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Abstract Systems biology aims at integrating processes at various time and spatial scales

into a single and coherent formal description to allow computer modeling. In this context,

we focus on rule-based modeling and its integration in the domain-specific language MGS.

Through the notions of topological collections and transformations, MGS allows the

modeling of biological processes at various levels of description. We validate our approach

through the description of various models of the genetic switch of the k phage, from a very

simple biochemical description of the process to an individual-based model on a Delaunay

graph topology. This approach is a first step into providing the requirements for the

emerging field of spatial systems biology which integrates spatial properties into systems

biology.
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1 Introduction

As natural living systems exhibit complex and highly structured behaviors at various scales

(in time and in space), they have inspired many unconventional computation models. Among

them, we can name cellular automata designed by Ulam (1962) and von Neumann (1966)
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for the study of crystal growth and self-replicating systems, the CHAM (Berry and Boudol

1990) formalism and the C language (Banâtre et al. 2001) which take their origins in

chemistry, Păun’s systems (Păun 2001) (or P-systems) corresponding to the metaphor of

reactions taking place inside cellular compartments, or Lindenmayer’s systems (Rozenberg

and Salomaa 1992) (or L-systems) inspired by the growth process of plants development.

All these models share the common property that they allow the specification of systems

in a discrete and local way:

– Discrete. In spite of their strength, continuous formalisms make the expression of the

discrete nature of the biological systems very difficult (if not very inaccurate, when the

number of entities in a given volume is small or heterogeneously distributed).

Furthermore, a discrete approach allows to adopt an algebraic point of view for the

description of the systems that fits well with the language theory domain used for the

different models above.

– Local. The high complexity of biological systems makes it hard to describe their

behavior at the level of the whole system. A common solution to that problem is to

decompose it into subsystems exhibiting local interactions. The behavior of the system

is then recovered as the integration of the local laws.

In all these models, computations are specified by a set of local rules that describes how

neighboring data may interact to build some new data. Their specificities lie in how the

neighborhood relationship is defined: abstract chemistry with (multi-)sets, P systems with a

spatial organization formalized as Venn diagrams without intersection (corresponding to nested

compartments), cellular automata with a regular neighborhood, L-systems with tree-like

structures, etc. In other words, these models may be seen as specific forms of local application of

rewriting rules on different kinds of spatially organized data (Giavitto and Michel 2002b).

In the following paragraphs, we detail how a rewriting system can be used to model

some natural systems, starting from their usual point of view in computer science to their

use for natural systems.

1.1 Rewriting and computation

A rewriting system (Dershowitz and Jouannaud 1990) is a formal system used as a mean to

compute by substituting a part of an entity by another. A rewriting system is defined by a

set of rules R. Each rule Ri 2 R:

a! b

is composed of a left-hand side a (lhs for short), specifying the part to be substituted, and a

right-hand side b (rhs for short), specifying the new part replacing a.

Computing by local substitutions is common in computer science: it has been developed in

a lot of contexts and applied on various kinds of entities. For instance in multiset rewriting, the

lhs is a submultiset which is replaced by the multiset corresponding to the rhs; in term
rewriting, the lhs is a subtree which is replaced by the tree corresponding to the rhs; in graph
rewriting, the lhs is a subgraph which is replaced by the graph corresponding to the rhs; etc.

Let the variables e; e0; . . . denote the considered entities. A rewriting rule defines a

binary relationship between these entities. We write

e)Ri
e0

to denote the local transformation of e into e0 by applying the rule Ri: e0 is defined as e where one
of its subpart a is replaced by b. If no a exists in e, the relation is not defined on e.
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We write

e)R e0

to denote that e is transformed into e0 by applying the rules in R. We need here to be more

specific about which rules are applied (and in what order). For this purpose, we write

e)R;St e0

to characterize the rule application strategy where St represents the considered policy. For

instance, St may mean that only one rule Ri, chosen in a non-deterministic way, is applied;

or that rules are applied all together on different subparts of e in a concurrent mode.

Considering a set of rules R together with a rule application strategy St; we define the

relation )�R;St as the reflexive and transitive closure of )R;St : In other words, if e and e0

are two entities, e)�R;St e0 means that there exists a finite sequence of entities e1, …, en

such that

e ¼ e1; e1 )R;St e2; . . .; en�1 )R;St en; en ¼ e0

This sequence is called a derivation of e w.r.t. the set of rules R and the strategy St: This

transformation of e into e0 can be seen as the result of the computation specified by R where

the derivation corresponds to the sequence of the intermediate results.

1.2 Rule-based modeling of natural systems

The framework proposed by rewriting systems suits well the formal description of natural

phenomena. As a matter of fact, many authors (Fisher et al. 2000; Manca 2001; Eker et al.

2002; Giavitto et al. 2004) have recognized the importance of term rewriting in that field.

The state of a biological system is represented by a term t of the form

t1 þ t2 þ � � � þ tn

where a subterm ti represents a biological entity composing the system or a message

(signal, information, process, etc.) sent to an entity. Following this point of view, the

dynamics of the biological system is captured by the rewriting steps of the term. For

example, rules of the form

eþ m! e0 þ m0

can be used to model the reaction of the entity e when it receives the message m: the lhs

corresponds to the message m and to the entity e which m is sent to. The ? operator

denotes that e and m are somehow neighbors in the system. In the rhs, e0 specifies the new

state of the entity and a message m0 may (possibly) be sent. Other kinds of local evolutions

may be specified in the same way. The direct interaction between entities can be expressed

by rules of the form

e1 þ e2 ! e01 þ e02

and the creation of a new entity by a rule of the form

e! e0 þ e00

etc. Intuitively, we can deduce that, given the state of a system as a term t, a derivation of t
is understood as the description of the evolution of the system along time; we speak of the

trajectory of the system.

Rule-based programming for integrative biological modeling
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More generally, the modeling and the simulation of a natural system using a rewriting

system may be summarized by the analogy given in Table 1. In fact, choosing rewriting

systems as a formalism to describe dynamical systems implies to consider the handling of

discrete time and local space.

Local specification of space. For a particular natural system to be modeled, according to

Table 1, it is required to choose a particular type T of data structure that describes its local
spatial organization. The state of the system is given by a value of type T. Once the state is

defined, a rule Ri must be defined, for each interacting subpart, to specify the set R of local
evolution laws. Such rules can be understood as following:

– the lhs represents a subsystem whose elements are in interaction,

– the rhs corresponds to the computation of the local result of this interaction.

