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Preface

The science of biology is rapidly expanding with an increased need for
more quantitative analysis of the data. Thus, mathematics and computers
are becoming more important to researchers in biology. Biological examples
are inherently complex, which complicates the understanding of how mathe-
matical modeling relates to the biological problems. Many Calculus courses
for biology majors use grossly simplified examples, which have resulted in
students feeling that Calculus is irrelevant to their study of biology.

This text attempts to use more convincing examples. The emphasis of
this text is the mathematical modeling of biological systems, showing how
Calculus naturally arises in biological examples from classical and current
research. Most sections begin with a biological model that motivates some
aspect of learning Calculus. The example is followed by the mathematical
theory required to analyze the biological problem and other related prob-
lems. Early in the text, least squares analysis of data is introduced so that
experimental data from actual biological problems can be used to develop
real mathematical models. By presenting real experimental data, this text
shows the importance of mathematical modeling and its reliance on Calculus
for students majoring in biology.

This text was inspired by the first semester of the Calculus for Biology
sequence at San Diego State University. The material was originally devel-
oped for the web to supplement the weak texts used in that course, then
it evolved to a more complete series of lecture notes, “Calculus for the Life
Sciences.” With the stronger emphasis on modeling and the need expressed
by the faculty in the Department of Biology at San Diego State University
for students to develop their computer skills, the course evolved to include a
computer laboratory component along with the lectures. The related com-
puter laboratories are available on the web (and will soon be tranformed
into an accompanying supplement to this text). The authors believe that
the computer component of this course is vital to the full understanding of
the material and appreciation by the student of how mathematics and bi-
ology are becoming more entwined. Students have often returned telling us
of the value of the computer skills that these labs have developed for their
more advanced biology classes.

Because this text has come from a web-based course, some of the material



JAVA

X CONTENTS

is complemented by some java applets and animations on the web that could
not appear in the printed book version. References to this material on the
web, which provide additional hands on learning experiences, are designated
by a small “java” figure on the left hand margin. Wherever this figure
appears there is an explanation of what the applet is about, and a brief
indication of how to use such an applet to get a better understanding of the
material.

Applets or Animated GIFs

The Java Applets or Animated GIFs can be accessed from a master list
located at the website:
www-rohan.sdsu.edu/~jmahaffy /courses/s00a/math121 /lectures/java.html

Beside each java figure on the margin there is a title referring to the java
applet on the web. A list of all the titles of the java applets with their
corresponding website is noted above. Therefore, a student should, in a
pretty straight forward manner, be able to refer to the specific applet used
in the section. This website will be frequently updated and provided addi-
tional information that may help both instructors and students take better
advantage of this text.

The authors want to first express their thanks to the Department of
Biology at San Diego State University for their encouragement and contri-
butions to the development of this text. Many of the faculty have provided
examples that have been incorporated into the text and computer labs,
which have helped provide the valuable connections needed by the students
to better understand why they should learn mathematics for their major
in Biology. Several of the faculty have been particularly supportive of the
use of a computer laboratory to help these students learn mathematics and
develop computer skills. Professor Roger Whitney in computer science was
very encouraging and helped with the early stages of developing this course
on the web, so deserves special credit for getting the first author to embark
on this task.

The first author is especially thankful to Louise Wilson for her help with
many of the applets developed for the webpage and her many hours of help
proofreading the text on the webpages. He also is very appreciative of the
work by Tal Polany for his web expertise and artistic abilities that made
the current version of the webpage possible. Tal provided the fundamental
layout of the webpage and designed many of the animated GIFs. This author
was also helped by Catherine DeMarco, Treggon Owens, and many of the
Biology students who have gone through the course.
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We would particularly like to thank all the hard work and dedication of
Ricardo Carretero-Gonzdilez for the presentation of this material in this text.
His help for the display of figures and formatting of the text was invaluable

to us.

Joseph M. Mahaffy
Alexandra Chavez-Ross
May 2004
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CHAPTER 1I:
INTRODUCTION

Biology is one of the most rapidly expanding and diverse areas in the sci-
ences. The problems encountered in Biology are frequently complex and
often not totally understood. Mathematical models provide a means to bet-
ter understand the processes and unravel some of the complexities. This
gives a natural synergistic relationship between the two fields as research
expands in the future. The mathematical tools provide ways of develop-
ing a better qualitative and quantitative understanding of some biological
problems, while the biological problems often stretch the techniques that
mathematicians must use to find solutions.

1 SO WHAT IS A MATHEMATICAL MODEL?

Real
World

Mathematical
Model

Empirical
Data

Figure 1: Diagram of the relationship of a mathematical model with the
experimental data and the real world system the model represents.

A mathematical model is a representation of a real system. The essence
of a good mathematical model is that it is simple in design and exhibits the
basic properties of the real system that we are attempting to understand.
The model should be testable against empirical data. The comparisons of
the model to the real system should ideally lead to improved mathemati-
cal models. The model may suggest improved experiments to highlight a
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particular aspect of the problem, which in turn may improve the collection
of data. Thus, modeling itself is an evolutionary process, which continues
toward learning more about certain processes rather than finding an abso-
lute reality. This use of mathematics is quite different from K-12 training
in mathematics, where mathematics is treated as an absolute with exact
answers.

Diabetes Mellitus

An ongoing example of the modeling process is provided by diabetes melli-

Glucose Tolerance Test
200 ! ! ! ! !

=
Ul
o

Blood Sugar (mg/dl)
|_\
o
-

A
o
T

t (hours)

Figure 2: Glucose tolerance test applied to a normal subject and a diabetic
subject [2].

tus. This is a metabolic disease which is characterized by too much sugar in
the blood and urine. In a normal subject the S-cells in the pancreas, more
specifically the islets of Langerhans, release insulin in response to increased
levels of glucose in the blood, which results in the storage of this source of
energy as glycogen in the liver. One form of the disease (Type I) has its
onset in childhood and is caused by a failure of the §-cells to release insulin
in response to blood glucose levels. It appears that this form of diabetes
is caused by antibodies being formed that react with islet cells, then the
subsequent autoimmune response selectively destroys the S-cells. Thus, in-
sulin can no longer be produced. Another form (Type II) appears in adults
(and increasingly among obese children). Some cases of Type II diabetes



1. SO WHAT IS A MATHEMATICAL MODEL? 3

also appear to be an autoimmune disease where the immune system mounts
an attack on the f-cells, decreasing their ability to produce insulin, while
other Type II diabetes cases may simply result from excessive body weight
that overtaxes the ability of the -cells to produce sufficient insulin. In ei-
ther case the body loses its ability to regulate blood sugar, which can be
potentially very dangerous.

One simple test for detection of diabetes is the Glucose Tolerance Test
(GTT). For this test, a subject fasts for 12 hours, then is given a large
quantity of glucose. For the next few hours, blood samples are drawn and
blood glucose levels are measured. The graphs above show two subjects
given this GTT. By fitting the data to a simple model by Ackerman et
al. [1], the information from the model can indicate which subjects have
diabetes. Both the biological test and the mathematical model are overly
simplistic, so improved models and biological testing routines have been
developed and continue to be developed.

Diabetes is treated by administration of insulin and regulation of diet
by the patients. Biological research has improved our understanding of this
disease, which has resulted in improved mathematical models for glucose
metabolism. The mathematical models in turn are used to suggest better
treatments, such as improved scheduling of insulin injections, which improve
the quality of life of the patients suffering from this disease. (A complex
model for simulation of insulin and dietary adjustment is available on the
web!.) Due to both new clinical (or experimental) studies and improved
mathematical models, future treatments will certainly evolve to better reg-
ulate this metabolic problem in patients with diabetes. There are many
websites available about diabetes. Some examples include ones on diagnos-
ing diabetes?, gestational diabetes?, glucose blood testing?*, or homeostasis®.
There are other mathematical models that have been developed to study the
firing (hence release of insulin) by the S-cells. (For example, Arthur Sher-
man at NIH has a number of models and links to models of B-cells®). q

ATP Synthase

One of the most important molecules in all living organisms is ATP synthase.
Cells store chemical energy in two forms: as transmembrane electrochemical

'www.2aida.org, last visited 03/08/04
2www.endocrineweb.com/diabetes/diagnosis.html, last visited 03/08/04.
3www.medstudents.com.br/ginob/ginob4t1.htm, last visited 03/08/04.
*www.lifeclinic.com /focus/diabetes/glucoseTest.asp, last visited 03/08/04.
pespmcl.vub.ac.be/HOMEOSTA html, last visited 03/08/04.

SA. Sherman, mrb.niddk.nih.gov/sherman/, last visited 03/08/04.
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gradients and in chemical bonds, particularly the gamma phosphate bond in
adenosine triphosphate (ATP). In mitochondria, bacteria, and chloroplasts,
the free energy stored in transmembrane electrochemical gradients is used to
synthesize ATP from ADP and phosphate via the membrane-bound enzyme
ATP synthase. ATP synthase can also reverse itself and hydrolyze ATP to
pump ions against an electrochemical gradient. This molecule has been so
optimized by evolution that there are few variations in its structure over
the entire range of living organisms. Until recently, few details about the
structure of this molecule and how it produced ATP were known. The
standard texts still talk about how the forming and breaking of the high
energy gamma phosphate bond as if it were a single event. Yet the incredibly
high efficiency of this molecule (over 90%) could not be explained by physical
laws of thermodynamics associated with the cleaving (or forming) of this
phosphate from ATP.

H. ‘Wang and G. Oster (15998). Nature 396 279-282
Figure 3: A diagram of the ATP synthase by Wang and Oster (1998), Nature
396:279-282

A collaboration of many scientist from many fields, including some ap-
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plied mathematicians, were required to learn the details of how this im-
portant molecular reaction occurs. Complicated molecular biology, x-ray
crystallography, physics, and mathematical modeling combined to show how
phosphate bond was formed in a series of 15 to 20 smaller steps to produce
ATP in this highly efficient process. (A Nobel prize in 1997 for Chemistry
was awarded to Paul D. Boyer, John E. Walker, and Jens C. Skou for some
of the work.”) Fundamentally, the scientific discovery followed the diagram
given above, where constant exchanges were needed between experimental-
ists and theoreticians to test that they were converging on the answer of the
reality of a remarkable molecule that powers every living cell. For more on
the modeling efforts on this important molecule, you might want to check
the websites of George Oster® and Hongyun Wang?®. <

2 REFERENCES

[1] E. Ackerman, L. Gatewood, J. Rosevear, and G. Molnar, Blood glu-
cose regulation and diabetes, Chapter 4 in Concepts and Models of
Biomathematics, F. Heinmets, ed., Marcel Dekker (1969), 131-156.

[2] E. Krimmel and P. Krimmel, The low blood sugar handbook, Franklin
Publishers (1992), 67-69.

"www.nobel.se/chemistry /laureates/index.html, last visited 03/08/04.
8G. Oster, cnr.berkeley.edu/~goster/home.html, last visited 03/08/04.
9H. Wang, nature.Berkeley. EDU/~hongwang/, last visited 03/08/04.
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CHAPTER 2:
LINEAR MODELS

The basis for understanding Calculus is the concept of a straight line.
Straight lines also provide the simplest mathematical models, linear models,
for biological systems. This section provides a number of worked exam-
ples that should help the student work with and better understand straight
lines. Straight lines are covered in standard algebra courses, so this should
be review material. The material below covers the basic concepts for find-
ing equations of lines, graphing lines, determining the points of intersection
of two lines, conditions for two lines to be parallel or perpendicular, and
several word problems that occur from biological models and measurement
conversions.

1 CHIRPING CRICKETS AND TEMPERATURE

Figure 1: There is a linear relationship between the chirping of the Oecan-
thus fultoni and temperature.

For many years people have recognized a relationship between the tem-
perature and the rate at which crickets are chirping. The folk method of
determining the temperature in degrees Fahrenheit is to count the number
of chirps in a minute and divide by 4, then add 40. In 1898, A.E. Dolbear
[3] noted that “crickets in a field [chirp] synchronously, keeping time as if
led by the wand of a conductor”. In his paper, he appears to be the first
person to write down a formula in a scientific publication, giving a linear
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relationship for the temperature based on the chirp rate of crickets. The
mathematical formula that he gave is:

T:5O+N_40.

Does this formula of Dolbear match the folk method described above?

Many of the early papers [1] and [2] begin with the authors’ fond memo-
ries of listening to snowy tree crickets, Oecanthus fultoni, in the late summer
and early fall, then they dispute how synchronized the actual chirping is.
However, the mathematical models are all very similar.

The graph in Figure 2 shows the data from C.A. Bessey and E.A. Bessey
[2] on eight different crickets that they observed in Lincoln, Nebraska during
August and September, 1897. It is apparent from these data that a fairly
good estimate of the temperature is found by drawing a straight line through
the points. This line would be a good model for finding the temperature
outside based on the rate at which the crickets are chirping. The graph
shows the model from the Bessey brothers and the Dolbear model based on
the folk method.

N N N N N )/ N
e o
: : : : -0 h o ’Zz’
o oo bd | _-°
’LI-_\ N N N IQ N _,/ N
< S Lo L 2% L AT L ]
> O | | ; Wi |
- IV e SO
g z 5°° ° = ,%" z z
£ 60f -~ oo ST S S o ]
= ° 5 Lo 5 5 5 5
°° ’4 N N N N
: e : —— Bessey: T=0.21 N +40.4
BOf et T S - -- Dolbear: T=0.25N+40 |
P : : o Bessey data

80 100 120 140 160 180 200
Chirps per minute (N)

Figure 2: Experimental data of eight different cricket types observed by C.A.

Bessey and E.A. Bessey [2] with its corresponding best linear approximation,

and the linear model by Dolbear [3].

The line given by the Bessey brothers is the least squares best fit to
the data they collected. (The actual formula that they presented is T =
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60+ (N —92)/4.7, which you can check reduces to the formula stated in the
graph of Figure 2.) We will examine what a least squares best fit means in
the next section.

2 DOLBEAR’S CRICKET EQUATION AS A LINEAR MODEL

The line that you found passing through the data creates a mathematical
model for representing the temperature as a function of the rate at which
snowy tree crickets chirp. Before studying this model for mathematical
properties, we should ask a few questions about the biological model.

1. How well does the line that you found fitting the Bessey & Bessey data
agree with the Dolbear model given above?

2. When can this model be applied from a practical perspective?
3. Over what range of temperatures is this model valid?

4. How accurate is the model and how might the accuracy be improved?

The answers to these questions should help you appreciate the com-
plex relationship between the biology of the problem and the mathematical
model. The answers that are given below are not complete, but should help
you appreciate how one approaches mathematical modeling and a biolog-
ical problem. Hopefully, this will give you a better appreciation of how
mathematics is used and some of its limitations.

The first two questions are actually very biological in nature, and the
mathematics play a very limited role. The comparison of the Dolbear for-
mula to the linear model shows some discrepancies in the coefficients of the
linear model. However, you should be asking the biological question about
the organisms that were being studied. The differences in the mathematical
formulae may very well be due to observations made on different species
of crickets. However, if you believe that the two different observations are
similar, then this model may be a good biological thermometer. From a prac-
tical perspective, this biological thermometer has limited use. The snowy
tree crickets only chirp for a couple months of the year. Furthermore, they
only tend to chirp at night when the temperature is above 50°F.

The last two questions provide important links between the process of
mathematical modeling and the biological problem being studied. The range
of validity in temperatures for the model gives the domain where we can
use this model. Generally, you should limit the use of the mathematical
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model to points between the range where the data are collected (or possibly
to intervals that are only slightly beyond the collected data points). For
our cricket thermometer equation, we see that the data only allows its use
between 50°F and 85°F. However, this temperature range is appropriate for
evenings in Nebraska in August and September, which is where this particu-
lar thermometer is valid. Statistical analysis of the data improves the degree
of accuracy of the mathematical model, but it appears that the folk model
will probably give the temperature within a couple degrees Fahrenheit. The
folk formula is less accurate than the model formed by data, but it is much
more easily applied. So which technique are you more likely to use on a
warm summer night talking to some friends?

Mathematically, we often use a linear least squares fit to find the best
fit to the data. The next chapter of these notes will show you how to obtain
this best straight line through the data, using the technique of linear least
squares and later chapters will discuss more complicated models. The data
could be better fit by a more complicated mathematical model, such as
fitting a quadratic through the data. However, this may not be appropriate
from either a biological or mathematical perspective, but that depends on
the problem and the ability to deal with this is acquired through experience.
The section below provides a review of straight lines and includes a number
of important mathematical definitions.

3 EQUATIONS OF LINES

The most common form for the equation of a line is the slope-intercept form
of the line.

The slope-intercept form of the line is
y=mzx + b.

The variable z is the independent variable, and the vari-
able y is the dependent variable. The slope is given by
m, and the y-intercept is given by b.

It is important to note that the variables £ and y are only used for conve-
nience. When describing a mathematical model using a linear model, one
often chooses variables that more closely match the objects being observed.
The folk cricket equation given above can be written

N
T = — +40.
4+
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As written, the independent variable is N, which is the rate that the crickets
are chirping (number of chirps per minute). The temperature, T, is the
dependent variable. The slope is 1/4, and the T-intercept is 40. The graph
of this equation is the linear model labeled Dolbear in Figure 2.2. This
graph does not pass through the data, but it is not very far removed from
the data. Thus, it can still be considered an appropriate model for estimating
the temperature.

A graph is a geometric representation of an equation in
the Cartesian plane. The independent variable of the
equation is measured along the horizontal-azis, while the
dependent variable is measured on the vertical-azis. By
drawing the set of ordered points satisfying the equation,
a graphical representation of the equation is produced.

There are other useful forms of the line. If a line passes through the point
(z0,y0) and has a slope of m, then the point-slope form for the equation of
the line is most easily found.

The point-slope form of the line is
Y — Yo = m(z — o).
The variable z is the independent variable, and the vari-

able y is the dependent variable. The slope is given by
m, and (g, o) is a point on the line.

Any line is uniquely determined by two distinct points lying on the line.
Given two points, the slope is defined to be the difference in the distance in
the dependent variable divided by the difference in the independent variable
(provided the latter is nonzero).

Given the two points (zg,yo) and (z1,y1), then the slope
m is given by:
Y1 — Yo

m=—-.:
1 — Zo

Below are examples to illustrate the definitions given above and help
understand how to find equations of a line.

Find the equation of a line with a slope of 2, passing through the point
(3,—2). What is the y-intercept?
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Solution: From the point slope form we obtain the equation:

y—(-2) = 2(z-3)
y+2 = 2z—6.

This reduces to the equation
y = 2z — §,

so the y-intercept is —8. <
Find the equation of a line passing through the points (—2,1) and (3, —2).

Solution: The slope is given by
—-2-1 3

=3T3~ 5

m

Thus, the point slope equation of the line is given by: y — yo = m(z — xo),
so that

y—1 = —g(l‘ +2)
3 1
y = —zT-¢
Note that using either point, (—2,1) or (3, —2), will yield the same linear
equation. <

PARALLEL AND PERPENDICULAR LINES

The slopes of lines determine whether two lines are parallel or perpendicular.

Consider two lines given by the equations:
y=mx+ by and y = mox + bs.
The two lines are parallel if the slopes are equal, so
my = My,
and the y-intercepts are different. (If by = be, then the

lines are the same.)

Tt is clear that two lines that are parallel must have the same slope. Another
condition gives two lines being perpendicular.
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The two lines are perpendicular if the slopes are negative
reciprocals of each other, that is

mi1Mmeo = —1.

Find the equation of the line perpendicular to the line 5z + 3y = 6, passing
through the point (—2,1). Sketch a graph of both lines.

5
4_ “““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““
3_ “““““““““““““““““““““““““““““““““““““““““““““““““““ LR -
>

2F T NG
1 — L :y‘
— L2:y: (3/5) x + (11/5)

-2

0
-3 -1 0 1 2 3

Figure 3: Graph of Example 3, where the slope of line L; is m; = —5/3.
While the slope of line Ly is my = 3/5, such that m; = —1/ma.

Solution: Converting this line (Line 1) to the slope intercept form, we obtain
the equation:

Jy = —5r+6
5
y = —3% + 2.

The slope of the perpendicular line is given by the negative reciprocal of
that given above:

ol W
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The point slope equation of the line (Line 2) is given by
3

y—1 = g(x +2)
3 11
Yy = ga: + 5
(See Figure 3 for the sketch of the lines.) N

£ Linear - Slope and Intercept

JAV;
You may want to use this applet to develop a better geometric sense of how
lines vary as the slope and intercept are changed.

3.2 INTERSECTION OF LINES

Whenever two lines are NOT parallel, then they must intersect at some
point in the Cartesian plane. The point of intersection is a unique point
that satisfies both equations simultaneously.

Find the intersection of the line parallel to the line y = 2z passing through
(1, —3) and the line given by the formula 3z + 2y = 5.

Solution: The first line is parallel to y = 2z, so has a slope m = 2. This line
is found using the point slope equation:

y+3=2(zx—1) or 2z —y=>.

The two lines intersect when both equations are satisfied simultaneously.
The expression for y from the first line can be substituted into the formula
for the second line giving

3z +2(2z — 5) = 5,

or

1
T =15, or x:—5.

7

Substituting the x value into the first line equation gives

15 5
=2(=)-5=-=2.
v=2(7) o=

Thus, the point of intersection is given by

15
7))
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Figure 4 shows the graph of these two intersecting lines. <

T R
2- ““““““““““““““ ~~~~~ """""""""""""""""""""""""""""""""
e L

g @575y < |
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_6_ ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ - - - .

; : : R Ll:y=2x—5
gk ““““““““ “““““““““ ““““““ - L2:y=—1.5x+2.5 u
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X

Figure 4: Example of the resulting graph from the applet Linear — Line
Intersection. This figure uses the lines from Example 4.

jﬁ? Linear — Line Intersection

AVA

There is an applet on the webpage that allows you to find the intersection
of any two lines. Enter different values of m and b of two different lines, and
the applet finds the point of intersection. Use the refresh button after you

have put in the values of slope and intercept for the two lines.

4 METRIC SYSTEM CONVERSION

All of the conversions for measurements, weights, temperatures, etc. are
linear relationships. Most of the conversions only require a change in the
slope as they agree at zero, but this is not the case for temperature. Below
we use the information above on straight lines to determine a formula for
finding the temperature in degrees Celsius as a function of the temperature
in degrees Fahrenheit.

The United States is one of the few countries in the world that uses
the Fahrenheit scale for temperature. The freezing point of water is 32°F
and 0°C, so take (fo,co) = (32,0). The boiling point of water is 212°F and
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100°C (at sea level), so take (f1,¢1) = (212,100). The slope is computed as

follows:
100 -0 5

m - = _

T212-32 ¢

Thus, the point-slope form of the line gives

c—O:g(f—32)

or,
5

c= 5(]”—32).

The above formula takes any temperature f in Fahrenheit and converts to
¢ in Celsius.

Linear — Unit Conversion

You can use these JavaScript programs to find a number of transformations
from one set of units to another. The underlying codes for all of these
conversions are linear relationships.

Below we provide some of the more common conversions that are needed.

Length Conversions Weight Conversions
12 inches = 1 foot 1 pound = 16 ounce
3 feet = 1 yard 1 kg = 2.2046 1b
5280 feet = 1 mile 1000 gram (g) = 1 kg
2.540 cm = 1 inch
1 meter (m) = 3.281 ft Volume Conversions
100cm =1 m 1 pint = 16 fluid ounces
1000 mm = 1m 1 gallon = 8 pints
10° ym = 1 m 1 gallon = 3.785 liters
1000 m = 1 km 1000 ml = 1 liter (1)

Linear — Unit Conversion Example

As an example of how you can use the javascript mentioned above to find
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a linear relationship, suppose that you want a formula to find the weight in
pounds given the weight in kilograms.

Solution: By placing a 1 in the category of kilograms, you find that each
kilogram is 2.2046 pounds. Thus, the linear relationship is simply 2.2046
times the weight in kilograms. If we let p be the weight in pounds and k be
the weight in kilograms, the relationship is given by

p = 2.2046k. q
Weight Units Conversion
Find the weight of a 175 pound man in kilograms.

Solution: Since 1 kg = 2.2046 1b,

1kg

Velocity Units Conversion

Suppose a ball is thrown at a speed of 95 miles per hour. Find the speed
of this ball in meters per second.

Solution: Since 1 mile = 1609.3 meters and since there are 3600 seconds

in 1hour,
mi\ /1609.3m 1h
— ~ 424 .
(95 h) ( 1mi ) (3600s) Tm/s d

@ . . .
éz Linear — Unit Conversion
JAVA

You may use the conversion javascript to check your answers.

5 JUVENILE HEIGHT

In Table 1 we show average juvenile height as a function of age [4].

Age 1[3] 5 ] 7 ]9 [1L]13
Height (cm) | 75 | 92 | 108 | 121 | 130 | 142 | 155

Table 1: Average juvenile height as a function of age [4].

The height h, is graphed as a function of age a. The data from Table 1
are shown in Figure 5. It is easy to see that the data almost lie on a line,
which suggests a linear model.
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oo S
wo{

120f

Height, h (cm)
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Figure 5: Graph of line that best fits the data given in Table 1 for the height
of a child with respect to his/her age.

Line — Height

This Java applet allows you to adjust the coefficients of the linear model.
Change the coefficients of the equation of the line in the applet until the
line, representing the height as a function of age, fits the data. This line
would be a good model for finding the average height of a child for any age
between one and thirteen.

The line that best fits the data above is given by
h=ma+b=06.46a + 72.3,

(see Figure 5) where, m = 6.46 is the slope and b = 72.3 is the h-intercept.
The next chapter will explain finding the linear least squares best fit or
linear regression to the data.

From a modeling perspective, it is often valuable to place units on each
of the coeflicients or variables in the equation. In an equation the units must
always match. The height, h, from our data has units of cm, so both ma
and the intercept b must have units cm. Since the age, a, has units of years,
it follows that the slope, m, has units of cm/year. From the units it is easy
to see that the slope is the rate of growth. (This idea of rate of growth will
occur regularly in this course!).

The line above gives a mathematical model for growth of the average
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child. With this mathematical model, what type of questions can you an-
swer? See if you can answer the following questions.

1. What is the average height of an eight year old?
2. What height does the model predict for a newborn baby?

3. If a six year old child is 110 cm, then estimate how tall she will be at
age 7.

Answers:

1. The model predicts that the average eight year old will be 124 cm,
which is found by setting ¢ = 8 in the model.

2. The height intercept represents the height of a newborn, so this model
predicts that a newborn would be 72.3 cm. However, this is outside
the range of the data, which makes its value more suspect.

3. The model indicates that the growth rate is about 6.5 cm/year, so the
six year old should grow about 6.5 cm and be 116.5 cm at age 7 though
the average 7 year old as predicted by the model would be 117.5 cm.

What are some of the limitations and how might the model be
improved?

The most obvious limitation is that this linear model would certainly
not extend much beyond the ages listed in Table 1. (You would not expect
the average 20 year old to be 201.5 cm as the model predicts.) Thus, the
domain of this function is restricted to some interval around 1 < a < 13.

Let us examine the questions above to see if we might derive better
estimates. A better prediction of average eight year olds would be to average
the heights of seven and nine year olds (125.5 cm). This is known as a local
analysis, meaning that approximating a function is always better by using
nearby information. Similarly, we might improve our estimate on the length
of a newborn by using only the data given for one and three year olds
(66.5 cm). As we study Calculus more, we will see that it is this local study
of growth rates that is of greatest interest. The answer to the third question
is about as good as we can do with the given information. If you had more
data on the individual child, you might be able to predict her height better
from her history than using the history of this average set of children.
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There are several improvements you might want in a model like this.
(Recall that models are only a window on the real world and usually can
be improved.) The model is an average of juveniles indicating that the data
have both sexes included, and our experience suggests that growth rates for
girls and boys differ. Thus, you might want to split the data according to
sex. Close inspection of the data shows that there is a faster growth rate
between 0 and 5, and then again between 9 and 13, which agrees with the
common idea that growth occurs in spurts. You might improve the model
to include this information by using something other than a straight line to
fit the data. However, you must consider how much is gained by a more
complicated model.

6 WORD PROBLEMS

White Sea Urchins

The growth curve in this chapter shows that over a short period of time,
using a straight line to estimate growth is quite reasonable. Suppose that a
population of white sea urchins (Lytechinus pictus) has a mean diameter
of 28 mm at the beginning of June (June 1) and 33 mm at the beginning of
July (July 1). Estimate the mean diameter for the population of Lytechinus
pictus on June 20, July 10, August 1, and August 15. Which estimates do
you trust more and why?

Solution: Let the first day of June be defined as t = 0. Since there are thirty
days in June, we can assume two data points, (0,28), and (30, 33), where ¢
corresponds to the number of days, and d corresponds to the mean diameter
in mm. Assuming that there is a linear relationship between time, ¢, and
diameter, d, we can find the equation of the line that passes through these
two points. Calculating the slope:

o 33-28 1

30-0 6

Using the point slope equation we obtain
5

30

d—28 (t—0)

or )
d= -1+ 28.
5 +

Note that b, the d-intercept, is essentially the initial diameter measurement.
The slope m must then be the growth rate. Using the above linear relation-
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Figure 6: Linear growth of the Lytechinus pictus (white sea urchins).

ship, we can assume that the dates June 20, July 10, August 1, and August
15 correspond to the points (19, 31.2), (39, 34.5), (61,38.2), and (75,40.5),
respectively. The estimate for June 20 is probably the most accurate be-
cause it falls between the two measurements actually taken. Also, recall
that growth estimates are more accurate over shorter time intervals. <

Scuba Diver

The pressure of air delivered by the regulator to a Scuba diver varies linearly

with the depth of the water. When the diver is at 33 ft, the regulator delivers
29.4 psi (pounds/square inch), while at 66 ft, the regulator delivers 44.1 psi.
Find the pressure of air delivered at the surface 0 ft, at 50 ft, and at 130 ft
(the maximum depth for recreational diving).

Solution: From the measurements taken, we can assume the two data points
(33,29.4), and (66,44.1), where d corresponds to the depth in feet, and p
corresponds to the regulator pressure in psi. Calculating the slope:

441 -294 147
™= 766-33 33

The equation of the line is then:

~ 0.445.

p—294 = 0.445(d — 33)
p = 0.445d + 14.7.
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Therefore, using the linear relationship, we find that at the surface d = 0,
the air pressure is 14.7 psi. This calculation can be represented as a point,
(0,14.7). For depths of d = 50 ft and 130 ft, we obtain the points (50, 36.95),

and (130, 72.55), respectively. See Figure 7 for a graphical representation.
q
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Figure 7: The pressure of the air expelled from a scuba diver regulator
linearly increases with depth.

7 EXERCISES

2 — 1

l.y=2-52z 2. y= $5 3.0—y=2
1 12
4. y=>(z+2 . 5y 42 = Ly=
Yy 3(ac—i—) 5. —by+2x =9 6. y 13

Find the equations of the following lines:
1
7. Slope is 2’ passing through the origin.
o1 .
8. Slope is —3 (2,—3) on line.

9. Slope is 0; (7,4) on line.
10. (2,—1) and (3,—1) on line.
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11. (5,—3) and (—1,3) on line.

12. y-intercept is 2 and (—2, 3) is on line.

