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Mathematical models are useful for providing a framework for integrating data and
gaining insights into the static and dynamic behavior of complex biological sys-
tems such as networks of interacting genes. We review the dynamic behaviors ex-
pected from model gene networks incorporating common biochemical motifs, and
we compare current methods for modeling genetic networks. A common modeling
technique, based on simply modeling genes as ON–OFF switches, is readily imple-
mented and allows rapid numerical simulations. However, this method may predict
dynamic solutions that do not correspond to those seen when systems are modeled
with a more detailed method using ordinary differential equations. Until now, the
majority of gene network modeling studies have focused on determining the types
of dynamics that can be generated by common biochemical motifs such as feed-
back loops or protein oligomerization. For example, these elements can generate
multiple stable states for gene product concentrations, state-dependent responses to
stimuli, circadian rhythms and other oscillations, and optimal stimulus frequencies
for maximal transcription. In the future, as new experimental techniques increase
the ease of characterization of genetic networks, qualitative modeling will need to
be supplanted by quantitative models for specific systems.

c© 2000 Society for Mathematical Biology

1. INTRODUCTION

A variety of genome projects are rapidly leading to nearly complete characteriza-
tions of the genomes of diverse prokaryotes [e.g.,E. Coli, Blattneret al. (1997); M.
tuberculosis, Coleet al. (1998)] and eukaryotes [e.g.,C. elegans, TheC. elegans
Sequencing Consortium (1998); and man,Collinset al. (1998)]. Moreover, tempo-
ral gene expression patterns, encompassing a large portion of the genome, are now
being obtained for many cell types in response to specific stimuli, or during execu-
tion of developmental programs (Wenet al., 1998; Iyer et al., 1999). Such data can
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help in obtaining a detailed understanding of how groups of genes control cellular
responses to environmental stimuli (Edwards, 1994), and execute stored programs
governing such biological processes as development (Rossant and Hopkins, 1992)
or the cell cycle (Okayamaet al., 1996). Understanding the genetic control of neu-
ral plasticity and learning (Byrne et al., 1991; Abel et al., 1998; Hevroni et al.,
1998) will also require integration of data obtained by a variety of biochemical,
biophysical, and genetic techniques.

Achieving such understanding requires more than merely collecting large
amounts of experimental data by gene expression assays. A framework for deriving
and expressing the biochemical architecture of genetic systems, using experimen-
tal data, is required. The precision of mathematical language makes mathemati-
cal modeling a useful framework for conceptualizing and understanding complex
biochemical systems. This review discusses and compares different types of math-
ematical models that can be used to analyse the dynamical behavior of genetic
regulatory systems. It also illustrates some recent qualitative results, obtained by
modeling, that characterize the types of behaviors genetic systems are likely to
generate.

1.1. The complexity of genetic regulatory systems.Specific groups of genes
may be activated by particular signals and, once activated, regulate a common pro-
cess. The group members may regulate each other’s transcription. Such groups
may be termed genetic regulatory systems. Genetic regulatory systems are of-
ten activated by signal-transduction pathways in which stimuli (e.g., hormones or
neurotransmitters) lead to second-messenger generation and to activation of tran-
scription factors (TFs), often via phosphorylation. Activated TFs then bind to DNA
sequences known as responsive elements and thereby regulate the transcription of
specific nearby genes [for a review seeKarin (1994)]. Responsive elements are
also termed enhancers, if they activate transcription, or silencers, if they suppress
transcription. The regulatory activity of TFs is modulated both by phosphoryla-
tion and intermolecular interactions. TFs often bind to DNA as homodimers, or
as heterodimers of different TF family members. Responsive elements that bind
TFs have been found in turn to affect the transcription of genes for TFs; such as
Jun, Fos, and Ca2+/cAMP-responsive element binding protein (CREB) (Meyeret
al., 1993; Karin, 1994; Sassone-Corsi, 1995). The potential complexity of genetic
regulation has been increased by the finding that some TFs activate their own tran-
scription. These include Jun (Angel et al., 1988), myogenic factors of the helix–
loop–helix family such as Myo-D or myogenin (Thayeret al., 1989), and possibly
CREB (Meyer et al., 1993). Several homeotic genes are known to activate their
own transcription (Serfling, 1989). Other TFs repress their own transcription, ei-
ther directly as in the case of Fos (Sassone-Corsiet al., 1988) or indirectly by acti-
vating the transcription of repressors. An example of such an inducible repressor is
the inducible Ca2+/cAMP-responsive early repressor (ICER) protein, whose tran-
scription is increased upon binding of phosphorylated dimers of CREB to a nearby
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Ca2+/cAMP-responsive element (CRE) (Molina et al., 1993). A negative-feedback
interaction occurs because ICER suppresses its own transcription (Stehleet al.,
1993). This genetic regulatory system has been postulated to underlie oscillations
of CREB mRNA levels (Walkeret al., 1995). Other eukaryotic TFs that function
as transcriptional repressors include CREB2, a protein within the CREB family
(Sassone-Corsi, 1995), and the Ca2+—regulated DREAM protein, which binds to
downstream regulatory element (DRE) silencers (Carrionet al., 1999). Ubiquity
of genetic autoregulation in even relatively simple organisms is suggested by an
inventory ofE. Coli σ 70 promoter regulation that identifies 21 regulatory proteins
that repress their own synthesis and four that activate their own synthesis (Collado-
Videset al., 1991).

A conceptual problem arises of how to understand the operations and predict the
functional properties of these complex systems. Their structure must be sufficiently
elaborate to execute many stored ‘programs’ guiding development and differenti-
ation, and to generate appropriate responses to diverse environmental stimuli. It
has become increasingly evident that non-linear interactions, positive and negative
feedback within signaling pathways, crosstalk between pathways, and time delays
which may result from mRNA or protein transport, all need to be considered to un-
derstand the operation of genetic regulatory systems. Understanding the combined
effects of these phenomena is often beyond the capacity of intuition. Mathemat-
ical modeling can provide the necessary conceptual framework to: (1) integrate
these phenomena into a coherent picture of the operation of specific genetic reg-
ulatory systems, (2) identify design principles for the biochemical architecture of
genetic systems, (3) understand the responses of both normal and mutant organ-
isms to stimuli, or (4) verify the consistency and completeness of reaction sets
hypothesized to describe specific systems. To illustrate these points further, recent
qualitative modeling results will be reviewed below. These results illustrate the
repertoire of dynamics to be expected from genetic regulatory systems embodying
common biochemical motifs.

1.2. Approximations and methods for modeling genetic systems.As noted by
Rosen (1968), two key approximations have historically been used to model ge-
netic regulatory systems. These are: (1) control is exercised at the transcriptional
level, and (2) the production of protein product is a continuous process, with the
rate determined by the balance of gene activation vs repression. One point of this
review will be to examine recent efforts, particularly in prokaryotic systems, to dis-
pense with the second of these approximations by including the stochastic nature of
production of individual protein molecules. This randomness is expected, qualita-
tively, to lead to considerable, irreducible variability in organism phenotypes. For
at least one prokaryotic system, this variability has recently been modeled in detail,
and the simulations are quantitatively consistent with experimental data (Arkin et
al., 1998). The first approximation, that control is exercised at the transcriptional
level, has been bypassed by some modeling studies that consider translational con-
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trol. Mechanisms considered include regulation of mRNA decay rates (Bazhan
et al., 1995; Carrier and Keasling, 1997), regulation of proofreading accuracy, or
competition between mRNAs for initiation of translation (Von Heijneet al., 1987).
However, the number of studies focusing on translational control is much less than
those concerned with transcriptional control. Also, there is virtually no overlap
between these modeling efforts, in that there are few or no studies that model
translational and transcriptional control in any specific genetic system. Transla-
tional control is of widespread importance and it is evident that more experimental
and theoretical collaborations would be desirable to understand its mechanisms and
consequences. In this review, however, we have limited our focus to transcriptional
control. We also focus on control via binding of TFs to responsive elements, and
do not treat other forms of transcriptional control such as attenuation, in which
transcription termination is regulated by the amount of specific tRNAs (Koh et al.,
1998).

Methods used to model transcriptional control within genetic regulatory systems
include the ‘Boolean’ method that describes the states of genes simply as either
ON or OFF, and the ‘continuous’ method that uses ordinary differential equations
to describe the time courses of gene product concentrations. There is also a hybrid
approach that blends elements of the Boolean and continuous approaches. The
Boolean method is favored for ease of formulation and computation, whereas the
continuous approach has the advantage of greater physical accuracy. In the fol-
lowing section, we discuss the advantages and disadvantages of these approaches
to modeling genetic regulatory systems. We also summarize the extensions of the
continuous approach necessary for modeling intracellular transport of the macro-
molecules involved in genetic regulation.

2. GENETIC SYSTEMS M ODELED WITH BOOLEAN L OGIC ,
DIFFERENTIAL EQUATIONS , AND HYBRID APPROACHES

2.1. The Boolean approach.Genetic regulatory systems have been modeled as
networks of Boolean logical elements. Assumptions of this approach are summa-
rized inSomogyi and Sniegoski (1996). These are: (1) the state of each gene can
be characterized as either ON (one) or OFF (zero), and (2) the regulatory control
of gene expression can be approximated by Boolean logical rules. An example of
such a rule is if genes A and B were ON at the preceding timestep and gene C was
OFF, only then is gene D ON at the current timestep. Also, (3) all elements are
most commonly assumed to update their ON and OFF states synchronously (i.e.,
at the beginning of each, relatively large timestep based on the state of the system
during the previous timestep). Occasionally, asynchronous updating is considered
instead (i.e., a defined sequence of updating the logical elements with the state
of the system subsequent to updating each individual element used for updating
the next element). By considering the mathematical properties of Boolean net-
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works,Thomas and d’Ari (1990) andThomaset al. (1995) have obtained signifi-
cant insights concerning the expected dynamics of genetic systems. For example,
these authors illustrated that negative feedback loops are, quite generally, important
for maintaining homeostasis in levels of gene products, and that positive feedback
loops are important for allowing multiple stable states of gene product levels (i.e.,
multiple network steady states). These conclusions are in agreement with earlier
studies in which differential equations were used to model gene networks [e.g.,
Snoussi and Thomas (1993)] and therefore help build confidence that Boolean net-
work representations can yield useful qualitative information about gene network
dynamics. As a specific example of recent Boolean modeling,Boden (1997) has
attempted to model comprehensively the early development of theDrosophilaem-
bryo. This model is only a first step, a suggestive conceptual picture (e.g., it can
only perform one-dimensional simulations at this time), which needs to be sup-
plemented by more data. The model can, however, begin to make predictions. For
example, only a few changes—e.g., activation of a few genes considered redundant
in Drosophilaembryogenesis—were needed to qualitatively simulate embryogen-
esis of a short germ band in a different insect, such as a beetle or grasshopper. This
similarity suggests that embryogenesis of these species may be quite similar, with
differences amenable to experimental verification. Also, this model illustrates the
way in which the Boolean method can allow for the conceptualization and simu-
lation, in a reasonable amount of time on a personal computer, of the dynamics of
many genes and interactions among them.