In the previous example, the ? operator connects entities and signals as they are spatially

and/or functionally organized. It denotes at the same time the interacting subparts of the

system as well as it specifies the way that the subsystems are organized. Terms built using

arbitrary operators can be used to capture hierarchical organizations. However the ?

operator is (usually) associative and commutative. This implies that the tree structure of an

arbitrary term can be reorganized to order arbitrarily the leaves of the tree structure (the

leaves of the tree are the constants of the expression). Using associative-commutative

operators we obtain multiset. In a multiset, all elements are considered as being all

neighbors which corresponds to the metaphor of a well mixed chemical solution where

Brownian motion ensures that each element will encounter all the others.

Discrete time. The handling of time is a key point in the modeling of a natural system.

The model of time that is naturally induced by the use of rewriting systems, is a discrete
time: the application of a rule corresponds to an atomic modification of the state of the

system and to the progression of time.

As shown in Table 1, the trajectories of the systems in its phase space are clearly

captured by the definition of the relations)R;St and)�R;St : Intuitively, they correspond to

event-based simulations of the model as they represent the iterative applications of the

local evolution laws specified within R with respect to a rule application strategy St:

1.3 The MGS project

The MGS project1 proposes to investigate the previously referred computation models by

developing a domain-specific programming language, also called MGS, where they may be

expressed in a uniform and generic setting. In MGS, the state of a dynamical system is

specified using an original and generic data structure, called topological collection (Gia-

vitto and Michel 2002b), based on the topological relations between the interacting

subparts of the system. Furthermore, the specification of the evolution law is simplified by

the definition of a case-based function, called transformation, based on the rewriting of

topological collections.

Topological collection. One of the key features of the MGS language is its ability to

describe and manipulate entities structured by an abstract topology. Topological collec-

tions provide a unified view of the notion of data structure (Giavitto and Michel 2002b)

seen as an aggregate of elements organized with a neighborhood relationship. The

structure of the defined topological space allows to specify the organization of the data

structure.

1 The Web site of the project is http://mgs.spatial-computing.org.
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The formalization of topological collections has been thoroughly studied in previous work

of the authors (Giavitto and Michel 2002a; Giavitto and Spicher 2008). Without getting too

much into details, we give a few technical details on topological collections. Its formalization

relies on the notion of abstract cell complex (Munkres 1984) defined in algebraic topology

allowing the description of the topology of the collection. A cellular complex makes it

possible to have a discrete representation of a topological space through a set of topological
cells (an abstraction of elementary spaces characterized by their dimensions) connected to

each other through their incidence relationship. This relation is based upon the notion of

boundary. This structure is then decorated with values leading to the notion of topological
chain (Munkres 1984). This final notion of topological chain allows the association of

elements of an abelian group to cells of a complex resulting in a rich algebraic structure.

In the context of the modeling of natural systems, topological collections allow an

intuitive representation of the states of the system: the elements of the collection are the

atomic components, and the interaction graph between components specializes the topo-

logical structure of the collection.

Many topologies are available in MGS. In this article, we focus on multiset collections

(corresponding to a complete neighborhood) in Sects. 3 and 4, GBF collections (corre-

sponding to a regular topology) in Sect. 5.1, and Delaunay collections (whose topology

relies on the computation of a Delaunay triangulation) in Sect. 5.2.

Transformation. Topological collections represent an adequate medium to extend

rewriting systems as previously presented. Indeed, the neighborhood relationship gives a

local point of view of the organization of the elements. The transformations extend the

notion of rewriting systems to topological collections, and are used to specify the evolution

function of the modeled system as shows on Table 1.

In MGS, the specification of a transformation T:

trans T ¼ f
r ¼) f ðr; . . .Þ

. . .

g

corresponds to the definition of a set of rules, where r is a pattern, matching for a

subcollection, and f(r, …) is an expression that evaluates a new subcollection that will be

inserted in place of the matched one. The application of transformation T on a topological

collection e using a strategy St; written T[strategy = St] (e), consists in computing a

collection e0 such that e)T ;St e0:

Table 1 Dictionary establishing a link between the notions required for the modeling and simulation of
natural systems with their counterparts in the field of rewriting systems

Natural system Rewriting system

Model Spatial organization A data structure T

T 2 {term, set, graph, …}

State An element e 2 T

Local evolution laws A set of rules R

Interaction ¼) result A rule a! b 2 R

Simulation Local and atomic evolutions A relation )Ri
with Ri 2 R

Time steps A relation )R;St

Trajectories A relation )�R;St
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In the current implementation of MGS, all available strategies are built-in. In the fol-

lowing, we will use two of the many rule application strategies provided by MGS: the

Gillespie strategy based on the stochastic simulation algorithm proposed by Gillespie to

simulate chemical reactions (in Sects. 3 and 4), and the maximal-parallel strategy (in Sect.

5) widely used in the context of L-systems and P systems.

1.4 Motivations and organization of the article

MGS provides features allowing the use of rewriting techniques on a large number of different

data structures. This point of view is very effective in the modeling of natural systems as it

allows to use a different type of organization in the lhs and in the rhs of a rule. Consequently,

rules may specify modifications of the system’s structure. Thus, this allows the modeling of a

class of dynamical systems particularly complex to describe and simulate, dynamical
systems with a dynamical structure (Giavitto et al. 2002a; Giavitto 2003; Michel 2007).

In this article, we claim that the generic approach of MGS allows an easy way to express

models of biological systems. Previous publications by the authors were devoted to the

formalization of the theoretical foundations of MGS, and to the use of MGS for the modeling

and simulation of biological processes at a specific level of description. Here, we focus on

the suitability of MGS for the description of the same biological process, from the

molecular level to the level of spatially distributed populations. The article is organized as

follows: in Sect. 2, we describe the biological process of the regulation of the genetic

switch of the k phage. This process will be our running example throughout this article.

We propose in Sect. 3 a first model of the switch based on a biochemical description of

the regulation. For that purpose, we show how Gillespie’s stochastic simulation algorithm

can be seen as a rewriting strategy in MGS. This first model only consider a single cell.

A first model of a population of cells is proposed in Sect. 4. In this section, the

population of cells is considered as being homogeneously distributed in space and there-

fore represented by a multiset topological collection in MGS.