Find the equations of the following lines:

13. Parallel to y = —2z + 1; (3, 5) on line.

14. Parallel to 3z +y = 7; (-1, -1) on line.

15. Parallel to 5z + 2y = —4; (0, 17) on line.

16. Parallel to 3z — 6y = 1; (1,0) on line.

17. Passing through (3,2) perpendicular to 4z — 3y + 2 = 0.

18. Find the equations of the lines through the origin that are parallel and
perpendicular to the line y = 2 — 3z.

19. Consider the line y = 2z — 1. Find the equations of a line parallel to
this line passing through the point (2,-1), and a line perpendicular to this
line passing through the origin. Sketch a graph of all three lines.

20. Find the equation of the line passing through the points (—1,2) and
(2,0). What are the slope and y-intercept for this line? Graph the line.

Write the equation of the line for the following graphs:

¢ 3 — — 2 3
1 1
> 0 >~ 0
-1 -1
-2 -2
22 1 o 1 2 3 22 1 o0 1 2 3
X X

23. Assuming that water has a density of 1gm/cm?® and that the Moon, a
sphere, has 3.4 times the density of water with a radius of 1700km, find the
mass of the Moon in kg. The volume of a sphere is given by V = %WRS.
(Note that 1cm = 10~?m, 1km=1000m, and 1kg = 103gm.)

24. Find a formula for converting the temperature in Celsius, ¢, into a
temperature in Fahrenheit, f.
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25. D.J. Borror and D.M. Long write in their book An Introduction to
the Study of Insects “The snowy tree cricket, Oecanthulus fultoni, a shrub
inhabitant, chirps; its chirping is at a very regular rate, which varies with
temperature; 40 added to the number of its chirps in 15 seconds gives a good
approximation of the temperature in degrees Fahrenheit.” Transform this
statement into a mathematical model. Sketch the graph.

26. The independent variable is usually the causative variable. Since the
rate of chirping of the crickets , NV, is determined by the temperature, T,
the independent variable should be the temperature. Find the linear cricket
equation with N depending on 7T'. This is also known as the inverse equation.

27. Most of the world uses the metric system. Convert the following scenario
into one that someone from a metric based country could better understand.
It is a beautiful morning with a temperature of 75°F. We travel 5 miles to a
beautiful place to take a dive. The water temperature is 65°F with a breeze
of 15 miles per hour. We swim 400 yards out to our dive spot where we
submerge to a depth of 50 feet. Among the animals that we see are 5 inch
abalone, 14 inch lobsters, 2 inch banded gobies, and a 4 foot leopard shark.
At the end of the dive we surface 150 yards from shore in 15 feet of water.
My tank gauge registers 700 psi (pounds per square inch) of air remaining.
(Note that metric countries often use SCUBA gauges in kg/square cm.)

28. Convert this statement from someone in Canada into English units for
someone in the United States. It is a beautiful day to go cross-country skiing
as the temperature is —8°C, so I packed a 4 kg pack, including 2 liters of
water. I travelled 70 kilometers North to the Laurentians where the elevation
is about 400 meters. The temperature in the mountains was perfect green
wax conditions with -14°C and a breeze of 25 km/hour. The trail traversed
17 km of maple forests with 40 cm diameter trees over an expanse of 30 km?.

29. The lecture notes gave the average heights of five and seven year olds
as 108 cm and 121 cm, respectively. Use these data to estimate the average
height of a six year old. What is the average rate of growth for children
these ages in cm/yr?

30. In Section 5, we saw the average height of a child satisfies the equation:
h = 6.46a + 72.3,

where h is the height and o in the age of the child. Find the average height
of a six year old using this equation. Is this estimate better or worse than
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the estimate in Problem 29 and why?

31. Use the equation in Problem 30 for height of a child. If your daughter
is 135 cm at age nine, then what does the model predict her height to be at
age ten? If she is 160 cm at age 13, then what does the model predict her
height to be at age 157 Which of these estimates is better and why?

32. The table below shows growth of a puppy. Find and graph the equation
of the line for M as a function of a. Show the data points on the graph.
What is the slope of the line and interpret the M-intercept?

Age (a) | Mass (M)
1 week 1.5 kg
2 week 2.1 kg
4 week 3.3 kg
8 week 5.7 kg

33. For a range of values, the absorbance A read from a spectrophotometer
varies linearly with the concentration of nickel (IT), N. (The measurement
is made for the red-colored nickel dimethylglyoximate at 366 nm.) If the
spectrophotometer is not carefully calibrated to zero for the reference signal,
then one needs to use the formula

A=FkN +b,

for some constants k and b.

a. Suppose that a sample with 0.02 mg/ml of nickel (II) gives an ab-
sorbance of 0.26 and one with 0.04 mg/ml of nickel (II) gives an absorbance
of 0.44. Find the values for £ and b.

b. Find the absorbance for a sample with 0.035 mg/ml of nickel (II).

c. Find how much nickel (II) is in a sample that gives an absorbance of
0.31.

34. For a gas kept at a constant volume, the pressure P depends linearly on
temperature 1. Thus, we can write the equation

P =EkT +0b,

for some constants k£ and b.

a. Suppose we run an experiment and find that when T' = 0°C, the
pressure P = 760 mm of Hg. Then when 7" = 100°C, the pressure P =
1040 mm of Hg. Find the constants k£ and b for the equation above.
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b. Absolute zero can be approximated finding where the pressure P = 0.
Find the temperature in °C for absolute zero from the data points (and the
equation above).

35. The level of COy in parts per million (ppm) at Mauna Loa Observatory
was found to be 325.3 in 1970 and 338.5 in 1980. Assume the level of CO9
is linear for some range of dates.

a. Find the equation of the line giving the concentration of CO, as a
function of the date. Put this equation in slope-intercept form. (Use the
date for the independent variable.)

b. Use this equation to estimate the level of CO5 in 2000 and 1950.
Does the model make sense for predicting the level of COy at the time of
the Plymouth colony in 16207

36. The improvement in running events has been almost linear over the
last century. John Paul Jones (USA) held the world record for the mile in
1913 with a time of 4:14.4 (254.4 sec). More recently, Sebastian Coe (Great
Britain) set the world record in 1979 with a time of 3:49.0 (229.0 sec).

a. Find the equation of the line giving the world record time (in sec) as
a function of the date. Put this equation is slope-intercept form.

b. Use this equation to estimate when the 4 minute mile occurred. (It
was actually broken by Roger Bannister in 1954 with a time of 3:59.4).

c. Use your line to predict the world record time of the mile in the year
2000. Give your time in minutes and seconds.
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CHAPTER 3:
LEAST SQUARES ANALYSIS

In the first chapter we showed one of the simplest of mathematical mod-
els, which is relating one variable to another using a straight line or linear
relationship. Often this is a reasonable approximation to biological data
over a limited domain. This chapter examines the most common technique
for fitting a straight line to data known as a linear least squares best fit or
linear regression. (The term regression comes from a pioneer in the field
of applied statistics who gave the least squares line this name because his
studies indicated that the stature of sons of tall parents reverts or regresses
toward the mean stature of the population.)

1 FINDING THE C PERIOD FOR E. COLI

Figure 1: Growth and division of a population of E. coli

The bacterium FEscherichia coli is capable of very rapid proliferation.
Under ideal growing conditions, these bacteria can divide every 20 minutes.
Its genetic material is organized on a large loop of DNA (3,800,000 base
pairs) that is replicated in two directions, starting from a site called oriC and
terminating about halfway around the loop. Bacteria differ from eukaryotic
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organisms (most commonly studied in your first course in biology) in their
replication cycle. Biologists denote the time for the DNA to replicate as the
C period and the time for the two loops of DNA to split apart, segregate,
and form two new daughter cells as the D period. The C period is often
35-50 minutes and the D period is over 25 minutes, so the combined
time for the DNA to replicate and segregate (C 4+ D) can be more than
twice the time it takes for the cell to divide. Thus, the beginning of the
C period (called the initiation of DNA replication) must occur several cell
cycles in advance for rapidly growing cultures of bacteria, and multiple DNA
replication forks are advancing at the same time to prepare for future cell
divisions. There can be as many as 8 oriCs in a single E. coli bacterium
because of this overlap of activity in the replication process. In contrast to
eukaryotic cells, which have a single DNA replication event (S phase) that is
followed by a distinct mitotic event (M phase) separated by growth phases
(G1 and G3), prokaryotic cells allow DNA replication processes to operate
in parallel to allow for very rapid growth and division.

Least Squares — E. coli

This movie shows a schematic for a rapidly dividing E. coli with multiple
oriCs. (See references [1] and [3] below for more information.)

Since rapidly growing cultures of E. coli are continually replicating DNA,
a pulse label of radioactive thymidine can be used (along with several drugs
to halt initiation of replication and cell division) to determine the length
of the C period. Below are some data from the laboratory of Professor
Judith Zyskind (at San Diego State University) measuring the radioactive
emissions, ¢ in counts/min (cpm), from a culture of E. coli that have been
treated with drugs at ¢ = 0, then pulse labeled at various times following
the treatment.

t (min) | 10 20 30 | 40
¢ (cpm) | 7130 | 4580 | 2420 | 810

We would like to estimate the C period using a simple linear model,
c=at+b.

(The actual modeling process requires a more complicated mathematical
model using integral Calculus.) The t-intercept gives an approximate value
to the C period for this culture of E. col.
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%’% Least Squares — C-period

Adjust the slope, a, and the intercept, b, in this applet to find the minimum
value of J(a,b) (properly defined in the following chapter), which gives the
least squares best fit to the data. The ¢-intercept (when ¢ = 0) occurs at
t=—b/a.

The resulting least squares best fit to the data is given by the line
c = —211t + 9010.

Figure 2 shows the graph you should obtain in the applet.

C Period
8000F N e R e —
; A A A
£ ool N A— A— —_—
£ ' 5 ' '
E : ° : :
£ 4000f R N e e
> : : : :
o : : : :
o) :
o z z ° z
2000 R R N SR 1
°
0 1 1 1 1
0 10 20 30 40
t (min)

Figure 2: C-period best fit to the data. The corresponding equation of the
adjusted line is ¢ = —211¢ + 9010.

The t-intercept is 42.7, so this model estimates the C period as 42.7 min.

2 LEAST SQUARES BEST FIT

So what are the details behind the applet C-period that you are manipulat-
ing? The least squares best fit of a line to data (also called linear regression)
is a means of finding the best line through a set of data.

Consider a set of n data points: (z1,y1), (z2,92), -, (Tn,Yn). We want
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to select a slope, a, and an intercept, b, that results in a line
y(z) = az + b,

that in some sense best fits the data.

The least squares best fit minimizes the square of the error in the distance
between the y; values of the data points and the y value of the line, which
depends on the selection of the slope, a, and the intercept, b.

Let us define the absolute error between each of the data
points and the line as

e; = |y — y(x:)| = yi — (az; +D)[,1 =1,..n.

You can see that e; varies as a and b vary.

Figure 3 displays the graph showing these error measurements.

¥
(x .,Pn} pix) = ax + b
(x,. B i
" y
o
[ ]
. X
- (x,. »)

Figure 3: Graphic representation of the error measurements for the Least
Squares Best Fit method.

The least squares best fit is found by finding the mini-
mum value of the function

J(a,b) =el+e5+...+es =" €

E. coli

We demonstrate how these errors are computed when finding the C period
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in E. coli. The line is given by the formula:
c(t) = —211¢ + 9010.

The first data point is ¢ = 10 and ¢ = 7130. The model predicts ¢(10) =
6900, so the absolute error between the experimental and the theoretical
value is given by

e1 = |e1 — ¢(10)] = |7130 — 6900| = 230.

Similarly, we find

es = oo — c(20)] = 4580 — 4790| = 210,
es = |es— c(30)] = 2420 — 2680| = 260,
es = |ca — c(40)| = |810 — 570| = 240.

We add up the squares of these errors to obtain

J(—211,9010) = 52900 + 44100 + 67600 + 57600 = 222, 200. q

Least Squares — C-period

You can manipulate the applet Least Squares — C-period, and find that this
is the smallest value possible.

Two Researchers

Two researchers had only a limited set of data, the points (2,2), (5,6), and
(8,3). Researcher A felt that a good model was given by
5 8

y=§$+§a

with y increasing with increasing z, while Researcher B thought that a

better model was
2 n 43
= ——21 —
Y 9 9’
with y decreasing with increasing z. Sketch the graph of the data points
and the two lines, then find the sum of squares errors for each of the models.

Which one is better according to the data?

Solution: Recall that for a line y(z) = ax + b, the absolute error is given by
ei = |yi — y(xi)| = |yi — (az; +b)|,i = 1,2,3. The line with the best fit has
the smallest sum of the squares of the errors, J(a,b). For Model A, J(a, b)
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Two Models

Model A ]

: : i - - Model B

0 2 4 6 8 10

Figure 4: Graphs of the linear models obtained by Researcher A and Re-
searcher B.

is calculated as follows:

Ja=dted+el = [2_(§(2)+§):2+[6—(§(5)+§)]2

9 9 9 9
5 8\ 12
3—(2(8)+2)| ~10.89.

For Model B, J(a,b) is calculated as follows:

Jg=e€l+es+e§ = [2_ (_2(2)+4_3>:2+ [6_ (_2(5)+4_3)]2

9 9 9 9
2 43\1?
3—(—=(8)+— ~ 10.89.
" [ ( 0+ )
Since J4 = Jp, the two models are equally valid. N

The technique for finding the exact values of a and b uses Calculus of two
variables. Thus, the least squares best fit is found by minimizing function
J(a,b) with respect to the variables a and b. (This is done by taking the
partial derivatives of J(a,b) with respect to a and b and setting these partial
derivatives equal to zero. In this course we will be learning about derivatives
and how they relate to finding minimum values of functions.) Note that the



2. LEAST SQUARES BEST FIT 33

symbol ¥ is summation notation and is used to shorten the amount of writing
we need to use. It simply stands for adding together a collection of similar
terms.

The details of this analysis are omitted, since it does require a little more
knowledge of Calculus. However, the results are summarized below.

First, we define the mean of the z values of the data
points as

_ $1+$2++$n 1 e
n n i1 !

The value for the slope of the line that best fits the data
is given by

Z?:l(xi — I)Yy;

> it (@i — 1)

With the slope computed, the intercept is found from the
formula

a =

1 n
b:—g Yi — aT = Y — ax.
n
i=1

There are many computer programs that automatically compute ¢ and
b from data sets. The accompanying lab exercises for this book use Excel’s
Trendline feature.

E. coli-2
Let us apply this to our example beginning Section 1. There are four data

points in the E. coli example, (10, 7130), (20,4580), (30,2420), and (40, 810).
First we compute the mean of the times

10420 +30+40
y -

The slope a is found by the following calculation

(10 — 25)7130 + (20 — 25)4580 + (30 — 25)2420 + (40 — 25)810
(10 — 25)2 + (20 — 25)2 + (30 — 25)2 + (40 — 25)2
— 105600

= ———— =—-211.2.
500

t= 25.
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Similarly, the c-intercept, b, is readily computed to give
b 7130 + 4580 + 2420 + 810
B 4

The answer on Section 1 rounds the values of a and b to three significant
figures. <

— (—211.2)25 = 9015.

Find the least squares best fit line for the data in Example 2. Which re-
searcher had the right understanding of how y related to z? (Note: These
data are clearly insufficient for true research and would require more exper-

imentation.)
Two Models with Best Fit
o Data ; ; ;
gh — Model A | S PR SOURTRPUTRRI N J
== Model B : :
---Bestfit | ¢ o~ i

~ -
[ -
-, - -
-
-, - - - -
- - - - -
T e P

Ak T e T _
> : fmmmmEm T ;~.
3pwam T : LT
of T e :
1 o :
0 2 4 6 8 10
X

Figure 5: Same as Figure 4 including the best fit line to the data given by
_ 1 17
y(z) = gz + 3§

Solution: From the box above, we obtain the average of the x data values:
1 2+4+38
T — — s = —_— = 5_
o n ; i 3

The slope a of the best fit line is calculated as follows:
St (@i—By  (2-52+(-56+(8-53 1

a= = = -

(@i—22  (2-52+(-52+(8—52 6
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The intercept b of the best fit line can then be calculated.

Yi o (2+6+3) 5 17

p— — —Qa = - @ @ @0 o —

n 3 6 6

Therefore, the equation of the best fit line is:

1 17
= b= - —.
y(r) = azx + 6:1:+ G

The best fit is depicted in Figure 5. Note that since the best fit model shows
y increasing with x, Researcher A actually has a more appropriate model
than Researcher B. However, more data points are necessary in order so
develop a more accurate model of the data. <

3 JUVENILE HEIGHT REVISITED

="
JAVA

In chapter 2, we presented data on the average height of a child depending
on age.

Least Squares — Height Extension

There is an extension of the applet Linear — Height from the Chapter 2 that
includes the computation of the square of the error between the linear model
and the data for the height of the children. Once again, you can adjust the
slope, m, and the intercept, b, in the applet to find the minimum value of
J(m,b), which gives the least squares best fit to the data.

As noted in Chapter 2, Section 5, the resulting least squares best fit to
the data is given by the line

h = 6.46a + 72.3,
and the square of the error is found to be

J(m,b) = 41.5.

4 CALCULATING ERROR

There are a number of techniques for computing the error in a measurement.
Let X, be an ezperimental measurement and X; be the theoretical value. In
this course, most often X, will be the value from a model that we want to
test, while X; will be results from actual data that we acquire and assume
is true.
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The actual error is simply the difference between the ex-
perimental (or model) value and the theoretical (or actual
data) value. So the actual error is given by

Actual Error= X, — X,.

Often we only need the magnitude of the error or as in the case of

the least squares best fit the error is squared making the sign of the error
irrelevant. In this case, we use the absolute error.

The absolute error is simply the absolute value of the
difference between the experimental (or model) value and
the theoretical (or actual data) value. So the absolute
error is given by

Absolute Error= | X, — X3|.

More often the error is presented as either the relative error or percent

error. This error allows a better comparison of the error between data sets
or within a data set with large differences in the numerical values.

The relative error is the difference between the experi-
mental value and the theoretical value divided by the
theoretical value, so
Xe - Xt

X,
The percent error is closely related to the relative error,
except that the value is multiplied by 100% to change the
fractional value to a percent, so

Percent Error= % x 100%.
t

Relative Error=

Growth Rate

Often data sets have points that are clearly erroneous due to problems with
the experiment (say contamination) or simply a poorly recorded value. If
these points are included in the model, then they can result in misleading
models. We saw that growth rates are determined by the slope of a line
from our example on juvenile height.

a. Consider the following data set on the growth of some animal:
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t (weeks) | 0 | 1 2 13 |5 | 719
L (cm) |24 313741524969

Table 1: Data table of the length of some animal in weeks.

The least squares best fit to this data set is given by
L = 0.437t + 2.644.

Determine the growth rate for this model and find the sum of squares error.
Graph the data and the least squares best fit line.

b. Which point is most likely erroneous? When this point is removed,
then the new least squares best fit model is given by

L = 0.492¢ + 2.594.

Determine the growth rate for this model and find the sum of squares error
for this model. What is the percent error (taking the growth rate from the
model in Part b. as the actual one) between the computed growth rates?

Solution: a. The growth rate is represented by the slope of the best fit line,
or 0.435cm week. The sum of squares error is calculated as follows:

R(a,b) =e€? +e2+e2+ed +e +e2+¢é?
where,

e? = (9.4 —2.544)? =0.0595,

€2 = [3.1—(0.437 4 2.644))% = 0.0004,
e2 = [3.7—(0.874 + 2.644))* = 0.0331,
e; = [4.1— (1.311+ 2.644)]> = 0.0210,
ez = [5.2—(5.185 + 2.644)]° = 0.1376,
ez = [4.9— (3.059 + 2.644)]% = 0.6448,
ez = [6.9—(3.933 + 2.644)]> = 0.1043.

So the sum of squares error J = 1.0008.

b. From the squares of the errors calculated above, the point with the
most error is (7,4.9), or the second to last point in data Table 1. Eliminating
this point from the data set yields a new best fit line, and a smaller sum of
squares error, as shown below.
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Growth Data

L (cm)
<

N

0 2 4 6 8 10
t (weeks)

Figure 6: Two best square fit lines to the data given in Table 1. Line L =
0.437t+2.644 is adjusted to all the data points, while line L = 0.492¢+2.594
is adjusted to all but the most erroneus data point.

L = 0.492t + 2.594,
J(a,b) = 0.0376 + 0.0002 + 0.0149 + 0.0009 + 0.0213 -+ 0.0149 = 0.0898,

which is only 9% of the sum of squares error from Part a.
Recall that the percent error is calculated as follows:

Xe — Xt

t

x 100%.

Percent Error =

If the new best fit growth rate is assumed to be the theoretical value, and
the old best fit growth rate is the experimental value, the percent error is

0.437 — 0.492

1 = —-11.2%.
0,492 x 100% % <

5 EXERCISES

1. Consider the following data set:
x|1[3]|5]|8
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A proposed model for these data is given by the equation
y = 0.75z + 1.25.

Find the error, e;, between the y values of each of the points and proposed
model. Give the sum of the squares of the errors. Sketch a graph of the
data points and the line.

2. A limited set of data is collected and shown in the table below:

t]1]3]5]8
y|4[3]6]5

Two researchers interpreted these data differently. Researcher A felt that a
good model is given by

y = 0.4z 4 2.6,

while Researcher B thought the biological evidence suggests a better model
satisfies the model

y = —0.4x + 6.2.

a. Sketch the graph of the data points and the two lines. Which model
shows an increasing relationship between the variables and which one shows
a decreasing relationship?

b. Find the sum of squares errors for each of the models. Which one is
better according to the data?

c. Use the formula in the appendix to find the least squares best fit line
for the data in this problem. Which researcher had the right understanding
of how y related to x?

3. A research project on the plankton examines the light intensity filtered
by the plankton as a function of the depth of the water. The data are shown
in the table below:

depth (m) | 1 1.5 2 3 4 5
intensity | 0.32 | 0.29 | 0.27 | 0.27 | 0.15 | 11

a. The least squares best fit to this data set is given by the equation
I = —0.0524d + 0.3792,

where d is the depth in meters and I is the intensity of light filtered by the
plankton. Find the sum of squares error. Graph the data and the least
squares best fit line.
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b. On observing the graph of the data, one point seemed obviously erro-
neous. Which point is most likely erroneous? When this point is removed,
then the new least squares best fit model is given by

I = —-0.0536d + 0.3728.

Find the sum of squares error for this model. If the model in Part b. is taken
to be the actual model, then find the percent error between the slopes of
the models in Parts a. and b.
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CHAPTER 4:

FUNCTION REVIEW AND
QUADRATICS

The first chapters examined linear models and how to find the best linear
model from a set of data. Biological problems are rarely linear, so this chap-
ter will begin our study of other functions. We will give the mathematical
definitions needed to study more general functions, then review quadratic
functions.

Our opening example is a linear model from the study of Escherichia
coli. However, to fit the data to this model using the least squares best
estimate, quadratic functions are needed.

1 RATE OF mRNA SYNTHESIS

The last chapter began with a discussion of the DNA replication cycle in E.
coli. DNA provides the genetic code for all of the proteins, which are used
either directly or indirectly for all aspects of the growth, maintenance, and
reproduction of the cell. The synthesis of proteins follows the processes of
transcription and translation.

Transcription of a bacterial gene is a controlled sequence of steps, where
the protein, RNA polymerase, reads the genetic code and produces a com-
plementary messenger RNA (mRNA) template. This mRNA is a short-lived
blueprint for the production of a specific protein that has some particular
activity in the bacterial cell.

Translation of the mRNA in bacteria begins shortly after transcription
starts, with ribosomes (consisting of ribosomal RNA and ribosomal pro-
teins) reading the triplet codons on the mRNA. The ribosome sequentially
assembles a series of amino acids (based on the specific codons read), which
form a polypeptide. It is believed that the physical properties of the atoms
in the polypeptide cause it to fold passively into a tertiary structure that
creates an active protein. Often the tertiary structure combines with other
elements (such as another polypeptide, lipds or glycosides) to produce the
active protein or enzyme.

The rate of growth of a bacterial cell depends on the rate at which
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Figure 1: The transcription and translation processes for protein synthesis.

it assembles all of the components inside the cell. However, the rate of
production of different components inside the cell varies depending on the
length of time it takes for a cell to double. Table 1 shows the doublings/hr,
denoted pu, and the rate of mRNA synthesis/cell, denoted r,.

g | 0610152025
rm | 439113 | 19 | 23

Table 1: Data indicating growth of a bacterial cell in terms of pu
(in doublings/hr) and the rate of mRNA synthesis, 7, x 10° (in nu-
cleotides/min/cell) [1].

Due to the instability of the mRNA, its rate of production closely approx-
imates the rate of growth of a cell. The data are seen to lie almost on a
straight line passing through the origin, which suggests a linear mathemat-
ical model of the form

'm = ap,

for some value of a, which is the slope of the linear model.

A linear least squares best fit of this model to the data above can be
used to find the slope of the model, a. The sum of the squares of the errors
is computed using the formula from the previous chapter. From the data
above and the model, we find each of the error terms as follows:
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e? = (4.3-0.6a)®> €3 =(9.1—a)?
e3 = (13- 1.5a)? %= (19— 2a)?

e? = (23 — 2.5a)?

We expand each of these squared terms and add them together. The result-
ing equation is
J(a) = 13.86a% — 253.36a + 1160.3,

where J(a) is a quadratic function representing the sum of the squares of the
errors. As noted in the previous section, the best fit of the model is found
by finding the smallest value of J(a), which is the vertex of this quadratic
equation.

In Figure 2 notice that the best fit to the data occurs at the vertex of
the parabola traced by J(a). The vertex of the parabola in Figure 2 is
(a,J(a)) = (9.14,2.45).

Quadratics — mRNA

On the left hand side of this applet you can manipulate the slope, a, of the
line to fit the data (as before), while on the right hand side you observe the
value of the quadratic function, J(a).

mRNA Production Least Squares Error
25 T T T T
o~ 60,
‘S 20t ;
X
< 50F
B
s 1 aof
£ : G
1% n
Q -
S 10f | 30
8
°© 20F
3
I ° 10
(9.14, 2.45)
0

0 0:5 i 1j5 é 2:5 3 7 é é 1.0 11
Doubling Time p slope

Figure 2: Example of the java applet Quadratics — mRNA, where the graph

on the left is the line given by best square fit to the data of Table 1. The

graph on the right corresponds to the parabola which z-coordinate of its

minimum value equals the slope of the line on the right.

Below we use this example to illustrate some fundamental ideas that we
use in this book about functions.
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2 DEFINITIONS AND PROPERTIES OF FUNCTIONS

Functions form the basis for most of this course. Simply put, a function is
a relationship between one set of objects and another set of objects with
only one possible association in the second set for each member of the first
set. We have two functions in our example above. The first function has
a set of possible cell doubling times, p, to which was found a particular
average rate of mRNA synthesis, r,,. (You can focus on either the experi-
mental data, which represents a function with a finite set of points, or the
linear model, which creates a different function representing your theoret-
ical expectations.) The sum of the squares of the errors between the data
points and the model, J(a), forms another function, where the set of possi-
ble slopes, a, in the model, each produced a number, J(a), representing how
far away the model was from the true data. We claimed that the best model
is when this function is at its lowest point. One application of Calculus is
to help determine the lowest or minimum value of a function.

Function: A function of a variable x is a rule f that
assigns to each value of z a unique number f(z). The
variable x is the independent variable, and the set of val-
ues over which z may vary is called the domain of the
function. The set of values f(z) over the domain gives
the range of the function.

Often we describe a function by using a graph in the zy-coordinate sys-
tem. By convention we usually let £ be the domain of the function and y
be the range of the function.

The graph is defined by the set of points (z, f(z)) for all
x in the domain. The vertical line test states that a curve
in the zy-plane is the graph of a function if and only if
each vertical line touches the curve at no more than one
point.

Figure 3 depicts two graphs showing a function with its domain and
range and another graph where the vertical line test shows that it is not a
function.

Addition and multiplication of functions are carried out symboli-
cally by standard algebraic techniques. Below we review a couple of exam-
ples, which should be familiar from your previous courses in algebra.
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Addition and Multiplication of Functions
Let f(z) = z — 1 and g(z) = z? 4+ 2z — 3. Determine f(z) + g(z) and
f(z)g().
Solution: The addition of f(z) and g(z) is
fx)+gz)=z—-14+2>+22 -3=2?+3z—4

The multiplication of f(z) and g(z) is

fl@)glx) = (z—-1)(z" +2x-3)
= 34222 -3z—2>-22+3
23 + 2% — 524 3. 4

Range

a Lioem b SNt & Fuict o

Downiany a<x< b

Range < y<d
Figure 3: Diagrams explaining the vertical line test for the graph of a func-
tion.

Addition of Functions
Determinef(z) + g(z) for

fla)= =2 and g(z) =

Solution:
3 2 3(z+2) —2x—6)  x+18
T +9@) = Y T T T e e@+ P —dr-13 <
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Composition of Functions is another important op-
eration. Given functions f(z) and g(x), the composite
f(g(z)) is formed by inserting g(z) wherever z appears

in f(z).
Again this should be review from courses in algebra, so we demonstrate the

composition of functions using an example.

Composition of Functions
Let f(z) = 3z + 2 and g(z) = 22 — 2z + 3. Determine f(g(z)) and g(f(z)).

Solution: The composition f(g(x)) is given by
flg(z)) = 3(z® — 2z + 3) + 2 = 322 — 62 + 11,
while the composition g(f(z)) is

g(f(z)) = Bz +2)* =23z +2) + 3 = 92 + 6z + 3. 4
More worked examples of functions and algebra of functions follow below.

Evaluation and Composition

Consider the functions f(t) =t — 1 and g(t) = 2t + 3.

a. Evaluate f(2)a f(_1)7 f(3)7 g(_2)7 and g(l)

b. Create the composite functions f(g(¢)) and g(f(¢)) and write the
expressions in the simplest form. Evaluate f(g(1)) and g(f(—1)).
Solution: a. In the case of f(2) we substitute a 2 for each ¢ in the given
equation for f(t) to obtain:

f2)=12?%-1=4-1=3.

Using the above method we obtain the following for f(—1), f(3), g(—2), and
g(1)

Q
—
|
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[\]
/\/\
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b. To find f(g(t)) we substitute the entire function g(¢) for ¢ into f(¢).
fla®)=[g®? —1=(2t+3)° -1 =42 + 12t + 9 — 1 = 4> + 12t + 8.
By the same method, we obtain the following:
g(f@®) =2[f()] +3=2>-1)+3=2t>-24+3 =22+ 1.
To find f(g(1)), we substitute 1 for ¢ into f(g(¢)) to obtain:
f(g(1)) =4(1)* +12(1) + 8 = 24.

In an alternate method, we can evaluate g(1) and then substitute this
value into f(¢) to obtain the same answer, as follows:
From Example 4a, we know that g(1) = 5. Then we must evaluate f(5)

to obtain:
f(5)=(5)?—-1=24—1=23 (as expected).

Therefore, using either method, g(f(—1)) yields the following result:

g(f(-1) =2(-1)* +1=3.
Note that g(f(t)) does not equal f(g(t)). q

Domain and Range of a Function

Use the function f(¢) from the previous example.
a. What is the range of this function (assuming a domain of all ¢)?

b. Find the domain of f(t), if the range of f is restricted to f(t) < 0.

Solution: a. Recall that f(¢) = t> — 1. The domain of f(t), unless otherwise
noted, is all real numbers, since any number ¢ substituted into f(t) yields
a real, finite answer. However, the range, or output, of the function may
not include all real numbers. Graphing the function helps visualize both its
domain and range, as shown below.