Methods for efficiently using experimental data to construct models of large ge-
netic networks with the Boolean method have recently begun to be developed (So-
mogyi and Sniegoski, 1997; Wenet al., 1998). The essential experimental task is
to determine regulatory relations from simultaneously measured expression time
courses of sets of genes in a group of cells or a tissue sample. The time courses
could be in response to an applied perturbation, such as a hormone, or time courses
could be monitored during normal processes of development or differentiation.
Use of distance matrices for pair-wise comparison of expression patterns allows a
cluster analysis that groups together genes whose expression is similarly regulated
(Eisenet al., 1998; Wenet al., 1998). Thus, possible regulatory interactions among
genes can be identified based on the clustering together of expression profiles of
similar shapes. A caveat, discussed further below, is that since these experimen-
tal techniques monitor populations of cells rather than single cells, their ability to
delineate intracellular signaling pathways will be limited.

2.2. The ‘continuous’ approach using differential equations.The range of non-
linear behaviors exhibited by genetic regulatory systems can be more thoroughly
understood with an approach in which ordinary differential equations are used to
model reaction kinetics. This approach is computationally more intensive than the
Boolean approach and it requires the assumption of specific kinetic schemes. How-
ever, it has two major advantages. Smaller timesteps and continuous rather than
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logical variables allow, in principle, for a more accurate physical representation
of the system. Also, a large body of theory and methodology, termed dynamical-
systems theory, is available to characterize the dynamics produced by these models
(Guckenheimer and Holmes, 1983; Wiggins, 1990). For example, by determining
those conditions under which particular solutions cease to exist or come into exis-
tence, bifurcation analysis (Wiggins, 1990) can predict parameter values at which
qualitative transitions in the behavior of a system should occur. For all but the sim-
plest models, such analysis is done numerically by means of specialized software
[e.g.,Doedel (1981)].

Over the last few decades, considerable work has examined the properties of
steady, periodic, and even chaotic solutions of sets of differential equations that use
simple, generic functions to represent activation or repression of genes by effector
molecules such as TFs. Early work was summarized and extended byTyson and
Othmer (1978). For example, these authors reviewed the ‘operon’ model ofJacob
and Monod (1961), which remains a commonly used framework for the analysis of
enzyme induction and repression. In this model, each structural gene that codes for
an enzyme or protein is linked with an operator gene that regulates its transcrip-
tion. Each operator gene is subject to repression by a repressor molecule whose
binding to the operator is in turn modulated by an ‘effector’ molecule. Figure1
presents an example of this architecture for the case of two structural genes. Here, a
negative-feedback loop involves two enzymes, E1 and E2, which repress their own
transcription in the presence of a metaboliteM . M is converted by the enzymes to
an effector molecule,Eff, which interacts with a regulatory protein,R. The inter-
action convertsR to R′, which represses the transcription of E1 and E2, closing the
negative-feedback loop. If, instead, the proteinR′ activated transcription of E1 and
E2, then a positive-feedback loop would exist, again dependent on the presence of
the metaboliteM . Jacob and Monod (1961) demonstrated that the ‘operon’ model
helps to explain two examples of genetic regulation inE. coli. The first exam-
ple is the repression of the enzyme tryptophan synthetase (and other enzymes in
the metabolic pathway for tryptophan synthesis) in the presence of the metabolite
tryptophan, and the second is the induction of the enzymeβ-galactosidase in the
presence of galactosides.

Tyson and Othmer (1978) discussed how, for the case of one structural gene,
the ‘operon’ model can usefully be expressed as the following set of differential
equations

dx1

dt
= f (xn)− k1x1, (1)

dxj

dt
= x j−1− k j x j , j = 2, . . . ,n.

Here, if the structural gene product is an enzyme that produces the effector molecule
directly, there are threexi (i.e., mRNA, enzyme, and effector molecule). The func-
tion f (xn) embodies either activation or repression by increasingxn, and is often
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Figure 1. Diagram of the ‘operon’ model ofJacob and Monod (1961) for the case of two
‘structural’ genes, denotedsg-1andsg-2. Enzymes E1 and E2 are transcribed from these
genes. E1 converts metaboliteM to an intermediate compoundI , and enzyme E2 converts
I to an effector compound,Eff. A regulatory generg produces a proteinR, which can
reversibly convert to the formR′ in the presence ofEff. Only R′ has a regulatory effect. It
represses the transcription of bothsg-1andsg-2by binding to a responsive element, RE, in
the region of ‘operon’ DNA denoted O. Overall, this scheme embodies a negative feedback
of E1 and E2 on their own transcription, with the negative feedback only operating in the
presence of the metaboliteM .

taken to be a sigmoid. These equations are often termed the ‘Goodwin’ model
(Goodwin, 1965). The properties of equations (1) have been extensively studied,
e.g., byGriffith (1968a,b) and Tyson and Othmer (1978). The multiplicity and
stability of steady states have been analysed, and conditions for the existence of
periodic solutions have been determined. For the casen = 3 with f (xn) repres-
sive,Blisset al. (1982) carried out a detailed analysis. These authors allowed time
delays between the production ofx3 (effector molecule) and its effect on the pro-
duction ofx1 (mRNA), and also between the production ofx1 and the subsequent
production ofx2 (gene product). A non-linear degradation ofx3 (effector molecule)
was also included.Bliss et al. (1982) determined a condition on parameters that
ensures the stability of the unique steady state of this model. These authors then
chose parameters that allowed the model to describe the tryptophan operon ofE.
coli. With these parameters, a stable steady state was obtained, but with parameters
corresponding to a mutant with reduced repression, the stability condition was vi-
olated and oscillations occurred. These simulations were in qualitative agreement
with experiment for normal and mutantE. coli strains. We note that the analysis
of Bliss et al. (1982), and the condition on parameters required to ensure stability
of the steady state, also applies for the casen = 2. This case could describe direct
repression of a gene by its own product.
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Subsequently,Smith (1987a) generalized equations (1) to describe a network of
N genes with repressive interactions between genes. In this network, the prod-
uct of each gene is the first in a linear series of biochemical intermediates. The
last intermediate in each series suppresses the transcription of the next gene in
the network, except for the last intermediate in theNth series, which suppresses
the transcription of the first gene. Time delays are included to allow for the time
required for transcription, translation, and transport. For strong repression (Hill
coefficient>1), Smith (1987a) demonstrated a qualitative difference in the dy-
namics for even vs oddN in this generalized system. For evenN, the negative-
feedback interactions tend to ‘cancel out’, and the system can actually behave like
a positive-feedback system, with multiple stable steady states coexisting. In con-
trast, traditional negative-feedback dynamics (i.e., periodic solutions) tend to exist
for odd N, because the negative-feedback interactions cannot ‘cancel out’. For a
Hill coefficient of 1,Banks and Mahaffy (1978) had earlier found a single, globally
asymptotically stable steady state of this system. In another study,Smith (1987b)
considered the caseN = 1,n > 1, and f (xn) cooperative (activating). Time delays
were included between the production of eachx j and its effect on the production of
x j+1. For this case,Smith (1987b) found that no stable periodic solutions existed,
and he determined the stability of the steady states.

Another frequently used type of model (Snoussi and Thomas, 1993; Mestlet al.,
1995a, 1996; Plahteet al., 1998) that describes gene networks is:

dxi

dt
= ai (Z)− bi (λ)xi , i = 1, . . . ,n. (2)

Here,xi represents the concentration of the product of thei th gene.Z is a vector
of stepped or steeply sloped threshold functions, thus theai often exhibit a series
of steps at different hypersurfaces withinxi -space.λ is often a constant vector,
although it can express hyperbolic or sigmoidal kinetics of gene product degrada-
tion. Vector components areZi (or occasionallyλi ) = Si (x1,...,n, ηi ). Si denotes a
threshold function with thresholdηi . If, in equations (2), thebi are constant and
theai are taken to be linear functions ofxi−1 except for the casei = 1, then one
obtains a special case of equations (1).

In recent work that focuses on analytic determination of steady states and peri-
odic orbits in equations (2), the generic threshold functionsSi have been taken as:
(1) step functions, generating piecewise-linear (PL) differential equations (Snoussi
and Thomas, 1993; Mestl et al., 1996), (2) logoid functions, which rise linearly
from 0 to 1 over a defined range of the effector (Mestlet al., 1995a), or (3) steep sig-
moidal functions (Plahteet al., 1998). In most of this work eachSi is a function of
only one gene product concentration. For PL equations, the steady states can be de-
termined analytically. The existence and stability of periodic orbits can be partially
analysed by examining Poincaré maps, although some numerical simulations may
still be required to assess stability (Mestlet al., 1996). Methods to classify chaotic
dynamics and suggest when they could be expected have also been developed for
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PL equations (Mestl et al., 1996). However, the practical utility of these methods
may be limited, insofar as it has not been demonstrated that chaotic dynamics op-
erate, or would be advantageous, in any specific genetic system. Indeed, such dy-
namics should probably be avoided if consistency of response to external or internal
stimuli is desired. Differential equations using logoids have been suggested to be
superior to PL equations because they can incorporate non-additivity of the effects
of multiple TFs in a way that appears more biochemically reasonable (Mestlet al.,
1995a). For these equations, the steady states can also be determined analytically
(Mestl et al., 1995a) and progress has been made in locating periodic solutions
(Mestl et al., 1995b). For differential equations using steep sigmoids, an analytic
method for determining the steady states has recently been developed (Plahteet al.,
1994, 1998). However, few results have been obtained for determining periodic so-
lutions of these equations, or for characterizing more complex dynamics. Recently,
the methods ofPlahteet al. (1994, 1998) have been applied to analyse the existence
and location of equilibria in a model of cellular iron homeostasis (Omholt et al.,
1998). This model is based on translational rather than transcriptional control, but
is still cast as a set of differential equations using steep sigmoids.

In the future, computerized versions of the methods ofPlahteet al. (1998), Mestl
et al. (1996), Mestl et al. (1995a), or Snoussi and Thomas (1993) could prove a
valuable adjunct to numerical simulations. These methods could make tentative
identifications, subject to experimental confirmation, of steady and periodic dy-
namic solutions for gene product concentrations in specific genetic regulatory sys-
tems. However, there is a caveat which greatly limits the utility of these analytic
methods in predicting dynamics on the timescale of a few hours or less. Compart-
mentalization and transport of macromolecules is not generally included within
these simplified model frameworks. The dynamics of model genetic systems are
strongly dependent on the mechanism and rate of intracellular transport of mRNA
and protein (Mahaffy and Pao, 1984; Mahaffy et al., 1992; Smolenet al., 1999a).
Transport, however, cannot be included in models without eliminating the applica-
bility of the above analytic methods for finding steady and periodic solutions.