We still consider a population of cells and complexify our model in Sect. 5 by considering

a population in an homogeneous and heterogeneous spatial distribution. For that purpose, we

propose two models, one relying on a cellular automaton with a von Neumann neighborhood

and one with an individual-based model on a neighborhood defined by a Delaunay trian-

gulation of the cells in space. Both models are naturally implemented in MGS.

Finally, we conclude in Sect. 6 by emphasizing the importance of rule-based languages

and formalisms in systems biology and we stress the importance of spatial relationships in

biological processes.

2 The paradigmatic example of the k phage switch

In the forthcoming sections, we propose to illustrate the expressiveness brought by rule-

based programming for the description of various models of the same biological process:

the regulation of the switch of the k phage. We first start in this section by briefly

describing the behavior of the phage.

2.1 The genetic switch

The k phage (Ptashne 1992) is a virus that infects the cells of the bacterium Escherichia
coli. It is a phage that has two possible outcomes:

O. Michel et al.

123



1. replication and lytic phase where the virus dissolves and destroys the host cell,

releasing about 100 virions;

2. integration of its DNA in the DNA of the bacterium, and start of a lysogenic phase.

In the lysogenic phase, the virus will silently replicate at each cell division. Moreover, a

lysogeny produces an immunity towards further phage infection, by protecting the bac-

terium from the destruction during a possible new infection by a phage. Under certain

conditions (exposure to U.V. for example) a lytic phase can be induced: the viral DNA is

released from the bacterial DNA and starts a normal replication and a lysis.

Based on the local conditions, it is one of the two possible phases that is chosen, the

decision being under the control of a small region of the phage genome (a hundred base

pairs, comparatively to the 48502 base pairs of the genome of the bacterium) and of two

genes (cI and cro) and two promoters. This regulatory region is called the genetic switch.

2.2 Regulation of the genetic switch

The region of the DNA (see Fig. 1) of the k phage is composed of two genes cI and cro

coding respectively for the proteins CI and CRO. During the transcription, the RNA

polymerase binds to the promoters of these genes (Prm and Pr respectively) to synthesize

the mRNA that is then translated into monomer proteins CI and CRO.

These monomers dimerize into CI2 and CRO2 which can bind to the operators. Oper-

ators OR1, OR2 and OR3 overlap the promoters (see Fig. 1). The absence or presence of

dimers bound to the promoters, eases or hinders the binding of the RNA polymerase, thus

regulating the expression of genes cI and cro. Binding of the dimers to the promoters

follows certain rules of affinity:

– CI2 binds first to OR1, then to OR2 and finally to OR3;

– CRO2 binds first to OR3, then to OR2 and finally to OR1;

– If CI2 is bound to OR1, it facilitates the binding of another dimer CI2 to OR2 and

consequently the binding of the RNA polymerase on the Prm promoter. This property

does not hold for CRO2;

– The RNA polymerase can be bound to the promoter Pr but CI2 has to be bound to OR2

so that it can be bound to Prm.

All these rules together lead to a complex behavior and the genetic regulation of the

transcription.

Simply stated, each of the two proteins CI and CRO will inhibit each others and increase

its own synthesis (they self-inhibit themselves when their expression becomes too high).

According to the local conditions, one of the two proteins will take over the other one (in

terms of concentration) and the system will enter either a lytic (CRO ‘‘wins’’) or a lysogeny

phase (CI ‘‘wins’’).

DNA

transcription and translation of cro in CRO

OR3 OR2 OR1

croPrm PrcI

dimerization of CI
CI CRO

2CI CRO2

regulation

dimerization of CRO

transcription and translation of cI in CI

Fig. 1 Description of the regulatory region of the genetic switch
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3 Biochemical modeling of a single bacterium

Our first modeling of the biological process of the phage genetic switch, relies on a

translation of the regulation principles into biochemical reactions. It is a straight translation

of the previously described process where the spatial distribution of the biological entities

is not taken into account.

3.1 Chemical reactions based model

The stochastic simulation of biochemical systems becomes useful when the number of

molecules and/or the time interval is very small. It is the case of the regulation of the k
phage where only around ten molecules CI2 are enough to enter the lysogenic phase (Lou

et al. 2007). Figure 2 describes the model used for the chemical modeling. It follows the

description given above. For the sake of simplicity, only a subset of all the dimers-operator

bond combinations is considered. It reduces from 27 possible states (33 corresponding to

all the combinations of no binding, CI2 and CRO2 bound on each operator) to only 7 states

of the DNA. Actually, we have focused on the subset of the bonds that are most-likely to

happen. CI2 binding on OR2, with OR1 free, could have been taken into account; but this

state is rare. We also consider that cI is expressed when OR2 is occupied by CI2 and OR3 is

free. The cro gene is expressed when both OR1 and OR2 are free.

The set of interactions (dimerization, binding of proteins on the DNA and gene

expression) are treated as the following biochemical equations:

CI �!C0
: ð1Þ

2CI �
C12

C21

CI2 ð2Þ

Dþ CI2 �
C1

C�1

D1 ð3Þ

cro

cI OR3 OR2 OR1Prm

croPrOR3 OR2 OR1

croPrOR3 OR2 OR1

PrOR3 OR2 OR1

cI OR3 OR2 OR1Prm

cI OR3 OR2 OR1Prm

cI OR3 OR2 OR1Prm

Pr cro

Fig. 2 Regulation network of the genetic switch of the k phage. Monomers CI and CRO are described in
circles and diamonds; dimers are composed by monomers. Thin dotted arrows represent transcription and
translation; bold dotted arrows represent (de)polimerization; thin arrows represent degradation; bold arrows
represent regulation. The drawing follows the description of the DNA given in Fig. 1
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D1 þ CI2 �
C2

C�2

D2 ð4Þ

D2 þ CI2 �
C3

C�3

D3 ð5Þ

D2 þ P �!Ct
D2 þ Pþ CI ð6Þ

CRO �!
C0

0
: ð7Þ

2CRO �

C0
12

C0
21

CRO2 ð8Þ

Dþ CRO2 �

C0
3

C0�3

D03 ð9Þ

D03 þ CRO2 �

C0
2

C0�2

D02 ð10Þ

D02 þ CRO2 �

C0
1

C0�1

D01 ð11Þ

Dþ P�!
C0t

D2 þ Pþ CRO ð12Þ

D03 þ P�!
C0t

D2 þ Pþ CRO ð13Þ

Equations (1) and (7) describe the natural degradation of the CI and CRO monomers.