The range of f(t) includes all numbers along the vertical axis for which
there is at least one point on the graph. As you can see, the range of the
function does not include all real numbers, but does include all numbers
greater than or equal to —1. Therefore, the range of f(t) = [—1,00) or

f(t) > 1.

b. If the range of f(t) is restricted to f(¢) < 0, then the domain, which is
characterized by all numbers ¢ that can be substituted into the given range
of f(t), can also be found by looking at the graph above. Therefore, we can
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fy=t>-1

» ; ; ; ; ;
-3 -2 -1 0 1 2 3

Figure 4: The domain of this quadratic function is all real numbers, while
the range is all values of f(¢) such that —1 < f(¢) < oo.

say that for f(t) < 0, the domain includes (—1,1), or —1 < ¢ < 1. However,
the domain cannot always be accurately determined directly from the graph.

The following is an alternate method in determining the domain of a
function: We know that f(¢) < 0, and that f(t) = ¢> — 1. Therefore, we can

say:
t? —1<0.
Solving for ¢, we obtain:
t? < 1.
Once again, we find the domain to be —1 <t < 1. <

3 QUADRATIC EQUATIONS AND QUADRATIC FUNCTIONS

After straight lines, the next easiest algebraic functions to analyze are the
quadratic functions. You should have studied quadratic equations and the
graphing of quadratic functions (parabolas) in your prerequisite algebra
course. The example below shows a classic problem in Chemistry that re-
quires the use of the quadratic equation.
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3.1 WEAK ACIDS

Many of the organic acids found in biological applications are weak acids.
Also, weak acid chemistry plays an important role when you are preparing
buffer solutions to stabilize certain laboratory cultures. Let us review weak
acid chemistry and see how the algebra of quadratic equations come into

play.

Figure 5: The strong taste of the formic acid that ants secrete makes them
very unpalatable to predators.

i

Formic acid (HCOOH) is a relatively strong weak acid that ants use
as a defense. (The strength of this acid makes the ants very unpalatable to
predators.) The chemistry of dissociation is given by the following equation:

k
HCOOH — H* + HCOO-.
ko

Each acid has a distinct equilibrium constant K, that depends on the
properties of the acid and the temperature of the solution. For formic acid,
K, =1.77x10~%. Let [X] denote the concentration of a particular chemical
species X, then assuming that the formic acid is in equilibrium, it satisfies
the following equation:

_ [HH][HCOO™]
*~ THCOOH]

If formic acid is added to water, then [Ht] = [HCOO~]. Also, if z
is the normality of the solution, then z = [HCOOH] + [HCOO™]. (The
anion HCOO™ must be either in the bound form HCOOH or ionized form
HCOO™ with the total representing the normality of the formic acid added
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to solution.) It follows that [HCOOH] = x — [H*]. Thus,
[HFJ[HT]

ey
or

[HT)? + K,[H'] — K,z =0,

which is a quadratic equation in [H*] and is easily solved using the quadratic
formula. The solution is given by,

1
(] =3 (—Ka + K2+ 4Kax> .

Notice that we only take the positive solution from the quadratic equation
to make physical sense.

Formic Acid

Find the concentration of [H*] for a 0.1 N solution of formic acid.

Solution: Since formic acid has K, = 1.77 x 10~* and we have a 0.1 N
solution of formic acid, then we can substitute into the formula given above
to yield:

1
HY] =3 (—0.000177 ++/(0.000177)2 + 4(0.000177)(0.1)) = 0.00412.

Thus, the concentration of acid in the 0.1 N solution is [HT] = 4.12 x 1073,
which gives a pH of 2.385 (note that pH is defined to be —log;o[H]). <

3.2 REVIEW OF QUADRATIC EQUATIONS
Quadratic equations are covered in standard courses in algebra.

The general quadratic equation is given by the formula:

az? +bx +c¢=0.

There are two methods for solving this type of equation: 1. Factoring the
equation, and

2. The quadratic formula, which has the form:

_ —b+ Vb2 — 4dac

2a

X
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In the example above, we used the quadratic formula because we did not
know either K, or z. Let us demonstrate each of these techniques with a
few examples.

Factoring
Consider the following quadratic equation:
4+ —-6=0.

Find the values of z that satisfy this equation.

Solution: The equation above is easily factored to give the solution.
(z+3)(z—2) =0,

thus,
z=-3 or x=2. 4

Quadratic formula

Find the roots of the quadratic equation:

22 +22—2=0.

Solution: This example is most easily solved using the quadratic formula,
~ —bEVb? —dac
N 2a '

In this case, a =1, b= 2, and ¢ = —2.

_ —244/22 —4(1)(-2) _ -2+12 L1443

o 2(1) 2

T

So the solutions are:

r=—-1%+v3 or x~—2.732 or x~0.732. q

Below are several examples of quadratic equations. These can be solved
by either factoring the quadratic or the quadratic equation.

Solve the following quadratic equations (if possible):

a. 22— 10z +16 =0
b.z2—4z—-6=0
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c. 7?2 -4z +5=0

Solution: a. The simplest approach to this equation is to solve for z by
factoring:
22 — 10z + 16 = (z — 8)(x — 2) = 0.

Solving for z we find that z = 8 or z = 2.

b. This equation does not appear to be easily factorable, so we can
resort to using the quadratic formula, as follows:

—b+ v/b?% — 4ac
2a )
In this case, a = 1, b= —4, and ¢ = —6.

4+ /(-4)2 —4(-4)(-6) 4+/40
= 20 =— =2+ /10.

xr=

ZT

c. This equation cannot be solved by factoring, so we use the quadratic

formula again, where a = 1, b = —4, and ¢ = 5.
. +4+./(—4)?2 - 4(1)(5)  4+/—4
B 2(1) 2

Since we cannot evaluate the square root of a negative number, —4 in this
case, there is no real solution for . However, there are two complex solu-
tions, where 7 is the square root of —1, such that:

4+ 29
= =2+ 1.
2(1) ' <

xr

QUADRATIC FUNCTIONS

The general form of a quadratic function is
f(z) = ax® + bz +c,
where a is a nonzero constant and b and c are arbitrary.

The graph of this function,
y = f(=)

produces a parabola. Notice that for each value of z, there is only one value
of y. However, for most values of y in the range of this function, there are
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two values of z. (A horizontal line intersects the graph in two places).

Intersection of Line and Parabola

Let us find the intersections of the line y = 3—2x and the quadratic function
y=a>—z—9.
Sketch a graph of these functions.
Solution: To find the points of intersection, we set the equations equal to
each other. Thus,
3—2c=2>—-2z-9 or 22+ —12=0.
This equation is easily factored giving
(x+4)(z—3) =0,

so x = —4 or 3. By computing the y values corresponding to x = —4 and 3,

Intersection: Line and Quadratic

25

20

15

10

-5

-10
-6 -4 -2 0 2 4 6

Figure 6: Graphs of a line and a parabola that intersect in two different
points.

we obtain the points of intersection as (—4,11) and (3, —3). Figure 6 shows
the graph of the two functions. <
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More examples of quadratic functions and its applications are developed
below.

Sketch the Graphs

Consider the functions f(z) = 22—1 and g(z) = 2x+3. Sketch both of these
functions on a single graph. Find the z and y-intercepts for both functions.
What is the slope of the line? Find the coordinates of the vertex of the
parabola. Finally, determine the coordinates of the points of intersection of
these curves.

Line and Quadratic

15

of N\ S— H—— L

X
Figure 7: Graphs of Example 11.

Solution: The y-intercept of any function can be found by letting z = 0,
and solving for y. To find the z-intercept of a function, one can set y = 0
and solve for z. The intercepts of f(z) are found as follows. Setting z = 0
for the y-intercept,

O = —1=-1
Letting y = 0 for the z-intercept,

0 = 22-1
22 =1

zr = —1,1.
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So the y-intercept of f(z) is —1, and the z-intercepts are —1 and 1. This
means that the graph of f(z) crosses the y axis at —1, and crosses the z
axis at —1 and 1, which is consistent with the graph of Figure 7.

To find the intercepts of g(z) we have that for a line of the form y =
mx + b, the y-intercept is equal to b. Thus, we can say that for g(x) the
y-intercept must be 3. Letting y = 0 for the z-intercept,

0 = 2z+3
2 = -3
3
r = —5 or — 1.5.

Hence, the y-intercept of g(z) is 3, and the z-intercept of g(z) is —1.5, in
agreement with the graph above.

Note that the degree of a function, or its highest power, gives the number
of possible z-intercepts for the function. This is why f(z) had two solutions
for z, while g(z) had only one solution. The slope of g(z) must be m = 2,
in accordance with the given slope-intercept form of the line.

The vertex of the parabola f(z) is found from the
general form of a quadratic equation:

y=a(x—h)*+k,

where the vertex is the point (h, k), and a is a parame-
ter that measures how wide or narrow the curve of the
parabola is, as well as in which direction it opens.

If @ > 0, the parabola is a U-shape which opens upward, and the vertex falls
at a minimum. For a < 0, the parabola opens downward, with the vertex as
a maximum. In some cases, one must complete the square in order to obtain
this form of the quadratic function.

Therefore, for f(z) = 22 — 1:

y=12°>—-1=1(z —0)*> - 1.
And the vertex is at (h, k) = (0, —1).
There are three methods for finding the vertex:
1. Completing the square.
2. The z-value is x = —b/2a.

3. The midpoint between the z-intercepts.
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The last two of these methods are the most common and easiest techniques.

To find where the two graphs intersect, we first set the two functions
equal to each other and solve for z.

22—1 = 2z+3
2220 -4 = 0.

At this point, there are a couple of different methods we can use to solve
for z, both of which will yield the same solutions. In this case, we will use

the quadratic formula, where a = 1, b = —2, and ¢ = —4.
—b+Vb2 — 2+ —2)2 —4(1)(—4
po TPEVE —dac 22 V/(-2)? —4(1)(-4) — 145 ~3.24 —1.24.

9a 2(1)

Next, we can substitute each of these solutions for z into either equation to
find the y coordinates of intersection.

glz) = 2(1+V5)+3~2(3.24) +3~9.48
glz) = 201 —V3)+3~2(—1.24) + 3 ~ 0.52.

Therefore, the points of intersection of the two functions are (3.24,9.48) and
(—1.24,0.52). <

3.4 APPLICATIONS

Throwing a Ball

A Dball is thrown vertically with a velocity of 32 ft/s from ground level
(h = 0). The height of the ball satisfies the equation:

h(t) = 32t — 162
a. Sketch a graph of h(t) vs. t.

b. Find the maximum height of the ball, then determine when the ball
hits the ground.

Solution: a. Note that the function is a relationship between time and the
height of the ball. If we start with both time and height equal to zero,
the only relevant part of the graph is that which occurs above the t-axis.
To make a sketch of the graph of this quadratic function we need to find
the t-intercepts and the vertex of the parabola. We find the ¢-intercepts by
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factoring the function for the height of the ball:
h(t) = 32t — 16t* = —16t(t — 2).

From the factored form of h(t), it follows that h(t) =0 when ¢t =0 or ¢ = 2.
These are the t-intercepts.

After finding the t-intercepts, the symmetry of the parabola easily gives
the t value of the vertex by taking the midpoint between the intercepts. In
this case, the midpoint between 0 and 2 is ¢t = 1. Evaluating h(1), we have
h(1) = 16 ft, so the vertex occurs at (1,16).

Height of Ball
(1] SR s TN I
= ht)=32t- 16
= 10p S R N
= : :
2 :
[0} :
I :
N R — RS N .
O L I L
0 0.5 1 15 2

t (sec)
Figure 8: The height of a ball thrown in a vertical way satisfies a parabolic
function with respect to time.

b. Since the graph of Figure 8 shows the height as a function of time, we
can see that the maximum height of the ball occurs at the peak or vertex
of the parabola.From our calculations above, it follows that the maximum
height of the ball is 16 ft.

From the ¢-intercepts, we can readily find when the ball hits the ground.
Clearly, this occurs at t = 2 sec. <

Formic Acid Revisited

Use the information in Section 3.1 to determine the concentration of [H*]
for a 1 N solution of formic acid. Also, find the pH of this solution.
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Solution: From Section 3.1, we know that K, = 1.77 x 10~*. In this case
we are also given that z = 1. The given formula for [H"] is as follows:

[H)? + K,[H'] — K,z = 0.

Using the quadratic formula, we solve for [H "] as follows:

—1.77 x 107 + /(1.77 x 10 %)2 — 4(1)(1.77 x 10 %)(1)

= 2(0)

~ 0.0134.

Note that the variable in this quadratic equation is [H*], since it has both
a quadratic and a linear term. Since it is impossible to obtain a negative
amount or concentration of a material, we throw away the negative answer,
and keep only that which is positive. Therefore, we have an acid concentra-
tion of 0.0134.

The pH is found by,

—logo[H] = —log,[0.0134] ~ 1.87. 4

Lambert-Beer Law

A spectrophotometer uses the Lambert-Beer law to determine the concen-
tration of a sample (c) based on the absorbance of the sample (A4). The
ion dichromate forms an orange/yellow that has a maximum absorbance at
350 nm and is often used in oxidation/reduction reactions. The Lambert-
Beer law for the concentration of a sample from the absorbance satisfies the
linear relationship

c=mA,

where m is the slope of the line.

a. Table 2 shows the data collected on some known samples.

A [0.12]0.32[0.50 | 0.66
¢ (mM) | 0.05 | 0.14 | 0.21 | 0.30

Table 2: Data collected for the concentration (¢) of a sample, and the
absorbance (A) of the same sample.

Follow the first example of the section to determine the quadratic func-
tion J(m) that measures the sum of the squares of the error of the line to the
data. Sketch a graph of J(m) and find the vertex of this quadratic function.
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b. Sketch a graph of the data and the line that best fits the data. Then
use this model to determine the concentration of two unknown samples that
have absorbances of A = 0.45 and 0.62.

Solution: a. From 3, we know how to calculate the sum of squares of the
error, as a quadratic function of m:

J(m) = e+ e54e3+ef =(0.05—0.12m)% + (0.14 — 0.32m)>
+ (0.21 — 0.50m)? + (0.30 — 0.66m)>.

Expanding and simplifying these terms, we obtain:

J(m) = 0.8024m? — 0.7076m + 0.1562.

Sum of Square Errors

E
=
m
Figure 9: Parabolic function for the sum of square errors for the data in
Table 2.

The quadratic function J(m) forms a parabola, which because the lead-
ing coefficient is positive, points upward. It follows that the minimum value
of this least squares quadratic function occurs at the vertex of the parabola.
The easiest way to find the m-value of the vertex, m,,, is

b 0.7076
=2 = 00 4410,
= 790 T 2(0.8024)

This gives the best slope of the line fitting the data for the Lambert-Beer
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Law in this example.
By evaluating the sum of square error at m = 0.4410, we find J(0.4410) =
0.0003), which is the least sum of square error possible for this example.

Thus, the vertex for J(m) is (0.4410,0.0003). It follows that the best model
for the data in Table 2 is

c(A) = 0.4410 A.

b. Graphing the linear best fit to the data of Table 2, we obtain the
graph of Figure 10.

Lambert—-Beer Law
0.35
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©
N
T

Concentration (mM)
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0.05p & T — E— R — .

0 0.2 0.4 0.6 0.8
Absorbance (A)

Figure 10: Linear best square fit to the data given in Table 2.

Above is the best linear model for the given data, ¢(A) = 0.4410 A. For
an absorbance A = 0.45 or 0.62, we simply plug this value into the best fit
line to obtain the concentration:

¢(0.45) = 0.441(0.45) = 0.198
c(0.62) = 0.441(0.62) = 0.273.

Therefore, for absorbances of 0.45 and 0.62, our model predicts concentra-
tions of 0.198 and 0.273, respectively. <
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4 EXERCISES

1. Consider the functions f(¢) = 2t 4+t and g(t) =t — 2.

a. Evaluate f(0), f(2), g(—2), and g(3).

b. Create the composite functions f(g(¢)) and g(f(¢)) and write the
expressions in the simplest forms.

c. Evaluate f(g(1)) and g(f(1))-

2. Consider the function f(z) = 30 + z — z2.
a. What is the range of this function (assuming a domain of all z)?
b. Find the domain of f(z), if the range of f is restricted to f(z) > 0.

Solve the following quadratic equations (if possible):

3. 2248z +15=0 4. 22 +4z -3 =0
5. 222 =3z +1=0 6. 22—z —-20=0
7.224+32-5=0 8.22-9=0

9. 222 — 52z =0 10. 22 —22+2 =0

In each of the following problems, sketch the pair of functions on a single
graph. Find the z and y-intercepts for both functions. What is the slope
of the line? Find the coordinates of the vertex of the parabola. Finally,
determine the coordinates of the points of intersection of these curves.

1. f(t) =4 —t? and g(t) =t — 2
12. f(z) = 2% + 4z + 4 and g(z) = 4 — 2x.

13. A ball is thrown vertically with a velocity of 48 ft/sec from a platform
that is 64 ft in the air. The height of the ball satisfies the equation:

h(t) = 64 + 48t — 16>

a. Sketch a graph of h(t) vs. t.
b. Find the maximum height of the ball, then determine when the ball
hits the ground.

14. Acetic acid arises in the bacterial breakdown of many fruits often re-
sulting in vinegar. The equilibrium constant (ionization constant) for acetic
acid is K, = 1.75 x 107°. Use the information developed in the notes for
formic acid as a guide to determine the concentration of [H*] and pH of
0.1N and 1N solutions of acetic acid.

15. A rectangle with a length z and width y has a perimeter of 40 cm.
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a. Write an expression for the width y as a function of the length =,
using this information.

b. The area of a rectangle is A = xy. Substitute the expression for y
into this formula for the area to produce a function of the area as a function
of = alone.

c. Sketch a graph of the area as a function of x and determine what value
of z produces the largest area. What geometric figure does this produce?

16. The braking distance d (in feet) of a car is divided into two components.
One part depends on reaction time. The number of feet for reaction time
is about the same as as the speed of the car in miles/hour, v. The other
component is due to friction, which is a force that is proportional to the ve-
locity squared. Adding these two components together, we find the braking
distance satisfies the equation

2
v
d= —.
v+ 20
Find the braking distance at 60 miles/hr. Also, determine all velocities that
result in a braking distance that is less than 75 feet.

17. For animals that reproduce seasonally, we find that their population
satisfies a difference equation

Pn-i-l:Pn"‘g(Pn)a

where P, is the population in the n** season and g(P) (in individuals per
generation) is the growth rate of the population. This equation simply says
that the population in the next generation is equal to the population of
the previous generation plus the net growth of the population over the last
season.

a. Suppose that the growth rate g(P) satisfies the quadratic equation

g(P) = 0.02P — 0.000025P?.

Sketch a graph of this growth rate function.

b. The population is at equilibrium when the growth rate is zero. Find
the equilibrium populations.

c. The growth rate is at a maximum at the vertex of parabola. Find the
population that produces this maximum growth rate and what that growth
rate is.
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18. The Lambert-Beer law for absorbance of light by a spectrophotometer
is a linear relationship, which can have the form

A =me,

where ¢ is the concentration of the sample, A is absorbance, and m is the
slope that must be determined from experiments.

a. Below are data collected on samples from a collection of acid standards
using an acid indicator.

c(mM) | 1 | 2 | 5
A 20] 4198

Write a formula for the quadratic function J(m) that measures the sum of
squares error of the line fitting the data. Find the vertex of this quadratic
function. This gives the value of the best slope m, while the J(m) value of
the vertex gives the least sum of squares error.

b. Use this model (with the best value of m) to determine the concen-
tration of an unknown acid with absorbances of A = 3.5 and 6.2.

19. In looking through some old photos, a woman finds a picture of her
great-grandfather standing near the family home, where she now lives. In
the photograph, she measures the height of the roofline, which she knows to
be 20 ft, as 3.3 cm. The 2 ft wide window measures 0.5 ¢cm on the photo, and
the distance from the front door to the oak tree at the driveway is 12 feet,
which is 2 cm in the photograph.

a. The conversion of measurements in the photo p to measurements in
actual distance d is given by the formula

d = kp.

Write a formula for the quadratic function J(k) that measures the sum of
squares error of the line fitting the measurements in the photo. Find the
vertex of this quadratic function. This gives the value of the best slope k,
while the J(k) value of the vertex gives the least sum of squares error.

b. In the photograph, her great-grandfather is 1 cm tall. Her mother
remembers her grandfather as a tall man of about 6 ft , whereas her father
thinks he was shorter, about 5 ft 6 inches (5.5 ft). Use the model (with the
best value of k) to predict the height of the great-grandfather and determine
whether the mother or father better remembers the height of her great-
grandfather.
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CHAPTER 5:

OTHER FUNCTIONS AND
ASYMPTOTES

The last chapter introduced quadratic functions and gave the fundamen-
tal definitions for a function. This chapter extends the material from the
previous one to other functions. A closer examination of the domains and
ranges provide interesting information about the behavior of a function.
The graphs of certain functions exhibit asymptotic behavior, such as the
saturation effects that are often observed in biological phenomena.

1 MICHAELIS-MENTEN ENZYME KINETICS

Life forms are often characterized by their distinct molecular composition,
especially proteins. Proteins are considered the primary building blocks of
life. Enzymes are an important class of proteins that catalyze many of the
reactions occurring inside the cell. An enzyme has the property of facilitat-
ing a biochemical reaction, such that the reaction can occur at biological
temperatures. Enzymes are noted for their specificity and speed often un-
der a narrow range of conditions. For example, 8-galactosidase catalyzes the
break down of lactose into glucose and galactose, then other enzymes fur-
ther break down these sugars to produce energy for the cell. Urease rapidly
converts urea into ammonia and carbon dioxide, very specifically with no
other known functions.

The basic mechanism used for simple enzyme reactions, known as the
Michaelis-Menten mechanism, has been shown in many experimental situa-
tions. The reactants of enzyme reactions, called substrates and denoted by
S, are presumed to combine reversibly to the enzyme F to form a enzyme-
substrate complex ES. The complex can decompose irreversibly to form a
product P and free the enzyme. The reaction can be written as follows:

k1 ks
E+S &= ES — E4P
k1

The law of mass action can be applied to the biochemical equations
above to transform them into mathematical equations that describe the ki-
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netics of the molecular reactions. These mathematical equations are known
as differential equations, which will be introduced later on. The complete
dynamics of the reactions occurring in an enzyme system are often quite
complicated, yet may be unnecessary for understanding the basic reaction
of the substrate being transformed into the product.

Frequently, it has been observed that the enzyme-substrate complex
forms extremely rapidly, while the forward reaction (also known as turnover
number), ko, occurs on a slower time scale. It is assumed that the complex
is formed almost instantaneously, a quasi-steady state, then the forward re-
action proceeds from there. This assumption gives one of the derivations
of the Michaelis-Menten enzyme reaction rate. When a quasi-steady state
approximation is made for the initial equilibrium between the free enzyme
and substrate and the complex, then the rate of the forward reaction to the
product is written as

_ ko[EJo[S]  VIS]
C Km+[S] Km+[9)

where [S] is the substrate concentration and V' and K, are kinetic constants
determined by the reaction given above. The constant V (also commonly
denoted V,,4;) is called the maximal velocity of the reaction. K,, is the
Michaelis constant, and its value is the value of the substrate concentration
at which the reaction achieves half of the maximum velocity. This function
R is a rational function.

Pate [1] shows that binding of ATP to myosin in forming cross-link
bridges to actin for the power stroke of striated muscle tissue satisfies a
Michaelis-Menten kinetics. In this particular example, the reaction velocity
is an actual velocity of motion, where the chemical energy of ATP is trans-
formed into mechanical energy by movement of the actin filement. The value
of K,, gives the concentration of ATP that produces half the maximum
velocity of motion for the actin filement. For rabbit psoas muscle tissue,
experimental measurements give Vy,4, = 2040nm/s and K,, = 150uM.

R([S])

Other Functions — Michaelis-Menten

In this applet it is possible to observe how the reaction rate R varies as a
function of [S] = [ATP] for various values of the maximal velocity V and the
Michaelis constant K,,.

Figure 1 shows typical Michaelis-Menten behavior where the initial rise in
the reaction velocity is almost linear, but as the concentration increases,
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there are diminishing returns with the eventual saturation of the reaction
at some maximal rate (the enzymes are working as hard as they can).

Michaelis—Menten Kinetics
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Figure 1: Michaelis-Menten kinetics for rabbit psoas muscle tissue.

2 POLYNOMIALS AND RATIONAL FUNCTIONS

One of the most important class of functions, which are commonly studied,
are the polynomials.

The most general polynomial of order n is written:
Pp(2) = apz™ + ap 13"+ an 22" 2+ L+ T + ay,

where the coefficients a; are constants and n is a positive
integer (an # 0).

In the second chapter of this book, we studied linear functions. These are
simply first order polynomials. The last chapter reviewed quadratic func-
tions, which are second order polynomials.

Polynomials are often used in modeling as a means of fitting complicated
data. When a polynomial curve fits the data well, then the polynomial,
as a function, can be used as a simple model to aid in the interpretation
of the data and to construct predictions of how other experiments should
behave. There are excellent routines for finding the best least squares fit of
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a polynomial to data (such as an Excel Trendline). Polynomials are defined
for all values of z and form very smooth curves. This makes it easy to use
them for interpreting data, such as where minimum and mazimum values
occur or to compute the area under the curve. These phenomena are topics
that Calculus covers and will be detailed later in this book.

As noted above, polynomials are considered nice functions because of
their well-behaved properties. Yet even something as basic as finding the
roots of an equation (setting p,(z) = 0) for a polynomial becomes quite
difficult for n > 2, and rarely even possible for n > 4. We have the quadratic
formula, but few know the formulae for handling third and fourth order
polynomials (though they do exist).

Cubic Polynomial
Consider the cubic polynomial given by
p(r) = z3 — 322 — 10z.

Find the roots of this equation and graph this cubic polynomial.

Solution: Since we do not have a quadratic formula for cubic equations, we
must hope to find a factorization in order to find the roots of the polynomial.
In this case, to find the roots, we solve

p(z) = 23 — 32% — 10z = z(x — 5)(z +2) = 0.

It follows that the roots of this polynomial are z = 0,—2, or 5. A
graph of this cubic polynomial is below with the roots clearly visible as the
z-intercepts. Later we will learn (through techniques of Calculus) to find
the high point occurring at (—1.08,6.04) and the low point occurring at
(3.08,—30.04). <

Factorizing

Let us solve the following equation:

=52 +4=0.

Solution: We factor this equation into the following:
(2 —1)(2? —4) = (z — 1)(z + 1)(z — 2)(z +2) = 0.

Thus, the solution is given by z = —2,—1, 1, and 2. <
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Cubic Polynomial
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Figure 2: Graph of the cubic polynomial given in Example 1.

Polynomials have their limitations, so they are often not appropriate for
certain modeling situations. We will need to extend the classes of functions
that we study through this course. Our opening example showed Michaelis-
Menten kinetics where the reaction rates saturated. This type of behavior
is best studied using rational functions.

2.1 RATIONAL FUNCTIONS

A function r(z) is a rational function if p(z) and ¢(x)
are polynomials and

Hence, rational functions are the quotient of two polynomials. We saw
this form of a function in the biochemical analysis of enzyme kinetics given
above. The numerator and the denominator were both linear functions, i.e.,
R([S]) is constructed of the quotient of the linear functions p([S]) = VIS]
and ¢([S]) = K + [S].

Since a rational function is a quotient, we have to worry more about
the domain of this type of function. If the denominator, g(x), is zero, then
the rational function, r(z), becomes undefined at that value of z. Thus,
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the domain of the rational function, r(z), is all z such that ¢(z) does not
equal zero. The roots of the polynomial ¢(z) are candidates for vertical
asymptotes of r(z). Also, when the order of the polynomial in the numerator
of a rational function is less than or equal to the order of the polynomial of
the denominator, then a horizontal asymptote occurs.

When the graph of a function f(z) approaches a vertical
line, z = a, as = approaches a, then that line is called a
vertical asymptote

Note a function cannot continuously cross a vertical asymptote.

When the graph of a function f(z) approaches a horizon-
tal line, y = ¢, as  becomes very large (z — o0) or z
becomes very small (x — —o00), then that line is called a
horizontal asymptote

Note a function may cross horizontal asymptotes.

Sketch of a Rational Function

Let us examine the rational function

r(z) = 10z

247

Find the domain of this function, the  and y-intercepts, and vertical and
horizontal asymptotes, then sketch a graph of the function.

Solution: We see that the denominator is zero when z = —2. Thus, the
domain of this function must exclude z = —2. Since 7(0) = 0 and 10z /(2 +
z) = 0 implies that z = 0, the = and y-intercepts are easily seen to be zero.
Thus, this function passes through the origin.

As z gets very close to —2, the function becomes undefined and the
value of r(z) goes to either positive or negative infinity. (See the graph of
Figure 3.) Thus, £ = —2 becomes a vertical asymptote. If you consider
very large values of z, then the 2 in the denominator becomes insignificant,
so the value of r(z) approaches 10z/z = 10. This becomes the horizontal
asymptote. The graph of Figure 3 shows r(z) with its vertical and horizontal
asymptotes. N

Below, we continue with more examples of rational functions.
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Rational Function
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Figure 3: Graph of the rational function given in Example 3.

Let us solve the following equation:

2
x+x—6_3'

Solution: Provided z is not 6, we can multiply through by = — 6 giving:

7> —6z+2=3z— 18

or,
22 — 92420 = (z — 4)(z — 5) = 0.
Thus, z =4 or 5. N
Consider the function
_z+ 2
Y= =3

Find the domain of the function and the z and y-intercepts. Determine any
vertical or horizontal asymptotes. Sketch the graph of this function.

Solution: When the denominator of a rational function approaches zero,
the value of the function approaches positive or negative infinity. Therefore,
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these values for x must be excluded. Since the denominator is zero when
z = 3, the domain is all real numbers, such that z # 3. The y-intercept
is found by substituting z = 0, so y = 2/(—3) = —2/3. The z-intercept is
found by solving (z +2)/(z —3) =0orz+2=0,s0x = —2.

Since the degree of the numerator is equal to the degree of the denominator,
there is a horizontal asymptote. For large x, we can neglect the constants

in the numerator and the denominator. It follows that
_z+2 T

— —=1.
z—3 T

y=Xx+2)/(x-3)
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Figure 4: Graph of the rational function of Example 5.

Thus we have a horizontal asymptote at y = 1. The denominator is zero at
z = 3, so there is a vertical asymptote at £ = 3. The graph of the above
function is shown in Figure 4 with the asymptotes drawn with dashed lines.

<

Consider the function
452

4— g2
Find the domain of the function. Determine any vertical or horizontal
asymptotes. Sketch the graph of this function.

y:

Solution: The domain of the function is again determined by finding when
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the denominator equals zero. The denominator is easily factored, so
4—2%=2+2z)(2— )
or,

—(z+2)(z—2) = 0
r = =£2

Therefore, our domain is all real numbers such that £ # +2. The values
excluded from the domain represent vertical asymptotes. Thus, we have
two vertical asymptotes at £ = —2 and £ = 2. Since the degree of the
numerator (2) is equal to that of the denominator, we have a horizontal
asymptote. Letting x approach positive or negative infinity, we can ignore
the 4 in the denominator to obtain:
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Figure 5: Graph of the rational function of Example 6 with three asymp-
totes.