Transport can be modeled as diffusive or active in nature. If active (energy-
requiring) it can be modeled with a time delay. The time delay can be discrete,
which assumes each macromolecule takes the same length of time to translocate
from its place of synthesis to the location where it exerts an effect. If this sim-
plification is too drastic, another approach is to assume a distributed delay. Here,
the derivative of a variable, which can be the concentration of a macromolecule,
depends on an integral of a function of one or more variables over a specified range
of previous time. For example, a general distributed delay for one variable takes
the form

d X(t)

dt
= F(Xdel), with

Xdel≡

∫ 0

−∞

X(t − τ)G(X(t − τ))dτ, and with
∫ 0

−∞

G(X(t − τ))dτ = 1.
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The last equation expresses a normalization condition imposed for biological re-
alism (MacDonald, 1989). In principle, this approach is general enough to model
any mechanism of macromolecular transport. For example, if movement of mRNA
from a transcription site to translation sites is an active process with a significant
range of transport times for individual molecules, a distributed delay would be the
proper modeling framework. The simplest biochemically reasonable distributed
delay would be an average ofX(t) over an interval of widthδ, centered at a delay
τ . For movement of mRNA to be translated,τ might be on the order of 1–2 h, with
δ taken as a percentage ofτ . δ can be increased from zero to determine the value
for which significant changes in simulated dynamics occur.

There is considerable evidence for active transport of specific mRNAs and pro-
teins in eukaryotic cytoplasm. Examples include microtubule-dependent move-
ment ofV g1 mRNA inXenopusoocytes (Yisraeliet al., 1990), microtubule-depend-
ent localization of several maternal mRNAs for proteins that direct embryonic de-
velopment (such asbicoid, bicuadal-D, andoskar) in Drosophilaoocytes (King,
1996), movement of tubulin monomers from the cell body to the ends of growing
axons, in a variety of vertebrate neuronal types, at rates well in excess of those
that could be explained by diffusion (Sabryet al., 1995); and, more generally, ax-
onal and dendritic transport of various types. The above studies have not, however,
provided a sense of the extent to which a ‘typical’ eukaryotic mRNA is actively
transported. Active macromolecular transport in prokaryotic cells can also be im-
portant. For example, it has been observed that specific intracellular localization
of proteins determine the relative fates of daughter cells after cell division (Shapiro
and Losick, 1997; Jacobs and Shapiro, 1998). Either these proteins, or other macro-
molecules that bind them, must be actively transported in order to generate their
intracellular concentration gradients.

2.3. Comparison of the Boolean and continuous approaches.Although the
continuous approach is more computationally intensive, it is often preferred be-
cause it is more physically accurate. The limitations of the Boolean approach have
been known for some time. Although a steady state of a Boolean representation
of a genetic system will correspond, qualitatively, to an analogous steady state in
the ‘continuous’ representation with ordinary differential equations, the converse
is not necessarily true. Not all steady states of the continuous representation are
required to appear as steady solutions in the Boolean representation (Glass and
Kauffman, 1973). Also, periodic solutions in the Boolean representation may not
correspond to periodic solutions in the continuous system. Several examples are
given in Glass and Kauffman (1973) and Bagley and Glass (1996). For exam-
ple, Glass and Kauffman (1973) considered the simple feedback loop in which
X1 induces the production ofX2 and converselyX2 represses the production of
X1. Using 1 to refer to a gene being ON and 0 to refer to a gene being OFF, the
Boolean representation of this system has four possible states: (1,0), (0,1), (1,1)
and (0,0). Assuming synchronous updating of the states ofX1 andX2, the Boolean
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representation has a periodic solution through the four states in succession (i.e., if
the system starts in (1,1), then repression will make the next state (0,1), then lack of
activation will make the next state (0,0), then lack of repression allows (1,0), then
induction gives (1,1) again, and so forth). However, the continuous representation
of this system, using steep sigmoidal functions for induction and repression, does
not have stable oscillations. Rather, there is a globally stable steady state. Only if
an additional complication is added (i.e., ifX1 and X2 are assumed to be synthe-
sized in separate compartments) is a stable limit cycle found for some parameter
values. Glass and Kauffman (1973) gave a procedure for determining whether
limit cycles in low-dimensional (2–4 variable) Boolean systems are ‘spurious’ in
the sense that they would not be seen in the continuous representation. However,
no such procedure appears to have been developed for higher-dimensional systems.

Recent work indicates that these considerations continue to limit the utility of
Boolean modeling of gene networks, and that this problem cannot be fully resolved
by techniques such as comparing results obtained by assuming asynchronous with
synchronous updating of gene states in the Boolean representation (Mestl et al.,
1996). For example, an accurate Boolean model should ensure that the order in
which gene product concentrations cross ‘threshold’ levels for exerting biological
effects is the same as the order determined with a more biochemically accurate
model based on differential equations. However, neither synchronous nor asyn-
chronous updating rules have been found that can guarantee this outcome.

Also, a considerable amount of work [e.g.,Mahaffy and Pao (1984), Mahaffy et
al. (1992), Smolenet al. (1999a)] has made it evident that the dynamics of model
genetic systems are strongly dependent on whether, and how, intracellular trans-
port of mRNA and protein is modeled. In prokaryotic cells, it may sometimes be
less necessary to model transport in detail. Translation of mRNA often begins im-
mediately upon its synthesis, even while transcription is still ongoing (Koh et al.,
1998). Also, if transport is diffusive, the small dimensions of many prokaryotic
cells and the lack of internal compartments might imply that, on the timescale of
minutes, concentrations of many mRNAs and proteins can be regarded as homoge-
nous. However, recent studies have demonstrated that the homogeneity assumption
does not always hold. For example, in several cases it is now established that local-
ization of proteins within specific regions in a parent bacterial cell determines the
relative fates of daughter cells after division (Shapiro and Losick, 1997; Jacobs and
Shapiro, 1998). Thus, homogeneity of macromolecules in prokaryotic cells cannot
be casually assumed.

Macromolecular transport often cannot be incorporated into a Boolean model. If
transport of macromolecules is described by a discrete time delay, this could be in-
corporated by considering the delay to be part of the relatively large timestep used
in simulations or by propagating its effect across several timesteps. However, this
incorporation does not appear possible if transport is described by diffusion or by
a distributed delay. In contrast, models based on differential equations that incor-
porate transport (either via distributed delays or via diffusion) have been analysed
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extensively. For example, early work summarized inTyson and Othmer (1978) es-
tablished conditions for a diffusive, spatially non-uniform system containing a sin-
gle negative-feedback loop to have stable steady states. Distributed delays, which
could represent macromolecular transport or slow biochemical reactions not mod-
eled explicitly, are included in the classes of gene network models analysed by
Smith (1987a,b), which generalize equations (1). His results concerning the ex-
istence and stability of multiple steady states, and the existence and stability of
periodic solutions, hold with these distributed delays.

The disadvantage of models based on ordinary differential equations is that they
typically take much more computer time to integrate over simulated times of per-
haps hours or days than Boolean models do. Thus, for modeling large genetic
regulatory systems, or lengthy processes such as development, Boolean networks
might represent the only practical alternative.

2.4. A hybrid Boolean—continuous approach.A hybrid modeling approach
has been put forth in which biochemical processes characterized by sharp thresh-
olds, such as the activation of genes over a narrow concentration range of an effec-
tor molecule, are represented as Boolean ON–OFF switches. However, activation
functions not characterized by sharp thresholds are modeled as continuous input–
output relations. Either continuous time courses, or switch-like functions, can be
assumed for hormonal or other inputs. In this approach, macromolecular concen-
trations are numerically integrated as ordinary differential equations. Time delays
can also be incorporated.

McAdams and Shapiro (1995) used the hybrid approach to model theE. Coli–λ
phage lysis–lysogeny genetic switch. Figure2 illustrates their hybrid model. Here,
G1–8 denote distinct computational elements, such as AND or NOT gates, or the
key bistable two-promotor (PR and PRM) switch which integrates the output of the
remainder of the circuit to make the lysis vs lysogeny decision. The symbol ‘ki-
netic model required’ refers to activation or switching functions not characterized
by sharp thresholds and therefore modeled as continuous input–output relations.
Model simulations qualitatively matched experimental data for the order of pro-
motor activation following phage infection, and also demonstrated that the time
delays associated with transcription and translation of key proteins were essential
for correct sequencing of circuit functions and for circuit decision-making.

A second recent example of the hybrid approach is the model ofYuh et al. (1998)
for regulation of the developmental geneendo16in sea urchin embryo. Upstream
from the basalendo16promoter, seven distinct modules contain a variety of sites
for binding of TFs that regulateendo16transcription. The occupancies of some of
these modules (or, alternatively, their presence or absence in mutated constructs)
were modeled by Boolean switching functions whose sums or products determine
the final transcriptional activity. The occupancies of three sites for TF binding
were modeled in more detail by continuous functions of time. One of these sites
integrates the regulatory effects of all the others to determine the ‘output’—endo16
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transcription—which is therefore also a continuous function of time. The Boolean
switching functions sometimes act to scale the output without changing its shape,
and other times to set the output to zero. This model emphasizes the analog com-
putational nature of theendo16regulatory scheme. It integrates complex environ-
mental information via occupancies of TF binding sites to produce, via Boolean
switches dependent on these occupancies, a well-defined output profile of gene
expression.

A particular advantage of the hybrid approach is, therefore, that a clear concep-
tual distinction is drawn between elements of the system which can, because of
sharp thresholds of activation, be modeled as Boolean logical variables, and those
which cannot. Also, the computational time required for simulations using this
approach can be significantly less than with the continuous approach.

In the following section, we have chosen to review some representative recent
characterizations of dynamics expected from genetic regulatory systems. These
results are generally obtained using the continuous approach, with small sets of or-
dinary differential equations that embody typical schemes of positive and negative
feedback by transcriptional activators and repressors. Such models are valuable for
qualitatively illustrating the types of dynamics larger genetic systems that incorpo-
rate similar feedback loops can be expected to exhibit.
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3. SOME RECENT I NSIGHTS CONCERNING THE DYNAMIC PROPERTIES

OF GENETIC REGULATORY SYSTEMS

3.1. Time delays and multistability lead to history-dependent responses to per-
turbations. As discussed above, the concept that positive feedback could give rise
to multistability (i.e., multiple stable steady states of concentrations of gene prod-
ucts and other system variables) has been appreciated since early models of genetic
regulation (Griffith, 1968b; Tyson and Othmer, 1978). Recent modeling studies
have continued to delineate the biochemical architectures that could give rise to
multistability. For example, Keller, using biochemically realistic differential equa-
tions, determined the number and stability of steady states given typical schemes of
activation or repression by multiple or oligomeric TFs (Keller, 1994, 1995). Keller
(1994) applied these results by suggesting that the choice among multiple steady
states of gene product concentrations could constitute a form of epigenetic infor-
mation, mitotically inheritable, and possibly sufficient to distinguish different cell
types within a multicellular organism.