Equations (3)–(5) and (9)–(11) express the bindings of the dimers on the operators; the

different states of the DNA are represented: constant D corresponds to the DNA with no

bonds, D1;D2 and D3 to the DNA with 1, 2 or 3 dimers CI2 bound, and D03;D
0
2 and D01 to

DNA with 1, 2 or 3 dimers CRO2 bound—see Fig. 2. The gene expression is given by

reactions (6), (12) and (13), where P stands for the RNA polymerase. Each reaction is

parameterized with a stochastic constant, Ci for the reactions involving CI, and C0i for

CRO.

3.2 Rule-based programming of chemical reactions

A usual abstraction in the simulation of biochemical systems consists in considering the

system, here the bacterium, as an homogeneous chemical solution where the reactions of

the model are taking place. As the solution is considered well mixed, it can be represented

by a multiset, that is a topological collection where any element may interact with all the

others (Fisher et al. 2000). This point of view is the starting of abstract chemical com-

putation models like CHAM and C. However, the simulation of ‘‘real’’ chemical reactions

requires more than only multiset rewriting to take into account the kinetics, corresponding

to each reaction constant Ci and C0i.
Gillespie has proposed in (Gillespie 1977) an algorithm for producing the trajectories of

a chemical system by choosing the next reaction and the elapsed time since last reaction
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occurred. Let l be a chemical reaction, the probability that l takes place during an

infinitesimal time step is proportional to:

– cl, the stochastic reaction constant2 of reaction l;

– hl, the number of distinct molecular combinations that can activate reaction l;

– ds, the length of the time interval.

Gillespie proved that the probability P(s,l)ds that the next reaction will be of type l and

will occur in the time interval (t ? s, t ? s ? ds) is:

Pðs; lÞds ¼ ale�a0sds

where al = clhl is called the propensity of reaction l, and a0 =
P

mam is the combined

propensity of all reactions.

This probability leads to the first straightforward Gillespie’s algorithm called first
reaction method. It consists in choosing an elapsed time s for each reaction l according to

the probability P(s,l). The reaction with the lowest elapsed time is selected and applied on

the system making its state evolve. A new probability distribution is then computed for this

new state and the process is iterated.

3.3 Stochastic simulation in MGS

We now present how the previous chemical model can be implemented in MGS. We need

to represent the state of the dynamical system and its evolution function.

State of the system. As said above, the state of the bacterium is represented by a multiset

of values. The considered molecules are abstractly represented using MGS symbols that are

back-quoted identifiers. For example, the MGS symbol ‘CRO2 corresponds to a dimer

CRO2.

The initial state consists in a single molecule of the phage’s DNA with some copies of

RNA polymerase. As it has been noticed in vivo, the probability for CI to gain over CRO is

low.3 In order to have the simulation evolve in favor of CI, we put three copies of the CI

protein to the initial state:

BactInit :¼ ‘D :: #10‘P :: #3‘CI :: bag : ðÞ
This code defines a new variable, BactInit. The empty multiset is represented by

bag:(), and operator :: inserts an element in the given multiset. The expression #n v
represents n copies of the value v.

Chemical reactions representation and evolution. Each chemical reaction is translated

into a transformation rule (or two if the reaction is reversible) that is characterized by an

option C representing the stochastic constant of the reaction. For example, reaction (2)

corresponds to the two following MGS rules

#2‘CI ¼ fC ¼ C12g ¼) ‘CI2 and ‘CI2 ¼ fC ¼ C21g ¼) #2‘CI

Consequently, the dynamics is captured by the following set of rules in the Phage
transformation:

2 Evaluating the stochastic constants is one of the hardest task in stochastic simulations of biochemical
reactions. The interested reader should refer to (De Cock et al. 2003; Zhang et al. 2003) that describe two
experiences in that field.
3 An even more realistic behavior is obtained by considering models involving gene cII and cIII (Arkin
et al. 1998).
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trans Phage¼f
ð� Rules for CI�Þ ð� Rules for CRO �Þ
‘CI¼fC¼C0g¼[ :; ‘CRO¼fC¼ C00g¼[ :;

#2‘CI¼fC¼ C12g¼[‘CI2; #2‘CRO¼fC¼ C012g¼[‘CRO2;

‘CI2¼fC¼ C21g¼[#2‘CI; ‘CRO2¼fC¼ C021g¼[#2‘CRO;

‘D0;‘CI2¼fC¼ C1g¼[‘D1; ‘D0;‘CRO2¼fC¼ C01g¼[‘D03;

‘D1¼fC¼ C�1g¼[‘D0;‘CI2; ‘D03¼fC¼ C0�1g¼[‘D0;‘CRO2;

‘D1;‘CI2¼fC¼ C2g¼[‘D2; ‘D03;‘CRO2¼fC¼ C02g¼[‘D02;

‘D2¼fC¼ C�2g¼[‘D1;‘CI2; ‘D02¼fC¼ C0�2g¼[‘D03;‘CRO2;

‘D2;‘CI2¼fC¼ C3g¼[‘D3; ‘D02;‘CRO2¼fC¼ C03g¼[‘D01;

‘D3¼fC¼ C�4g¼[‘D2;‘CI2; ‘D01¼fC¼ C0�3g¼[‘D02;‘CRO2;

‘D2;‘P¼fC¼ Ctg¼[‘D2;‘P;‘CI; ‘D0;‘P¼fC¼ C0tg¼[‘D0;‘P;‘CRO;

‘D03;‘P¼fC¼ C0tg¼[‘D03;‘P;‘CRO

g

MGS integrates the first reaction method as a transformation rule application strategy. The

transformation Phage is called and iterated using the Gillespie’s strategy of MGS by the

following expression:

Phage½iter ¼ ðtau\¼TÞ; strategy ¼ ‘gillespie�ðBactInitÞ
An application of the transformation using this strategy consists in:

1. Computing the propensity al of each rule rl by using the user-defined stochastic

constant cl (taken from the C constant of the rule) and by evaluating the number of

combinations hl (that is the number of subcollections matched by the lhs of the rule);

2. Computing for each rule rl, the value of the elapsed time sl w.r.t. the definition of

Pðs; lÞds;

3. Applying once the rule with the lowest elapsed time.

Rule rl with the smallest sl value is chosen and fired one time on the collection argument

of the transformation, after instantiation of the lhs pattern.