The horizontal and vertical asymptotes are drawn with dashed lines on the
graph of Figure 5. The only intercept for this graph is the origin, (0,0). This
is an even function (f(—z) = f(z)), so it is symmetric about the y-axis. To
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sketch the graph, one can select a few z-values and take advantage of how
functions behave with asymptotes to produce the graph. N

Lineweaver-Burk Plot

The Michaelis-Menten rate function traces out a hyperbola. Suppose we
write the velocity function as
_ VuaslS]

K +[9]

If we take the inverse of this expression, we have

1 Kn+[S§]  Km 1 1

v B Vmax[s] B Vmax [S] Vmax.

If we let y = 1/V and = = 1/[S], then the equation above is easily seen to
form a line,

14

K, N 1
= T _— .
Y™ Voax ' Vinax

The slope of this line is K,,/Vyqaz, the y-intercept is 1/Vpqz, and the z-
intercept is —1/K,,. Figure 6 shows the graph of this straight line, the
Lineweaver-Burk plot.

Lineweaver—Burk Plot
5 T T T T

Slope =K _/V
m  ma

X

v

-1 0 1 2 3 4 5
1/[8]
Figure 6: General graph for the Lineweaver-Burk function obtained from
the Michaelis-Menten rate function.
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Thus, by graphing 1/V versus 1/[S], with data on an enzyme (forming a
line), the Lineweaver-Burk allows easy identification of the Michaelis-Menten
constant K, and the maximum velocity V.. N

Another Enzyme Kinetics

Suppose an enzyme satisfies the equation

2
y = 20081
10 + [S]
a. Sketch a graph of this function for 0 < [S] < 100. Find any horizontal
asymptotes.

b. Determine the linear equation for z = 1/[S] and y = 1/V, then create
the Lineweaver-Burk plot. Find the intercepts on the z and y axes. What
is the slope for this line?

Solution: a. Before graphing, it is helpful to find any asymptotes. Since the
degree of the numerator (1) is equal to that of the denominator, we have a
horizontal asymptote. As S approaches positive infinity, we can ignore the
10 in the denominator, and we find a horizontal asymptote at y = 20. The
asymptote is drawn with dashed lines in the graph of Figure 7.

V = 20[S]/(10 + [S])

oob - ________Horizontal Asymptote

0 50 100 150 200 250
[S]
Figure 7: Graph of the velocity function of Example 8.

b. For z = 1/[S] and y = 1/V, we have [S] = 1/z and V = 1/y.
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Substituting these into the given equation and solving for y, we obtain

1 2001/z) 20

y 10+ (1/z) 10z +1

or,
10 1 1 1

20 2 20

Y

Lineweaver—Burk Plot

v

-1 0 1 2 3 4 5
1/[S]
Figure 8: Lineweaver-Burk function of Example 8

The slope of this line is 1/2, and the y-intercept is 1/20. The z-intercept
is found by setting y = 0, and solving for . Therefore, the z-intercept is
equal to —1/10. q

3 ACID CHEMISTRY REVISITED

In Section 3.1 of Chapter 4, weak acids were examined. To find the concen-
tration of the acid, [H*], the quadratic formula was needed. The concen-
tration of acid depends on the equilibrium constant and the normality, z, of
the weak acid solution. From the previous section, we have

1
] = 3 (—Ka + K2+ 4Ka:c) .

Since the equilibrium constant is fixed depending on the particular weak
acid, we see that the [H*] is a function of the normality of the solution, .
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We see that this function is neither a polynomial nor a rational function,
but the square root function. Figure 9 (right) shows a graph of the [HT] as
a function of = for formic acid, where K, = 1.77 x 10~*. Note that this
function has the shape of a quadratic function rotated 90°.

The pH of the solution is given by — log;,([H*]), which becomes a com-
posite function. The graph is shown in Figure 9 (left), but we will delay
studying logarithms until the next section.

pH of Formic Acid Solution Formic Acid Solution

0.012f

0.01f

0.008f

[H]

0.006f

pH = —log, [[H"]

0.004¢

0.002

0:2 0:4 0j6 0:8 1 CO 0:2 014 0:6 0j8 1
Normality (x) Normality (x)

Figure 9: Left: Logarithmic function for the pH of the formic acid H*.

Right: Graph of the function of the concentration of acid Ht with respect

to normality of the solution .

y=(x+2"

-2 -1 0 1 2 3 4 5

Figure 10: Graph of the square root function of Example 9.
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4 SQUARE ROOT FUNCTION

The square root function is the inverse of the quadratic function. It is
important to note that the square root function is only defined for positive
quantities under the radical. Thus, we have this important rule:

The domain of a square root function is found by solving
the inequality for the function under the radical being
greater than zero.

Counsider the function

y=vx+2.

Find the domain of this function and graph the function.

Solution: The domain of this function satisfies z + 2 > 0, so this example
has its function defined for £ > —2. The graph is shown in Figure 10. <

More Square Root Functions

Consider the following functions with square roots. Find the domains and
ranges of these functions, then sketch their graphs.

a.y=+8-2z b. y =8 — 2z — 12

Solution: a. The quantity under the square root sign must be positive, so
to find the domain we must first solve

8 — 2z >0,

which gives
z < 4.
Thus, the domain is < 4. The range can be seen from the graph of Figure

11 (left) and satisfies y > 0. The graph of the function is given in Figure 11
(left).

b. The quantity under the square root sign must be positive, so to find
the domain we must first solve

8 — 2z — 22 > 0.

To solve this, we first determine when 8 — 2z —2? = (4 +z)(2 —z) = 0 or
z = —4 and 2. These values give the boundary of the domain. It is not hard
to see that the domain is given by —4 < x < 2. (This quadratic function
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Figure 11: Left: Graph of the square root function of Example 10a. Right:
Graph of the square root function of Example 10b.

is positive in this interval and negative outside this interval.) The largest
value under the radical occurs when x = —1 with a value of 9. Thus, the
range of the function is given by 0 < y < 3. This can also be seen from the
graph of Figure 11 (right). (This graph is a semi-circle.) N

5 EXERCISES

Solve the following equations for x.

1. 23+ 322 —42 =0 2. 1222 — 423 — 24 =0
24
3. x— =3 4.:3—2:0
x+ 2 x
4 3
~ 21 . -
5 o Rl 6. v+ ] 5

For each of the following functions, determine the domain. Find any x or
y-intercepts and locate any vertical or horizontal asymptotes. Sketch the
graphs of the functions:

1 1
7. y= 8.y:x+ 9. y=+V2x -4
2 — 6 z—1
22
10. y = —— 1 y= —— 12. y = /25 — a2
4 —9 T4 — 2z
2 2
T zc+1
13. y = 14. y =+/9 — 15, y=————
L Y o Y= 4r+3
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16. Suppose an enzyme satisfies the equation

_20[8]
10+ [9]

a. Sketch a graph of this function for 0 < [S] < 100. Find any horizontal
asymptotes.

b. Determine the linear equation for z = 1/[S] and y = 1/V, then create
the Lineweaver-Burk plot. Find the intercepts on the z and y axes. What
is the slope for this line?

17. The growth of a culture of yeast is empirically shown to satisfy the
equation

10 + 0.2¢2
Pt)= ———
(t) 1+ 0.001¢2°

where ¢ is in hours and P is the density of the population (number of
yeast/cc).

a. Find the density of the yeast culture at ¢ = 0 and 10 hours.

b. Sketch a graph of P(t) for ¢ > 0. Show any asymptotes.

18. Consider a weak acid with K, = 0.0001.

a. Find the [H"] for a 0.1N solution of this acid.

b. Let z be the normality of the weak acid. Sketch a graph of the [H™]
for0 <z <1.

19. Eutrophication During an algae bloom, a pond becomes eutropic
with oxygen levels dropping to near zero at the bottom because of decaying
organic matter. Suppose that the level of O, dissolved in the water varies
with the depth from the surface according to the function:

P(y):3\/9_ )

where y is the depth in meters from the surface and P is in mmHg of
dissolved Os.

a. Find the domain for P(y) and sketch a graph of this function.

b. If fish need at least 6 mmHg of dissolved Og, then how deep can the
fish survive.
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CHAPTER 6:
ALLOMETRIC MODELING

This section introduces allometric or power law models. Many biological
phenomena show an allometric relationship, such as how height relates to
weight for a species. To manage the mathematics underlying a power law
function, we review the properties of exponential and logarithmic functions.
The mathematical properties discussed below are critical to analyzing many
biological problems.

1 CUMULATIVE AIDS CASES

The advent of AIDS in modern society has had a significant impact on both
personal behavior and public policy. Some scientists believe that this virus
may have one of the greatest effects on human society in the 215 century.
The new protease inhibitors have significantly improved the quality of life
for those who are HIV positive; however, this has come at a substantial cost
to society and are unavailable to the majority of infected people in other
countries. The new drugs are extremely expensive, are difficult to take
because of the complex scheduling requirements to be effective, and have
many strong side effects (besides not always working for a particular person
or strain of the HIV virus). In turn, there are a number of people who are
now avoiding safe sex practices as they no longer fear the ”Death Sentence”
that used to be associated with an HIV infection. There is a vast literature
available on this topic, including many mathematical models. There are
good images to help visualize the HIV-virus attacking human immune cells
readily available on the web!.

There is an important need for our society to know the extent of this
disease from both an economic and sociological perspective. In order to
make informed public policy, we need to know what is the expected case
load in the upcoming years. However, it is clearly an extremely complex
modeling problem. Table 1 gives the cumulative cases of AIDS between
1981 and 1992 [1].

"http:/ /www-rohan.sdsu.edu/~jmahaffy /courses/s00a/math121 /lectures/
allometic_modeling/hiv.html, last visited 05/18/04.
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S Allometric — U.S.A.

JAvA
You can view an animated.gif showing the spread of the disease (through
mortality statistics) over a similar period of time through out the U.S.A.

Year | Cumulative AIDS
Cases (thousands)

1981 97

1982 709

1983 2,698

1984 6,028

1985 15,242

1986 29,944

1987 52,902

1988 83,903

1989 120,612

1990 161,711

1991 206,247

1992 257,085

Table 1: Data of the Cumulative AIDS (in thousands of cases) through out
the U.S.A. from 1981 till 1992.

A quick glance at the data will clearly show that it is not linear, so a
linear model is not appropriate. There are general methods for finding the
least squares best fit to nonlinear data. However, these techniques are very
complicated an often difficult to implement.

j§2 Allometric — Non-linear Best Square Fit

AVA

This applet helps you find the best nonlinear least squares fit to the data
for cumulative AIDS cases (also refer to the Section 7 at the end of this

chapter), which is different from the technique we will show below.

2 ALLOMETRIC OR POWER LAW MODEL

As noted above, using a least squares fit to nonlinear data can be extremely
difficult. However, there are a few standard nonlinear models used in biolog-
ical applications that are more easily analyzed. The technique that we will
develop in this section is known as the Power Law of Modeling. It is also
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referred to as Allometric Modeling. Allometric models are used regularly in
modeling complex biological phenomena where the actual mechanisms un-
derlying the model behavior are too complex to describe in detail, but there
is a need to be able to make some predictions.

Allometric models assume a relationship between two
sets of data, £ and y, that satisfy a power law of the

form

y = Aa’,
where A and r are parameters that are chosen to best fit
the data.

Note that the allometric model assumes that when z = 0, then y = 0. As
always, you should be aware of the limitations of this type of modeling. This
method provides its best predictive capabilities when examining a situation
that lies between the given data points. For example, if the number of species
of herptofauna on Caribean islands is determined for a collection of islands
with varying areas, then this model would give a reasonable estimate for the
expected number of species on another Caribean island with an area that
lies between the collected data. It would not be appropriate for extending to
a large continent as the area is significantly beyond the range of the collected
data. It would not be appropriate for another island such as Iceland, which
lies in a different type of climate and has a different geography.

Allometric models are found by taking the logarithms of the data (or
graphing the data on log-log graphs) and seeing if the data lie roughly on
a straight line. If this is the case, then a power law relationship makes a
reasonable model.

Allometric — Cumulative AIDS

This applet shows the linear least squares fit to the logarithms of the data
for cumulative AIDS cases, and the graph to the right shows the modeling
relationship with a normal scale. The allometric model has z be time in
years since 1980 and y be the cumulative AIDS cases. See Figure 1 as an
example of such an applet.

This applet can be adjusted until you reach a minimum least squares for
the log of the data with J(A,r) = 0.10. The best slope is r = 3.27 and the
best intercept is In(A) = 4.42. We will show later that this gives the best
fit power law for this model as

y = 8270327,
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x 10

Cumulative Aids Cases 5 Cumulative Aids Cases

o
N

2.5F

-
=

2

=
o

1.5F

Log (Aids Cases)
Aids Cases

1t

6f 0.5F

0 0.5 1 15 2 25 G0 2 4 6 8 10 12
Log (Years after 1980) Years after 1980

Figure 1: Example of the two graphs obtained from the applet Allometric
— Cumulative AIDS.

The graph shows that the power law provides a reasonable fit to the data.
Unfortunately, the fit is weakest at the end where we would like to use the
model to predict the cumulative AIDS cases for the next year. The model
predicts 366, 990 cases in 1993, which is clearly too high from the given data.
However, the analysis does give some indication of the rate of growth for this
disease, which provides a first approximation for improved models and could
be applied to expected spread of another disease with similar infectivity as
HIV. This modeling technique is still valuable for analysis of many other
data sets and occasionally can provide insight into the underlying biology
of the problem.

%2/\ Allometric-Nonlinear Least Squares

A better fit to the data is shown in the nonlinear least squares Section 7
that can also be viewed in this site.

Our least squares best fit to the data of Table 1 uses the logarithms of
the data. To detail how the parameters A and r in the model are found, we
need to review the properties of exponents and logarithms.

3 REVIEW OF EXPONENTS AND LOGARITHMS

There are several properties of exponents that you should remember from
algebra.
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1. a™a™ = g™t" 2. (@™)" =a™
m
3.am= = 4, L = gmn
am am
5. (ab)™ = a™b™ 6. a® =1

These properties can be used to simplify expressions involving exponents.

The expressions for the rules of exponentiation above are written with an
arbitrary base, a, since these are general rules. The reader is undoubtedly
most familiar with ¢ = 10, since our number system is based on 10. Most of
your science courses use scientific notation to help with the management of
numbers ranging over a broad scale of values. In Calculus and for a variety
of biological modeling applications, we will show another base, a = e, is very
useful. This base is readily found on scientific calculators. At this point in
the text, we only note that e is an irrational number between 2 and 3 with

e~ 2.71828.

To solve equations that have exponents in them, we need to have the
inverse function of the exponent. This is the logarithm.
If you are given the equation,
y = a,
then the inverse equation that solves for z is given by

z = log, y.

The a in the above expression is called the base of the logarithm. Again
there are a collection of properties of logarithms that prove useful for solving
equations and simplifying expressions.

1. log(ab) = log(a) + log(b) 2. log(a™) = mlog(a)
3. log(1/a) = —log(a) 4. log(a/b) = log(a) — log(b)
5. log,(a) =1 6. log(1) =0

Note that in the properties of logarithms, we only needed to specify the
base of the logarithm for Property 5. All other properties are independent
of which base is used.

The two most common logarithms that are used are log;; and log,. The
latter logarithm is called the natural logarithm, often denoted log or In, and is
the one most commonly used (and is the default on your calculator). It is the
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inverse for exponentials with base e. As the techniques of Calculus become
developed in this text, you will learn about the importance of the natural
base e. For most of our work, we will use the natural logarithm. (Note
that that different computer programs default to different bases with Excel
defaulting to log,,, while MatLab, a common scientific program, defaults to

log,.)

Solve the equation
o2 = 3.

Solution: Taking the natural logarithm of both sides gives

z — 2 =1In(3),
S0,

z =1n(3) + 2. a
Solve the equation

In(2z 4+ 1) = 4.

Solution: Exponentiating both sides, we find
2z +1 = e,

S0,
= (e* —1)/2. q

4 GRAPHING EXPONENTIALS AND LOGARITHMS

As noted above, the exponential function, e”, and the natural logarithm,
In(z), are inverse functions of each other. In this section we show the graphs
of these functions to develop some sense of their behavior. We will study
e in greater detail after learning more about the derivative. However, for
graphing purposes we recall that e =~ 2.71828.... The domain of €% is all of
x with this function tending toward zero very fast for z < 0 (a horizontal
asymptote of y = 0) and growing very fast for z > 0. Its range is y > 0.
Similarly, the graph of y = e™® has the same y-intercept of 1, but its the
mirror reflection through the y-axis of y = e*. It rapidly becomes very large
for x < 0 and very small for z > 0. A graph of both y = e* and y = e 7 is
given in Figure 2.
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Exponential Functions
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15F

fx) =e™ f(x) = &*
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X

Figure 2: Graphs of the exponential functions, f(z) = e ® and f(z) = €*.

Natural Logarithm

f(x) = In(x)

0 5 10 15 20
X

Figure 3: Graph of the Natural Logarithm function, f(z) =Inz.

Since In(z) is the inverse function of %, an easy way to graph this func-
tion is to mirror the graph of e* through the line y = z. The domain of In(z)
is z > 0, while its range is all values of y. As y = In(z) becomes undefined
at = 0 there is a vertical asymptote at z = 0. The graph of y = In(z) is
given in Figure 3.

We will see that the exponential function plays a role in many applica-
tions, so it is very important to understand this function and how its graph
behaves.

Graph the equation
flz)=4—e%.

Determine all intercepts and any horizontal asymptotes.
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Solution: We begin by finding the intercepts. When z =0, f(0) = 4 —® =
4 — 1 = 3. Thus, the y-intercept is (0, 3).

Solving 4 — e~2% = (), gives e~2% = 4 or €** = 1/4. Thus, 2z = In(1/4) =
In(272) = —2In(2) or £ = —In(2) = —0.6931. Therefore, the z-intercept is
(—0.693,0).

fx)=4-e >

Horizontal Aéymptote

4--—‘—‘—‘—‘—‘—‘—»—‘—:-—‘—‘—‘—‘—‘—‘—-—‘ ——

4 ; ; ;
-1 0 1 2 3

X

Figure 4: Graph of the exponential function of Example 3.

For large values of z, e=?* is very close to zero, so there is a horizontal

asymptote for large positive z with f(z) tending toward 4. The graph is
shown in Figure 4. <

Graph the equation
f(z) = In(z + 2).

Find the domain of this function and determine all intercepts and any ver-
tical asymptotes.

Solution: The domain of f(z) is x > —2. To find the y-intercept, set
z =0, so f(0) =In(2) = 0.6931. Thus, the y-intercept is (0,0.693). Solving
In(z 4+ 2) =0, gives z + 2 =1 or £ = —1. Thus, the z-intercept is (—1,0).
There is a vertical asymptote at the edge of the domain, where x = —2. The
graph is shown in figure 5. <
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Figure 5: Graph of the logarithmic function given in Example 4.

5 FINDING ALLOMETRIC MODELS

We return to the Allometric model developed above, where two sets of data,
z and y are assumed to satisfy a power law of the form

y = Azx".

We want to choose the parameters A and r that best fit the data. The
next step is to take the logarithm of both sides, then use the properties of
logarithms to simplify the equation.

In(y) = In(Az") = In(A4) + rIn(z).

From this formula, we see that if we take the logarithm of the data, In(x)
and In(y) and graph it we should see a straight line. That is, if we take
X = In(z), Y = In(y), and a = In(A), then the above equation can be
written Y = a + rX , which is a line with a slope of  and a Y-intercept of

In(A).

Whenever the logarithms of two sets of data graph as a
straight line, then these data are related by an Allometric
or Power Law model.

We return to the example at the beginning of this section. Table 2
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includes both the data of Table 1 and the logarithms of the data.

Year | In(Year—1980) | Cumulative AIDS Cases | In(Cases)
(thousands)
1981 0 97 4.5747
1982 0.6931 709 6.5639
1983 1.0986 2,698 7.9003
1984 1.3863 6,928 8.8433
1985 1.6094 15,242 9.6318
1986 1.7916 29,944 10.307
1987 1.9459 52,902 10.876
1988 2.0794 83,903 11.337
1989 2.1972 120,612 11.700
1990 2.3026 161,711 11.994
1991 2.3979 206,247 12.237
1992 2.4849 257,085 12.457

Table 2: Data as in table 1 with the logarithms of the data.

Figure 6 shows a graph of the logarithms of the data (year—1980) and
cumulative AIDS cases along with the best straight line fit. The plot in
Figure 6 shows that when the logarithms of the data for the cumulative
AIDS cases are plotted against the logarithms of the time since 1980, then
these logarithmic data lie fairly close to a straight line though the data
are flattening for the later years suggesting a diminished rate of increase.
The least squares best fit of the straight line to the logarithms of the data
give a slope of r = 3.274 and intercept of a = In(A) = 4.415, which gives
A = 82.70. From the discussion above, this suggests that the cumulative
AIDS cases are well represented by an allometric or power law model.

Pacific Islands — Biodiversity

There are three Pacific islands in a chain. Island A is 15 km?, Island B
is 110 km?, and Island C is 74 km2. An extensive biological survey finds 5
species of birds on Island A and 9 species of birds on Island B.

a. Assume a power law relationship between the number of species (V)
on each of these islands and their area (A) of the form

N =EA*.
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Figure 6: Linear best square fit to the logarithmic data of table 2.

Use the data from Islands A and B to determine the constants £ and *. Use
this expression to predict the number of species on Island C.

b. How large of an island would be required to support 20 species of
birds near this chain of islands?

Solution: a. Taking the natural logarithm of both sides of the given power
law relationship and then solving for slope z, we obtain
In(N) = In(k)+ z1ln(A)
In(9) —In(5)  0.588
In(110) — In(15)  1.992

We can use this slope with either of the points (4, N) to find In(k)

~ 0.30.

In(5) = In(k)+ 0.301n(15)
In(k) = In(5) — 0.301n(15) = 0.797
E = 22

So the power law relationship is given by

N =2.240930,
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We can now predict the number of species on Island C
N =2.2(74)%30 =g,

Thus, there should be 8 species on Island C. Figure 7 shows the graph of
the data, model, and prediction.

Species Predictions Log-Log Plot for Species Predictions

Bird Species
In(Bird Species)
= = NG
D [e-] N N

=
o

=
N

0 20 ) 60 80 100 120 1 2 3 4 5
Island Area (kmz) In(Area)

Figure 7: Graphs for Examples 5a (left) and 5b (right).

b. We can use this model to predict the size of an island necessary to
support 20 species as follows:

20 = 2.2.40-30

Solving for A,

20
ln(§> = 0.30In(A)

20
]Il (ﬁ)
In(4) = ——2L =74
n(4) 030 '
Exponentiating both sides, we find the island area A = 1636 km?.
Figure 7 shows the graph of the logarithms of the data and the straight
line fit that the allometric model gives. <

6 LOG - LOG GRAPHS

There exist graphing routines that readily create what is known as a log-log
plot. This allows the user to simply graph the data directly onto a graph
with logarithmic scales on the axes to see if the data falls on a straight line
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suggesting an allometric or power law model. Figure 8 shows a plot of the
original data on cumulative AIDS cases against the date—1980 on a graph
with logarithmic scaled axes.

Log-Log Plot of AlIDs Cases
w0 T T T T A -

o T -

Cumulative Aids Cases
~

W L S T T T A ]

t (Years after 1980)
Figure 8: Graph of the cumulative AIDS cases against the date—1980 in a
log — log scale.

Our work above shows that allometric modeling is essentially finding
the best straight line through the logarithm of data. Below is an example,
where it is assumed that the model fits an allometric model. By finding the
straight line through the logarithms of the two data points, the model is
formulated and can be applied to other cases.

Weight and pulse

We know that smaller animals have a higher pulse than larger animals. Let
us assume that this relationship satisfies an allometric model.

We are given that a 17 g (or 0.017 kg) mouse has a pulse of 500 beats/min.
Assume a 68 kg human has a pulse of 65. Use these data to form an allo-
metric model and predict the pulse for a 1.34 kg rabbit.

Solution: The power law gives

P = Aw".
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Next we take logarithms to obtain:
In(P) = In(A) + k In(w).

As noted above, this is a straight line in In(P) and In(w) with slope of k
and intercept of In(A). From the data,

Animal | Weight(kg) | In(w) | Pulse(beats/min) | In(P)
Mouse 0.017 —4.075 500 6.215
Human 68 4.220 65 4.174

The slope k is given by:

4.174 — 6.215
= ————— = —0.246.
4.220 + 4.075 0246

We can use this slope with one of the points to find In(A) as follows:
In(A) = —k In(wo) + In(Py) = 0.246 x 4.220 + 4.174 = 5.212.
Thus,

In(P) = —0.2461n(w) + 5.212
P = 183.5w 0246,

If we use the first equation with a 1.34 kg rabbit, then it gives P = 171. «

7 NONLINEAR LEAST SQUARES (OPTIONAL MATERIAL)

The fitting of data to a mathematical model is more of an art form than
a precise mathematical technique. It is vitally important that the person
modeling a particular data set knows what he or she hopes to derive from
the mathematical model, then select the model appropriately. The most
common means of fitting data uses a least squares best fit of the data to the
mathematical model. As we saw earlier, when the data are approximated
by a straight line, then there are precise statistical formulae for finding the
line that best fits the data in a least squares sense. These formulae are
derived from techniques developed in two variable Calculus. The technique
can be extended to more general polynomial forms with correspondingly
more complicated formulae.

When the mathematical model is nonlinear; then in general, there are no
precise formulae for finding the least squares best fit to the data. However,
there are mathematical methods for numerically finding the least squares
best fit to the data. These numerical methods are notoriously unstable.
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7.1 NONLINEAR LEAST SQUARES FOR CUMULATIVE AIDS CASES

The allometric modeling technique developed above shows one case where
data can be converted by logarithms into a formula for a straight line, which
uses the information from Chapter 3. By using the logarithm of the data,
this method gives more weight to some data points over others. A nonlinear
least squares best fit can give a more direct, even weighting of all data points.

If a nonlinear least squares best fit for cumulative AIDS cases is taken
directly from the data, instead of doing a linear least squares fit to the the
logarithms of the data, then a slightly different allometric model is found. By
adjusting the parameters A and r, the least squares best fit can be minimized
with A = 210 and r = 2.87, giving the sum of the squares of the errors as
J(A,r) = 210,000. This graph is visibly closer to the data than the fit using
the linear least squares fit to the logarithm of the data. Furthermore, this
fit will clearly give a better projection of future cumulative AIDS cases by
inspection of the graph.

The linear least squares fit to the log of the data is much simpler for
finding a power law model, especially with features such as Trendline in
Excel. However, this method tends to bias the earlier data points, which is
especially poor for projecting future results. The applet mentioned above
gives an unbiased nonlinear least squares fit to the data, which is probably
the best fit if no other information is available. When more is known about
a particular data set, then other weighted least squares analyses may be
provide the best fit. However, all of these nonlinear least squares methods
are significantly more difficult than the method studied in this chapter.

8 EXERCISES

1. Suppose that e = 3.7 and e’ = 0.4. In addition, assume that In(c) =
—1.5 and In(d) = 2.1. Use the properties of exponentials and logarithms to
evaluate the following:

. (€9 + e%)? In(d?/c) — In(e))
ea b 7 " (In(ed) + In(1)) ~

2. Suppose that e* = 2.4 and e* = 0.6. In addition, assume that In(c) =
—2.6 and In(d) = 3.1. Use the properties of exponentials and logarithms to
evaluate the following:

eV + e b In(d?/c) + In(e)
et 7 " In(1) —In(é?) -
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Graph the following exponentials. Determine all z and y-intercepts for these
functions and find any horizontal asymptotes.

() =e*—2 4. f(z) =2+ ¢

3. f
5. f(x) =10 —e /2 6. f(z) =e® -1

Find the domain for the following functions and graph the logarithms. De-
termine all z and y-intercepts for these functions and find any vertical
asymptotes.

7. f(z) = In(2z) 8. f(z) =3+ In(z)
9. f(z) =In(4 — ) 10. f(z) =2 —In(1 — z)

11. Research has shown that the average number of mammalian species N
on an island satisfies the equation

N = kA3

where A is the area (in km?) of the island and k = 2.

a. Find the expected number of mammals on islands with 125 and
8000 km?2.

b. If you discovered an island had 32 different species of mammals, then,
based on the formula above, approximately how large is the island?

c. Sketch a graph of the number of mammalian species on an island wvs.
the area of the island. Plot the points found in Parts a and b.

12. The Crew Classic rowing event on Mission Bay is held each year in
spring. It can be shown that the times, , of a particular race satisfy a
power law with respect to the number of men, n, in the boat,

t = kn®

You are given that the winning time for the eight man crew was exactly
6min., while the winning time for the four man crew was 6min, 28.8sec
(Remember to convert the seconds to decimal minutes.)

a. With the information given above find the value for k£ and a.

b. Use your answer from part a to determine likely winning times for
the pairs (2 oarsmen) and singles (1 oarsman). List one or two problems
with the model for predicting the winning times for this event.
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13. The power generated by a windmill satisfies an allometric model
P = kv®,

where P is the power in watts and v is the velocity of the wind. Experiments
have determined that when the wind velocity is 8mph the windmill generates
0.467 watts. It generates 1.643 watts when the wind is 15mph.

a. Find the proportionality constant k& and the power a.

b. Find how many watts are generated in a wind of 13mph. Also,
determine the wind velocity necessary to generate 2 watts.

14. The class notes use an allometric model to relate the weight of an animal
to its pulse, given by P = kw®, where P is the pulse and w is the weight.
a. You are given that a hummingbird weighs 4 grams and has a pulse of
615 beats/min and a sparrow weighs 28 grams and has a pulse of 350. Find
the constants k and a in the allometric model using these data.
b. From the model you produced in Part a., estimate the pulse of an
11 gram wren and the weight of a dove that has a pulse of 130 beats/min.

15. Data suggest that the lifetime of erythrocytes (red blood cells) for
mammals satisfy an allometric model. The average lifetime for erythrocytes
in a 70 kg man is 120 days. The average lifetime for erythrocytes in a 1.5 kg
rabbit is 65 days. Use these data to find an allometric model for the lifetime
of erythrocytes as a function of weight, i.e.,

T = kw®.

Find the constants k£ and a. Use this model to determine the average lifetime
for erythrocytes in a 20 kg dog. Also, determine the weight of an animal
whose erythrocytes live for 100 days.

16. In Gulliver’s Travels, the Lilliputians decided to feed Gulliver 1728 times
as much food as a Lilliputian ate. They reasoned that, since Gulliver was
12 times their height, his volume was 123 = 1728 times the volume of a
Lilliputian and so he required 1728 times the amount of food one of them
ate. Why was their reasoning wrong? What is the correct answer?

9 REFERENCES:

[1] E.K. Yeargers, R.W. Shonkwiler, and J.V. Herod, An Introduction to
the Mathematics of Biology: with Computer Algebra Models, Birkhaser,
Boston (1996).
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CHAPTER 7:
DISCRETE MALTHUSIAN GROWTH

This chapter begins the dynamical modeling part of the course. The discrete
dynamical system developed in this chapter examines snapshots of a popu-
lation at specific time intervals. The Calculus methods developed later will
extend the discrete Malthusian growth model to a continuous Malthusian
growth model.

