose
in the following to represent a chord by a simplex. In this
context, a chord composed of n notes is then represented by
a (n− 1)-simplex. For example, chord IC corresponds to the
triangle {C,E,G}. It is interesting to note that the boundary
of this triangle is composed of edges {C,E}, {E,G} and
{C,G}. These three 1-simplexes are directly associated with
the fundamental intervals in tonal music of thirds and fifth
discussed earlier. This explains why the Möbius strip captures
so well the harmonic relations in tonal music.

Self-assembly Process. We propose to build the simplicial
representation of a set of chords by using an accretive growing
process [14]. The growth process is based on the identification
of the simplexes boundaries. Nevertheless, this topological
operation is not elementary since it holds in all dimensions.
For example, merging chords IC and IIIC in the Möbius strip
construction requires us to identify three elements: the vertices
E and G, and the edge {E,G}.

A simple way of programming the identification is to apply
recursively to a fixpoint the merge of topological cells that
exactly have the same faces. In our example, this consists

C
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Figure 7. Identification of boundaries.

in merging nodes E and G from IC and IIIC , and then in
merging the resulting edges {E,G} as shown on Figure 7.
The corresponding topological surgery can be expressed in
the MGS syntax as follows:
transformation identification = {
s1 s2 / (s1==s2 & faces(s1)==faces(s2))

=>

let c = new_cell (dim s1)
(faces s1)
(union (cofaces s1)

(cofaces s2))
in s1*c

}

The rule specifies that two elements s1 and s2, having the
same labels and the same faces in their boundaries, merge into
a new element c (that has the union of the cofaces of s1 and
s2 as cofaces) labeled as s1 (which is also the label of s2).

In Figure 7, the transformation identification is called
twice. At the first application (from the left complex to the
middle), vertices are identified. The two topological operations
are made in parallel. At the second application (from the
complex in the middle to the right), the two edges from E to G
that share the same boundary, are merged. The resulting edge
has the 2-simplexes IC and IIIC as cofaces, that correspond
to the union of the cofaces of the merged edges. Finally (on
the right), no more merge operation can take place and the
fixpoint is reached.

As expected, the fixpoint application of identification to
the triadic chords IC , . . . , V IIC builds the Möbius strip given
in Figure 6.

C. Some Applications
In this last part, we apply our algorithm of geometrical

chords representation for two musical purposes.

Four-note Chords Definition of Tonality. In some kinds
of music like Jazz, chords are often richer than the triadic
degrees. In this context, we propose to build the geometrical
representation of a tonality in the same way we did before,
except that we focus on the four-note chords. Adding a note to
the seven degrees (e.g. IC becomes {C,E,G,B}) increases
the harmonic relations in the scale, allowing more complex
arrangements. The seven four-note chords of the C major
tonality are:

& nnnn nnnn nnnn nnn
n nnnn nnnn nnnn

The geometrical representation of a four-note chord is
a 3-simplex, that is a tetrahedron. The elaboration of the
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Figure 8. Simplical representation of F. Chopin’s Prelude Op28 n◦4.

simplicial complex associated with the seven chords is almost
impossible by hand, making its topological study very diffi-
cult. Thanks to the dimension-free definition of transforma-
tion identification, the simplicial complex is automatically
computed by MGS. After computing the Euler characteristic
and the orientability coefficient of the complex, its topology
appears to be a torus. On the contrary of the Möbius strip
whose boundary exhibits the cycle of fifths (1 dimension),
the topology of a torus suggests two dimensions: what do
these two dimensions correspond to? Moreover, the torus
is orientable and the Möbius strip is not: knowing that by
construction the Möbius strip of the triadic degrees is a
sub-complex of the four-note chords torus, why is the non-
orientability lost? Such questions are currently investigated
by musicologists at IRCAM using MGS to extract and build
systematically the topological objects associated with various
musical pieces.

Analysis of F. Chopin’s Prelude Op28 n◦4. In section III, we
have proposed to embed the chords of the eight first measures
of this prelude in a hexagonal grid given a priori. On the
contrary, we propose here to build and study the specific
geometrical representation of this progression of chords.

The whole simplicial complex associated with this chord
series (i.e. obtained by the fixpoint iteration of transformation
identification on the set of chords) cannot be easily vi-
sualized. Nevertheless, a sub-complex is given in Figure 8. A
remarkable fact of this chord progression is that only one note
is different between two consecutive chords. This property
holds on the fourteen chords starting from the second one.
Being composed of three-note chords, such a progression
corresponds to a <2, 1>-path in the associated simplicial
complex: such a path is composed of 2-simplexes (the chords)
connected by 1-simplexes (the two common notes). This
path is partially presented by black arrows for the five first
chords in Figure 8. We have enumerated all the possible
<2, 1>-paths with maximal length. It is interesting to note
that there exist exactly 120 possible paths. Finally, among all
these possibilities, F. Chopin chose the one with the smallest
distance between chords. Indeed, the intervals between the
different two notes of consecutive chords are a semitone for
all transitions. This result confirms that the semitone is an
important interval for this piece and is a good choice of
generator for the hexagonal representation of section III. We

are currently investigating more deeply the topology of this
simplicial complex.

V. CONCLUSION AND FUTURE WORK

We have shown in this paper, through the description and
analysis of two problems in musical theory – from the GBF
based Neo-Riemannian representation of music to the building
of simplicial complexes associated with chord series in a
musical piece by F. Chopin – that musical theory is an
application area of first interest for spatial computing.

As seen in this very preliminary work, the building and
processing of abstract spaces appears to be a key issue for
musical analysis and we believe that the path taken in this
paper can help improve and develop new tools to assist
musicologists in their work. At the frontier of musical theory
and computer science, many questions raised in this paper are
currently being investigated at IRCAM with the help of the
domain-specific spatial programming language MGS. A whole
domain is still to be investigated: musical composition.
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