A simulation example. During the iterations of the application of the Phage transfor-

mation using the Gillespie’s strategy, MGS system variable tau is incremented using the

elapsed times sl of the chosen reactions. The value of tau is available anywhere in the

transformation in case it is required. In the example given above, iterations stop as soon as

tau reaches or goes over T arbitrary units of time. The use of the option iter allows to

have a fine control over the number of applications of the transformation.

Figure 3 gives the results of three executions of the MGS program above (the instruc-

tions required for the output have not been included). Stochastic constants Ci and C0i have

been determined by biological experiments detailed in (Kuttler and Niehren 2005). The

first plot shows the system in a state that has not yet evolved into a lytic or lysogenic phase;

the next plot shows the system after a switch has occurred in a lytic phase (only molecules

of CRO remain); the last plot shows the system in the lysogenic phase (only molecules of

CI remain). Each simulation is run until 2000 arbitrary units of time are reached for the

Phage transformation on an initial state consisting of three copies of the CI protein, one

copy of the DNA and ten copies of the RNA polymerase. On 500 runs of the simulation,
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the lytic phase dominates in 51% of the cases and the lysogenic phase dominates in 39% of

the cases.

4 Modeling of an homogeneously distributed population of bacteria

The previous chemical model only considers a single isolated bacterium and the reactions

taking place in that bacterium. One of the interesting phenomena of the k phage infection

(Arkin et al. 1998) is that two subpopulations (following either a lytic or a lysogenic phase)

rapidly segregate after the introduction of the virus, that is, within a time interval of the

same order than the cell division time which is about 20 min.

We propose to describe in this section the behavior of a population of bacteria through a

quantitative and stochastic model relying on an extension of the Gillespie’s first reaction

method to nested compartments. As a matter of fact, we consider that all bacteria are

homogeneously distributed in a ‘‘soup’’.

4.1 A simple model of infection diffusion

We propose to study the segregation and the growth of the population during an infection

process. Here, our main objective is to reuse the genetic switch model described and

implemented in the previous section and coupling it with a model of infection diffusion

taking place at the level of a population of bacteria. For the sake of simplicity, we keep our

model as concise as possible.

This model involves a population of two kinds of entity that freely diffuse: bacteria and

viruses. A bacterium can be in one of the following four different states:
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Fig. 3 Three different runs of the simulation, plotted with Gnuplot of the switch of the k phage. The light
(resp. dark) curves show the number of CI (resp. Cro) molecules as a function of time (arbitrary units)
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1. Safe when it is not infected by a phage.

2. Infected when it has just integrated an external virus by endocytosis. We suppose that

only safe bacteria can be infected.

3. Lytic when the infection has led to a lytic phase.

4. Lysogenic when the infection has led to a lysogenic phase.

To represent the growth of the population, we consider the two following behaviors of a

bacterium:

– Division: all cells may reproduce. We assume that both daughter cells are sharing the

same state of their mother cell.

– Death: there are two ways for a cell to die, either when it has reached a certain number

of divisions (because of cell aging), or when it is a lytic bacterium that ‘‘explodes’’

releasing its virions in the population.

Viruses are considered as ‘‘passive’’ entities which are degradated.

4.2 Representation of a population of bacteria

The simulation of the population model requires to deal with chemical reactions that are

not uniformly taking place in space: the cell membrane of each bacterium separates inner

chemical reactions from their outside environment. A bacterium plays the role of a com-
partment, and compartments break the hypothesis of homogeneity of the system required

by Gillespie’s first reaction method. Nevertheless, Gillespie’s method can be extended to

compartmentalized systems under the following reasonable hypotheses:

– each compartment is an insulator that makes inner and outer reactions being

independent;

– chemical reactions take place homogeneously within each compartment;

– chemical reactions take place homogeneously in the outside of the compartments, that

is, at the level of the population.

This last hypothesis requires that the population of compartments is well mixed. In this

model, we assume that segregation is space-independent as the infection is uniformly

spread at the initial state.

Extension of Gillespie’s First Reaction Method. The previous hypotheses ensure that

Gillespie’s approach can be independently considered at the level of the population and

inside each compartment. Following the same reasoning as in Sect. 3.2, let us consider a

compartment r and a reaction l, and let us respectively denote cl
r, hl

r and al
r, the stochastic

reaction constant of reaction l in r, the number of molecular combinations that can

activate reaction l in r, and the propensity of reaction l in r. We can then define the

probability Pðs; l; rÞds that l is the next reaction occurring in compartment r in the time

interval ðt þ s; t þ sþ dsÞ as:

Pðs; l; rÞds ¼ ar
le�b0sds

where the quantity b0 ¼
P

h ah
0 ¼

P
h;m ah

m corresponds to the combined propensity of the

whole system. Consequently, a new algorithm can be defined in the same way as the

original Gillespie’s first reaction method: an elapsed time s is chosen for each compartment

r and each reaction l w.r.t. probability Pðs; l; rÞds, and the couple (l,r) with the lowest

elapsed time is considered.

Rule-based programming for integrative biological modeling

123



Integration of the Extended First Reaction Method in MGS. Whereas nested compart-

ments can be obviously handled in MGS as nested multisets, the extended algorithm cannot

be easily implemented as a transformation rule application strategy. By contrast, it can be

programmed as a function that uses the previously defined transformation Phage. This

point of view has already been investigated in (Spicher et al. 2008) where the authors

propose to simulate biochemical processes with dynamic compartments in MGS using the

formalism of P systems. Based on these results, we implement our model for the phage

infection at the level of the population of bacteria.

We first have to define the transformation Env of reactions taking place at the popu-

lation level:

transEnv ¼ f
‘D ¼ fC ¼Cdegradation g¼[ :
b : bact ¼ fC ¼ Cdeath g¼[ :
b : bact ¼ fC ¼ Cdivision g¼[ divisionðbÞ
b : safe; ‘D ¼ fC ¼ Cinfection g¼[ ‘D; #3‘CI; b
b : lytic ¼ fC ¼ Clytic g¼[ #10‘D

g
Viruses are represented by their DNA in the environment. The rules of transformation

Env respectively specify the natural degradation of viruses, the local evolutions of bacteria

(death and division), the infection of ‘‘safe’’ bacteria by a virus, and the death of bacteria in

lytic phase. The predicate bact; safe and lytic are used to distinguish the different states

of a bacterium.