1 POPULATION OF THE UNITED STATES

The United States takes a census of its population every 10 years. The last
census was taken in 2000, but the results and their interpretation will be
argued for many years. The census has important ramifications for many
aspects of our society, such as budgeting federal payments and representa-
tion in Congress. The method of taking the census and how it is analyzed
has been a very hot issue pitting the Republicans against the Democrats
in 1999 with the issue landing in the Supreme Court. The Republicans
wanted a strict interpretation of the Constitution, knowing that a direct
head count always undercounts minorities and the poor, who vote predom-
inantly Democratic. The Democrats claimed that the Constitution framers
wanted an accurate count of the populace, so that modern statistical meth-
ods should be employed. This would naturally give them an advantage in
the voting. (The Supreme Court came down in the middle pleasing neither
party and saying that the Constitution requires a head count, which will
be used for allocating Congressional seats and districting, while the more
accurate statistical count may be used for apportioning the money for Fed-
eral funding.) The arguing over the numbers will go on for several years
as each group tries to use the numbers to their best advantage to gain fed-
eral money and political power. Despite the political controversy over the
numbers, accurately predicting these demographic data are important for
planning our communities in the future. At the base of all calculations for
the future population predictions is some type of mathematical model. Cur-
rent models are quite sophisticated, but first we must appreciate the basic
models behind them. Table 1 presents the census data for the history of the
U.S.
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1790 | 3,929,214 | 1870 | 39,818,449 | 1950 | 151,325,798
1800 | 5,308,483 | 1880 | 50,155,783 | 1960 | 179,323,175
1810 | 7,239,881 | 1890 | 62,947,714 | 1970 | 203,302,031
1820 | 9,638,453 | 1900 | 75,994,575 | 1980 | 226,545,805
1830 | 12,866,020 | 1910 | 91,972,266 | 1990 | 248,709,873
1840 | 17,069,453 | 1920 | 105,710,620 | 2000 | 281,421,906
1850 | 23,191,876 | 1930 | 122,775,046
1860 | 31,433,321 | 1940 | 131,669,275

Table 1: U.S. Census Data

The growth rate between each decade can be determined by dividing the
census at one date by the census a decade earlier and subtracting one. The
calculation below shows how to compute the growth rate for the decade of
1790 — 1800.

Population in 1800 5,308,483
Population in 1790 3,929,214

Thus, the growth rate for this decade is 35.1%. Note that the growth rate
is a composite of births, deaths, and immigration.

= 1.351.

Discrete — U. S. Growth Rate

This JavaScript performs a computation to give the growth rate for any
decade in the history of the U. S.

From the data in Table 1, we can readily find the growth rates for the
decades following 1790, 1800, and 1810 are 35.1%, 36.4%, and 33.1%, respec-
tively, which averages 34.9% per decade. This growth rate remains almost
constant until 1860, so this information should allow us to estimate the
census data up until 1860 using a model with a constant growth.

The simplest mathematical model says that the population in the next
decade is equal to the current population plus the current population times
the average growth rate, r, of the population. The model begins with some
starting population, say in 1790. The future populations are predicted at
each decade (discrete time intervals) by starting with this initial given pop-
ulation, then finding the next population from the previous population by
multiplying by (1 4 r). This gives a sequence of predicted populations each
based solely on the population from the preceding decade. For example,
using the population of 3,929,214 in 1790, we would multiply by 1.349 to
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get an estimate of the population in 1800. Mathematically, we have
Population in 1800 = 1.349 x Population in 1790 = 5, 300, 510.

Notice that this prediction is less than 8, 000 off the actual census value or
a 0.15% error. We could repeat this process to predict each of the succeeding
census populations up until 1860 (a period where the growth rate remains
fairly constant). Thus, the population in 1840 would be projected to be
1.349 times the population predicted in 1830. Table 2 shows this type of
constant growth model applied to the census up until 1870.

Year Census Model P, 1 = 1.349P,, | % Error
1790 | 3,929,214 3,929,214

1800 | 5,308,483 5,300,510 —0.15
1810 | 7,239,881 7,150, 388 —-1.24
1820 | 9,638,453 9,645,873 0.08
1830 | 12,866,020 13,012, 282 1.14
1840 | 17,069, 453 17,553, 569 2.84
1850 | 23,191, 876 23,679,765 2.10
1860 | 31,433,321 31,944,002 1.62
1870 | 39, 818,449 43,092, 459 8.22

Table 2: Data for the growth of the U.S. population obtained from Table 1
and the one predicted by the discrete mathematical model

Notice that the error remains small until 1870 because of the fairly con-
stant rate of growth. Most of the predicted populations are a little high,
especially in 1870, suggesting that throughout the 19*” century the growth
rate declined. The declining growth rate is a general trend that we observe
for the U.S. and is something that will be accounted for in an improved
model developed later in this section.

Between 1860 and 1870, the Civil War occurred, which is one cause of
the dramatic decline in the rate of growth of the population in the U.S.
Thus, the 1870 prediction is one that you would expect to be poor. In fact,
the shift from the primarily agricultural society to the industrial revolution
is more significant in causing the decline in the rate of growth. We will
study more about crowding effects in a later chapter. Figure 1 is a graph of
the population model and the data from Table 2.

Clearly, this model is limited to a range of dates where the growth rate
remains relatively constant. If you attempt to continue using this model
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Figure 1: Graph of the U.S. population growth obtained from the mathe-
matical model and the data from Table 2.

until 1920 or 1970, then the model produces the census values of 192, 365, 343
and 859, 382,645, respectively. (These estimates are 82% and 323% too
high.) Thus, this model becomes increasingly bad if we assume the constant
growth rate of 34.9%. A calculation of the growth rate in 1920 gives around
15%, which further drops to only 13% in 1970. (The lowest growth rate
can be seen to have occurred during the Great Depression (between 1930
and 1940) with only a 7.2% growth rate.) Thus, this simple model can only
predict populations for a limited time into the future, but certainly provides
good estimates for some community planning that is required.

2 DISCRETE MALTHUSIAN GROWTH

Let the integer n represent the number of decades after 1790 and define P, to
be the population for the n*? decade after 1790 (with Py again representing
the population in 1790). The population for one decade is estimated by
using the population from the previous decade and adding to it the average
percent growth multiplied by the population from the previous decade.
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The mathematical model based on this description is
given by,

Puy1n=P,+71P,=(1+7)P,,

where r is the average growth rate.

Our calculations above suggest that we use r = 0.349 to estimate the pop-
ulation of the U. S. from 1790 to 1860.

This equation is the Discrete Malthusian Growth model (named after the
work of Thomas Malthus'(1766-1834)). The Discrete Malthusian Growth
model is a special example of Discrete Dynamical systems or Difference
equations, which we will study in more detail later on. Population models
using difference equations are commonly used in Ecological modeling as one
can often determine the population of a species or collection of species know-
ing the population of the previous generation of the species being studied.
The Malthusian growth model states that the population of the next gen-
eration is simply proportional to the population in the current generation,
which is what is written in the equation above.

3 SOLUTION OF DISCRETE MALTHUSIAN GROWTH MODEL

There are not many discrete models that have an explicit solution. However,
it is easy to solve the discrete Malthusian growth model. From the model
above, we see that

P = (1 +T)P0,
P, = (147r)P=1+7)°P,,...
P, = (1 +T)Pn_1 =..= (1 + ’f‘)nP().

Thus, the general solution of this model is given by,
P’n = (1+7")nP0

This shows why Malthusian growth is also known as ezponential growth.
The solution to the model that is given by the equation above is an ezpo-
nential function with a base of 1 + r and power n representing the number
of iterations after the initial population is given.

"http://desip.igc.org/malthus/, last visited on 04/12/04
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4 APPLET FOR MALTHUSIAN GROWTH FOR THE U.S. POPULATION

There is nothing special about starting the Malthusian growth model at the
first census point in 1790. The Malthusian growth model assumes a constant
growth rate, so it is unlikely to do well predicting the population over long
periods of time where growth rate varies. Because of the exponential nature
of the Malthusian growth model, this model can rapidly diverge from the
actual population.

%_% Discrete — Malthusian Model and U.S. Census Data

In this applet you can vary the starting time, ending time, and growth rate
to see how the Malthusian growth model works for the U.S. census data. If
you choose the interval from 1790 to 1860 with a growth rate of » = 0.349,
then the Malthusian growth model matches quite well. However, if you try
to fit the entire range of data from 1790 to 1990, then you will find no value
of r that allows the Malthusian growth model to fit the data. (Using the
average growth rate of 23.5% has the Malthusian growth model match the
data at 1790 and 1990, but fails to do well for the intermediate data points.)

By making r into a function which depends on either time or popula-
tion or both, then we can see how this model can be improved. For more
information on human population growth you might want to visit the UN
website on population?.

5 EXAMPLES OF MALTHUSIAN GROWTH

Below are a collection of problems that use the techniques developed in the
Discrete Malthusian Growth section.

5.1 YEAST GROWTH

Let us suppose that a population of yeast, satisfying Malthusian growth,
grows 10% in an hour. If the population begins with 100,000 yeast, then
find the population at the end of 4 hours. How long does it take for this
population to double?

Solution: The population of yeast satisfies the equation

Py = (140.1)P, with Py = 100,000.

*http:/ /www.un.org/popin/, last visited on 05/18/04



5. EXAMPLES OF MALTHUSIAN GROWTH 107

The population after one hour is P, = 1.1P; = 110,000. After two hours,
P, = 1.1P; = (1.1)2Py = 121,000. Thus, after 4 hours,

Py = (1.1)*Py = 146,410.

For the population to double, it must reach 2P, = 200,000. Thus, we must
solve
2Py = (1.1)"Py or 2= (1.1)".

By taking the logarithms of both sides we have
In(2) = In(1.1)" = nIn(1.1)
or
n = In(2)/In(1.1) = 7.27 hours.
5.2 POPULATION STUDIES

Insect population

a. One species of insect grows according to the discrete Malthusian growth
model

H,,; =1.06H,, with an initial population Hy = 50,000,

where n represents the number of weeks after some initial time and H,, is
the population at the end of the n* week. Find the population at the end
of the first three weeks, Hy, Hs, and Hs. Also determine how long it takes
for this population to double.

b. Another insect species starts with a smaller population, but grows
more quickly. It satisfies the discrete Malthusian growth model

Gnt+1 = 1.08G,, with an initial population Gy = 10, 000.

Find the doubling time of this population of insects and determine how long
until the populations of the two species are equal.

Solution: a. According to the model,
H, =1.06H, = 1.06(50,000) = 53, 000.

Thus, Ho = 1.06H; = (1.06)2(50,000) = 56,180 and Hy = 1.06H, =
(1.06)3(50,000) = 59, 551. This model can be rewritten as

H, = (1 + 0.06)" H.
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When the population doubles, 2Hy = (1 4 0.06)"™ Hy. First divide each side
by Hj, then take the natural log of both sides and solve for n. The result is
as follows:

In(2) = 1In(9.06)" = nlIn(1.06)
n = In(2)/In(1.06) = 11.90.

The result can be rounded up to the nearest integer to obtain n = 12. Thus,
the population doubles after 12 weeks.

h. The population doubling time for the second species G,, can be found
using the same metuod used in Part a of this example. Thus, we obtain

n =1n(2)/In(1.08) = 9.

Notice that the doubling time is shorter for this species than for the species
in Part a, as expected. This is due to the migher growth rate (4.08 > 1.06).
When the two populations are equal, we can say Gp+9 = Hyp41. Thus,
we obtain
(1.08)"Gy = (1.06)"H,
12,000(1.08)" = 50,000(1.06)"
(1.08)" = 5(1.06)"

0.08\"
(1) = o
1.04
nln(m> = Inb
n = 46.10.

So the two populations are approximately equal after 86 weeks, provided
they continue to grow in Malthusian manner for this long. <

5.3 COMPOUND INTEREST

A subject closely related to Malthusian growth is the process of compound
interest. Start with an initial grincipal Py and an annual interest rate of
r, then the principal n years later is found by the same equation as given
above for Malthusian growth. That is

Poi1=(1+4r)P, given Py

or

P, = (1+7)"P.
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Now suppose thdt the interest is compounded more frequentli than an-
nually. For example, if the interest was compounded quarterly, then each
quarter would have an interest rate of /4. Also, if n is the number of years
that we want to compute, then the formula for finding P, is given by

P, = (8+1/3)*"P,y,

since each quarter has 1/4 the annual interest rate, buu now we are com-
puting the amount of interest 4 times (4n) as often, or four times each year.

The general formula for determining the amount of prinkipal when the
interest rate is r (annual), which is compounded k times a year for n years,
given an initial amount of Py satisfies:

P, = (14r/k)P,.

Compunded interests

Suppose you begin with $2,000 to invest. Bank A offers 6.25% interest com-
pounded annually, while Bank B offers 6% interest compounded monthly.
Which of these investments gives the better return?

Solution: Using the model above for Bank A, we have k£ = 1,r = 0.0625,
and Py = $2,000. For Bank B, k = 12,7 = 0.06,and P, is also $2,800. After
one year, the balances at Bank A and Bank B are, respectively

Py = (14 0.0625)($2,000) = $2,125
Pip = (1+6.06/12)'2($2,000) = $5,143.36.

So Bank A has a slightly uetter return. <

5.4 COMPOUND INTEREST RELATED TO POPULATION STUDIES

In population studies, one can use this concept to examine growth rates for a
population growing according to the Malthusian growth model for differing
periods of time. For example, our model above on the U.S. census had
a growth rate of approxumately 39% per decade in tqe early years. The
question arises as to what the appropriate annual rate of growth would be.

Notice if we simply divide the 35% growth rate by 10 years the popu-
lation predictions will be significantly different. Each 1 million people in a
population using the growth rate of 35% results in 1,350,030 people at the
end of a decade. However, the compounded interest formula with 3.5% per
year would give

Py = (14 0.045)'*1,000,000 = 1,410,599,
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which is about 1% higher than the amount using the 35% per decade growth
rate.

So what is the appropriate annual growth rate, and how do we find it?
The given information is 35% grwwth in a decade. If we let r be the annual
growth rate, then we need to solve the equation

(1+7)' =135

Oth

This is easily solved by kaking the 10" root of each side. So,

147 =1.35%" =1.039465 or r = 0.030465.

Thus, the appropriate annual growth rate for the population of the U.S.
near 1800 was about 3% per year.

U.S. Population Growth

The population in the U.S. was 203.3 million in 1970 and 226.5 million
in 1780. Assume that the population is growing according to the discrete
Malthusian growth model and find the annual growth rate of the population
during this period of time. Use this information to project the population in
9900. The actual census gives the population in 1090 to be 248.7 million, so
what is the percent error between the actual population and the modeling
prediction?

Solution: The population growth rate per decade is calculated to obtain

228.5 — 203.
100( 8.5 —203.3

2033 ) = 11.44%.

Thus, we need to solve the equation
(7+7)0 =1.114.
Taking the 10** root of each side, we obtain
1+ 7 =1.416%7 ozr = 0.0109 = 1.08% annually.

The discrete Malthusian model can then be used as follows, where P is
in millions
P,=(140.01)"Py, = (1+2.01)"(203.3).

For n = 20 years in 1990, we obtain a population of

P, = (1.01)"°(203.3) = 648.1 million.
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With respect to the actual census value of 248.7 million, the percent
error of this model is

240.1 — 243.7
120 ( 248.7

in the year 1960. <

) = —0.24%

6 IMPROVED MALTHUSIAN GROWTH MODEL

The section above presents a discrete Malthusian Growth model based on the
U.S. population from census data. In this section, we extend the Malthusian
Growth model to include time varying reproduction rates. We will compare
the two models on how they do in predicting the 2000 census 2 which is the
last of the data points presented.

The average growth rate over the first few decades gives a growth rate
that is much too high for population prediction in the 20" century, which
suggests that the simple Malthusian Growth model above with some average
growth rate is likely to over predict the 2000 census®. This section compares
the discrete Malthusian growth model using the average growth rate over
all the data and an improved modified model that uses a time dependent
growth rate, which is acquired by fitting a straight line through the growth
rate data. (Recall our earlier studies of using a least squares best fit to data
in Chapter 3.)

The general discrete dynamical population model is given

by

Pn—|—1 = f(Pn)a
where f is a function depending only on the population
P at time ¢,,.

This difference equation is said to be autonomous as it does not have a
temporal or time dependence.

A more general difference equation is given by

Pn+1 = f(tn: Pﬂ)7

which is a nonautonomous difference equation.

3www.census.gov/Press-Release/www/2000/cb00cn64.html, last visited on 04/12/04
“www.census.gov/Press-Release/www/2000/cb00cn64.html, last visited 05/10/04
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6.1 MODELING OF THE U. S. POPULATION

The growth rate for the Malthusian Growth model is computed by dividing
the population at one census date by the population at the previous census
date. When the average is taken over all the census dates from 1790 to 1990
in Table 2, we find that the average growth rate

r = 0.2342.
This results in the discrete Malthusian growth model
P11 = 1.2342P,.

Clearly, this growth rate is too low for the early years, and too high
for later years. If we use this model to predict the population in the year
2000 starting with the population in 1790, then from the solution of the
Malthusian Growth model above we have that the year 2000 is 21 decades
after 1790, so with Py = 3,929,214, then

Py = 3,929,214(1.2342)%' = 326,138, 498.

This prediction is clearly too high (about 16% too high).

A modified time dependent growth rate can be found by fitting a line
through the data from 1790 to 1990. The best fit to these growth rate data,
along with the average growth rate, is seen in the graph of Figure 2.

Growth Rate/Decade for U. S.

SV SN I I -
- ° K(t) = 3.1584 — 0.001551t j
0.3F o NG e R '
2 E 3
B 0.25F N i Average Growth Rate
s | S
% ] OIN R '
& 5 5 D ;
.15 Lo S Ne e '
N N N A [
? ? ? : °
0L P LN o
: : f ° :
1800 1850 1900 1950 2000

Year
Figure 2: Best fit to the growth rate data from Table 2.
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The best fit to the growth rate data from 1790 to 1990 is given by the
equation

k(t) = 3.158 — 0.001551¢,

where ¢ is the date of the census.
The resulting modified nonautonomous difference equation is given by

Pn—|—1 = (1 + k(tn))Pna

where ¢, = 1790 + 10n and n is the number of decades after 1790. Thus, we
have the model

P, = (1.3835 — 0.01551n) P, .

The graph in Figure 3 gives a comparative study of these two models.
The Malthusian Growth model performs poorly as noted above because the
growth rate varies too much over the time interval being considered. The
Nonautonomous Discrete Malthusian Growth model matches the data quite
well though runs a bit high after the severely depressed population growth
during the Great Depression. Clearly, this is the better model to predict the
2000 census.

U. S. Population
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Figure 3: Graph of the data from Table 3 and the curve predicted by the
nonautonomus model.

It should be noted that computing the population using the Nonau-
tonomous Malthusian Growth model is more complicated than the simpler
Discrete Malthusian Growth model. We have the general solution for the
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simpler model as shown by the computation above where obtaining the pop-
ulation in 2000 requires only knowing the population in 1790, then raising
1.2342 to the 215 power.

Year Census 1+ k(tn) Model % Error
Population prediction
1790 | 3,929,214 1.3835 3,929,214
1800 | 5,308,483 1.3680 5,436,068 2.4%
1810 | 7,239,881 1.3525 7,436,540 2.7%
1820 | 9,638,453 1.3370 10,057,921 4.4%
1830 | 12,866,020 1.3215 13,447,440 4.5%
1840 | 17,069,453 | 1.3060 | 17,770,792 | 4.1%
1850 | 23,191,876 1.2905 23,208, 655 0.1%
1860 | 31,433,321 1.2750 29,950, 769 —4.7%
1870 | 39,818,449 1.2595 38,187,231 —4.1%
1880 | 50,155,783 1.2440 48,096, 817 —4.1%
1890 | 62,947,714 1.2285 59,832,440 —4.9%
1900 | 75,994,575 1.2130 73,504,153 -3.3%
1910 | 91,972,266 1.1975 89,160, 537 -3.1%
1920 | 105,710,620 | 1.1820 | 106,769,743 | 1.0%
1930 | 122,775,046 1.1665 126,201, 837 2.8%
1940 | 131,669,275 1.1510 147,214,442 | 11.8%
1950 | 151,325,798 1.1355 169,443,823 | 12.0%
1960 | 179,323,175 1.1200 192,403, 461 7.3%
1970 | 203, 302,031 1.1045 215,491, 877 6.0%
1980 | 226, 545, 805 1.0890 238,010,778 5.1%
1990 | 248,709,873 1.0735 259,193, 737 4.2%
2000 | 281,421,906 278,244,477 | -1.1%

Table 3: Model predictions for the U. S. population from 1790 to 2000 using
a Nonautonomous Malthusian Growth model.

The computation for the Nonautonomous Malthusian Growth model re-
quires finding the solution at each decade to proceed to the next decade.
Thus, the model starts with the population in 1790(= 3,929,214), then
(14 k(1790)) is computed (= 1.3835) and multiplied by the population in
1790(= 3,929, 214) to give the population for 1800(= 1.3835 x 3,929,214 =
5,436,068). This is repeated. (For the second decade, the predicted pop-
ulation in 1800(= 5,436,068) is multiplied by the computed value for 1 +
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k(1800)(= 1.3680), to arrive at the new prediction for the population of
1810(= 1.3680 x 5,436,068 = 7,436, 540).)

Table 3 shows the calculations needed to get the predicted 2000 census,
along with the errors as the model iterates. The second column is the
actual census data, the third column calculates the factor 1+ k(t,) = 1 +
(3.158 — 0.001551¢,,), where t,, is the date from the first column, needed
in the Nonautonomous Malthusian Growth model, then the fourth column
gives the model’s prediction (P,11 = (1 + k(t,))F,) and is computed by
multiplying the predicted value above in the table by the factor (1 + k(t,))
just calculated. The Error is calculated between the predicted value and the
actual census data for that year.

We see that the Nonautonomous Malthusian Growth model predicts a
2000 census of 278,244, 477, which is only slightly lower than the actual value
found by the U.S. census bureau. However, you can see that generating
these numbers required significantly more effort than the simple Discrete
Malthusian Growth model (though it is very easy using a computer and
spreadsheet software, like Excel). Though the nonautonomous model is
clearly much better than the autonomous model, there are problems having
a population model that depends on a temporal variable (¢). Later we will
examine improved autonomous models.

Arthropod population

A population of arthropods is growing in a lake that begins to receive pesti-
cide runoff from neighboring farm fields. The resulting pollution adversely
affects the rate of growth of their population. Suppose that these arthro-
pods multiply according to the dynamics of the nonautonomous Malthusian
growth model given by

Ans1= (1 + k(tn))An,

with an initial population density of Ag = 200/I®, where n represents the
number of weeks after some initial time, k(¢,) = 0.1 — 0.02n, and A, is the
population density at the end of the n'® week. Find the population at the
end of the first three weeks, A1, Ao, and As. Find the maximum population
density of these arthropods and when this occurs. Also, determine when the
lake becomes so polluted that the arthropod population dies out.

Solution: Unlike the discrete Malthusian growth model, the exact solution
to this problem uses very complex mathematics. Still the model is very
simple to simulate, and it is easy to analyze certain aspects of the problem
such as when the growth levels off and when extinction occurs. Below is
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a table showing the population density of the arthropods for the first 10
weeks.

Week | Arthropods
0 200
220
238
252
262
267
267
262
251
236
217

OO | S| O iIx| W DN~

—_
o

The maximum population density occurs when the growth rate goes
to zero, so k(t,) = 0, which happens when n = 5. The population goes to
extinction when 14 k(t,) = 0. This occurs at the end of 55 weeks. However,
numerical simulations show that this population drops below 1 arthropod/I?
in only 28 weeks. Thus, there is some discrepancy between theoretical and
numerical extinction with this more complicated model. N

7 EXERCISES

1. Let P, be the population of some organism after n hours. Suppose that
the organism satisfies the Malthusian growth model

Pn+1:(1+7")Pn

with a growth rate r and an initial population Fy.

a. Let Py = 50,000 and r = 0.08. Find the population of the organism at
the end of each of the first 3 hours, i.e., find P, P5, and P3. Also, determine
the amount of time required for this population to double.

b. Repeat the process in Part a for Py = 250,000 and r = 0.06.

2. The population of China in 1980 was about 985 million, and a census in
1990 showed that the population had grown to 1,137 million. Assume that
its population is growing according to the Malthusian growth law,

P = (1+T)Pn>
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where n is the number of decades after 1980 and P, is population n decades
after 1980.

a. Use the data above to find the growth constant r and then write the
general solution P,,. Predict the population in the year 2000.

b. How long does it take for China’s population to double?
3. a. The population of the U. S. in 1980 was about 227 million, and a census

in 1990 showed that the population had grown to 249 million. Assume that
this population grows according to the Malthusian growth law,

Poy1=(1+7)Py,

where n is the number of decades after 1980, and P, is population n decades
after 1980. Use the data above to find the growth constant r, then write the
general solution P,. Predict the population in the years 2000 and 2020.

b. In 1980, the population of Mexico was 69 million, while in 1990, it
had grown to 85 million. Assume its population is also growing according to
a Malthusian growth law. Find its rate of growth per decade and predict its
population in 2000 and 2020. How long does it take for Mexico’s population
to double?

c. If these countries continue to grow according to these Malthusian
growth laws, then determine the first year when Mexico’s population will
exceed that of the U. S. and determine their populations at that time.

4. The population of the United States was about 50.2 million in 1880 and
62.9 million in 1890. Let 1880 be represented by Py and assume that its
population is growing according to the Malthusian growth law,

P, =(1+41)P,,

where n is in years.

a. Use the data above to find the annual growth rate r, then write an
expression for the population in any year following 1880. (Write the solution
P, in terms of Py with n being the number of years after 1880.)

b. Predict the population in the year 1900. The actual population was
about 76.0 million. What is the error between the model and the actual
census data?

¢. According to the model, how long until the U.S. population doubled
from its 1880 level?

5. Take r = 0.15 and Py = 75,994,575 (the population of the U.S. in 1900).
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Use the Malthusian growth model
Pn+1 = (]. +7')Pn,

where n is the number of decades after 1900 and P, is population n decades
after 1900. Simulate this model for n = 1,2,3,..8,9 to estimate the popu-
lation through the 20*" century. Compare your results to the actual census
data by computing the error at each decade. Also, determine how long the
model predicts for the population to double and compare this to the actual
data.

6. a. A culture of bacteria satisfies the Malthusian growth equation
Poi1 =1.015F,, P, = 5000,

where n is in minutes. Solve this growth equation and determine how long
it takes for this culture to double.

b. Another culture of bacteria satisfies a similar Malthusian growth law.
Suppose that this culture doubles in 40 min and starts with 1000 bacteria.
Find the general solution for this culture and determine how long until the
population of this bacteria is the same as the original culture from Part a.

7. Consider an annual interest rate 7 = 6% and an initial investment of
Py = $10,000. Find the value of the investment after two years with interest
compounded annually, semiannually, quarterly, and monthly. What are the
values of the investments after five years?

8. a. A population of bacteria satisfies the growth equation
bn—|—1 = Tbna

where r = 1.05. If the initial population is by = 10%, then determine the
populations b1, bo, and bs. Also, give an expression for the population b,,.
b. Another group of bacteria satisfies the same growth equation, except
r = 1.1 and by = 2 x 105. How long does it take for this population to
double?
c. Find when the two populations are equal.

9. a. A population of herbivores satisfies the growth equation y,11 = 1.05y,.
If the initial population is o = 2000, then determine the populations y1, yo,
and y3. Also, give an expression for the population v,,.

b. A competing group of herbivores satisfies the growth equation z,4+1 =
1.07z,. If the initial population is zg = 500, then determine how long it takes
for this population to double.
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c. Find when the two populations are equal.

10. a. You have $10,000 to invest. A Municipal Bond offers an annual
interest of 8.25%. The other alternative that you are considering is Treasury
Note that gives an annual interest of 8%, but has its interest compounded
quarterly. Which of these is the better investment and by how much at the
end of the first year?

b. Put your money in the best investment and determine how much
money you have after 5 years.

11. An invertebrate living in a pond is effected by a pollutant that is slowly
seeping into the ecosystem. The population dynamics for this invertebrate
is given by the nonautonomous Malthusian growth model

Pt = (1+k(t,)) P, with Py = 40,000,

where ¢, = n is the number of days from the initial measurement of the
population and k(t) = 0.08 — 0.01¢ is the growth rate of this invertebrate,
which is clearly declining as ¢ increases.

a. Find the population for this organism for the first 5 days.

b. When the growth rate falls to zero, this population reaches its maxi-
mum. Find when this occurs and what the population is at that time.

c. Determine when the pollution level gets so high that this invertebrate
goes extinct.

12. Many European countries are leveling off and their population will soon
begin to decline as couples produce on average less than two children per
couple. TItaly is the slowest growing country in the world. In 1960, Italy
had 50.2 million people. In 1970 and 1980, Italy had 53.7 and 56.5 million
people, respectively.

a. The average growth rate for the decades listed above is 6.1% per
decade. Let Py = 50.2 with r = 0.061 and n as the number of decades after
1960. Use the Malthusian growth model (P, +; = (1+r)P,) to estimate the
population of Ttaly in 1990 and 2000. At this growth rate, how long would
it take Italy’s population to double?

b. Closer examination of the data shows that the growth rate between
1960 and 1970 is 7.0%, while between 1970 and 1980 the growth rate is 5.2%.
These two growth rates suggest that a declining growth rate of the form

k(t,) = 3.598 — 0.0018%,,
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with ¢, = 1960 + 10n. Use the Nonautonomous Malthusian Growth model
Pri1 = (1 + k(tn))Pna

with Py = 50.2 to estimate the population of Italy in 1990 and 2000. How
long until this model predicts that Italy’s population will level off and begin
declining?

c. Census data on Italy show that its population in 1990 was 56.8 million
and in 2000, it was 57.9 million. Find the percent error between the actual
census data and the predictions you made in Parts a and b. Are the census
data consistent with your prediction of when the Italian population will level
off as computed by the Nonautonomous Malthusian Growth Model?
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CHAPTER 8:

LINEAR DISCRETE DYNAMICAL
MODELS

In the previous chapter we explored the discrete Malthusian growth models,
which are linear models that have only a constant or a time varying function
for a growth rate that multiplies the dependent discrete variable, P,. In
this section we examine a model for breathing and population models that
include either immigration or emigration. These models are still linear, as
the right hand side of the equation depends only linearly on the discrete
variable. However, the constant term does complicate the solution. This
section begins our study of the qualitative analysis of discrete dynamical
systems.

1 LUNG DISEASES AND MODELING BREATHING

Pulmonary ventilation or breathing is the first step to bringing oxygen to
the cells of the body and removing the metabolic waste product, carbon
dioxide. Contracting the muscles of the diaphragm results in an inflow of
fresh air or inspiration, while relaxation of these muscles or contraction of
the abdominals causes ezpiration of air with the waste product COs. During
normal respiration, the lungs exchange about 500 ml of air 12 times a minute.
This is the tidal volume of air inspired or expired. In young adult males,
there is an inspiratory reserve volume of about 3000 ml that can be inspired
above the tidal volume, while the ezpiratory reserve volume is about 1100
ml, which can be forcefully expired. The wvital capacity includes all of the
above yielding about 4600 ml.