Wolf and Eeckman (1998) have pointed out that the simplest genetic systems
capable of bistability and perturbation-induced state transitions are: (1) a single
gene with two binding sites for a monomeric TF, or (2) a gene with a single binding
site for a dimeric TF. These authors also use the term ‘soft switch’ to denote the
configuration of two genes, both regulated by a single binding site which can accept
either monomeric gene product, with each gene product repressing the other gene.
This system has only a single steady state. The location of the steady state can be
quite sensitive to parameters, leading the authors to suggest a switch-like behavior.
However, such a ‘soft’ switch does not actually seem to constitute a true switch,
insofar as the system always returns to the original steady state after the cessation
of the imposed perturbation.

From a more theoretical perspective, it has been demonstrated that positive-
feedback loops are necessary for multistability, in both the Boolean and continu-
ous approaches (Snoussi and Thomas, 1993; Thomas, 1994; Thomaset al., 1995).
Such a positive-feedback loop can be direct, as when a TF activates its own tran-
scription. It can also be indirect, and somewhat counter-intuitive, as when two
TFs repress each other’s transcription. In that case, an increase in the first TF, by
repressing the second, indirectly favors a further increase in the first (Keller, 1995).

It is evident that the response of a multistable model gene network to pertur-
bations will depend on the state of the network when the perturbation is applied.
However, in a model gene network with delay differential equations, the response
to a given perturbation can be dramatically different depending not only on the
levels of gene products present immediately prior to the perturbation, but also on
the history of gene product levels over the range of previous time encompassed
by the delays. We have recently investigated generic models that illustrate this
concept. The simplest model (Smolenet al., 1998, 1999a) incorporates a single
transcription factor, TF-A, that activates its own transcription [Fig.3(a)]. TF-A
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forms a homodimer that activates transcription by binding to enhancers (TF-REs).
A rapid equilibrium is assumed between monomeric and dimeric TF-A. Thetf-a
gene incorporates a TF-RE. The transcription rate saturates with TF-A dimer con-
centration to a maximal ratek f , which is proportional to TF-A phosphorylation.
Responses to stimuli are modeled by varying the degree of TF-A phosphorylation.
A basal synthesis rateRbas at negligible [TF-A] is present, as well as a first-order
process for degradation(kd). Transport of macromolecules is modeled simply, by
incorporating a discrete time delayτ (∼1–2 h) between any change in the level of
nuclear TF-A and the appearance in the nucleus of further TF-A synthesized in
response to the nuclear TF-A.τ lumps together the two delaysτ1 andτ2 indicated
in Fig. 3(a). The model is described by a single delay differential equation

d[TF-A]

dt
=

{
k f [TF-A]2

[TF-A]2+ Kd

}
(t − τ)− kd[TF-A] + Rbas. (3)

Equation (3) exhibits bistability in [TF-A] [Fig.3(b)]. For a range of param-
eters, there is one solution with [TF-A] low and its synthesis rate close toRbas,
and another with [TF-A] high and its synthesis rate close tok f . Moreover, per-
turbations can switch the model between these states. Perturbations, conceived as
signal-dependent activation of protein kinases or phosphatases, were modeled as
transient changes in the maximal transcription ratek f . Induced state transitions
could correspond physiologically to brief stimuli, such as exposure to a hormone,
leading to long-lasting changes in the levels of particular proteins. Following an
increase ink f (or Rbas), Fig. 4(a) illustrates that the model would undergo a ‘stair-
case’ transition between steady states of [TF-A]. There is a series of steps in the
transcription rate oftf-a mRNA, and therefore in [TF-A]. Each step is separated by
approximately the delayτ . The steps are caused by successive increases in positive
feedback due to previous steps in [TF-A].

Figure4(b) illustrates two ways in which the transient responses of this system
are history-dependent. First, a brief increase in the maximal transcription ratek f ,
applied at arrowa when the system is in the upper steady state, gives a subsequent
large excursion of [TF-A] above the upper steady state following the delayτ , at
t = 240 min. Then, starting att = 340 min (bar), the baseline value ofk f is
decreased so that the system falls to a lower steady state. Afterwards, the same
brief increase ink f , applied at arrowc when the system is in the lower steady state,
gives only a negligible subsequent excursion of [TF-A], att = 870 min (within the
dashed circle, excursion is too small to see). This difference in response of [TF-A]
is a model for ‘priming’ of a system, by a longer lasting stimulus sufficient to cause
a state transition, to respond more or less vigorously to subsequent stimuli. Second,
Fig.4(b) illustrates that the delayτ gives the system a type of ‘memory’. Following
the beginning of the sustained decrease ink f (bar), the excursion in [TF-A] due to
a subsequent brief change ink f depends strongly on whether the interval between
these two changes is less than or greater thanτ . A brief increase ink f applied at ar-
row b, shortly after the sustained decrease ink f , gives a subsequent large excursion
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of [TF-A] at t = 500 min, whereas the same brief increase applied later at arrowc
gives a negligible excursion of [TF-A] att = 870 min. This ‘memory’ is due to the
delay required for a change in transcription rate to cause a change in nuclear pro-
tein level. The perturbation at arrowb occurred when [TF-A] was still high. The
high [TF-A] combined with the increasedk f to strongly activatetf-a transcription.

Also, following a single brief increase in transcription rate, the model of Fig.3(a)
often exhibits one or more brief subsequent increases [‘echoes’ in the legend of
Fig.4(b)] in [TF-A] and in transcription rate (Smolenet al., 1999a). Finally, similar
results were observed when distributed delays replaced discrete delays (Smolenet
al., 1999a).

3.2. Conditions permitting stable oscillations in models with feedback loops are
continuing to be delineated.Models of genetic regulation have been developed
to explain a variety of periodic biological phenomena. These include periodic hor-
monal secretion (Liu et al., 1997), and the circadian rhythm, which appears in
many organisms to be based on a negative-feedback loop of one or two core genes
repressing their own expression (Reppert, 1998). It is of interest to delineate the
structure of the simplest types of models that could exhibit periodic solutions sta-
ble to small perturbations. Models such as that of Fig.3(a) have only one type
of feedback—either positive or negative. In the absence of a time delay, such a
simple model cannot support stable oscillations. More generally, oscillations are
not possible with only positive feedback, whereas with a single negative-feedback
loop, oscillations are only possible if the loop contains at least three variables and
if the feedback term contains a high power of the concentration of the repressing
species (Thomaset al., 1995). However, if a delay is present, due for example to
macromolecular transport, stable oscillations can be obtained even with a single
negative-feedback loop containing one element [e.g., a single transcription factor
that directly inhibits its own transcription (Thomaset al., 1995)]. As noted above,
Smith (1987a) gave conditions for periodic solutions to exist that apply to a class of
gene network models incorporating a single negative-feedback loop, with or with-
out delays. What if only positive feedback is present with a delay—can there be
stable oscillations? As discussed above,Smith (1987b) ruled stable oscillations
out for the system of equations (1) with a cooperative feedback functionf (xn) and
with time delays for transcription and translation included.Smolenet al. (1999a)
used a somewhat simpler analysis to rule out stable periodic solutions for models
similar to Fig.3(a), with a single TF and a single positive-feedback loop. It appears
unlikely that a reasonable model for a genetic network, incorporating only positive
feedback, could yield periodic behavior.

As a simple example of the effect of both negative and positive feedback within
the same genetic system, an additional genetf-r can be introduced into the system
of Fig. 3(a) (Smolenet al., 1999a). The rate oftf-r transcription is increased by
binding the TF-A dimer to a TF-RE. TF-R monomer represses transcription of the
genestf-a andtf-r by competitively inhibiting binding of TF-A dimers to TF-REs
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[Fig. 5(a)]. Delays are included between changes in the transcription rate of either
gene and changes in the concentration of the corresponding protein, giving

d[TF-A]

dt
=

{
k1, f [TF-A]2

[TF-A]2+ K1,d(1+ [TF-R]/KR,d)

}
(t − τ)

−k1,dTF-A+ Rbas (4)

d[TF-R]

dt
=

{
k2, f TF-A2

TF-A2
+ k2,d(1+ [TF-R]/KR,d)

}
(t − τ)

−k2,d[TF-R]. (5)

Parameters in equations (4) and (5) are analogous to those in equation (3). KR,d

is the dissociation constant of TF-R monomers from TF-REs. Robust oscillations
in the rates of bothtf-a and tf-r transcription are readily generated by this model
whenτ = 0 [Fig.5(b)]. Discrete delays of an order reasonable for macromolecular
transport (τ ≈ 2 h) eliminate this periodic solution. However, a new limit cycle,
robust to perturbations, and with a period on the order of the delay, is created.

An important example of oscillatory transcription is the circadian rhythm found
in most organisms adapted to day–night cycles. Oscillators that generate circadian
rhythms are emerging as a key group of genetic systems where a core negative-
feedback loop underlies periodicity. The basic ‘clock’ appears to involve recur-
rent repression by one or a few core gene products of their own expression, with
the core genes in turn regulating the transcription of output genes more directly
tied to behavior.Goldbeter (1995) andLeloup and Goldbeter (1998) have used
models based upon single negative-feedback loops to simulate circadian rhythms
in Drosophila. In Drosophila, and apparently also in mammals, accumulation of
the PER protein represses transcription of its own core gene,per. The TIM pro-
tein dimerizes with PER and, inDrosophilabut not mammals, exhibits a circadian
rhythm in phase with PER. Progressive, slow phosphorylation of PER and TIM
is followed by rapid degradation and a surge of renewedper expression. InNeu-
rosporayeast, the FRQ gene product exhibits a qualitatively similar cycle (Merrow
et al., 1997; Luo et al., 1998). Even in cyanobacteria, genes that constitute an anal-
ogous negative-feedback loop have been found (Ishiuraet al., 1998).

Some modeling of circadian rhythms, including recent efforts [e.g.,Scheperet
al. (1999)], is essentially phenomenological in that little biochemical justification
is given for the equations used. However, biochemically realistic models of circa-
dian rhythmicity inDrosophila, which should apply without great modification to
mammals, have been developed recently by Goldbeter and coworkers. These mod-
els (Goldbeter, 1995; Leloup and Goldbeter, 1998) have a single negative-feedback
loop and generate robust oscillations by effectively including a biochemical time
delay—slow, obligatory phosphorylation of PER protein prior to its degradation.
These models were fitted to some experimental data. The observed lag between
the concentration peaks ofper mRNA and PER-TIM heterodimer was fitted, and
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Figure 5. (a) Schematic resulting from the addition of a second transcription factor, TF-R,
to the model of Fig.3(a). TF-R represses transcription by competing with the TF-A dimer
for binding to TF-REs. Delays between transcription and appearance of functional pro-
tein are indicated for TF-A and TF-R. (b) Sustained oscillations of [TF-A] and [TF-R]
produced by the model of (a). Modified fromSmolenet al. (1998).

an experimental phase-response curve for theDrosophilarhythm shift in response
to brief light pulses applied at various times throughout the day was qualitatively
reproduced (Leloup and Goldbeter, 1998). Recent data should allow more quanti-
tative and comprehensive models forDrosophilaor mammalian circadian rhythms.
For example, it now seems that the PER-TIM heterodimer repressesper transcrip-
tion indirectly, by binding with an activating TF termed CLOCK. Measurements
of the time courses of PER, TIM, and CLOCK protein and mRNA levels have re-
cently become available (Leeet al., 1998). Also, it seems timely to develop a more
quantitative model (Smolenet al., 1999b) based on experimental data concerning
the Neurosporaoscillator. This oscillator may depend only on one core oscillat-
ing gene, thefrq gene, although its autorepression may also be indirect. Recent
experiments have quantified the time course of repression by thefrq gene prod-
uct following its own induction, and the time required for degradation of thefrq
gene product (Merrow et al., 1997). This data should greatly help in constructing
a quantitative model.
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Finally, we briefly consider modeling of cell cycle oscillators. Models are begin-
ning to incorporate complex biochemical features such as controls that determine
when mitosis initiates (Novak et al., 1998a) and DNA synthesis (Novak et al.,
1998b), but explicit processes of genetic activation or repression have not yet been
included. An integrated model of prokaryotic cell cycle regulation, including ge-
netic regulation, may be feasible in the near future, because the relevant genetic
systems controlling chromosome replication, cell division, and cell growth are be-
coming relatively well characterized [e.g.,Donachie (1993); Robertset al. (1996)].