The implementation of the extended first reaction method consists in computing the

local evolution of each compartment and then only considering the faster evolving com-

partment. We do not describe the MGS code of the CompartmentsEvolve that is

straightforward: it consists in the distribution of the Phage transformation onto each cell

and the selection of the fastest reaction.

Given the current state of the system, the final function ExtendedFirstReaction

computes the new state of the system by choosing if the evolution has to take place at the

level of a compartment or at the level of the population:

fun ExtendedFirstReactionðpopÞ ¼ ð
let pop1; tau1 ¼ CompartmentsEvolve ðpopÞ in
let pop2; tau2 ¼ Env½strategy ¼ ‘gillespie;

postlude¼ ðfun x� [ x; tauÞ�ðbÞ in
ifðtau1\tau2Þ then pop1 else pop2 fi

Þ

The whole program (including instructions for producing the output) is about 150 lines of

MGS code.

4.3 A simulation example

Figure 4 presents some simulations of this first model of infection diffusion. Parameters

have been chosen in order to observe an exponential growth of a safe population (see left

plot on Fig. 4a) and the same proportion of lysis and lysogeny in a population of infected

bacteria (see on right plot of Fig. 4a), that mean numbers of CI2 and CRO2 per bacteria are

somehow the same).
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Fig. 4 Results of simulations of the nested compartments model. a Simulations illustrating the set of
parameters. b Simulation leading to the death of the whole population. c Simulation leading to a purely
lysogenic population. d Simulation leading to a mixed lysogenic/safe population
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The protocol of our study has consisted in running 500 simulations of the model, during

40 arbitrary units of time, and starting with a population composed of 9 safe bacteria and 1

lytic bacterium. When the lytic cell dies, it releases some viruses and makes the infection

start. The simulations have underlined four different outcomes at the end of the simulation:

1. Failure of the infection: no virus remains in the environment and all bacteria are safe.

This happens with frequency of about 10%.

2. Death of the population: as shown in Fig. 4b, majority of cells enter the lytic phase

(CRO predominates when all the population is infected) and die. Then, remaining

lysogenic cells are to few (about 3 on the plot) to maintain the population, and

disappear due to the stochastic noise. This appears with frequency of about 12%.

3. Homogeneous lysogenic population: Fig. 4c presents this case where all bacteria

become lysogenic (CRO is not expressed anymore after time 25 and only CI remains).

The population keep on growing exponentially; the phage DNA is silently replicated

with each cell division. This outcome represents about 40% of the simulations.

4. Heterogeneous lysogenic and safe population: this interesting outcome is the more

scarce (about 8% of the cases). The behavior is quite similar to the previous one, but

the lysogenic phase appears while the whole population has not been infected yet (see

Fig. 4d). It results a mixed population with safe and lysogenic bacteria.

Last 30% of the simulations corresponds to states that have not reach one of the previous 4

outcomes within the 40 units of time.

5 Modeling of an heterogeneously distributed population of bacteria

The previous description of the phage infection was a first step into the modeling at the

level of the population of cells. However, the spatial distribution of cells and viruses was

homogeneous. Because of that property, we have been able to extend and use Gillespie’s

algorithm to nested compartments. Nevertheless, this modeling method has two essential

drawbacks.

The first drawback is of practical importance: Gillespie’s algorithm becomes slower as

the number of molecular species increases. Consequently, the complexity of the extended
first reaction method increases with the number of bacteria in the population.

If the model of a bacterium involves N molecular species, simulating a population of n
bacteria is equivalent to handling a solution involving n 9 N distinct molecular species. In

this case, quantitative simulations require computation power that is rapidly out of reach

for serious simulations (in size and duration).

The second drawback lies on the strong assumption of uniform and homogeneous

organization of the system at all scales (from compartments to populations). The (multi-

)set topology together with Gillespie’s strategy capture the Brownian motion of well-mixed

solutions. Nevertheless, this implicit representation of space cannot be easily extended to

heterogeneous systems where space matters. Furthermore, it is not possible, with such

models to capture spatial properties of biological systems like pattern formation, spatial

segregation, …
With the second kind of model presented in this section, we focus on this last issue. We

consider a population of spatially distributed bacteria and propose a model allowing the

study of the impact of cells organization on the evolution of the population. Such kind of

model is of major importance since it may drastically change the interpretation of the

considered biological system, as it has been shown in (Shnerb et al. 1999).
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We propose in the next sections two models based on two different kinds of spatial

representation: a model of population of cells on a static medium implemented as a cellular

automaton and an individual-based model evolving on a dynamic graph topology.

5.1 Regular and static space model: cellular automaton

Cellular automata provide a very simple way to handle spatial phenomena in biological

simulations, as long as the topology of the underlying space do not evolve. We detail first

how they can be considered as a rule-based computation model. Then, we present a model

of the phage infection based on the use of a cellular automaton.

5.1.1 Cellular automata in MGS

A cellular automaton (CA) is a regular lattice of cells, where each cell is characterized by a

state taken from a finite set. The global evolution of the CA consists in applying syn-
chronously on each cell, a local evolution function that computes the new state of the cell

as a function of its current state and of the states of the cells in its neighborhood.

This computation model is naturally translated into a rule-based formalism:

– The regular lattice corresponds to a topological collection with a regular neighborhood.

The MGS language provides a specific kind of topological collection called Group
Based Fields (GBF for short), to deal with such a regular topology (see references

(Giavitto and Michel 2001; Giavitto et al. 2002b) for details on GBFs).

– The local evolution function can be encoded in rules of the form:

s ¼[ s0 if some condition c holds on the neighborhood.

Such a rule specifies the transition of a cell from the state s to the state s0 where the

condition c defines the context for the application of the rule. This rule can be straight-

forwardly translated in an MGS transformation rule:

s as x=PcðxÞ ¼[ s0

where s and s0 are constants of the language and Pc is a predicate that implements condition

c.

– As all the cells have to be updated in a synchronous mode, the local evolution rules

have to be applied all together and everywhere: this corresponds to the maximal-
parallel rule application strategy.