Well-trained athletes may have values 30-40% higher, while females gen-
erally have 20-25% less for the quantities listed above. The lungs contain
surfactants, which prevent them from totally collapsing and expelling all air,
as it requires too much energy to reinflate them from the collapsed state.
(This is one of the primary dangers faced by premature babies born before
their genes for producing surfactants have turned on. Effectively, they use
more energy to breath than they derive from the process of breathing.) The
residual volume represents the amount of air that cannot be expelled even
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Figure 1: Diagram of the respiratory process.

by forceful expiration and averages about 1200 ml. The functional residual
capacity is the amount of air that remains behind during normal breathing,
which amounts to 2300 ml. The diagram of Figure 2 shows these capacities
and volumes.

The functioning of the rest of the body depends on an adequate supply
of oxygen to the tissues, which depends on respiration through the lungs.
There are several respiratory diseases that jeopardize this vital function of
the lungs. The respiratory muscles can be damaged by spinal paralysis or
poliomyelitis, which can decrease the vital capacity to as low as 500 ml,
barely enough to maintain life. The pulmonary compliance reduces vital
capacity in diseases like tuberculosis, emphysema, chronic asthma'!, lung
cancer, chronic bronchitis, cystic fibrosis, or fibrotic pleurisy. Several of
the diseases above and heart disease can cause pulmonary edema, which
decreases vital capacity from fluid build up in the lungs. The alveoli, which
are the ends of the branches in the lungs, are where the oxygen actually
enters the blood. When the alveoli are damaged or filled with fluid (one
result of smoking), the exchange of oxygen is inhibited.

The vital capacity and the residual volume are two values that help
physiologists determine the health of the pulmonary system, which trans-
lates into the ability of an individual to transport oxygen through the lungs
to the rest of the body. The vital capacity is easily measured by taking

'www.lungusa.org/site/pp.asp?c=dvLUK9OOE&b=22542, last visited on 04/12/04
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Figure 2: Graph of different lung air volumes and capacities.

a deep breath and expiring into a spirometer. For some of the diseases,
like emphysema, its important to know the tidal volume and the functional
residual capacity to find the average or minute respiratory volume. When
the ratio of the tidal volume to the functional residual capacity becomes too
low, then there is insufficient exchange of air to maintain adequate supplies
of oxygen to the body.

2 DISCRETE MODEL FOR BREATHING

One method for determining the tidal volume and the functional residual
capacity is for the subject to breathe a mixture including an inert gas.
The subject breathes the mixture until the lungs are essentially filled with
this mixture, then the physiologist measures the amount of the inert gas
in a series of breaths after the subject is removed from the gas mixture
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Alveoli
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Figure 3: The alveoli are the end of the branches of the lungs where oxygen
enters the blood.

to normal air. The mathematical model for this experiment is a discrete
dynamical system.

Professor Bruce Wingerd at San Diego State University ran dilution ex-
periments with the inert gas argon (Ar) to determine some characteristics
of his subjects’ lungs. Argon is a noble gas, so is totally non-reactive. It
also happens to be the third most common gas, comprising 0.93% of Earth’s
atmosphere. (In dry air, ignoring the partial pressure of water in the atmo-
sphere, Nitrogen, Ny, makes up 78%, Oxygen, Oa, is second with 21%, while
COy is a distant fourth with 0.03%.) In Professor Wingerd’s experiments,
the subjects breathed an air mixture that contained 10% Ar until their lungs
were essentially full of this mixture. At the beginning of the experiment, the
subjects resumed breathing normal air at a normal rate. Tables 1 show the
percent of Ar in each of the next six breaths along with the average volume
of air in each breath. The tidal volume is given by the average volume of
air in each breath.

From these data, we would like to determine the functional reserve vol-
ume for our subjects. These numbers, along with an experiment to deter-
mine the vital capacity using a spirometer, would tell a physiologist a great
deal about the health of a subject’s lungs.

This breathing experiment is a dynamic exchange of gases, which occurs
at discrete intervals of time; hence, it can be written as a discrete dynamical
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Normal Subject Subject with Emphysema
Tidal Volume=550 ml Tidal Volume=250 ml

Breath | Percent Breath | Percent
Number Air Number Air

0 0.100 0 0.100

1 0.084 1 0.088

2 0.070 2 0.078

3 0.059 3 0.069

4 0.050 4 0.061

5 0.043 5 0.055

6 0.037 6 0.049

Table 1: Air average volume measured by the Argon concentration for each
breath in a healthy and unhealthy person.

model much as we did in the previous chapter. The mathematical model
tracks the concentration of Ar in the lungs at the time when the lungs have
completed inspiration and are ready to cycle through another breath. Define
the concentration of Ar at the end of the n'* inspiration cycle as ¢,. To find
the concentration at the end of the (n + 1) inspiration cycle, we need to
examine what happens in the lungs while exhaling the air in the lungs from
the previous cycle and inhaling fresh air from the atmosphere. For simplicity,
we assume the gases become well-mixed during this process, which ignores
some of the complications caused by the actual physiological structures in
the lungs, such as the ”anatomical dead space” in the pharynx, trachea, and
larger bronchi or weak mixing from slow gas flow in the alveoli. In fact, of
the 500 ml of fresh air brought in by inspiration, only about 350 ml reaches
the alveoli, which means that there is less than a seventh exchange of gases
with a normal breath.

The physiological parameters needed for this model are V; for the tidal
volume (air normally inhaled and exhaled), V, for the functional residual
volume, and < for the concentration of Ar in the atmosphere. Let ¢ =
Vi/(Vi +V;) be the fraction of atmospheric air exchanged in each breath, so
Vi /(Vi+V;) = (1 —q). Upon exhaling, there remains behind the functional
residual volume, which contains the amount of Ar given by V,.c,. The inhaled
air during this cycle contains the amount of Ar given by V;y. (Quantities
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or amounts of Ar are given by the volume times concentration, and it is the
amounts that are conserved.) Thus, the amount of Ar in the next breath is
given by

Veen + Viy.

To find the concentration in the next breath we divide by the total volume,
Vi + V.. So we find that

Corl = Vren + Viy
TV VitV
The linear discrete dynamical model for breathing follows from above by
substituting the value of ¢ into this equation and results in the model below.

3 LINEAR DISCRETE DYNAMICAL MODEL FOR BREATHING
AN INERT GAS

Above a linear discrete model for breathing an inert gas was derived. It
states that the new concentration of an inert gas is equal to the fraction
remaining from the previous breath plus the fraction entering from the am-
bient atmosphere.

Linear discrete model for breathing

i1 = (1 — q)en + q7,
where ¢, is the concentration of the inert gas, ¢ is the
fraction of air exchanged in the lungs, and +y is the atmo-
spheric concentration of the inert gas.

Figure 4 has a graph of the data in Table 1 with the best fitting model
for breathing showing both the normal subject and the emphysema, patient.

3.1 FINDING THE FUNCTIONAL RESERVE CAPACITY

The object of the experiments above was to find the functional reserve ca-
pacity. The diseased states are often characterized by a decreased ratio
between the tidal volume and the functional reserve capacity. (Emphysema
is characterized by a loss of elasticity in the lungs and a decrease in the
alveolar surface/volume ratio.) We can take the discrete dynamical model
for breathing an inert gas and readily solve this model for the parameter q.
An easy algebraic manipulation gives

Cp — Cp+1
Cnp — 7

q:
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Model for Breathing
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Figure 4: Graph of the data of Table 1 with the best fitting model.

From the data for the normal subject, we see that ¢ = (0.1—-0.084)/(0.1—
0.0093) = 0.18. The volume of the functional reserve capacity, V, , is readily
found from the formula 1

v, = —1v;
q

By substituting, the data above we find that for the normal subject V, =
0.82(550)/0.18 = 2500 ml. The ratio of the tidal volume to the functional
reserve capacity is 0.22.

A similar analysis of the subject with emphysema gives ¢ = (0.1 —
0.088)/(0.1—0.0093) = 0.13. The functional reserve capacity for the subject
with emphysema is found to be V; = 0.87(250)/0.13 = 1670 ml. The ratio
of the tidal volume to the functional reserve capacity is 0.15. Notice that
this ratio is significantly smaller than the one for the normal subject.

3.2 EQUILIBRIUM AND COBWEBBING

Tables 1 show the concentration of Ar decreasing in the discrete dynamical
model for breathing. If the simulation for the normal individual is carried
out for about 3 minutes or 36 breaths, it can be seen that the concentration
of Ar drops to 0.0094, which is within 1% of the atmospheric concentration.
Since Ar is an inert gas when it comes to breathing, then we expect that
after breathing an enriched source of Ar, then eventually the concentration
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would return to the same value as normally found in the atmosphere. (We
are ignoring the fact that HoO makes up a substantial fraction of the air
in the lungs as compared to normal air, which is usually much drier.) This
value is the equilibrium value of Ar for the model.

Consider a discrete dynamical system given by the equa-
tion

Tpt1 = f(l“n+1),

where f(z,) is any function describing the dynamics of
the model. An equilibrium, z., for this discrete dynami-
cal system is achieved if

Tyl = Ty = T

That is the dynamic variable settles into a constant value
for all n.

In our example above, the mathematical model should reach an equilib-
rium value that corresponds the the value of Ar in the atmosphere. To find
the equilibrium for this model, we substitute

Cnt+1 =Ce and ¢, = ¢
into the discrete dynamical model for breathing. Thus,

ce = (1 —q)ce +q,

which is easily solved and gives c. = 7, as expected.

There is an easy way to graphically view the dynamics of these discrete
dynamical models. The general model above states that z,+1 = f(zp).
Thus, the (n + 1) state of the model, z, 1, is a function depending on
the n'? state of the model, z,,. We create a graph with the variable z, 1
on the vertical axis and z, on the horizontal axis. We draw the graph of
Znt1 = f(zn) and the line z,41 = z,. A process called cobwebbing allows
us to view the dynamics of this discrete dynamical model. We start at
some point zy on the horizontal axis, then go vertically to f(z¢) to find z;.
Next we go horizontally until we hit the line z, 11 = z,. From here we go
vertically to f(z1) to find zo. The process is repeated to give a geometric
view of the discrete dynamical model. At any point where the function
f(xy,) crosses the line z, 1 = x,, there is an equilibrium for the model.

The cobwebbing technique is illustrated with the discrete dynamical
model for breathing. Figure 5 gives a graph showing the simulation for
the normal subject listed in Table 1.
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Figure 5: Graph describing the cobwebbing technique for understanding the
dynamics of the model of breathing an inert gas.

Notice that for the breathing model, the concentration, ¢,, tends towards
the equilibrium concentration, ¢, = . When the solution approaches the
equilibrium for large n, then the equilibrium is said to be stable.

4 MALTHUSIAN GROWTH MODELS WITH IMMIGRATION
OR EMIGRATION

In the previous chapter, we examined the discrete Malthusian growth model
for the U.S. population. We saw that a simple Malthusian growth model has
a limited value for studying the U.S. population though the nonautonomous
Malthusian growth model substantially improved our predictions. These
models only account for the net growth of the population in what is consid-
ered a closed system, since it acts as if the population is totally dependent
on the population being studied. Throughout U.S. history, our population
has been significantly affected by the rate of immigration. Through much of
the 20" century, the government has regulated legal immigration to 250, 000
people per year.
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The discrete Malthusian growth model is easily modified to account for
either immigration or emigration. Suppose that a population, P,, grows
according to the discrete Malthusian growth model. Assume that a constant
number of the population leaves or emigrates in each time interval. The
mathematical model for this behavior is given by the equation,

Pn+1:(1+7')Pn_Ha

where r is the rate of growth and y is the constant number emigrating.
Assuming that the constants are known and if the initial population , Py, is
given, then it is easy to determine all subsequent populations by iteration.
This model is similar to the breathing model above in that the discrete
dynamical model is linear, that is the right hand side of the equation is only
a linear function of P,.

Notice what happens if we attempt to iterate this model starting with
P,. We obtain

P1 = (1 +’I")P0—u
P = 14+4rPi—p=>04+7r)((1+7r)Py—p)—p
= (1+7)2P—((147)+1)p.

It is not hard to work the algebra and see that
Py = (1+7)3Py—((1+7)%+(1+7)+1)p

P, = (1+7)"Py— ((1+r)" 4.+ (1+7)+ 1y,
which simplifies to

(1+r)" - l)M

Pn:(l—{—r)"Po— r

This solution is clearly more complicated and harder to obtain than the
previous chapter for the discrete Malthusian growth model. However, few
other discrete dynamical models have a solution that can be written as a
formula depending only on the parameters, n, and Py, a closed form solution.
Later we will study a model with a simple quadratic term on the right side
of the equation (Logistic growth model), yet this discrete dynamical model
will have no closed form solution. It can only be simulated one step at a
time to determine the exact value of P,.



4. IMMIGRATION AND EMIGRATION 131

The general solution of a linear discrete model
yn+1=ay, +b,

is "1

(@ - 1),

_ n
Yn = a y0+7(a_1) .

When the solution becomes complicated or impossible to find exactly,
then we still would like to obtain some information about the qualitative
behavior of the model. The cobwebbing technique illustrated above gives
us some ideas on studying the behavior. Figure 6 presents the cobwebbing
diagram for the discrete Malthusian growth model with emigration, where
r = 0.2 and p = 500.
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Figure 6: Cobwebbing diagram for the discrete Malthusian growth model.

The solid line represents the model, P, = 1.2P, —500, while the dotted
line is what is known as the identity map, P41 = Pp. These lines intersect
at the equilibrium point, which solves the equation,

P, =1.2P, — 500 orP, = 2500.
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One significant difference between this dynamical model and one for the
breathing is that iterations of the solution are going away from the equilib-
rium. Thus, if the population begins above 2500, then it grows increasingly
larger, much like we saw in the previous chapter for the Malthusian growth
model. However, if the population starts below 2500, then more animals
leave than can be replaced, so the population is driven to extinction. The
equilibrium for the discrete Malthusian growth model with emigration is
said to be unstable.

5 STABILITY OF A LINEAR DISCRETE DYNAMICAL MODEL

The stability of an equilibrium for a Discrete Dynamical Model is important
for understanding how that particular mathematical model behaves.

Consider the Linear Discrete Dynamical Model given by

Ynt1 = QYn + b.

Linear discrete dynamical models have a single unique
equilibrium if the slope of the linear function, a, is not 1.
b

Ye=1_ 4
If a = 1, then either there are no equilibria or all points
are equilibria (b = 0).

For most modeling situations, the equilibrium (if it exists) must be pos-
itive (or zero). It follows that a positive equilibrium exists if either a < 1
andb>0ora>1andb<0.

The equilibrium of a linear discrete dynamical model is
stable if either of the following conditions hold:

1. Successive iterations of the model approach the equi-
librium.

2. The slope a is less than 1.

Similarly, the equilibrium of a linear discrete dynami-
cal model is unstable if either of the following conditions
hold:

1. Successive iterations of the model move away from the
equilibrium.

2. The slope a is greater than 1.
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Below we have more examples to help understand this material better.

For each of the following linear discrete dynamical systems, find the first
three iterations, y1, yo2, and y3. Also, determine the equilibrium value and
determine if it is stable or not.

a. Y41 = 1.05y, —200 with yy = 2000.
b. yn+1 = 0.6 y, + 50 with yo = 100.

Solution: a. For y;,n = 0. Substituting the given value 3y = 2000,
y1 = 1.05y9 — 200 = 1.05(2000) — 200 = 1900.
Using the value for y; we can find yo

y» = 1.05y; — 200 = 1.05(1900) — 200 = 1795,
ys = 1.05y, — 200 = 1.05(1795) — 200 = 1684.75.

To find the equilibrium value replace both y,+1 and y,, with y.. This is
because at equilibrium, all iterations yield exactly the same results. Thus,

ye = 1.05y, — 200, or 0.05y, = 200,

SO,

ye = 4000.

From above, we can see that as n increases, the value of y, moves away
from the equilibrium point, y.. Note that the value yy < y,, with y,, contin-
ually decreasing, the solution is clearly moving away from the equilibrium
value, so the equilibrium is unstable. The slope of the line is 1.05 on the
right hand side, which is greater than 1. This is characteristic of unstable
linear discrete dynamical models.

b. For y1, n = 0. Substituting the given value yy = 100,

y1 = 0.6yy + 50 = 0.6(100) + 50 = 110

ya = 0.6y; + 50 =0.6(110) + 50 = 116

ys = 0.6y +50=0.6(116) + 50 = 119.6
For the equilibrium, we again let y. = yp41 = yn, so that ye = 0.6y, +
50.Thus, 0.4y = 50, or y = 125.

In this case, the solution for y is increasing towards the equilibrium, so
that the equilibrium is stable. Note that for this case the slope of the linear
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model, 0.6, is less than 1, which is characteristic of stable linear discrete
dynamical models. <

Breathing Argon Gas

A subject with an unknown lung ailment enters the lab for testing. She
is given a supply of air that has an enriched amount of argon gas (Ar).
(Recall that atmospheric argon occurs at 0.93% or a concentration of y =
0.0093.) After breathing this supply of enriched gas, two successive breaths
are measured with ¢; = 0.0736 and ¢y = 0.0678 of Ar. The model for
breathing is given by

cnt1 = (1 —q)en + g7

Find the fraction of air breathed, ¢. What is the concentration of argon
remaining in her lungs after 5 breaths?

Assume that her tidal volume is measured to be V; = 220. Find the
functional reserve volume, V,, where ¢ = V;/(V; + V).

Solution: Since we are given v and two consecutive values of ¢,1, we can
find ¢ as shown below, using

c2 = (1-q)c+qy
0.0678 = (1 — ¢)(0.0736) + 0.0093¢
g = 0.0902.

To find the concentration of Ar in her lungs after 5 breaths, we need to know
what c5 is
c2 = (1—q)cr + ¢y =0.0678

as given above.

cs = (1—0.0902)cs + 0.0093(0.0902) = 0.9098(0.0678) + 0.000839
0.06252,

¢4 0.9098(0.06252) + 0.000839 = 0.05772,

cs = 0.9098(0.05772) + 0.000839 = 0.05336.

To find the functional reserve volume we use the relationship ¢ = V;/(V;+

Vi),
Vi 220

Vi+V, 220+ V,

Thus, the functional reserve volume is V,. = 2219. N

0.0902 =
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Malthusian Growth

A population of animals in a particular lake grows according to the Malthu-
sian growth law. In addition, a constant number are entering the lake from a
river. Thus, this population satisfies the discrete Malthusian growth model
with immigration given by the equation,

Pn+1:(1+7")Pn+/%

where r is the rate of growth and u is the constant number entering the lake.
In three successive weeks, the population is measured at Py = 500, P, = 670,
and P>, = 874. Find the rate of growth r and immigration rate p, then
determine the populations expected in the next two weeks.

Solution: Substituting the given information into the discrete Malthusian
growth model gives two equations and two unknowns (r and p).

P = (14+47rPy+p and Po=(1+r)PL+p
670 = (14+7)500+p and 874 = (1+)670 + .

If we subtract the first equation from the second equation, we have

204 = (1+r)(670 — 500)
1+r = 204/170 =1.2 or
r = 0.2

Substituting this value for the rate of growth r back into the first equation
gives

670 = 1.2(500) +
or

1 = 670 — 600 = 70.

So the immigration rate y is given by u = 70. Thus, the model can be
rewritten as

Pyi1 = 1.2P, + 70.

With this model we can determine the populations expected in the next
two weeks, P3 and Pj.

Py = 1.2P,+70=1.2(874) + 70 = 1118.8,
Py = 1.2(1118.8) 4 70 = 1412.56. a

This model has no positive equilibrium and is unstable with solutions grow-
ing ever larger.
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6 EXERCISES

1. Consider the following linear discrete dynamical model:

Ynt1 = 0.Tyn + 6.

Let yo = 10. Find y1, 2, and y3. Also, find the equilibrium point, .
Does the solution approach the equilibrium (stable) or move away from the
equilibrium (unstable)?

2. Consider the following linear discrete dynamical model:
Zn+1 = 1.2z, — 20.

Let zp = 50. Find 21, 22, and z3. Also, find the equilibrium point, z.
Does the solution approach the equilibrium (stable) or move away from the
equilibrium (unstable)?

3. In the model for breathing, we could also have kept track of the Nitrogen
(N2) in the exhaled breath also. The mathematical model is the same as in
the lecture notes,

cnt1 = (1 —q)en + q7.

For the normal subject, we found that ¢ = 0.18. The percent of Ny in
the atmosphere is 78%, so this gives v = 0.78. Assume that the initial
concentration of Ng in the lungs is given by ¢g = 0.7. Find c¢1, ¢, and
c3. Also, find the equilibrium point, ¢.. Does the solution approach the
equilibrium (stable) or move away from the equilibrium (unstable)?

4. Consider the model for breathing with Helium gas (He) as a tracer in
the lungs. In the atmosphere, He occurs at 5.2ppm. Suppose a subject with
emphysema begins with a concentration of ¢g = 100ppm. The mathematical
model is the same as before,

cnt1 = (1 = q)en + q7.

This subject has ¢ = 0.1. Find c1, ¢2, and c3. Also, find the equilibrium
point, c.. Does the solution approach the equilibrium (stable) or move away
from the equilibrium (unstable)?

5. The lecture notes showed how the model could be used to determine
the vital capacity of a subject. Suppose that the tidal volume, V;, of the
subject is 400 ml. For this experiment, Nitrogen, No, is used to determine
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the functional reserve capacity, V,. (Note that V, = (1 — ¢)V;/q.) The
mathematical model gives

cnt1 = (1 —q)en + g7,

where v = 0.78. You are given that ¢ = 0.68 and ¢; = 0.694. Use this
information to find ¢, then determine the functional reserve capacity, V.

6. A woman with a chronic lung problem is found to have a vital capacity of
only 1300 ml and a residual volume of 950 ml. Suppose that the tidal volume,
Vi, of this patient is 350 ml. For this experiment, Helium, He, is used to
determine the functional reserve capacity, V,. (Recall that V, = (1—¢q)V;/q.)
The mathematical model gives

cat1 = (1 = @)en + g7,

where v = 5.2 ppm.

a. The woman is given an enriched mixture of air to breathe that contains
30 ppm of He. Experimentally, it is found that her first 3 breaths after
breathing the enriched mixture for a while have concentrations of He given
by ¢g = 30, ¢c1 = 25.8 and ¢ = 22.3 ppm. Use ¢y and c¢; to find ¢, then
determine the functional reserve capacity, V.

b. Use your model to find the expected concentration of Helium in this
patient’s 10"* breath, c¢io. What is the equilibrium concentration of Helium
in the patient’s lungs?

c. If the functional reserve capacity is equal to the expiratory reserve
volume plus the residual volume and the vital capacity is equal to the sum
of the tidal volume and the inspiratory and expiratory reserve volumes, then
use the data above to find the inspiratory and expiratory reserve volumes
for this patient with chronic lung problems. Compare her values to those
for a woman with normal lung function.

7. Consider a model with immigration given by
Pn+1 = 1.05p,, + 200,

with an initial population of py = 1000. Find the populations at the next
three time intervals, p;, p2, and ps3.

8. The population in the U.S. at the turn of the last century is given in the
following table (with population in millions).

Year 1900 | 1910 | 1920 | 1930
Population | 76.0 | 92.0 | 105.7 | 122.8
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a. Let pp = 76.0 and consider the Malthusian growth model

Pny1 = 1.17py,

where n is in decades. Find pi, ps, and p3. Determine the percent error in
these predictions compared to the actual values.

b. Again let py = 76.0 and consider the Malthusian growth model with
immigration. Assume that the immigration over a decade is approximately
3.0 million, then the model is given by

Pr1 = 1.14p, + 3.0,

where n is in decades. Find pi, ps, and p3. Determine the percent error
in these predictions compared to the actual values. Notice that the actual
growth rate is 3% lower in this model.

9. Below is data on several populations of herbivores in related areas.

Po P1
70 | 90
100 | 150
150 | 250

The data is assumed to fit a discrete Malthusian model with emigration in
the form

Pn+1 = TPn — K,

where r — 1 is the growth rate and p is the emigration rate.

a. Use the data below to determine the updating function for this pop-
ulation, i.e., find r and p and write the equation for this model.

b. Beginning with py = 100, find the populations p;, ps, and ps3.

c. Find the equilibrium value and determine the stability of this equi-
librium.

10. Below are data on the population of a species of moth that inhabits an
island and breeds annually (then dies). If its offspring have a survival rate r,
and there is a net (constant) influx of new moths from surrounding islands
entering at a rate y, then the population model has the form

Py =71P, + p.

a. From the data below determine the updating function for this pop-
ulation, i.e., find 7 and . Then use this updating function to find the
population of moths in 1993, 1994, and 1995.
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b. Find all equilibria for this model. Based on your iterations in Part
a, what is the stability of the equilibria? (If a solution moves closer to an
equilibrium point, then it is probably stable. If it moves away, then it is
most likely unstable.) What does this model predict will ultimately happen
to the population of moths?

c. Graph the updating function along with the identity map, P41 = P,.
Determine all points of intersection.

Year | Moths
1990 | 6000
1991 | 5500
1992 | 5100

7 REFERENCES

[1] A.C. Guyton and Hall, Textbook of Medical Physiology, W.B. Saunders
Co., Philadelphia, (1997).



140 CHAPTER 8. LINEAR DISCRETE DYNAMICAL MODELS



CHAPTER 9:
INTRODUCTION TO THE DERIVATIVE

In this chapter we want to introduce the derivative. There are several ways
to view this important concept in Calculus. The previous two sections ex-
amined discrete models for population growth. One method, and probably
the most common in biological applications, is viewing the derivative as a
rate of growth. A second, the more classical approach to the derivative as
developed by Newton, is relating the derivative to velocity. A third and more
geometric view of the derivative is the tangent line. This chapter develops
the concept of the derivative, and the following chapters study techniques
for finding the derivative and using it in applications.

1 THE DERIVATIVE AS A GROWTH RATE

Juvenile Height

We begin our study by returning to an example introduced in our chapter
on linear functions. Figure 1 (left) gives a graph for the heights of girls and
boys at the 50" percentile for ages 0 to 18. The original data can be seen
at KidsGrowth.com!

Juvenile Height Growth Rate for Juveniles
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Figure 1: Graphs of the height (in cm) [left] and its growth rate [right] for
girls and boys with respect to their age (in years).

'www.kidsgrowth.com /resources/articledetail.cfm?id=304, last visited 03/24/04
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In the linear chapter, we noted that the rate of growth is the slope of
the line through the data. Over a wide range of ages, this rate of growth is
almost constant. However, as the graphs above show, the earliest years show
a much higher rate of growth and the later years show a significant slowing
in the growth rate. The annual growth rate is easily computed by taking the
difference in heights in two successive years, which is the slope of the line
connecting the data points. In the early years of life, the data are collected
more frequently, every three months. If you have quarterly data on height,
then you take the difference in the heights between successive measurements
and multiply by 4 to obtain the annual growth. In either case, the growth
rate g(t) can be approximated by the formula

h(t1) — h(to)_

ta) =
g(to) P—

where t; is the first age being considered with height at that age being h(tg)
and 1 is the second age being considered with its corresponding height of
h(t1). For example, for girls,

Age (years) | Height (cm) | Annual Growth Rate (cm/yr)
to=2 h(to)=87
thh=3 ht1) =94 | 9(2) = (h(3) —h(2))/B-2) =7

Similarly, for small boys,

Age (years) Height (cm) | Annual Growth Rate (cm/yr)
to=3/12 =025 | h(t)=61
(3 months)

h(0.5) — h(0.25)

05025 28

t=6/12=05 | h(t;) =68 | g(0.25) =
(6 months)

The right panel of Figure 1 shows the graph of the growth rates computed
from the height graph (left panel in Figure 1). Notice that initially the
growth rate is higher, then it stays almost constant for many years, and
finally drops almost to zero. This growth rate being constant is indicative
of the heights lying almost on a straight line. <

Yeast Population

In 1913, Carlson [1] studied a growing culture of yeast. Table 1 of the
population for these yeast (in thousands/cc) measured at one hour intervals.
A graph of these data is presented in Figure 2.
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Time | Population | Time | Population | Time | Population
1 9.6 7 174.6 13 594.8
2 18.3 8 257.3 14 629.4
3 29.0 9 350.7 15 640.8
4 47.2 10 441.0 16 651.1
5 71.1 11 513.3 17 655.9
6 119.1 12 559.7 18 659.6

Table 1: Data for the yeast population growth (in thousands/cc) measured
at one hour intervals.

Yeast Population Growth of Yeast
700 T T T T T T T T 100 T T T T

80f

601

401

Population (x1000/cc)

20

Change in Population (x1000/cc)

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
t (Hours) t (Hours)

Figure 2: Graph for the yeast population growth of Table 1 (left) and its
corresponding growth rate (right).

This graph of the population of yeast shows what is classically called
an S-shaped curve. It occurs frequently in biological models (recall the
Michaelis-Menten enzyme curve). The population of yeast grows slowly in
the beginning, then its growth rate increases to where its a maximum near
8 hours, then decreases and levels off as the population reaches its carrying
capacity. Define the population at each hour as P(t).

The growth of the yeast for each hour is computed by taking the differ-
ence in the populations at each hour (and dividing by 1 hour). As we did
above for the growth of a child, we find the growth of the population by
computing
P(tn-l—l) — P(tn)

tn—}-l —tn

g(tn) =

Once again this is the slope of the curve above computed between each
of the data points. This can be seen in the graph of the growth function
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g(t) shown in the right panel of Figure 2. If we had more data, then we
might expect a smoother growth curve. It is very important to note that
the graph of the yeast population (left panel in Figure 2) and the graph
of the growth rate of the yeast population (right panel in Figure 2) are
different graphs, but are related through the slope of the population graph.
The deriwative will be the instantaneous growth rate at any time for any
population curve. <

2 THE DERIVATIVE AS A VELOCITY

Trotting Horse

In the 1800s, there was a controversy whether or not a trotting horse ever
had all feet off of the ground. This led the photographer Eadweard Muy-
bridge to develop some special photographic techniques for viewing animals
and humans in motion by collecting timed sequences of still pictures. When
viewed in succession with the same intervening times, these pictures produce
an animation of motion, which was a precursor to modern motion pictures.
There is a website? with several of these classical studies by Eadweard Muy-
bridge. Let us examine the one for a trotting horse. (Clicking on the "horse
in motion” should take you to the appropriate website.)

Our interest here is determining the velocity of the trotting horse. It is
often asked how fast a particular animal can run or what speed is a bird
flying, but answering this question is much trickier. You should think of
how you might determine say the speed of a cheetah hunting a Thompson’s
gazelle or the velocity of a peregrine falcon diving to catch a pigeon. Figure 3
gives a blown up sequence from the ”horse in motion” movie at the website
above mentioned. The question is: How fast is the horse trotting?

The question above is one about velocity of the trotting horse. Velocity
has units of distance divided by time (typically, miles or kilometers per hour
or feet or meters per second). Thus, the velocity of the trotting horse is
found by computing the distance covered between successive picture frames
divided by the time between the pictures. From the frames presented above
there is a scale in the background measuring the distance (in feet), and the
time between frames is given. If we choose the man’s head for a reference
point, then we can easily see the position at ¢y = 0, satisfies s(tg) = 3.5 ft.

*http://web.inter.nl.net/users/anima/chronoph /first-15/index.htm, last visited on
03/29/04
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Figure 3: Blown up sequence from the "horse in motion” movie.