3.3. Dynamics can be very different when macromolecular transport is mod-
eled with a time delay vs diffusion.In studies using time delays, the most com-
mon objective is to determine, for given kinetic parameters, values of the delay at
which steady states lose stability and periodic solutions are concurrently formed.
Several studies [e.g.,Mahaffy and Pao (1984); Busenberg and Mahaffy (1985)]
have extended this approach by analysing model gene networks that contain a
negative-feedback loop and that include both diffusive macromolecular transport
and active macromolecular transport modeled as a delay. The study byBusenberg
and Mahaffy (1985) is of particular interest in that it demonstrates how to repre-
sent diffusion as a distributed delay. In these models, if transport was slowed by
increasing the delays, steady states were often found to lose stability to periodic
solutions. However in contrast, if transport was slowed by reducing diffusion coef-
ficients, oscillations were damped. The parameter regime in which both diffusion
and delays contributed significantly to total transport time could only be analysed
by numerical simulations. These simulations showed that for some parameter val-
ues, modest reductions in diffusion coefficients could also be destabilizing and
create oscillations (Busenberg and Mahaffy, 1985). Nevertheless, a major conclu-
sion of these studies is that slowing transport by decreasing diffusion coefficients is
much less likely to destabilize steady states than is slowing transport by increasing
time delays.

When might intracellular macromolecular transport be appropriately described
by a discrete, as opposed to a broadly distributed, time delay? If transport of
macromolecules is primarily active (i.e., driven by motor proteins such as kinesin
or dynein) we have argued (Smolenet al., 1999a) that the variance in the time taken
for individual molecules to move a given distance could be quite small compared
with the mean—much smaller than if transport was diffusive. Then, a discrete time
delay could be an appropriate description of transport from, for example, a tran-
scription site to a particular cytoplasmic locale. Briefly, our argument considered
recent quantitative data describing transport of latex beads by kinesin (Schnitzer
and Block, 1997). These data allowed an estimate that, for typical intracellular dis-
tances of transport, the variance in time taken could be several orders of magnitude
less for kinesin-driven transport than for diffusion. Even considering caveats (e.g.,
translocation of mRNA from its place of transcription to that of translation is not
likely to be along a single continuous cytoskeletal element), this estimate suggests
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it might be plausible to model active transport by a discrete or narrowly distributed
time delay. However, it is not plausible to model diffusion in this manner.

We have examined whether the dynamic phenomena exhibited by the model of
Fig. 3(a) with discrete or narrowly distributed delay—multiple stable states and
repeated perturbations of [TF-A] following a single stimulus—are preserved in the
case of diffusive transport. To address this issue, a model cell divided into spher-
ical shells was considered, with the nucleus a small sphere at the center (Smolen
et al., 1999a). A total cell radius of 10µm was assumed for most simulations,
divided into 10 shells of 1µm thickness. In each shell, the model of Fig.3(a)
was extended by assuming separate differential equations for the rates of change
of mRNA and protein concentrations. mRNA and protein were assumed to diffuse
between the shells. Equations fromBlumenfeldet al. (1992) were used to model
radial diffusion.

Bistability was still present for this extended model. That is, for physiologi-
cally reasonable diffusion coefficients, there were two stable intracellular profiles
of [TF-A], each stable to small perturbations, with one characterized by a much
higher average [TF-A] than the other. However, in response to a large perturba-
tion that sufficed to cause a state transition, the time course of protein and mRNA
concentrations never exhibited a ‘staircase’ pattern of steps of [TF-A] or oftf-a
transcription rate. Nor were there ever repeated transients of [TF-A] in response to
a single perturbation [i.e., ‘echoes’ as in the legend of Fig.4(b)]. Diffusive trans-
port, as opposed to transport characterized by a time delay, acts to ‘spread out’
any excess of mRNA or protein in one region, which eliminates the distinct spatial
peaks necessary for steps of [TF-A], or for ‘echo’ perturbations in [TF-A].

Diffusive transport of mRNA and protein was similarly incorporated into the
model of Fig.5(a), with both transcriptional activation and repression (Smolenet
al., 1999a). With this model, if diffusion coefficients were assumed not to depend
on shell number, then oscillations similar to those of Fig.5(b) were readily ob-
tained for physiologically reasonable values of diffusion coefficients. Very small
diffusion coefficients were required to suppress oscillations. However, simulations
were also performed that crudely simulated the existence of a nuclear membrane
by reducing the diffusion coefficient between the second and third spherical shell.
This inhomogeneity strongly suppressed oscillations. For example, diffusion coef-
ficients for protein and mRNA were reduced to 0.03µm2 s−1, which corresponds
to assuming that a molecule moves one shell width, crossing the membrane, in a
time on the order of 3 min. This reduction sufficed to abolish oscillations when
other parameter values were similar to those used in the simulation of Fig.5(b).
Together, the above simulations demonstrate that with physiologically reasonable
diffusion coefficients and a crude representation of a nuclear membrane, many dy-
namic phenomena that were exhibited by the models of Figs3(a) and5(a) when
transport was neglected are not now preserved. Oscillations and repeated perturba-
tions of [TF-A] following a single stimulus are abolished, although multistability
is still present.
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3.4. Intermolecular interactions contribute non-linearities important for a va-
riety of complex dynamic behaviors.Early modelers of negative and positive
feedback realized that oligomerization might contribute to increasing the Hill co-
efficient of feedback, thus favoring the occurrence of multistability in the case
of positive feedback or periodicity in the case of negative feedback [e.g.,Grif-
fith (1968a,b)]. However, recent models have provided additional examples of
dynamic complexity for which oligomerization of transcription factors may be es-
sential, such as the creation of moving ‘stripes’ of transcription essential for em-
bryonic development (Kerszberg and Changeux, 1994; Kerszberg, 1996). Many, if
not most, eukaryotic transcription factors bind to their target sequences as homo-
or heterodimers, or in larger oligomers. For example, CREB and related TFs func-
tion as oligomers (Sassone-Corsi, 1995), as do members of the Fos–Jun family
(Kouzarides and Ziff, 1988). Keller (1995) developed a simple method for de-
riving the differential equations corresponding to a given regulatory scheme. He
analysed multistability in four typical genetic regulatory schemes in which homo-
or heterodimerization of TFs is essential. However, oligomerization is not essen-
tial for multistability in all genetic regulatory schemes. Schemes with more than
one binding site for monomeric TFs can also exhibit multistability.Keller (1995)
analysed multistability in two such schemes. In the first, a monomeric transcrip-
tion factor binds to two distinct sites in its own promoter, with both sites activating
transcription. The resulting equation for the rate of change of TF concentration,
denoted byX, was derived as

d X

dt
=
λ(aX+ bX2)

1+ cX+ bX2
+ ε − ηX.

The parameterb is of interest in that it can be either positive or negative, it denotes
the strength and sign of synergism between TF bound to site 1 and site 2. In this
model, two stable steady states exist for a range of parameter values, with an un-
stable steady state in between. The second model consists of two monomeric TFs,
each repressing the transcription of the other at a single site in its promoter. The
equations are more complex, but the result is the same. For a range of parameters
there are two stable steady states separated by an unstable steady state.

Kerszberg and colleagues (Kerszberg and Changeux, 1994; Kerszberg, 1996) de-
veloped simple, elegant models in which dimers of TFs are used to interpret mor-
phogenetic gradients in terms of embryonic gene transcription patterns. The basic
model (Kerszberg and Changeux, 1994) uses a gradient of one transcription factor,
M , which is itself a morphogen or responsive to a morphogen.M forms het-
erodimers with a second transcription factor,V . Homodimers ofM and V also
can be formed. Depending upon which of these three oligomeric species activates
transcription ofV , the model can generate a gradient ofV , a sharp boundary for
V , a stationary stripe ofV , or a moving stripe ofV . It was suggested that the
Drosophilabicoid and hunchback proteins might function analogously toM and
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V , respectively. Subsequently,Kerszberg (1996) have elaborated this model to
describe more specifically transduction by retinoic acid receptors of a gradient of
retinoic acid into patterns of embryonic gene expression. Here, the RXR and RAR
receptors play roles similar toM andV , respectively. The receptors were assumed
to regulate an output gene, which could encode, for example, a protein necessary
for cell differentiation. The output gene was assumed to be activated by the RXR
homodimer. A moving stripe of transcription of the output gene was seen for a
range of parameter values, and this phenomenon was robust to changes of about
20% in any kinetic parameter.

Finally, the result of the following section—a possible maximum in transcrip-
tion at a particular stimulus frequency—also depends on TF-A acting as a dimer
(Smolenet al., 1998). All of these results help to emphasize that protein oligomer-
ization can provide an important mechanism for generating complex dynamics of
transcription.

3.5. Optimal stimulus frequencies for transcription could be generated by com-
petition between transcriptional activators and repressors.Some recent experi-
ments have demonstrated optimal stimulus frequencies for activation, or repres-
sion, of transcription. Transcription of the cell adhesion molecule L1 in cultured
neurons is strongly repressed by imposed continual 0.1 Hz electrical stimulation,
but not by 0.3 Hz stimulation (Itoh et al., 1995). Also, c-fostranscription in cul-
tured neurons is enhanced almost 200% by bursts of six 10 Hz electrical stimuli
with an interburst interval of 1 min, but not by bursts of 12 stimuli with an inter-
burst interval of 2 min (Shenget al., 1993). Continuous 0.1 Hz stimuli gave a 70%
enhancement.

These results might be explained by a model in which an intermediate intensity or
frequency of stimulation phosphorylated and activated one TF, which activated the
transcription of a target gene, whereas a higher frequency of stimulation activated
a second TF that repressed transcription of the target gene. Moreover, a similar
model might help explain an apparent optimum stimulus frequency for the forma-
tion of long-term memory (LTM). The relationship between stimulus frequency
and the amount of LTM formation, and by inference amount of transcription, can
show an optimum inDrosophila(Tully et al., 1994). Insofar as protein synthesis is
essential for the formation of LTM, this result could reflect an optimal stimulus fre-
quency for transcription of an essential gene. Optimal stimulus frequencies appear
also to exist for some task learning by humans (Kientzle, 1946). Based on the re-
sult of Tully et al. (1994), Yin et al. (1995) hypothesized that the optimal stimulus
frequency might predominantly phosphorylate a TF that activates transcription of
a gene essential for LTM formation, with a countervailing transcriptional repressor
being phosphorylated at stimulus frequencies above optimal.