5.1.2 Symbolic model of an infection spreading

There are many ways to define a CA model of a biological system (Ermentrout and

Edelstein-Keshet 1993). We propose here an abstract and symbolic model of the infection

spreading where the CA allows to underline the spatial organization.

To achieve this goal, we consider a CA based on a 2D square lattice. As summarized on

Fig. 5, the infection is characterized by the state of a cell: a cell is either safe or infected or

lytic or lysogenic; the death of a lytic bacterium leads to the release of viruses. The local

dynamics consists in updating this infection state using the rules given in Fig. 5:

Rule-based programming for integrative biological modeling

123



– a safe cell becomes infected with a probability Rv equal to the ratio of virus cells in its

neighborhood;

– an infected cell becomes either lytic or lysogenic with respect to the chemical model

given in Sect. 3;

– a lytic cell dies and releases viruses.

The translation in the MGS formalism is straightforward. The following expressions define

the different types of value used to represent the state of the CA:

type States ¼ ‘Safe j Infected j ‘Lytic j ‘Lysogenic j ‘Virus
and gbf Grid ¼\North; South; East; West j

North ¼ �South; East ¼ �West[
and collection Lattice ¼ ½States�Grid
These declarations define the type of the considered lattice as a GBF with values of type

States. States are represented by symbols. The GBF topology is the Cayley graph of the

finite presentation of a commutative group. The group is generated by the elementary

displacements available to ‘‘move’’ from one node of the graph to one of its neighbors. The

Grid GBF is defined by a finite presentation: a finite set of generators and equations

between the generators. Here, four displacements (generators) are considered following the

North, the South, the East, and the West direction. Knowing that the group is commutative

and that North and South are opposite, as well as East and West, the Cayley graph of the

group is isomorphic to a 2D grid with a von Neumann neighborhood.

The dynamics is implemented by the following transformation describing the three rules

of evolution:

Fig. 5 States and evolution rules of the cellular automaton. The top of the figure describes the five different states
of a cell; the middle and lower figures describe the evolution rules for a safe cell, an infected cell and a lytic cell

trans LocalEvolution ¼ f
‘Safe=ðrandomð1:0Þ\RvÞ ¼ [ ‘Infected;

‘Infected ¼ [ ð
let bact ¼ Phage½strategy ¼ ‘gillespie�ðBactInitÞ
in

if lysogenyðbactÞ
then ‘Lysogenic

else ‘LyticÞ;
‘Lysic ¼ [ ‘Virus; g
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The whole program (including instructions for producing the output) is about 100 lines of

MGS code. In this transformation, we should emphasize that:

– The first rule is guarded by a predicate that depends on the value of a random number.

This allows to apply the rule with probability Rv as required by the model.

– In the second rule, the choice between lytic and lysogenic phase depends on the call of

the previously defined transformation Phage using Gillespie’s strategy.

– Finally, if a cell is not updated using any of the 3 rules of the transformation, by the

semantics of the transformation application, it remains unchanged.

5.1.3 A simulation example

Pictures in Fig. 6 show some screen shots of runs of the CA model simulations. As the

initial state is designed with a single infected cell (see Fig. 6a), the infection propagates as

a concentric wave (see Fig. 6b) leading to a fixed point.

One may expect a fixed point where all CA cells are either in a lysogenic state or in a

viral state (see Fig. 6c). Surprisingly, another kind of fixed point also occurs where

lysogenic bacteria surround the cluster of viruses and stop the spread of the infection (see

Fig. 6d). This outcome appears for sets of parameters Ci,C
0
i leading to a majority of

lysogeny.

In order to study this phase transition, we have simulated the model for different lytic
rates. The lytic rate represents the probability for an infected bacterium to switch to a lytic

phase. The protocol of these simulations has consisted in 400 runs of the simulation for

each lytic rate, varying from 0% to 100%.

Figure 7a shows that for lytic rates lower than 65%, there is always a formation of a

cluster (the probability is equal to 1); for lytic rates higher that 95%, the infection is never

stopped. Between these two thresholds, a phase transition occurs quite quickly (in a range

of 30%). Figure 7b shows that even if a cluster appears for lytic rates lower than 60%, the

activity in the CA (due to the lytic bacteria) is not constant and increases with the lytic rate

to reach a maximum (at about 150 iterations). By contrast, when no cluster appears, the

system stabilizes faster (at about 75 iterations) while the infection covers the whole lattice.

It is interesting to see that the activity and the size of the clusters (given Fig. 7c) are not

correlated showing that lytic rates of about 60% increase the stabilization time.

Fig. 6 Results of the simulation of the CA model on a toric 20 9 20 lattice. The color code of the four
pictures is: safe bacteria are plotted in green, infected bacteria in red, lytic bacteria in blue, lysogenic
bacteria in yellow, and viruses in dark blue. a Initial state: a lytic cell in the center of a population of safe
bacteria. b State of the system after 25 iterations. c Fixed point after75 iterations: no safe cell remains. d
Fixed point ater150 iterations: formation of a cluster
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5.2 Amorphous and dynamical space individual-based model

While the previous model exhibits the interesting effect of spatial aggregation, one could

wonder whether it is meaningful to have a square lattice representing (and therefore

constraining) the neighborhood of the cells. Furthermore, important features like cell

replication and cell death (except for lytic cells) are not taken into account. Actually,

considering such behaviors in a CA requires to deal with way more complex rules that

leave the scope of standard CA description to more complex CA such as Margolus

neighborhood or lattice gas automata.

In order to study how the propagation of the infection is related to the population

growth, we propose to extend the previous model to a more phenomenological model with

a dynamical topology where the spatial coordinates of cells matter. Such a topology is

available in MGS using the Delaunay topological collections. Even if this kind of modeling

falls in the field of agent-based models (ABM) or multi-agent models (MAS), we consider

it as being part of what can be described and implemented in a rule-based language like

MGS. We develop this point of view in the conclusion of this article.