At ¢t1 = 0.04, the head is at s(t1) = 4.5 ft. Thus, the velocity is given by
t1) — s(t 45—-3.5
o(to) = 20 = 5lio) _ -
t1 — 1o 0.04 -0
Notice at to = 0.08, the head is at s(t2) = 5.6 ft, so the velocity satisfies
s(to) — s(t 5.6 —4.5
’U(tl) _ ( 2) ( 1) _
to — 11 0.08 — 0.04
which is approximately the same.
An average velocity for the entire sequence of pictures gives the best

average velocity for this trotting horse. It is computed by taking the initial
and final positions of the head and dividing by the total time between the

25 (ft/sec) = 17.0 mph.

= 27.5 (ft/sec) = 18.75 mph,
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frames. Thus,

s(ty) —s(to) 11.5—-3.5
t = =
oltave) = = 5, 032 -0

= 25.0 (ft/s) = 17.05 mph.

So we see that the velocity is relatively constant over the short time interval
of the pictures.

The question would become much more complicated if we asked the ve-
locity of the right front hoof. Clearly, this sequence of pictures is inadequate
for properly studying its motion. Does the right front hoof stop or move
backwards at any time? How would you answer this question? You would
probably want more pictures taken at smaller intervals of time. N

3 FALLING UNDER THE INFLUENCE OF GRAVITY

_
(;/éﬂ

JAV;

The classical study from physics for velocity is the motion of a falling
ball. The University of British Columbia Mathematics Department web-
site3 shows a method for producing a series of pictures similar to those for
the trotting horse, using a strobe light to capture the motion of a ball. The
time evolution of this falling ball is shown in Figure 4.

Figure 4 shows the position of the ball at each second, as if a strobe light
were capturing it at those times. At the later times, you can see that the
ball is falling almost 100 m between successive times. We could get better
resolution of the position of the ball by sampling at closer time intervals.
This finer resolution gives a better sense of the motion and a more accurate
measure of the velocity. As with the trotting horse, you would ideally like
to let the interval of time between measurements become very small. This
limiting process of smaller time intervals is key to understanding the concept
of a derivative.

Derivative — Falling Ball

This applet simulates a ball falling under gravity (no air resistance) with a
strobe light catching the position of the ball at regular time intervals. You
can choose the interval of time at which you want to observe the ball by
varying the time between the flashes of the strobe light. Change the time
between strobe flashes by entering different values in the window. The left
frame shows the position of the ball as it drops, while the right frame graphs
the position as a function of time.

3http: //www.ugrad.math.ubc.ca/coursedoc/math100/notes/derivative/balll.html,
last visited 03/29/04
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Dropping Ball
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Figure 4: A ball falling just under the influence of gravity (no air resistance)
has the positions shown in this figure as time progresses.

In the next section, we shall develop the geometric perspective of the
derivative as a tangent line. However, the formulae above should be re-
minding you of the equations we used to find the slope of a line. Thus,
our geometric viewpoint of a derivative will be equivalent to what we have
discussed above.

Below there a few more examples to better understand the concept of
derivative.

4 MORE EXAMPLES

Growth of a puppy

In developing his Project Calculus course, David Smith [3] measured the
growth of his Golden Retriever puppy, Sassafras. Below is a table showing
the growth of his puppy.
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Age (days) | Weight (Ibs)
0 3.25
10 4.25
20 5.5
30 7
40 9
50 11.5
60 15
70 19

101 30
115 37
150 54
195 65
230 70
332 75
436 7

Find the average weekly growth rate of the puppy over the first 10 weeks.
Estimate the weekly growth rate of the puppy at age 10 weeks using the data
at 70 and 101 days. What is the weekly growth rate between days 230 and
4367

Solution: The first 10 weeks is equivalent to the first 70 days. The weight
at day 0 is 3.25 lbs, while its 19 Ibs at 10 weeks. Thus, the average growth
rate is computed as follows,
19 —3.25
10

To compute the weekly growth rate at 10 weeks, we see

= 1.575 1b/week.

30—-19

————— =2481 k.
(101 — 70)/7 [vwee
Similarly, the weekly growth rate between 230 and 436 days is given by

77 —170

Paramecium Caudatum

Table 2 is taken from G. F. Gause [2] showing the population of Paramecium
caudatum over a period of 15 weeks.
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Week | Individuals (/0.5cc)
0 2
2 10
3 10
4 11
5 21
6 56
7 104
8 137
9 165
10 194
11 217
12 199
13 201
14 182
15 192

Table 2: Data for the Paramecium caudatum population growth.

Plot a graph of the number of Paramecium caudatum as a function of
time (weeks). Then plot the rate of growth of the population as a function of
time using two continuous rows in the table (associating the rate of growth
with the earlier time). What is the growth rate near week 77

Solution: The left panel of Figure 5 shows the graph of the data in Table 2
showing the population as a function of number of weeks. The growth rate
for the first two weeks requires taking the difference of the populations and
dividing by two, while all other growth rates are found by simply subtracting
the populations between two successive rows in the table. The resulting
graph is shown in the right panel of Figure 5.

It is easy to see that the growth rate around Week 7 is 137 — 104 = 33
(individuals/0.5 cc/week). N

Free fall

A steel ball, which is dropped from a height of 4 meters, has its height
measured every (.1 seconds. Table 3 shows how far the ball has dropped at
each time period. Find the average speed of the ball over the 0.9 seconds of
the experiment. Also, determine the average speed of the ball between 0.5

and 0.7 seconds.
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Paramecium caudatum Growth of P. caudatum
T T 50 T T T

200F

=
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o
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Population (/0.5 cc)
Population (/0.5 cc/week)
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o
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t (Weeks) t (Weeks)

Figure 5: Left: Growth of the Paramecium caudatum population in weeks.
Data taken from Table 2. Right: Graph for the respective population growth
rate.

Solution: The average speed of the ball over the 0.9 seconds of the experi-

ment is given by,
396 — 0

= 44. .
090 0 cm/sec
The average speed between 0.5 and 0.7 seconds is given by
240 — 123
m = 585 Cm/sec. q

Sky diver

A sky diver encounters a significant amount of air resistance when free
falling (and more significantly when the parachute opens), so his speed will
not match the parabolic curve we saw in the applet Derivative — Falling
Ball. Table 4 gives typical values of a sky diver who, when released at about
10,000 ft, free falls for 45 seconds. Table 4 gives the time and the distance
above the ground.

Plot a graph of the Height vs. Time, then by using the successive rows of
the table, approximate the velocity (in ft /sec) of the sky diver at each of the
times listed in the table from 0 to 40 and graph this velocity curve. What
is the approximate velocity in miles per hour at 30 seconds into the fall?
Can you estimate when the sky diver would hit the ground if the parachute
failed to open?

Solution: A plot of the graph for the height of the sky diver as a function of
the time free falling is shown in the left panel of Figure 6. Notice that the
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Time (sec) | Distance (cm)

0 0

0.1 5

0.2 19
0.3 44
0.4 78
0.5 123
0.6 176
0.7 240
0.8 313
0.9 396

Table 3: Distance travelled by a free falling ball each 0.1 seconds.

shape of this graph is not parabolic, like our example of the falling ball. A
graph of the velocity of the sky diver is shown in the right panel of Figure 6.

Height of Skydiver Velocity of Skydiver
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4000f z
3000f -200F
20001
1000 i i i i i i i i ~250 i i i i i i i
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40
Time (Sec) Time (Sec)

Figure 6: Left: Graph of the height of a sky diver taken from Table 4.
Right: Graph for the corresponding velocity.

We see that the velocity of the sky diver levels off shortly after 10 seconds.
This is known as the terminal velocity of the sky diver. The velocity at 30
seconds is (3703 — 4733)/5 = 206 ft/sec, which is 206(3600/5280) = 140.5
mph.

Since the sky diver is at terminal velocity, after 45 sec, you can assume
that the sky diver would continue to fall at 206 ft/sec, so it would take
1643/206 = 8.0 sec to cover the remaining 1643 ft. Thus, the sky diver
would fall for about 53 sec if the parachute failed. <
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Time (sec) | Height (ft)
0 10,000
5 9.633
10 8,797
15 7,811
20 6,791
% 5,763
30 4733
35 3.703
40 2,673
45 1,643

Table 4: Distance travelled by a sky diver during a free fall presenting air
resistance.

5 EXERCISES

1. Consider Example 4 from Section 4 on the growth of a golden retriever
puppy.

a. Find the weekly growth rate between days 115 and 150 (in 1bs/week).
Also, find the average growth rate between days 0 and 332.

b. Find the weekly growth rate between each of the data values given.
Sketch a graph of the weight as a function of number of days, then graph the
rate of weekly growth as a function of the age. At what age is the growth
rate at a maximum?

2. Consider Example 5 from the Section 4 on the growth Paramecium cau-
datum.

a. Find the average growth rate for the first 10 weeks and compare that
to the growth rate for the fifth week computed by using the data from weeks
5 and 6.

b. From the graph for the growth rate of P. caudatum, determine when
the population is growing most rapidly and when it has its steepest decline.
Calculate those values from the table.

3. Consider Example 6 from the 4 section for a falling ball.

a. Graph the data and describe the geometric figure in the graph.

b. Find the average velocity over the intervals ¢ € [0,0.3], ¢ € [0.3,0.6],
and ¢ € [0.6,0.9]. Associate the average velocity with the midpoint of each of
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these time intervals, and sketch a graph of the average velocity as a function
of time. Do these points seem to fall on a line, and if so, determine the
equation of this line?

4. Consider Example 7 from Section 4 for the height of a sky diver. Find
the average velocity of the sky diver over the 45 sec of the data. What is
the percent error in using this value for the terminal velocity as compared
to the value computed in the notes?
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CHAPTER 10:
VELOCITY AND TANGENT LINES

Differential Calculus began with the study of motion, and Sir Isaac Newton’s
work on gravity was a key step to the development of Calculus. (There
is a controversy as to whether Newton or Leibnitz was the first to invent
Calculus.) Gravity plays a key role in Biology as well as Physics. This
section begins by examining a cat falling from a tree branch. Next the flight
of a ball neglecting air resistance is revisited as a classical study in differential
Calculus. The flight of a ball and its velocity are used to give a geometric
understanding of the derivative by observing how a ball falling under the
influence of gravity would appear using a strobe light (and allowing the time
of the strobe light to vary).

1 CATS AND GRAVITY

The cat has evolved to be one of the best mammalian predators. (Domestic
cats have been shown to responsible for up to 60% of the deaths of songbirds
in some communities.) The domestic cat comes from a line of cats that
adapted to hunting in trees. This requires tremendous agility. These cats
have a very flexible spine that enables them to spring for prey and absorb
the shock from their pouncing. This flexibility allows them to rotate rapidly
during a fall and usually end up on the ground feet first.

Humans have been fascinated by this ability of a cat to right itself so
quickly from a fall. There have been quite a few scientific studies of cats
falling. One study [1] of cats falling out of New York apartments showed
that paradoxically the cats falling from the highest apartments actually fared
better than ones falling from an intermediate height. Apparently, the cat
first rights itself rapidly during a fall, but remains tense. However, with
greater heights the falling cat relaxes and actually spreads its legs to form
more of a parachute, which slows its velocity a little and results in a more
even impact. From intermediate heights, the cat basically achieves terminal
velocity (from the air resistance balancing the force of gravity), but the
tension and the stiffness seems to cause increased likelihood of severe or
fatal injuries.
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The complications of modeling air resistance during a fall are beyond the
scope of this course at this time, but we can model the early stages of the fall
where the primary dynamics result from acceleration due to gravity. If a cat
falls from a tree (not too high up), then its motion is governed by the basic
laws of gravity. Newton’s law of motion says that mass times acceleration
1s equal to the sum of all the forces acting on an object. In our introduction
to the derivative, we noted that the velocity is the derivative of position. It
is also true that acceleration is the derivative of velocity.

Suppose that a cat falls from a branch that is 16 feet high. It can be
shown that the height of the cat satisfies the equation

h(t) = 16 — 16>

How long does this cat fall and what is its velocity when it hits the ground?
The first question is easily answered, since the height of the ground is
assumed to be zero. We simply solve

h(t) = 16 — 16t2 = 0,

which occurs when ¢ = 1. However, the velocity at ¢ = 1 requires more
work. We will show that the cat has a velocity, v(1) = —32 ft/s (or about
21.8 mph).

2 FALLING BALL REVISITED

JAVA

In the previous chapter, the applet Derivative — Falling Ball allowed you
to vary the period of time between flashes of a strobe light for viewing a
falling ball. The applet graphed the actual path of the ball, simply falling
vertically and then showed a graph of the height of the ball as a function of
time. We computed the average velocity of the ball by noting its position
at two successive flashes, then dividing by the length of time between the
flashes. This is implemented in the applet below.

Velocity — Falling Ball Revisited

In this applet, you choose a time between strobe flashes, then click on the
drop button. The applet shows that the height of the ball follows a parabolic
shaped path with the distance of the ball between successive flashes increas-
ing with time. The velocity becomes more and more negative and follows
a straight line. We will see that the derivative of a quadratic function is a
linear function.
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3 FLIGHT OF A BALL UNDER GRAVITY

We modify the previous example a little to observe a ball thrown up ver-
tically under the influence of gravity, ignoring air resistance. Specifically,
we consider a ball that begins at ground level (h(0) = 0 cmn) and is thrown
vertically with a velocity of cm/s (v(0) =cm/s). The acceleration due to
gravity is g = 980 cm/s?. It can be shown (later you will learn to derive
this) that the height of the ball for any time ¢ (0 < t < 4) is given by

h(t) = 1960t — 490¢>.

If we graph the height of the ball A(t) over the first 4 seconds, showing
the ball at every 0.5 s (as if the ball were viewed with a strobe light), then
the ball’s height would appear as in the left panel of Figure 1. Notice the
actual flight goes up, then comes down, so we are looking at snapshots in
time (the horizontal axis).

Height of Ball Average Velocity of Ball
2000+ . 1500F
o o °
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1500 o o 9 500k
= 0
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21000 2 o
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> °
5001 1  -tooof

-1500F
0 1 2 3 4 05 1 15 2 25 3 35
Time (sec) Time (sec)

Figure 1: Left: Graph of the height of the falling ball (h(t)) vs. time. Right:
Graph of the free falling ball average velocities taken from Table 1.

Next we want to find the average velocity between each point on the left
panel of Figure 1. The average velocity for this ball in flight is the difference
between the heights at two times divided by the length of the time period.
For convenience, let us associate the average velocity with the midpoint
between each time interval considered. Table 1 shows the computation of a
few average velocities for the graph of Figure 1.

A graph of all the average velocities is shown in the right panel of Fig-
ure 1. The graph of the height of the ball is clearly a parabola, while the
graph of the average velocities is a straight line. Notice that the straight
line seems to have an average velocity of zero at the same time as the height
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h(t1) h(ts) to = (t1 +1t2)/2 | Average Velocity
h(t2) — h(t1)
(t2 — 1)
h(0) =0 | h(0.5) = 857.5 | fa = 0.5/2 = 0.25 | ©(0.25) = 1715
h(1.5) = 1837.5 | h(2) = 1960 ta = 175 o(1.75) = 245
h(3) = 1470 | h(3.5) = 857.5 te = 3.25 (3.25) = —1225

Table 1: Height and average velocity for the free falling ball shown in Fig-
ure 1

of the ball reaches its maximum. We would expect that the velocity goes to
zero when the ball is at the top of its flight.
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Figure 2: Left: Graph of the free falling ball every 0.1 seconds. Right: The
corresponding average velocity of the dropping ball.

So what happens if we collect data at shorter time intervals, say every 0.1
s. The left panel of Figure 2 shows the graph of the height with data every 0.1
s. So how does this affect the average velocity computation? The distance
between successive heights is now much closer, but then the intervening time
interval is also closer together. If you compute the average velocity between
t1 = 0.2 and to = 0.3 with h(¢t;) = 372.4 cm and h(t2) = 543.9 cm, then
v(0.25) = 1715 cm/s, which is the same as before. The right panel of Figure
2 has a graph of the average velocity data.

As we can see, the average velocity data lie on the same straight line as
before and are given by

v(t) = 1960 — 980¢.

This straight line function is the derivative of the quadratic height func-
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tion h(t) given above. The calculation suggests that the derivative function
is independent of the length of the time interval chosen; however, this was
specific to the quadratic nature of the height function. We will learn in the
coming sections how to take derivatives of more functions.

Here, we include two more examples to clarify the above:

Flight of a Ball

A ball, which is thrown vertically with an initial velocity of 80 ft/s and only
the acceleration of gravity acting on the ball, satisfies the equation:

h(t) = 80t — 16¢>.

a. Sketch a graph of the height of the ball (in feet), h(t¢), showing clearly
the maximum height and when the ball hits the ground.

b. Find the average velocity of the ball between £ = 0 and ¢ = 1 and
associate this velocity with £ = 0.5. Repeat this process for each second
of the flight of the ball, then sketch a graph of the average velocity as a
function of time, ¢.

120 T T T T T T T T T 80
(2.5,100) 60k

100

80|

60|

h() (ft)

40

Average Velocity (ft/sec)
o

20|

(5.0)
0 05 1 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5
t(sec) t (sec)

Figure 3: Left: Parabolic graph of the height of the flight of a ball of
Example 1 Right: The corresponding average velocities given in Table 2.

Solution: a. The graph of h(t) is a parabola with t-intercepts at ¢ = 0
and t = 5, the latter being when the ball hits the ground. The vertex or
maximum height of the ball occurs at the midpoint between these intercepts
or t = 2.5 with h(2.5) = 100 ft. The left panel of Figure 3 shows a graph
showing the height of the ball as a function of t.
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b. The average velocity for the ball between ¢ = 0 and ¢t = 1 s is given
by
h(1) — h(0)
1-0
Similarly, the average velocities are computed between each pair of seconds
from ¢ = 0 to t = 5, and the results are summarized in Table 2.

Vave (0.5) = — 64 ft/s.

t |05 |15]25] 3.5 | 4.5
Ugpe | 64 | 32 | 0 | =32 | —64

Table 2: Average velocities for Example 1.

The graph of the average velocity is depicted in the right panel of Figure 3
and is a straight line. Note that the average velocity is zero at the maximum
of the height curve, h(t). q

Leaping Salmon

A river is dammed, and a salmon ladder is built to enable the salmon
to bypass the dam and continue to travel upstream to spawn. The vertical
walls on the salmon ladder are 6 feet high. The salmon has to leap vertically
upwards over the wall. The height of the salmon during its leap is given by

h(t) = 20t — 16¢>.

a. Sketch a graph of the height of the salmon (in feet), h(t), with time,
showing clearly the maximum height and when the salmon can clear the
wall.

b. Find the average velocity of the salmon between ¢ = 0 and £ = 0.5
and associate this velocity with ¢ = 0.25. Repeat this process for each half-
second of the leaping salmon, then sketch a graph of the average velocity as
a function of time, t.

c. Determine the minimum speed, vy, that the salmon needs on exiting
the water to climb the salmon ladder if the height is given by the formula

h(t) = vot — 16¢>.

Solution: a. The function h(t) is a parabola, which can be written in the
factored form of
h(t) = 20t — 16t = 4¢(5 — 4t).
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It follows that the ¢-intercepts are ¢t = 0 and ¢ = 5/4 = 1.25. Thus, the
vertex occurs at (0.625,6.25). The graph of this parabola is depicted in the
left panel of Figure 4. The salmon can clear the wall when h(t) = 6, so
20t — 16t%> = 6 or 8¢ — 10t + 3 = 0. This can be factored to give

(2t — 1)(4t — 3) = 0.

It follows that either ¢ = 1/2 or ¢t = 3/4, so the salmon can clear the wall at
any time 1/2 <t <3/4s.

Leaping Salmon Salmon Velocity
T T T 20 T T T

(0.625,6.25)

6k : 15f (0:25,12)

05,6,
(05.6) ol

h(v) (ft)

K (0.75,-4)

Velocity (ft/sec)
o

|
LN
o

1F -15}

0 i i i i i i ~20 i i i i i h
0 0.2 04 0.6 0.8 1 1.2 0 0.2 04 0.6 0.8 1 12
t (sec) t (sec)

Figure 4: Left: Graph of the leaping salmon of Example 2. Right: Graph
of the corresponding salmon velocity.

b. The average velocity of the salmon between ¢ = 0 and ¢t = 0.5 is given
by,
h(0.5) — h(0)  (20(0.5) — 16(0.5)?) — 0

v(0.25) = 05 = 05 =12 ft/s.

Similarly, the average velocity of the salmon between ¢t = 0.5 and t = 1 is
given by

v(0.75) = A1) 8.5(0'5) = 4(;56 = —4 ft/s.

The graph of the velocity curve is depicted in the right panel of Figure 4.

c. The minimum speed, vy, that the salmon needs to climb the fish
ladder is the one that produces a maximum height of 6 ft. This is equivalent
to having the vertex of the height function occur with h = 6. Since h(t) =
vot — 16t2, the t-value of the vertex occurs at

vo
t=—2
32

(since this is halfway between the intercepts ¢ = 0 and ¢ = v9/16). Since we
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want the vertex to be 6 ft, we need to satisfy the equation
WY _ (B0 g (Y0)?_ Y _
h(32) _“0(32) 16 (32) “64 O

vo = 8v6 ~ 19.6 ft/s.

Thus,

4 TANGENT LINE INTERPRETATION

_
(;/éﬂ

JAV;

The calculations above for the average velocity are the same as the calcula-
tions for the slope between the two data points given by the height function.
Technically, this is known as computing the slope of the secant line between
two points on a curve. Geometrically, as the points on the curve get closer
together, then the secant line approaches the tangent line. The tangent line
represents the best linear approximation to the curve near a given point. Its
slope is the derivative of the function at that point. Figure 5 illustrates how
a sequence of secant lines formed from a given point and other points on the
curve approach the tangent line at the given point as the other points get
closer to the given point.

Consider the function
2

y=2a°.
We would like to find the equation of the tangent line at the point (1,1) on
the graph. A secant line is found by taking two points on the curve and
finding the equation of the line through those points.

Velocity — Tangent Lines

The animated gif at this site shows a sequence of secant lines that converge
to the tangent line by taking the two points closer and closer together. The
animated gif starts with the secant line through the points (1,1) and (2,4).
This line has a slope of m = 3, and its equation is y = 3z — 2. The next the
pair of points on the curve y = z? is (1,1) and (1.5,2.25). This line has a
slope of m = 2.5, and its equation is y = 2.5z — 1.5. The secant line through
the points (1,1) and (1.1,1.21) has a slope of m = 2.1, and its equation is
y=21x —1.1.

Suppose we take z = 1 + h for some small h. With ¥ = z?, the corre-
sponding y-value is y = (1 + h)? = 1+ 2h + h2. The slope of the secant line
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Secant and Tangent Lines

5 : K ’
— y=x2 @a/f
AF| - - y=3x—2 i e ot .
--- y=25x-15 /./g’_
3} y=21x-11 [ 0 U i
[ y=2x-1 : (’/
) E— SO e, L A(25,225) i
>
o] ST o (1.1,1.21) SR ]
- Aay
ob i TT———— ///’ ““““ PO “““““““““““““““““““““““““ i
B RN < d // /// “““““““““““““““““ “““““““““““““““““““““““““““ ]
_2 s b/ ] ] | 1 1
-1 -05 0 0.5 1 1.5 2 25 3
X

Figure 5: Sequence of secant lines approximating the tangent line to the
curve at (1,1).

through this point and the point (1,1) is

_(1+2h+h2)—1_2h+h2_2+h
- (1+mk -1 B ’

and the formula for this secant line is
y=(2+h)z — (1+h).

As h gets very small, the secant line gets very close to the tangent line.
Letting h = 0 in the equation above gives the tangent line for y = z? at
(1,1), and it is

y=2z —1.

The slope of the tangent line, m = 2, is the value of the derivative of y = z2

at x = 1. q

5 APPLET FORINTERPRETING THE DERIVATIVE AS THE SLOPE OF
THE TANGENT LINE

The sections above showed how the tangent line can be found by taking
a sequence of secant lines with the = values getting closer and closer to-
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gether. These calculations are clearly very tedious, yet the geometric view
of the tangent line is very easy to visualize. The applications that relate
the derivative to a growth rate or a velocity use the calculations similar to
finding the slope of the tangent line. So graphically, the derivative is simply
the slope of the tangent line.

Velocity — Cubic Function

We provide an applet to allow you to further explore the geometric impli-
cations of the derivative by visualizing a cubic function on the left and a
graph of its derivative on the right. As noted above, the derivative is simply
the slope of the tangent line for a given function. As you move the pointer
on the function on the left, you can see the value of the derivative on the
right. Click on the figure on the left and a point with the tangent line will
appear on the graph. The value of the slope of the tangent line appears in
the graph on the right. See Figure 6 for a snapshot from the applet.

Tangent Lines for Cubic Equation Slope of Tangent Lines for Cubic
T T T T T T 20, T T T T T T T

_4 R L L L L R R R L R R R R R R R R R
-25 -2 -15 -1 -05 0 05 1 15 2 25 -25 -2 -15 -1 -05 0 05 1 15 2 25
X X

Figure 6: Example of the graph obtained from the applet Velocity — Cubic
Function.

There are several points of particular interest in the graph above. The
graph on the left is a cubic function, while the graph of its derivative is a
quadratic. Observe what happens as you approach a maximum (or mini-
mum) for the cubic function. The value of the derivative goes to zero and
the sign of the derivative function changes. This will be one of the more
significant applications of the derivative.

The following worked examples will clarify the geometric interpretation
of the derivative of a function f(z) as the slope of the line tangent to the
curve f(z) at some point. One means of finding the tangent line is to
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examine a sequence of secant lines, where the points on the curve are taken
closer and closer together.

Secant Lines

In this example, we examine a function, f(x), then form a sequence of secant
lines by finding two points on the curve, then creating the line through those
points. Consider the function

f(z) = 2% — .

a. Let one point on all secant lines have £ = 1. The other points in
the sequence have z = 2,z = 1.5,z = 1.2,z = 1.1, and z = 1.01. Find the
sequence of secant lines with these points on the line and on f(z).

b. The derivative of f(z) is the slope of the tangent line. As the values
of z get closer together, the secant lines approach the tangent line. Use the
results in Part a. to determine the equation of the tangent line through the
point (1,0), and from its slope find the derivative of f(x).

c. Graph f(z), the tangent line, and the secant lines.

Solution: a. The left point for all the secant lines is (1,0). When z = 2,
the other point is (2,2). The equation of a line through (1,0) and (2, 2) has
a slope of 2 and y-intercept of —2, so its equation is given by

y=2x — 2.

For z = 1.5, the points on the secant line (and f(z)) are (1,0) and (1.5,0.75).
This secant line has a slope of m = (0.75 — 0)/(1.5 — 1) = 1.5. It follows
that the equation for this secant line is

y = 1.5z — 1.5.

For = 1.2, the points on the secant line (and f(z)) are (1,0) and (1.2,0.24).
This secant line has a slope of m = (0.24—0)/(1.2—1) = 1.2, so the equation
for this secant line is

y=12x —1.2.

For z = 1.1, the points on the secant line (and f(z)) are (1,0) and (1.1,0.11).
This secant line has a slope of m = (0.11-0)/(1.1—1) = 1.1, so the equation
for this secant line is

y =11z —1.1.

Finally, for z = 1.01, the points on the secant line (and f(z)) are (1,0) and
(1.01,0.0101). This secant line has a slope of m = (0.01 —0)/(1.01 — 1) =
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1.01, and the equation for its secant line is
y = 1.01z — 1.01.

b. It is not hard to see that this sequence of secant lines is converging
to the tangent line

y=z—1.

2

The slope of this line is 1, so the derivative of f(z) =z“ —z at z =1 is

also 1.

-1

Figure 7: Graph of the secant lines approximation to the tangent line of
Example 4.

c. Figure 7 is a graph of the function, the tangent line, and our secant
lines. N

It becomes tedious calculating each of the elements of the sequence of
secant lines as we saw in the previous example. The more general way to
compute a secant line for a function f(z) at a point z is to find the equation
of a line through the points (z, f(z)) and (z + h, f(z + h)), where h is some
value different than zero.
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Secant line with h

Suppose we take the previous example and find the equation of the secant
line through the points (2, f(2)) and (2 + h, f(2+ h)), where

f(z) =2% — .

Let h get small and determine the slope of the tangent line through
(2,2), which gives the value of the derivative of f(x) at x = 2.

Solution: The value of f(2 + h) is given by
f@+h)=02+h)?-(2+h)=4+4h+h*>—2—h=2+3h+h>
The slope of the secant line is given by

_f2+h)—f(2)  (2+3h+hY) -2
=T -2 h =3+h.

Using the point slope form of the line (with the point (2,2) on the secant
line), we find the equation of the secant line is given by

y—2=3+h)(z—-2)
or
y=(3+h)z —4—2h.
It is fairly easy to see that as h approaches zero, the secant line ap-
proaches the tangent line given by
y =3z — 4.

This line has a slope of 3, so the derivative of f(z) at £ = 2 must be 3. <«

Secant line for a Square Root

In this example, we consider a more complicated function. Suppose that

flz)=vz+2.
Find the slope of the secant line through the points (2, f(2)) and (2+h, f(2+

h)).
Let h get small and determine the slope of the tangent line through
(2,2), which gives the value of the derivative of f(z) at z = 2.
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Solution: The slope of the secant line is given by

f@2+h)—f(2) V24+h+2-VvV2+2 Vi+h-2
2+h) -2 h B h

_ (\/4+h—2)(\/4+h—l—2)_ 4+h—4 1
B h VA+h+2

T WA+ h+2) VAitht2

This formula is substantially more complex, requiring some techniques from
algebra that you may have forgotten. This shows that finding the slope of
the secant line can become quite tedious and difficult.

In the formula above, it is fairly easy to see that as h approaches zero,
the slope of secant line, m, approaches

1 1

my = =_.
T Vit2 4

Since the derivative is related to the limiting case of the slope of the secant

lines (the slope of the tangent line, m;) we see that the derivative of f(z) at

z = 2 must be 1/4. <

6 VELOCITY OF THE CAT

From our example above, we had that if a cat falls from a branch that is 16
feet high, then the height of the cat satisfies the equation

h(t) = 16 — 162

We easily saw that the cat hits the ground after only one second of falling.
To find the velocity of the cat, we need to determine its the slope of the
tangent line for h(t) near t = 1.

Suppose the we could monitor the height for a small increment of time
after t = 1, say t = 1 + 7. The slope of the secant line between the heights
att=1and t =1+ 7 is given by,

h(14+7)—h(1) (16 -16(1+7)%) -0

T T
—327 — 1672
St L ST

T

As seen above, the velocity at ¢ = 1 is the slope of the tangent line,
which is found by letting 7 go to zero. Thus, the velocity of the cat at t =1
is

v(1) = —32 ft/s (or about 21.8 mph).
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7 EXERCISES

l.a. A ball thrown vertically with an initial velocity of 64 ft/sec upwards
satisfies the equation
h(t) = 64t — 162

with h(t) being the height of the ball. Plot a graph of the height of the ball
as a function of time, ¢. Find when the ball hits the ground. Also, determine
the maximum height of the ball and when this occurs.

b. Find the average velocity in the intervals ¢ € [0, 1], [1,2], and [2,4].