To illustrate this phenomenon, we extended the model of Fig.5(a) to incorporate
dynamically varying modification of transcriptional activator and repressor efficacy
by stimulus-dependent phosphorylation (Smolenet al., 1998). Different kinetic pa-
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rameters of phosphorylation and dephosphorylation for the two TFs were assumed
to allow for different sensitivities to stimuli, such that stimuli frequent enough to
saturate the phosphorylation of the activator, TF-A, may not be frequent enough to
saturate the repressor, TF-R. An ‘output’ gene, whose transcription was regulated
by both TFs, was added to the model. Transcription of this gene was assumed
to be activated by binding of dimeric TF-A to a responsive element, and binding
of TF-A was competitively inhibited by dimeric TF-R. As Fig.6 demonstrates,
this model predicts an optimal stimulus frequency for maximal transcription of the
‘output’ gene. The average rate of transcription during stimuli of a given frequency
increases with the frequency, through a maximum, and then falls sharply as TF-R
becomes phosphorylated by very frequent stimuli. This peak in transcription rate
is almost abolished if monomeric, as opposed to dimeric, TF-R is assumed to be
responsible for repression of the ‘output’ gene.

Similar dynamics were obtained with a model without TF-R, using phospho-
rylated TF-A to activate the ‘output’ gene, and including competing kinase and
phosphatase activities with the kinase activated by lower stimulus frequencies than
the phosphatase. Consideration of these results allows the inference that the exis-
tence of two competing processes, such as activator and repressor phosphorylation,
that have different sensitivity to stimuli, could provide a quite general mechanism
for tuning the response of a genetic system to an optimum stimulus frequency.

3.6. Stochastic fluctuations in the numbers of macromolecules can introduce
significant variability into the dynamics of genetic regulation.Stochastic fluctu-
ations in the numbers of macromolecules due to the random timing of individual
synthesis, degradation, and transport events are expected to be important when, as
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is often the case in genetic systems, small (tens to hundreds) average copy num-
bers of important molecules are present (Keizer, 1987). Stochasticity in chemical
reactions, including macromolecular synthesis and degradation, can be simulated
exactly using the Monte Carlo algorithm ofGillespie (1977). Denote the average
time interval between occurrences of a particular biochemical reaction byTavg (Tavg

can be determined from deterministic kinetic analysis, neglecting stochasticity). If
a particular biochemical reaction occurs att = 0, the probability P(t) that thenext
reaction of that type will occur within a specific short time interval1t centered at
a later timet is (Gillespie, 1977)

P(t) =
1t

Tavg
exp

(
−t

Tavg

)
. (6)

Recently,McAdams and Arkin (1997) applied this algorithm in simulations that
suggest different phenotypes of prokaryotic systems could be selected by stochastic
switching between alternative dynamic states. Figure7(a) reproduces the kinetic
scheme used for the majority of their simulations. Here, protein P1 dimerizes and
the dimer represses its own transcription. This is the only feedback loop in the
circuit, although the P1 homodimer is also assumed to respectively activate and
repress the transcription of proteins P2 and P3. With physiologically plausible pa-
rameters characteristic of a prokaryotic genetic system, Fig.7(b) demonstrates that
the amount of time taken for the P1 gene product to accumulate to a ‘threshold’
level, here chosen arbitrarily as either 25 or 50 molecules of homodimer, is sub-
ject to great stochastic variability. For example, assuming a gene dosage of 1 and
a threshold level of 25 homodimers, 100 simulations were performed that were
identical except for different initializations of the random number generator con-
trolling stochasticity. From Fig.7(b), the time required for these simulations to
reach threshold varied from less than 10 min to more than 45 min. Thus, if P1

also regulated other genes and if its accumulation was triggered by an environ-
mental stimulus of a given duration, only in some cells might the stimulus suffice
to raise the P1 concentration above a level necessary to activate transcription of a
downstream gene and to yield an observable phenotypic effect.

Essentially the same point was made earlier byKo (1991) who used a much sim-
pler model to argue that stochastic effects yield an irreducible variability in phe-
notype among cells. More specifically, a given environmental stimulus can yield
a transient response, such as a growth spurt, which is quite variable because of
fluctuations at the genetic level. To support this contention,Ko (1991) simulated
the variability of the amount of transcription of an inducible gene over a fixed time
interval. Several series of simulations examined the variability as a function of
the ratio of dissociation and association rate constants for binding of an obligatory
transcriptional activator to the promoter of the target gene. This ratio was taken as
being equivalent to the ratio of the probabilities of dissociation and association per
simulation timestep. In this simple model, these probabilities were the only param-
eters. Great variability in the amount of transcription was seen if association and
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dissociation probabilities were such that the half-life of a bound factor-promoter
complex was considered to be relatively long (i.e., if the half-life was comparable
to the simulation time, which can be thought of as the time for which a stimulus is
applied). On the other hand, little variability was seen if the half-life is relatively
short so that many individual binding events occurred during the simulated time
period, with their effects averaging out.

Such variability might be expected to have observable consequences in multi-
cellular organisms, due to stochastic fluctuations in gene expression at the earliest
stage of development when the organism consists of only one or a few cells. As a
possible empirical example, systematic efforts to reduce variability in inbred mice
have uncovered an apparently irreducible minimum variability, not attributable to
environmental difference, which has been suggested to be due to stochasticity in
the timing of expression events occurring at or before fertilization (Gartner, 1990).

Arkin et al. (1998) have recently included stochasticity of macromolecular syn-
thesis and degradation in a detailed model for theE. coli–λ phage genetic switch. A
schematic diagram of this switch was presented in Fig.2. Two regulatory proteins
(Cro and Cl in Fig.2) acting at low concentrations competitively control the switch
point (G1 in Fig.2) that determines whether an infectedE. coli cell follows a lyso-
genic vs a lytic path. Fluctuations in the numbers of protein molecules randomize
the choice of path for individual cells. A comprehensive model was constructed,
using a large amount of extant experimental data to estimate all parameter values.
Simulations of the lysogenic vs lytic decision-making process were compared with
experimental data for the fraction of cells choosing the lytic path as a function of a
parameter which could also be adjusted in the model—the ratio of the phage vs cell
concentrations. Good agreement between simulations and experiment was found.

Previously, genetic switches have been described that are based on competi-
tion between transcription factors for binding to specific promoters [e.g.,Hicks
and Grossman (1996)] or on random inversion of DNA segments [e.g.,Robert-
son (1992); Dorman (1995)]. These are all bistable switches that can commit the
cell to one of two quite different phenotypes. Although detailed models of these
switches have not yet been developed, these types of switches are also expected
to exhibit stochasticity in their outcomes, and to contribute to random variability
in phenotypes.Ko (1991) found that variability is maximized if the individual
stochastic biochemical events (binding and unbinding of TF molecules) contribut-
ing to the observable outcome are few in number. Therefore, a conjecture can be
made. Those genetic switches whose contribution to phenotype depends on only
one or a few elementary random events (such as inversion of a DNA segment)
should contribute more to variability than do switches whose contribution depends
on many individual random events whose effects would tend to average (such as
rapid bindings and unbindings of transcription factors).Arkin et al. (1998) dis-
cussed possible mechanisms to ensure that, in the face of stochastic variation in
macromolecular concentrations and in the timing of genetic events, cells still man-
age to achieve the regulatory determinism necessary for reliably carrying out key
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functions. These authors suggest two possibilities. First, the biochemical architec-
ture of many pathways might be such that only the kinetics of one, or a few, rate-
limiting steps determine the overall flux, in which case much stochastic variability,
not directly associated with those steps, might be rendered irrelevant. Second, in
many cases, only the proper sequencing of cellular events, and not their duration
(within broad limits), may be important.

3.7. Stochastic fluctuations also have the potential to destabilize and thereby
mask some steady states of genetic regulatory systems.We recently investigated,
with a modified version of the model of Fig.3(a) (Smolenet al., 1999a), whether,
with physiologically reasonable parameter values, stochastic fluctuations in mole-
cule numbers might be expected to induce transitions between stable states of TF-A
concentration. We also investigated whether fluctuations would tend to ‘mask’
particular steady states by making it very unlikely the system would be found at or
near these states.

To construct a stochastic model, we considered explicitly the dynamics of both
tf-a mRNA and TF-A protein. By rescaling parameters, the variables [tf-a mRNA]
and [TF-A] were reinterpreted as molecule numbers rather than as concentrations.
Deterministic rates for synthesis and degradation processes are given by

Rtranscription=
k1, f (TF-Adimer)

(TF-Adimer)+ Kd
+ Rbas (7)

RdegRNA= k1,d[t f − a mRNA] (8)

Rtranslation= k2, f 〈[t f − a mRNA]〉 (9)

RdegP= k2,d(TF-Amonomer). (10)

The expression forRtranslation incorporates a distributed delay for macromolecular
transport. An average of [tf-a mRNA] over an interval of a width of 20–30 min,
centered at a delay on the order of 2 h, was used. In order to include fluctuations
due to association and dissociation of TF-A monomers, we dropped the assump-
tion that TF-A dimer concentration is proportional to [TF-A]2, and deterministic
rates for association and dissociation were assigned, giving equations for dimer
formation and dissociation rates,

Rmonomer–dimer= k f (TF-Amonomer)
2 (11)

Rdimer–monomer= kb(TF-Adimer). (12)

The reciprocals of equations (7)–(12) are the average time intervals between in-
dividual biochemical reactions of specific types [e.g., between individual dimer
dissociations in the case of equation (12)]. At each timestep1t of the simulation,
a separate random number was chosen for each elementary process of synthesis
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or degradation of mRNA or protein, and TF-A association and dissociation. Each
random number was drawn from a uniform distribution on{0,1}. For any elemen-
tary process, if the random number was less than the product of1t and the average
rate [equations (7)–(12)], we assumed the process occurred and altered the appro-
priate molecular population by 1 (except that association and dissociation events
change the TF-A monomer population by 2). If the products of1t and the average
rates are kept small, then this simple algorithm constitutes an approximation of the
Gillespie algorithm, equation (6).

Simultaneously, the analogous, deterministic model that neglected stochastic
fluctuations was constructed. This was done by using equations (7)–(12) to for-
mulate ordinary differential equations for the rates of change of [tf-a mRNA], [TF-
A]monomer, and [TF-A]dimer. The same values of rate and dissociation constants
were used in both the deterministic and stochastic models. Simulations with the
deterministic model were compared with simulations with the stochastic model
that included fluctuations.