Fig. 7 Results of the simulation of the CA model on a toric 20 9 20 lattice. On the three graphs, plots show
some properties of the system according to the lytic rate of the model. The size of the error-bars clearly
shows the effects of stochasticity on the results. a Probability of cluster formation according to the lysis rate.
b Mean number of iterations for stability according to the lysis rate. c Mean size of the clusters according to
the lysis rate
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5.2.1 Individual-based model on a Delaunay graph

By contrast with the complete neighborhood of multisets, this collection (automatically)

computes the neighborhood between the collection’s elements according to their spatial

coordinates. The neighborhood is computed using a Delaunay triangulation of the coor-

dinates in R
n:

This kind of neighborhood together with a mechanical model has already been suc-

cessfully used in biology for the modeling of growth of cells (Gibson et al. 2006; Barbier

de Reuille et al. 2006). The mechanical model consists in a mass/spring system. It allows to

keep a coherent global structure where cells are always close to each other and are able to

‘‘push’’ their neighbors if they lack space, or to fill holes in the structure.

5.2.2 A phenomenological model

The model is defined by extending the previous CA model. A cell of the CA lattice

corresponds now to a punctual mass that is localized in the R
3 space. A mass is charac-

terized by its spatial position, its velocity, and its biological state (i.e. a value of type

States since it represents a biological entity). The neighborhood relation of the CA is

replaced by springs between masses, and the presence of a spring between two masses

depends on the neighborhood induced by the Delaunay triangulation of the masses. The

biological evolution of the masses corresponds to the update of their biological states with

respect to the previous transformation LocalEvolution extended with 3 rules to express

cellular division, death, and virus degradation. The spatial evolution4 of the masses cor-

responds to the definition of a new transformation SpatialEvolution that computes the

movement of a mass due to its incident springs during a time interval Dt. Finally, the whole

evolution step consists in composing the transformations:

SpatialEvolution½�� � LocalEvolution

Here, the mechanical model is iterated until an equilibrium is reached to consider a quasi-

static approximation: the time-scale of the mechanical model is considered faster than the

biological one. The whole program (including instructions for producing the output) is

about 200 lines of MGS code.

5.2.3 A simulation example

Figure 8 shows four graphical interpretations of simulations of this model using the Im-
oview (Letierce et al. 2005) visualization tool developed in the MGS project. In these

simulations, viruses and bacteria do not have the same size: viruses are smaller than cells

and thus allow a more efficient diffusion in the population. This prevents from the for-

mation of clusters. Nevertheless, another kind of behavior appears as shown in Fig. 8d. The

population is split into two subgroups: a safe one and a lysogenic one. This outcome is

quite similar to the behavior shown on Fig. 4d for the nested compartment model. It should

be of importance in real infections since lysogenic cells are immunized towards further

infection. If a lysis is induced in the lysogenic population, the safe bacteria will prove to be

a good source of hosts for the released viruses.

4 Because of the lack of space, we do not include here the MGS code for this model. Nevertheless, the code
of all the examples given in this article is available upon request from the authors.
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6 Conclusion: towards spatial systems biology

Rule-based programming has been heavily investigated in the field of natural systems

modeling. It was an essential contribution of (Regev et al. 2001) that has started an

important effort in the p-calculus community to focus on problems raised by systems
biology (Priami and Quaglia 2004; Regev et al. 2004; Cardelli 2004; Calder et al. 2006;

Hlavacek et al. 2006; Danos et al. 2007, 2008). This approach has been very efficient and

successful, yet only limited to the consideration of biological processes that did not involve

space: Brownian motion is supposed to allow each entity to encounter all other entities.

Other formalisms have additional structure and spatial relationships: P systems consider

nested compartments, L-systems allow through the interpretation of their symbols the

modeling of complex spatial relationships, etc. but to our knowledge, besides vertex–vertex
systems (Smith et al. 2003) which offer rewriting on graph topologies, no language nor

formalism in the field of natural systems modeling has considered the explicit represen-

tation of space together with an implicit handling in evolution rules.

The MGS project is an attempt to combine rule-based programming with topological

collections in a effort to offer a versatile, expressive and efficient mean for the modeling of

natural systems. Rules allow to focus on the interactions between the elements of the

systems while topological collections provide an explicit description of space. Here, we

only have considered a small subset of the topologies available in MGS (Michel 2007).

Nevertheless, we have shown that it is sufficient for the modeling of the biological

process at various levels in systems biology: our paradigmatic example of the switch of the

k phage has been described from the transcription network at the level of the biochemical

interactions to the level of population of cells embedded in a general three dimensional

space. Furthermore, while our approach is clearly individual based, classical ABM/MAS

(like NetLogo (Wilensky 1999)) focus on the description of agents behavior, rule-based

languages and formalisms promote the description of the interactions between the indi-

viduals. Among the many consequences of this point of view, it allows us to consider any

kind of interactions between individuals (and not only interactions between two agents);

since the rule application strategy is explicit, it makes possible to have a fine control over

the scheduling of the selection of the individuals in interactions; by changing the type of

topological collection, it is easy to change the nature of the underlying space where the

individuals are embedded, etc.

Our running example is a very well studied biological process at the level of gene

regulation. It is a classical case in systems biology which aims at integrating processes at

various time and spatial scales into a single and coherent formal description. However,

Fig. 8 Results of the simulation of the dynamical space model. Safe bacteria are plotted in green, infected
bacteria in red, lytic bacteria in blue, lysogenic bacteria in yellow, and viruses in dark gray. a Initial state, a
lytic cell surrounded by 16 safe bacteria. b State of the system during the infection. c The evolution leads to
a silent infection. d The infection failed
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while classical molecular systems biology focuses on gene or protein interaction networks,

cellular and supra-cellular organization levels are rarely considered. Since the fate of

biological systems is not only determined by genes, the spatial organization of cells,

tissues and organs plays a key role in most physiological processes (see for example, Farge

2003) and must therefore be a part of the models. Recognizing this importance by inte-

grating spatial properties extends systems biology towards spatial systems biology.

We believe that languages and tools have to be further developed to take into account

these spatial interactions, and that rule-based languages, like MGS, can play a key role.

More specifically, the generalization of topological collections using notions from alge-

braic topology (Giavitto and Spicher 2008), allows us already to model complex spatial

interactions. The relevance of these concepts is currently under validation through various

large scale examples: simulation of morphogenesis processes (Barbier de Reuille 2006),

amorphous and autonomic computing examples and simulation at various levels of the

behavior of genetically engineered bacteria in the French team of MIT’s iGEM compe-

tition (iGEM 2007).
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Munkres J (1984) Elements of algebraic topology. Addison-Wesley, Reading
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