The deterministic model was found to exhibit bistability for a significant range
of parameter values. One stable solution has [tf-a mRNA] low and its synthesis
rate close to the minimum synthesis rateRbas [equation (3)], and the other has [tf-a
mRNA] high and its synthesis rate close to the fully activated rate,k1, f . Figure8(a)
illustrates an example in which the deterministic model is stable in the lower steady
state until a temporary increase inRbasswitches it to a new stable state. In the cor-
responding simulation, the stochastic variant of the model was initialized near the
lower steady state. Within∼ 40 h of simulated time, without any alteration in
parameter values, random fluctuations accumulated and enabled a transition to the
upper state [Fig.8(b)]. This behavior occurred with physiologically reasonable
parameter values, similar to those used byMcAdams and Arkin (1997). For ex-
ample, in the simulation of Fig.8(b), a maximal mean transcription ratek1, f of
3.8 mRNA molecules min−1 was assumed, which is reasonable for a strongly ac-
tivated promoter. A reverse transition, from the upper to the lower state, was not
seen even after 400 hr of simulated time. Similar results were obtained with five
different initializations of the random number generator used for calculating fluc-
tuations. Thus, the lower stable state can be ‘masked’ by fluctuations, in that the
system would not ordinarily be observed near it. To understand why the lower
stable state is preferentially masked, one can consider that, since the lower stable
state is characterized by a smaller number of macromolecules, the ratio of the fluc-
tuation amplitude to the average molecule number is expected to be greater in the
lower state (Keizer, 1987). Therefore, the lower state is more readily destabilized
by fluctuations than is the upper stable state.

The results from the above studies suggest that models of gene networks should
consider stochastic fluctuations to the extent practicable. Predictions of the exis-
tence or stability of steady states and periodic solutions that are made by consid-
ering purely deterministic models may not be relevant to systems in which some
steady states, and presumably other types of dynamic solutions, could be destabi-
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lized and masked by fluctuations. Since most modeling of gene networks has been
deterministic, the necessity for considering fluctuations will necessitate a paradigm
shift of much investigation. However, deterministic modeling with ordinary differ-
ential equations or Boolean networks will remain important because of insufficient
data to construct a stochastic model in most cases and because of limits on com-
puting power. In particular, the temporal resolution of models constructed with the
Boolean network approach is generally insufficient to allow inclusion of fluctua-
tions. At least, however, if the data used to construct a Boolean model consists
of large and reproducible responses to stimuli, then one can reasonably hope that,
even with the neglect of fluctuations, the Boolean model might still reliably predict
responses to novel stimuli of similar strength to the stimuli used in constructing the
model. Similar considerations lead one to conclude that deterministic models based
on ordinary differential equations will also have considerable predictive power.
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We now return to a discussion of the point that detailed modeling of specific ge-
netic systems is still at an early stage. This is due primarily to a lack of data. The
necessary experimental techniques to simultaneously monitor the expression time
courses of many genes in response to imposed perturbations have only recently
been developed. However, a few systems, mostly prokaryotic, have been suffi-
ciently well characterized to allow detailed modeling. Some of these are discussed
in the following section.

4. EXPERIMENTAL DATA TO SUPPORT DETAILED M ODELING OF

SPECIFIC GENETIC SYSTEMS IS OFTEN L ACKING

For eukaryotic regulation in particular, the biochemical data necessary for the de-
termination of parameter values, and often even for determining the proper forms
of equations, is usually not present. For prokaryotic regulatory systems, a signif-
icant number of specific models exist, because the greater simplicity and lack of
differentiation of prokaryotic cells makes it somewhat easier to delineate macro-
molecular interactions and rates of processes. For example, the lytic vs lysogenic
decision circuit forλ phage integrated in theE. colichromosome, which is the most
thoroughly studied genetic switch (Meyers and Friedland, 1984; Ptashne, 1992),
has been modeled in detail as discussed above (Arkin et al., 1998; McAdams and
Arkin, 1998). Experimentally based estimates for all model parameter values have
been developed. Thus, for this system, modeling can be said to have moved beyond
‘elucidation of qualitative principles’. Other modeled prokaryotic or viral genetic
regulatory systems includelac operon regulation (Wong et al., 1997), theE. coli
phosphate starvation response (Vandien and Keasling, 1998), regulation of HIV-1
gene expression (Hammond, 1993), and bacterial chemotaxis (Hauri and Ross,
1995; Spiroet al., 1997). The above examples were all fitted to considerable sets of
experimental data, thus, modeling of these systems has also progressed to a point
where the models can provide somewhat detailed and quantitative descriptions.

One eukaryotic example is, perhaps, the recent model of the regulation by TFs
of a sea urchin gene important for development,endo16(Yuh et al., 1998). This
model elucidates part of the complex regulation of the gene, but remains incom-
plete in ways that illustrate typical limitations of experimental knowledge. There
are seven distinct regulatory modules, termed A–G, in the DNA sequence upstream
from the gene and its basal promoter, and at least 15 TFs regulate transcription
through these modules. Module A integrates the effects of all the other mod-
ules. Experimentally,Yuh et al. (1998) synthesized constructs in which reporter
genes were attached to regulatory regions containing one or more of these mod-
ules. The constructs were then introduced into sea urchin eggs and expression of
the reporter gene monitored during execution of the egg’s normal developmental
program. Comparison of the time courses of expression of different constructs
allowed the assignment of roles to the modules (e.g., module B can ‘take over’
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module A so that module A acts only to amplify the time course of transcription
created by module B alone). However, many aspects ofendo16regulation remain
to be experimentally characterized. For example, the roles of the majority of the
TFs that affectendo16transcription appear not to have been established yet. Also,
dose-response curves do not exist for the effects of TFs. The only data that exist
are binary in nature (i.e., the data consist of expression time courses for reporter
constructs in which a given module is present or absent). The binary nature of the
data means that the model cannot predict the effects of stimuli that, for example,
might simultaneously activate transcription factors specific for competing modules
such as module F (which represses transcription) and module B (which enhances
transcription). Finally, the data characterizing activation of transcription by mod-
ules D–F was obtained during conditions that may not reflect thein vivo situation.
Nevertheless, despite the incompleteness of the current understanding ofendo16
regulation, it is evident that if this degree of regulatory complexity is common for
single eukaryotic genes, gathering data sufficient to characterize the regulation of
groups of genes and constructing models that provide a reasonable representation
of this regulation will be a difficult challenge.

When characterizing a genetic regulatory system, whether prokaryotic or eukary-
otic, some types of biochemical parameters important for model development are
often more straightforward to estimate than others are. For example, binding co-
efficients between macromolecules can often be measuredin vitro by a variety of
methods [e.g., changes in fluorescence of labeled oligonucleotides upon binding
of a transcription factor (Richardset al., 1996)], although corrections may then
have to be estimated for macromolecular crowdingin vivo because such crowding
tends in general to strongly promote macromolecular association and oligomeriza-
tion (Zimmerman and Minton, 1993). More difficult to obtain are rate constants
appropriate forin vivo reactions. For example, experimenters will often be satis-
fied to know that a given transcription factor is phosphorylated to an appreciable
extent subsequent to an imposed stimulus. It is more laborious, and less common,
to obtain sufficient data to construct a moderately accurate time course for phos-
phorylation and subsequent dephosphorylation. Estimation of rate constants, how-
ever, requires such data. Time courses of total protein amount, or of total mRNA
amount, are yet more difficult to determine. As a result, there are, for example, few
instances in which the fraction of transcription factor phosphorylated by a stimulus
of given strength is determined.

Also important is experimental evidence for the rate and mechanism of intracel-
lular macromolecular transport. Such data is not often available. One of the few
studies that begins to quantify the relative contributions of active vs diffusive trans-
port is that ofFeminoet al. (1998) who visualized the formation and movement of
singleβ-actin mRNA transcripts in cultured fibroblasts by fluorescentin situ hy-
bridization. Here, transcripts often left the transcription site along specific tracks.
This finding suggests an active transport mechanism in which motor proteins direct
mRNAs along cytoskeletal elements. However in contrast, in at least half of the
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cases, the transcripts appeared to simply diffuse away from their site of formation,
suggesting that a combination of passive and active transport was used.

In the final section, we point out issues which, in the near term, could serve as
foci for further investigation, by cooperation of simulation and experiment.

5. SPECIFIC I SSUESWHERE FURTHER I NVESTIGATION IS NEEDED

Modeling of stochasticity and of alternative biochemical architectures is far from
complete. One issue of interest is whether stochastic fluctuations in molecule
numbers tend to be significantly smaller, or to have a different frequency spec-
trum, when diffusive transport dominates over active transport orvice versa. It is
likely that if stochastic simulations are to predict the degrees of variability in the
behavior of genetic systems, stochasticity in transport will have to be included.
A second issue is that the dynamic possibilities associated with many biochem-
ical architectures observed in genetic regulatory systems have not yet been as-
sessed by modeling. Examples of such architectures are convergence of differ-
ent signaling pathways through distinct transcription factors onto a particular gene
(Howard and Maurer, 1995) heterodimerization of transcription factors in two sep-
arate pathways with a common third transcription factor (Hunteret al., 1996), and
conditional regulation by a single TF [e.g., the TF YY1 mediating both enhance-
ment of basal transcription and suppression of cAMP-induced transcription of the
dopamine
β-hydroxylase gene (Seoet al., 1996)]. Such architectures may be expected to
provide alternative mechanisms for generating dynamic phenomena such as multi-
stability and oscillations.

Aspects of genetic organization and transcriptional regulation that are unique to
eukaryotes have not been discussed at length in this review, because few modeling
studies have focused on them. In eukaryotes, TFs must gain access to DNA in
chromatin. DNA must dissociate, to some extent, from nucleosomes to allow TFs
and RNA polymerase to function. One recent study (Polach and Widom, 1996)
models cooperative binding of TFs to nucleosomal target sites. The cooperativity
is not due to protein–protein interactions, but rather, the first TF to bind partially
dissociates DNA from the nucleosome, making it easier for subsequent TFs to
bind. The authors also considered experiments (Adams and Workman, 1995) in
which nucleosomes were constructed containing binding sites for unrelated TFs
and cooperativity was observed in the binding of TF pairs. The model succeeded
in quantitatively reproducing the experimental data.Polach and Widom (1996)
pointed out that their model suggests a new mechanism of transcriptional regu-
lation. The binding of a particular TF to DNA could be varied by changing the
concentration or activity of another TF that binds to a site within the same nucle-
osome. Transcriptional regulation could also involve modification of the binding
of DNA to nucleosomes by acetylation of histones. Regions of chromatin can alter
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their packing structure to allow easier access of proteins to DNA. To develop mod-
els of specific eukaryotic genetic regulatory systems, we expect that these features
will often need to be considered.

Not all regulated genes can be expected to exhibit the behaviors illustrated by
the models discussed in this review. However, the diversity of transcription fac-
tors and their interactions suggests behaviors such as multistability and periodicity
will be identified. Possible physiological consequences of multistability in genetic
regulatory systems have been suggested.Keller (1994) suggested that the choice
among multiple steady could be sufficient to distinguish different cell types within
a multicellular organism.MacLeod (1996) has recently proposed that epigenetic,
heritable changes in gene expression following exposure to chemicals might play
a role in carcinogenesis. Such changes would correspond dynamically to switch-
ing of genetic regulatory systems from one steady state to another by brief stim-
uli. Thomaset al. (1995) noted that cell differentiation is essentially epigenitic in
nature (i.e., differentiation may be the biological modality of multistability). As
discussed above, a positive-feedback loop is necessary for multistability. There-
fore,Thomaset al. (1995) suggested that the study of genes which exert a positive
control (direct or indirect) on their own expression could help identify key genes
involved in differentiation.

5.1. Modeling and experimentation are needed to understand a key genetic reg-
ulatory system important for learning and memory.A specific genetic network,
based on CREB and related transcription factors, has been repeatedly implicated
in the formation of LTM (Tully et al., 1994; Dash and Moore, 1996; Yin and Tully,
1996; Guzowski and McGaugh, 1997; Lamprechtet al., 1997; Bartschet al., 1998;
Glazewskiet al., 1999). However, no attempt has yet been made to integrate ex-
perimental data concerning the kinetics of activation of these transcription factors
into a model. CREB can bind to Ca2+/cAMP-responsive elements (CREs) to in-
duce the transcription of genes crucial for neuronal plasticity (Bartschet al., 1995;
O’Learyet al., 1995; Yin and Tully, 1996; Feminoet al., 1998). Proteins related to
CREB, such as CREB2, are transcriptional repressors that bind to the same CRE
sequence as CREB (Sassone-Corsi, 1995). They are generally phosphorylated by
the same signals that phosphorylate CREB. The functional relevance of repressor
phosphorylation has not yet been established. However, it has recently become
apparent that essential elements of the model of Fig.5(a)—positive and negative
feedback via competition by a transcriptional activator and a repressor for deter-
mining the expression of target genes—are present. Positive feedback exists via
binding CREB to CREs affecting its own transcription. Negative feedback exists
in the form of a repressor protein, inducible Ca2+/cAMP-responsive early repres-
sor (ICER), whose transcription is induced by CREB. These feedback loops could
create multistability or periodic behavior. There is some empirical indication for
complex dynamics mediated by this architecture. Oscillations in CREB mRNA
have been reported in mammalian secretory cells and the above feedback loops
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have been proposed as essential components of the oscillatory mechanism (Walker
et al., 1995).

The hypothesis ofYin et al. (1995) for generation of maximal transcription at a
particular stimulus frequency could be realized in genetic networks regulated by
the CREB family of proteins if a repressor, such as CREB2, was phosphorylated
at a somewhat higher frequency than an activator, such as CREB. However, recent
data, obtained inAplysia, actually suggests that phosphorylation of the repressor
CREB2reducesits repressing activity (Martin et al., 1997). An optimal stimulus
frequency for transcription in such a gene network might still, however, be explain-
able in terms of two competing processes that have different sensitivity to stimuli
and opposing effects on transcription. For example, CREB has both activating and
inhibiting phosphorylation sites (Ser 133 and Ser 142, respectively), and if the in-
hibiting site only became significantly phosphorylated by very frequent stimuli,
then an optimal stimulus frequency could result.

5.2. A variety of methods can be applied to examine, by experimentation in co-
operation with modeling, whether the biochemical architecture and parameters
of particular genetic systemsin vivo permit specific dynamic behaviors.These
methods include obtaining the time course of transcription of transfected reporter
gene constructs, which can yield estimates of important kinetic parameters gov-
erning transcription onset and termination and mRNA degradation (Castanoet al.,
1996). Obtaining simultaneous expression time courses for up to several thou-
sand genes subsequent to a stimulus, or during organism development, is feasible
with the use of ‘DNA chips’ [i.e., high-density arrays of oligonucleotides which
each hybridize to a specific mRNA sequence (Winzeleret al., 1998)]. Systems
of cluster analysis are being developed that can be applied to expression data ob-
tained with DNA chips (Eisenet al., 1998). These systems use standard statistical
methods to classify genes according to similarity in expression profiles, a neces-
sary aid to identifying genes that function together. Also, cluster analysis identi-
fies novel genes with functions similar to known genes.Iyer et al. (1999) used a
DNA chip to determine expression time courses for 8600 human genes following
the application of fetal bovine serum to cultured fibroblasts. Cluster analysis di-
vided these genes into groups. The first, rapidly induced group contained many
known or suspected transcription factors. Other TFs had their levels repressed.
Throughout the response, a recurring theme was coordinated regulation of groups
of genes whose products act to modulate a common process, such as synthesis of
a macromolecule. Over 200 previously unknown genes were discovered as a re-
sult of serum altering their baseline expression. As discussed earlier, methods for
efficiently using such large sets of expression time courses to construct models of
genetic networks with the Boolean method have recently begun to be developed
(Somogyi and Sniegoski, 1997; Wenet al., 1998). Very recently, principal compo-
nent analysis of gene expression time series, which were obtained from DNA chip
hybridization, has also been used to identify patterns of expression alteration be-
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tween tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells, and
between estrogen-stimulated and unstimulated cells (Hilsenbecket al., 1999).

Another technique that yields similar data is PCR amplification and quantitation
of specific mRNAs from tissue samples (Wenet al., 1998). From a series of time
points for specific mRNA amounts, one can back-calculate to estimate the time
courses of expression of the corresponding genes in the tissue. By PCR amplifi-
cation of tissue samples followed by statistical cluster analysis of the expression
profiles,Wenet al. (1998) detected distinct waves of synchronized expression dur-
ing development of cervical spinal cord tissue. These authors were able to clas-
sify a large number of genes into distinct clusters of highly correlated expression.
Such experimental techniques would also be well suited for detecting long-lasting
state transitions in response to brief perturbations. Such state transitions would
suggest underlying multistability, as was discussed earlier for the simple model
of Fig. 3(a). Furthermore, such state transitions would allow a prediction that a
positive-feedback loop was present in the genetic network being studied, since
as discussed earlier, positive feedback is a general prerequisite for multistability
(Thomaset al., 1995).

A caveat that limits the amount of information given by application of either
DNA chips or PCR amplification is that since these techniques monitor popula-
tions of cells rather than single cells, their ability to delineate intracellular sig-
naling pathways will be limited. Details of single-cell dynamics may be obscured
because observed responses are averaged over many cells. If most or all cells are of
the same type, then this lack of resolution can be partially overcome if all cells are
exposed simultaneously to an applied perturbation for which, at least qualitatively,
the response should be similar throughout the population. If the mRNA is un-
avoidably a mixture from cells of different types (e.g., neurons and glia in a tissue
sample) this further complicates the analysis. However, time courses of ‘marker’
genes specific to one cell type can be associated, via cluster analysis, to other time
courses of similar shape. If the expression time courses are obtained during a pro-
cess such as development or differentiation, these associated genes are likely to
share common regulatory inputs with the ‘marker’ genes and to be expressed in
the same cell type. The results ofWenet al. (1998) illustrate that much useful in-
formation can be obtained by considering associations of marker and other genes.
The authors identified a high degree of order among the expression of 112 selected
genes. Five distinct waves of expression were seen during development. Wave 1
contained indicators for dividing neuroglial progenitor cells, wave 2 was indicative
of neurogenesis as evidenced by the appearance of specific neuronal markers, and
wave 3 was composed almost exclusively of neurotransmitter signaling genes and
neuronal markers. In several cases, previously unsuspected and tight associations
were found between the expression of genes with known function and genes with
unknown function. Such association suggests common regulatory inputs to the
genes, and may suggest functional relationships. Other qualitative observations
included pronounced asymmetries of the structure revealed by principal compo-
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nent analysis of the gene expression time series. Such asymmetry emphasizes that
gene expression was overall a strongly constrained and ordered process.Wenet al.
(1998) compared the PCR methodology to that based on DNA. They concede that
more tissue genes could be assayed at once by DNA chip technology. However,
the authors contend that with the use of robotics and capillary electrophoresis PCR
techniques could be scaled up to cover as many genes as DNA chips. However, for
most investigators, this would prove to be a tedious undertaking. It would prove
more feasible to obtain DNA chips from vendors such as Affymetrix or Incyte
(Gerholdet al., 1999). There is a trade-off, in that DNA chip technology may be
easier to implement, but may not yield as much dynamic range as PCR techniques.
The latter can provide a log-linear assay over as much as 7 orders of magnitude of
amount of starting mRNA (Wenet al., 1998).

Given a stable baseline for the expression levels within a specific gene network in
cultured cells, a mathematical approach discussed byArkin et al. (1997) might be
useful to infer the regulatory inter-connectivity of the system. To apply the method,
one would begin by computing a correlation matrix between a series of expression
time courses subsequent to distinct perturbations, such as brief applications of dif-
ferent hormones. The method was implemented byArkin et al. (1997) to infer the
connectivity of a well-studied biochemical network with regulatory interactions—
the glycolytic pathway. The inferred connectivity was the same as that known to
exist, although to deduce this connectivity some heuristic biochemical reasoning
had to be used in combination with the mathematical analysis. The authors men-
tion the possible applicability to genetic networks. However, their biochemical im-
plementation was within a continuously stirredin vitro reaction vessel. It remains
to be seen whether inputs and outputs for a genetic regulatory system operating
in the context of intact cells (for which there is generally no non-cellular analog)
could be sufficiently well defined for their method to be useful. Also, the method
requires a baseline, or unperturbed state, that does not itself depend on time. It is
not clear whether the baseline of a genetic system operating in intact cells would
be sufficiently stable for the long time (order of days) that would be required for
imposition of multiple perturbations onto a genetic system and relaxation of the
system to baseline after each perturbation. Some, perhaps a large percentage, of
perturbations might result in permanent changes in gene expression patterns.

Fluorescentin situ hybridization of mRNA (Feminoet al., 1998) could prof-
itably be applied to visualize the mRNAs of possibly autoregulatory transcription
factors, such as Jun or Fos. The transcription rate could be quantitated, and after a
sustained change in a stimulus such as the level of a hormone, any distinct ‘steps’
in transcription rate during the approach to a new steady state could be visualized.
Also, the technique could reveal any repeated perturbations in transcription rate in
response to a single brief stimulus. If mRNA was actively transported to its site of
translation, and if newly synthesized transcription factor was actively transported
to the vicinity of its own gene, simulations discussed above (Smolenet al., 1999a)
suggest that these phenomena might be observed. Such observations would con-



Modeling Genetic Networks 285

stitute significant evidence that active transport was important in the system under
study.

As experiments such as those discussed above become less labor-intensive with
advances in technology, it may be anticipated that construction of quantitative mod-
els of gene networks important for controlling key biological processes such as
differentiation, memory, healing of injuries, or responses to drugs, will occur more
routinely. Mechanistic hypotheses specific to particular genetic systems will be
readily formulated and tested within the context of such models. This methodol-
ogy, when applied in conjunction with experiments, promises to help predict and
analyse the responses of tissues and organisms to physiological stimuli as well as
to biologically active environmental contaminants or novel pharmaceutical agents.
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