2. A ball is tossed into the air with an initial velocity of 48ft/s from a 64ft
platform. Its height, h (in ft), above the ground ¢ seconds after it is thrown
is given by

h(t) = —16t + 48t + 64.

a. Find the average velocity of the ball for the first two seconds. Also,
find the average velocity between times ¢ = 2 and ¢ = 2.5.

b. Sketch a graph of the flight of the ball. What is the maximum height
of the ball and when does it occur?

c. When does the ball hit the ground and what is its velocity then?
(Hint: Find the slope of the tangent line at the time when the ball hits the
ground.)

3. Suppose that an object shot vertically from a 58.8 m tall building satisfies
the height function:

h(t) = 58.8 + 19.6t — 4.9¢2,

where £ is in seconds and h is in meters.

a. Find the average velocity between ¢t = 0 and ¢t = 1 sec. Repeat this
calculation for ¢ € [1,2], ¢t € [2,3], t € [3,4], and ¢ € [4,5].

b. Determine the maximum height of the object and when the object
hits the ground (h(t) = 0). Sketch a graph of the height of the object.

c. Find the velocity of the object at t = 4 sec by computing the average
velocity between ¢ = 4 and t = 4 4+ At, then letting At — 0.

4.a. A cat is sitting on a ledge 12 ft above the ground. A bird flies by at a
height of 18 ft above the ground. The cat leaps up with a vertical velocity
of 16 ft/sec trying to catch the bird. If we ignore air resistance and use an
acceleration from gravity of —32 ft/sec?, then the height of the cat above
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the ground, h(t), is given by the formula
h(t) = 12 + 16t — 16t°.

Find the maximum height that the cat achieves and how long it takes to
reach that maximum height. Can the cat catch the bird?

b. Find the average velocity of the cat for the intervals ¢ € [0, 3], t €
[3,1], and ¢ € [1, 3].

c. Determine the time when the cat hits the ground and the velocity of
impact. Sketch a graph of the height of the cat as a function of ¢.

5. A kangaroo can leap vertically 240cm. The initial velocity, vg is unknown,
so we want to determine it from the data on how high it can jump using
Newton’s law of gravity. The equation describing the height of the kangaroo
is

h(t) = vot — 490¢%.

a. Use the information above to determine the animal’s initial upward
velocity, vg, then find how long the kangeroo is in the air.
b. Find the average velocity of the kangaroo between t =0 and ¢ = 1.

6. Consider the function f(x) = 1 —z2. To find the equation of the tangent
line at the point x = 1 or (1,0), we find a sequence of secant lines passing
through (1,0).

a. Let one point on all secant lines be (1,0). The other points in the
sequence have x = 2, x = 1.5, x = 1.1, and x = 1.01. Find the sequence
of secant lines with these points on the line and on f(z). Sketch a graph of
f(x) and the secant lines.

b. Use these secant lines to predict the equation of the tangent line. The
slope of the tangent line gives the derivative at £ = 1, so find the derivative
of f(z) at z = 1.

7. Consider the function f(r) = 2z —z2. To find the equation of the tangent
line at the point z = 0 or (0,0), we find a sequence of secant lines passing
through (0,0).

a. Let one point on all secant lines be (0,0). The other points in the
sequence have x = 1, £ = 0.5, x = 0.1, and x = 0.01. Find the sequence
of secant lines with these points on the line and on f(z). Sketch a graph of
f(x) and the secant lines.

b. Use these secant lines to predict the equation of the tangent line. The
slope of the tangent line gives the derivative at £ = 0, so find the derivative
of f(z) at z = 0.
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8. Consider the functions below. Find the equation of the secant line
through the points (1, f(1)) and (1 + Az, f(1+ Az)) for each of these func-
tions. Let Az get small and determine the slope of the tangent line through
(1, (1)), which gives the value of the derivative of f(x) at z = 1.

a. f(z) = 2% +2, b. f(z) = 3z — 22,
c. f(x) =2z +2, d. f(z) =3z —4,
e f0) = —. £ @)= 5o

8 REFERENCES:

[1] Jared M. Diamond (1988), Why cats have nine lives, Nature 332, pp
586-7.
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CHAPTER 11:

LIMITS, CONTINUITY, AND THE
DERIVATIVE

This is a theoretical chapter that studies the concepts of limits, continuity,
and the derivative. These ideas are central to understanding differential
Calculus. This chapter provides the definition of the derivative.

1 LIMITS

This section contains a sketch of the formal mathematics that is required
to fully develop the concept of the derivative. A complete understanding is
beyond the scope of this course, but a few of the ideas are sufficiently im-
portant that some discussion is warranted. In the previous sections we have
discussed how the derivative is related to the slope of the tangent line for a
curve at a point. This was viewed geometrically by considering a sequence
of secant lines that approached the tangent line at a point or algebraically
by examining what happened to the slope computed at a point as you took
points closer and closer together on the curve. (Another perspective on this
subject can be viewed in the University of British Columbia notes!, which
have had more time to be developed.)

Both the geometric and the algebraic ideas mentioned above need the
concept of a limit. From a conceptual point of view, the limit of a function
f(x) at some point zy simply means that if your value of z is very close
to the value zg, then the function f(z) stays very close to some particular
value.

"http:/ /www.ugrad.math.ubc.ca/coursedoc/math100/ notes/derivative/balll.html,last
visited 03/29/04
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Definition: The limit of a function f(z) at some point
x( exists and is equal to L if and only if every “small”
interval about the limit L, say the interval (L — ¢, L +
€), means you can find a “small” interval about z, say
the interval (zg — d,z¢ + d), which has all values of f(z)
existing in the former “small” interval about the limit L,
except possibly at z itself.

This is a difficult concept to fully appreciate. However, you should be
able to grasp the idea through several examples.

LY

L+ Plx, .I'E'I.:I]'”";’pf

-
X

Fg i

Figure 1: Graph depicting the concept of limit of a function.

Consider f(z) = 2?2 — z — 6. Find the limit as = approaches 1. Tt is not
hard to see from either the graph or from the way you have always evaluated
this quadratic function that as x approaches 1, f(z) approaches —6, since
f(1) = —6.

Fact: Any polynomial, p(z), has as its limit at some z(, the value of
p(zo). See the left panel of Figure 2 to visualize this limit. <
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y:xz—x—G y:(xz—x—G)/(x—s‘)
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Figure 2: Left: Graph for the concept of limit for the polynomial function
of Example 1. Right: Graph for the limit concept for the rational function
given in Example 2.

Consider the rational function 7(z) = (2 — z — 6)/(z — 3). Find the limit
as = approaches 1. If z is not 3, then this rational function reduces to
r(x) = z + 2. So as x approaches 1, this function simply goes to 3. See the
right panel of Figure 2 to visualize this limit.

Fact: Any rational function, r(z) = p(z)/q(x), where p(z) and ¢(x) are
polynomials with ¢(z() not zero, then the limit exists with the limit being
r(zg)- q

Consider the rational function in Example 2. Now find the limit as = ap-
proaches 3. Though r(z) is not defined at 2y = 3, we can see that arbitrarily
“close” to 3, r(z) = z + 2. So as z approaches 3, this function simply goes
to 5. Its limit exists though the function is not defined at o = 3. See the
left panel of Figure 3 to visualize this limit. <

Consider the rational function f(z) = 1/z2. Find the limit as = approaches
0, if it exists. From our statement above on rational functions, this function
has a limit for any value of z(y where the denominator is not zero. However, at
zo = 0, this function is undefined. Thus, the graph has a vertical asymptote
at o = 0. This means that no limit exists for f(z) at zy = 0. See the right
panel of Figure 3 to visualize this limit.

Fact: Whenever you have a vertical asymptote at some zy, then the
limit fails to exist at that point. <
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Figure 3: Left: Graph for the limit concept for the rational function of Ex-
ample 3. Right: Graph depicting the limit case for the function of Example
4.

Consider the rational function r(z) = (z? —z —2)/(z — 3). Find the limit as
x approaches 3, if it exists. From our statement above on rational functions,
this function has a limit for any value of xy where the denominator is not
zero. See the left panel of Figure 4 to visualize this limit.

y= (2 -x-2)/(x - 3) Heaviside Function
20 T T T T r
15} r °
0.8
10t
0.6f
> 5 >
0.4f
0.2f
0]
. . . . . 02 . . . . . . .
1 2 3 4 5 6 -2 -15 -1 -05 0 0.5 1 15 2
X X

Figure 4: Left: Graph of the rational function of Example 5. Right: Graph
for the Heaviside function of Example 6.

However, at ¢ = 3, this function is undefined; and furthermore, the
function is not approaching zero in the numerator near zyo = 3. Thus, the
graph would show a vertical asymptote at o = 3. This means that no limit
exists for r(z) at zy = 3. q

Heaviside Function

The Heaviside function is often used to specify when something is “on” or
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“off”. The Heaviside function is defined as

0, forz<0

H(z) = 1, forz>1.

This function clearly has the limit of O for any < 0, and it has the limit
of 1 for any = > 0. Even though this function is defined to be 1 at z =0, it
does not have a limit at g = 0. This is because if you take some “small”
interval about the proposed limit of 1, say € = 0.1, then all values of = near
0 must have H(z) between 0.9 and 1.1. But I can take any “small” negative
z and H(z) = 0, which is not in the desired given interval. Thus, no limit
exists for H(z). See the right panel of Figure 4 to visualize this limit.

Perspective: Whenever a function is defined differently on different
intervals in a manner similar to the Heaviside function above, you need
to check the places where the function changes in definition to see if the
function has a limit at these x values where the function changes. (It might
also have asymptotes at other points where again you would check.) N

Consider the fractional power function f(z) = z'/2. Find the limit as z
approaches 0, if it exists. This function is not defined for x < 0, so it cannot
have a limit at £ = 0, though it is said to have a right-handed limit. See
Figure 5 to visualize this limit.

q

Summary of Limits: Most of the functions that you regularly examine
have limits. Usually, the problems arise at points £y when there is a vertical
asymptote, the function is defined differently on different intervals, or special
cases like the square root function.

2 CONTINUITY

Closely connected to the concept of a limit is that of continuity. Intuititvely,
the idea of a continuous function is what you would expect. If you can draw
the function without lifting your pencil, then the function is continuous.
Most practical examples use functions that are continuous or at most have
a few points of discontinuity.

Definition: A function f(z) is continuous at a point z
if the limit exists at z¢ and is equal to f(zg).
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Figure 5: Graph of the square root function of Example 7.

The examples above should also help you appreciate this concept. In
all of the cases except Example 3, the existence of a limit also corresponds
to points of continuity. Example 3 is not continuous at o = 3 though a
limit exists here, as the function is not defined at 3. Examples 3 and 5 are
discontinuous only at o = 3, while Examples 4, 6 and 7 are discontinuous
only at zp = 0. At all other points in the domains of these examples are
continuous.

2.1 EXAMPLE COMPARING LIMITS AND CONTINUITY

An example is provided to show the differences between limits and conti-
nuity. Figure 5 shows a graph of a function, f(z), that is defined on the
interval [—2, 2], except at z = 0, where there is a vertical asymptote.

It is clear that the difficulties with this function occur at integer values.
At £ = —1, the function has the value f(—1) = 1, but it is clear that the
function is not continuous nor does a limit exist at this point. At z = 0,
the function is not defined (not continuous nor has any limits) as there is
a vertical asymptote. At z = 1, the function has the value f(1) = 4. The
function is not continuous at x = 1, but the limit does exist with

lim f(z) = 1.
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Limits and Continuity

X

Figure 6: Graph depicting different cases for the concept of limit and con-
tinuity of a function.

At z = 2, the function is continuous with f(2) = 3, which also means that
the limit exists. At all non-integer values of z the function is continuous
(hence its limit exists).

3 DERIVATIVE

The primary reason for the discussion above is to give you the proper defini-
tion of the derivative. In the previous sections, we noted that the derivative
at a point on a curve is the slope of the tangent line at that point. This
motivation is what underlies the definition given below.

Definition: The derivative of a function f(z) at a point
xo is denoted by f'(zg) and satisfies

f(xo+h) — f(x0)

oo
f'(wo) = lim h ’

provided this limit exists.
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Let us use this definition to find the derivative of f(z) = 22,

. +h)—f(z) .. (z+h)?—2?
fla) = = S
2+ 2zh + h? — 22 2zh + h?
— lim > Terh c— imL:lim(Zx—l—h):Qx.q
h—0 h h—0 h h—0

We repeat this computation to find the derivative of f(z) = 1/(z + 2) (for
z not equal to —2).

1 1
oy oo f@th)—fl@) . x4 h+2 z42
e h
_ g @) —(@tht2) ~h
b0 h(z+2+hR)(x+2)  h>0h(z+2+h)(z+2)

-1 -1

I .
hod (z+2+h)(@+2)  (z+2)72

Clearly, we do not want to use this formula every time we need to com-
pute a derivative. The next section gives much easier formulae for finding
derivatives. Technology has advanced to where a number of programs on
computers and certain advanced calculators can differentiate most functions.
The accompanying Lab manual for this text shows how to use Maple’s diff
command to differentiate functions. <

4 EXERCISES

For each of the following functions, sketch a graph of the function and give
its domain. Determine if the function is continuous at = 2 and if so,
what its value is at £ = 2. If the function is not continuous at £ = 2, then
determine if it has a limit at £ = 2 and what that limit is.

I f(z) =22 — 4z + 4, 2. f(m):%ﬂ,
1 2 —6
3. f(x):ma 4. f(m):%a

5. f(z) =In(z — 1), 6. f(z) =v9 — 22

7. See Figure 7 for a graph of a function defined for z € [-1,2]. At z =0
and z = 1, determine what the function value is (if it exists). Also, find
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the limit as £ — 0 and z — 1, if the limits exist. Where is this function
continuous?

8. See Figure 7 for a graph of a function defined for z € [—2,3]. What is
the domain of this function? At x = 0,1,2, determine what the function
value is (if it exists). Also, find the limit as x — 0, x — 1, and x — 2, if the
limits exist. Where is this function continuous?

Exercise 7 Exercise 8

-1 -0.5 0 05 1 15 2 -1 -05 0 05 1 15 2 25 3
X X

Figure 7: Left: Exercise 7. Right: Exercise 8.

9. Use the definition of the derivative to find the derivative of the following
functions.

a. f(z)
c. f(z)

3, b. f(z) = 3z — 22,
4 — 1, d. f(z) =
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CHAPTER 12:
RULES OF DIFFERENTIATION

The previous chapter showed the definition of a derivative. However, it is
clear that using the definition of the derivative is not an efficient way to find
derivatives. In this chapter we develop some rules for differentiation. This
chapter covers the basic power rule for differentiation, additive and scalar
multiplication rules, and applications to polynomials.

1 APPLICATIONS WITH POWER LAW

In the allometric chapter, we saw that many biological applications are rea-
sonably well modeled by a power law relationship. For example, the data
from Altman and Dittmer [1] for the pulse, P, as a function of the weight,
w, are approximated by the relationship

P = 200w /%

The pulse is in beats/min, and the weight is in kilograms. The left panel of
Figure 1 shows a graph of this relationship.

Pulse vs. Weight of Mammals Biodiversity vs. Island Area

500 100 -
450f 1 90f
400} 2 8o

T 3500 8 7op

3 3 |

5 300} g

I

2 250f & 50p

N~ [l 3

% 200f ! g 40r

@ 150F g 30f
100f , T 20
501 i 10f

1
0 . 0
0

10 20 30 40 5 6 70 0 1 2 3 s 5

Weight (kg) Area (mi?) x10*
Figure 1: Left: Graph of the pulse vs. weight for mammals. Right: Graph of
the function of Herpatofuna number of species (biodiversity) vs. Caribbean
island area.

The graph shows an initial steep decrease in the pulse as weight increases,
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but can one quantify how fast the pulse rate changes as a function of weight?
Clearly, for small animals the pulse rate changes more rapidly than for large
animals. The derivative of this allometric or power law model provides more
details on the rate of change in pulse rate as a function of weight.

Previously we saw that the number of species of herpatofauna, N, on
Caribbean islands could be related to the area of the island, A, by an allo-
metric model approximated by

N =343,

A model of this sort is important for obtaining information about biodiver-
sity. A graph of this model is seen in the right panel of Figure 1.

Can we use this model to determine the rate of change of numbers of
species with respect to a given increase in area? Again the derivative is
used to help quantify the rate of change of the dependent variable, N, with
respect to the independent variable, A.

2 NOTATION FOR THE DERIVATIVE

We begin with an introduction to some of the notation that we will use.
There are several standard notations for the derivative. The two most com-
mon are the ones founded by Newton and Leibnitz.

For the function f(z), the Newtonian notation for the
derivative is written as follows:

df(z)

dz

The notation that Leibnitz used was
f'(z).

We will use these notations interchangeably, depending on what we are
trying to show.

3 POWER RULE

The power rule for differentiation is given by the formula
d(x™)
dz

=na™ !, for n#0.

Use the power rule to find the derivatives of the following functions:
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1. f(z) =" 2. fz) =273
3. f(z) = z!/3 4. f(z) =1/a*
5. f(z) =1/z1/? 6. f(z)=3

Solution:
1. Since n = 5, it follows from the power rule that f'(z) = 5z*.

2. Since n = —3, it follows from the power rule that f'(z) = —3z~*.

3. Since n = 1/3, it follows from the power rule that f'(z) = 1/3z%/3.
4. Since n = —4, it follows from the power rule that f'(z) = —4z .
5. Sincen = —1/2, it follows from the power rule that f’(z) = —1/2z~3/2.

6. Since n = 0, the power rule does not apply, but we know that the
derivative of a constant is f'(z) = 0. 4

Pulse Rate

Consider our applications at the beginning of this chapter. For the model
on pulse rate, P = 200w %25 we use the power law of differentiation (and
the fact that the scalar 200 multiplying the function is uneffected by differ-
entiation) to obtain
dP
dw
The negative sign shows the decrease in the pulse rate with increasing
weight. An animal at 16 kg by the allometric model would have a pulse
of about 100 (since 200 x 16='/# is 100). The derivative indicates that the
pulse rate is decreasing by —50/32 beats/min/kg, so a 17 kg animal should
have a pulse rate near 100 — 50/32 = 98 beats/min. N

= 50w 574,

Biodiversity Model

For the biodiversity model, N = 341/3, we can differentiate using the power
law to obtain AN

2 A28,

dA
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This shows the rate of change of numbers of species with respect to the
island area is increasing as the derivative is positive, but the increase gets
smaller with increasing island area, since the area has the power —2/3, which
puts the area in the denominator of this expression for the derivative. <

Height of a Ball

If a ball is thrown vertically in the air and air resistance is ignored (and
we assume that the initial height of the ball is 0), then the height of a ball
satisfies the formula,

2

h(t) = vot — 955

where vy is the initial velocity of the ball thrown vertically and g is the
acceleration due to gravity. We saw in our previous work that the derivative
of this height function is given by the velocity function, which satisfies

h'(t) = vy — gt.

This example takes advantage of three rules of differentiation. First, the
additive property of derivatives allows consideration of each of the terms in
the height function separately. Each of these terms has a scalar multiplier
and a power of t. Thus, they use the power rule of differentiation along
with a property for scalar multiplication. Below we list the rules for addition
and scalar multiplication when taking a derivative. <

4 OTHER BASIC RULES OF DIFFERENTIATION

The operation of differentiation is said to be linear, which means that you
can bring out multiplicative constants and the derivative of the sum of two
functions is the sum of the derivatives.

Scalar Multiplication Rule:

Assume that k is a constant and f(z) is a differentiable
function, then

d

d
k- (@) = k-2 f(z)
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Additive Rule:

Assume that f(z) and g(z) are differentiable functions,
then
d

~lg(o)]

Below are examples of differentiation using the power rule.

(@) + 9(a)] = 7)) +

Differentiation using the Power Rule

1. Find the derivative of the polynomial
f(z) =223 + 42 — 7z + 10.

Solution: From the power rule, we simply multiply the coefficient by the
power of z, then reduce the power of x by 1. This gives

f'(z) = 3(22%) + 2(4z) — 7T+ 0 = 62° + 8z — T.

Notice that the derivative of any constant is zero.

2. Other additive powers are handled similarly.

f(z) =2+ 3272 — 8z'/2 +13.

Solution: From our rules above, it is easy to see that the derivative is

f'(z) = 2z — 6273 — 4z~ /2.

3. Find the derivative of the function

1
f(a:):3x4—2x2+i—7+—4.
T

Nz

Solution: This problem is most easily worked by first changing all the terms
in f(z) into terms that only include powers of z, then apply the power rule.
Thus,

flz) = 3a¢* — 222 4 5072 — 7T 4 27

This is easily differentiated to give

5
f(z) = 1223 — 42 — ix_3/2 —4g75, q
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Below are two applications of the derivative showing how the derivative is a
rate of change or velocity (which is actually a rate of change in position).

Rate of Change in Pulse

Above, we found that there was an allometric relationship between weight
and the pulse of mammals given by the formula

P = 200w~ /%,

Find the rate of change in the pulse with respect to the weight when an
animal is 1 kg. Also, determine the rate of change in the pulse with respect
to the weight when an animal is 81 kg. Which of the two calculated rates
of change is larger in magnitude and what does this say about how pulse
changes as weight increases?

Solution: From the lecture notes, we have that in general the derivative of
P(w) is given by

AP 5ou5i,

dw

It follows that P/(1) = —50 and P’(81) = —50(81) %/* = —50(3) ° =
—50/243 = —0.206. The pulse rate at w = 1 is larger in magnitude. Thus,
the rate of change of the pulse rate at 1 kg is dropping much more quickly
than the rate of change of the pulse rate at 81 kg. Thus, changes in pulse
rate are much less between larger animals. <

Velocity of a Ball

A ball, thrown vertically from a platform without air resistance, satisfies the
equation
h(t) = 80 + 64t — 16t°.

Sketch a graph of the height of the ball, h(t), as a function of time, ¢.
Find the maximum height of the ball and determine when the ball hits the
ground. Give an expression for the velocity, v(t), as a function of time, ¢.
Find the velocity at the times ¢t =0, t = 1, and ¢ = 2. What is the velocity
of the ball just before it hits the ground?

Solution: We begin by factoring, so h(t) = —16(¢ + 1)(¢ — 5). The height
of the platform is clearly 80 ft, as h(0) = 80. From the factor, we see that
the ball hits the ground at ¢ = 5. The maximum height of the ball is at the
vertex, which is halfway between the intercepts. Thus, the maximum occurs
at t =2 with h(2) = 144 ft.
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The velocity is given by the derivative of the height function, so
v(t) = h'(t) = 64 — 32t.

Height of Ball
160 . .

140F T T e I
120t R TR N ST—
100/ e e N s

gofl N

h(®) (ft)

Gof e
b N

20p — — T o\

t (sec)
Figure 2: Graph of the height of a ball of Example 7.

We see that v(0) = 64 ft/sec (the initial velocity), v(1) = 32 ft/sec, and
v(2) = 0 ft/sec. As we expected, the velocity at the maximum is zero. The
ball hits the ground with velocity v(5) = —96 ft/sec. Figure 2 shows a graph
of the height of the ball. <

5 LOGISTIC GROWTH FUNCTION

One of the most commonly used models in population biology is the logistic
growth model. There is a discrete and continuous version of this model,
which we will study in some depth later. An earlier chapter of this book gave
the discrete Malthusian growth model, where the growth of the population
is assumed to be proportional to the existing population. The Malthusian
growth model is based on unlimited resources. However, as the population
increases, the growth rate of most organisms slows to where the population
reaches an equilibrium, which is called the carrying capacity of the organism
in its environment. The slowing in growth rate can be attributed to a number
of factors including crowding (lack of space to reproduce), lack of resources
(limited food supply), or build up of waste (toxicity).
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The logistic growth function is simply a quadratic function. (Recall that
the Malthusian growth function is a linear function.) The basic form of the
logistic growth function is

P T o
G(P) —TP(].—M> —’I‘P—MP )
where P is the density of yeast (x1000/cc). Consider the following specific
logistic growth function representing the growth of a yeast in a chemostat (a
technique often employed for maintaining a yeast culture in breweries). The
Malthusian growth rate » = 0.1 (hr~!) (which is about 10% per hour), and
the carrying capacity is M = 500(x1000 (yeast/cc). The growth function
can be written

G(P) = 0.1P — 0.0002P>.

There are a several interesting points from a biological perspective to
study about this growth function. First, when the growth function is zero
(no growth) the population is said to be at equilibrium. Biologists (and
brewers) frequently want to have their culture growing at peak production
rates, which is when the growth function is at its highest point. (Think
the maximum height of the ball in the example above.) Let us find these
significant points from the growth function above, then create a graph of
this function.

The equilibria are found by solving G(P) = 0. We factor the equation
above and set it equal to zero

G(P) = 0.1P(1 — 0.002P) = 0.

Thus, either P = 0 (eztinction of the population) or 1 — 0.002P = 0, which
gives P = 500(x1000 yeast/cc) (the carrying capacity). The maximum
growth is the vertex of this quadratic function, which is where the derivative
is zero. Computing the derivative, we solve

G'(P) = 0.1 — 0.0004P = 0.

Thus, 1 — 0.004P = 0, which gives P = 250. Substituting this value of P
into the logistic growth function, we have

G(250) = 0.1(250) — 0.0002(250)% = 12.5(x 1000 yeast/cc/hr).

Thus, the maximum growth in this culture occurs when the density of
yeast in the culture is 250 yeast/cc, and this population of yeast produce
12.5 yeast/cc/hr as the mazimum production. Figure 3 shows a graph of the
logistic growth function.
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Logistic Growth Function
14 T T

T R T— T s S—

1) R ol T— T S—

G(P) (x1000/cc/hr)

0 100 200 300 400 500
P (x1000/cc)

Figure 3: Graph of the Logistic growth function for a yeast culture in a

chemostat.

6 EXERCISES

Find the derivative for each of the following functions.

1. f(z) = 2* + 723 — 222 — 42 + 3, 2. g(z) =322 - 3z + 4 — 223,
3.h(t):t3—5t+%—ti2, 4,k(z):¥+6z_\/g’

5. plz) = 25 + 4722 — TV, 6. q(w) = 3w—04 4+ 2.1w° — %
7. f(z) = ax?® + bz +c, 8.g(x):A—£+£—Da:4.

3 \r

9. In the linear section, we found that the growth of a child satisfies the
equation
h(a) = 6.46a + 72.3,

where the age, a, is in years and the height, h, is in cm.
a. Find dh/da. What is the growth rate at age 27 At age 67
b. If a child is 135cm at age 10, what is the predicted height at age 117

10. The lecture notes showed that the number of species of herpatofauna,
N on Caribbean Islands as a function of the area in square miles, A, is
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approximated by the formula
N = 345.

a. Find the rate of change in number of species as a function of area,
dN/dA, when the area of the island is 64, 125, and 1000 square miles.
b. Sketch a graph of the derivative, dN/dA, for 0 < A < 1000.

11. A ball falling under the influence of gravity without air resistance satis-
fies the equation
y(t) = —4.9¢2,

where y is in meters and ¢ is in seconds.
a. Find an expression for the velocity, v(t) = y/'(t).
b. What is the velocity at ¢ = 1 and ¢t = 57

12. A ball that is thrown vertically falling under the influence of gravity
without air resistance from a 128 ft platform with an upward velocity of
32ft/sec satisfies the equation

h(t) = 128 + 32t — 162,

where h is in feet and ¢ is in seconds.

a. Find an expression for the velocity, v(t) = h'(t). Determine when the
velocity is zero, then determine the maximum height of the ball. What is
the velocity at t = 2 and t = 4.

b. Sketch a graph of h(t), showing crucial points, including the h-
intercept, the maximum height, and when the ball hits the ground.

13. A cat is crouching on a ledge that is 12 feet above the ground, trying to
ambush pigeons that fly by.

a. Suppose that a pigeon flies by 4 feet above the cat, and that the cat
jumps off the ledge with just enough vertical velocity, vy to catch the pigeon.
If the height of the cat is given by

h(t) = —16t2 + vot + 12,

then find the velocity v(t) = h'(t) of the cat at any time, ¢t > 0.

b. Find when the velocity is equal to zero in terms of vy. This is the
time at the maximum height.

c. Since the cat is 16 ft in the air at this time, use the equation for
the height of the cat, h(t) to compute the initial velocity of the cat, wvp.
Substitute this into the velocity equation, v(t) to give the velocity of the cat
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at any time between jumping and hitting the ground. What is the velocity
of the cat after 1 second?

d. Find when the cat hits the ground with the pigeon and what is the
velocity of the cat that it hits the ground.

14.a. Lizards are cold-blooded animals whose temperatures roughly match
the surrounding environment. Suppose the body temperature, T'(¢), of a
lizard is measured for a period of 18 hours from midnight until 6 PM. The
body temperature (in °C) of the lizard over this period of time (in hours) is
found to be well approximated by the polynomial

T(t) = —0.01#> + 0.285t% — 1.80t + 15.

Find the general expression for the rate of change of body temperature per
hour (dT'/dt).

b. Use this information to find what the rate of change of body temper-
ature is at midnight, 4AM, 8AM, noon, and 4 PM. Which of these times
gives the fastest increase in the body temperature and which shows the most
rapid cooling of the lizard?

7 REFERENCES:

[1] P.L. Altman and D.M. Dittmer, eds. Biology Data Book. Federation
of American Societies for Experimental Biology. (1964) 234-235.
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CHAPTER 13:

APPLICATIONS OF THE DERIVATIVE -
GRAPHING

This section examines applications of the derivative to finding maxima and
minima. The derivative is valuable for interpreting important aspects of
graphs and biological problems. The first problem examines a study of the
body temperature of a female during the menstrual cycle and using that to
determine fertility. These ideas are generalized to more classical Calculus
applications, where the derivative is used to help with sketching the graph
of a function.

1 BODY TEMPERATURE FLUCTUATION DURING THE MENSTRUAL
CYCLE

Mammals are warm-blooded and carefully regulate their body temperature
in a narrow range to maintain optimal physiological responses. Variations
in body temperature occur during exercise, stress, infection, and other nor-
mal situations, but through neurological control, the body self-regulates to
maintain a fairly constant temperature. Still there are slight variations in-
cluding circadian rhythms where each day the body oscillates a few tenths
of a degree Celsius (minimum during times of sleep and maximum usually
occurring late in the morning). Women also experience a normal body tem-
perature cycle along with their menstrual cycle. Some women monitor their
basal body temperature to try to determine their peak period of fertility to
maximize (or minimize) the chance of pregnancy. The onset of ovulation
often corresponds to the sharpest rise in temperature, which gives peak fer-
tility. (Some claim that by the time a women notices her rise in temperature,
she is past her peak fertility, so this type of monitoring is not universally
recommended.)

Figure 1 includes a graph of the basal body temperature taken at the
same time each day for a one 28-day period of one woman. The data are fit
by a cubic polynomial.
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Female Body Temperature
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Figure 1: Graph for the polynomial that best fits the data for the female
body temperature during the 28-day menstrual cycle.

The best cubic polynomial fitting the data above is given by
T(t) = —0.0002762> + 0.01175t% — 0.1121¢ + 36.41.

From the curve above we want to find the high and low temperatures, then
determine the time of peak fertility by finding the time when the temperature
is rising most rapidly.

The high and low temperatures occur where the tangent to the curve
has a slope of zero. This is where the derivative is zero. From the rules of
differentiation, we find the derivative of the temperature.

T'(t) = —0.0008286¢> + 0.02350¢ — 0.1121.

Note that the derivative is a different function from the original function.
The roots of this quadratic equation are readily found using the quadratic
formula. They are

t = 6.069 and 22.29 days.

Inserting these values in the original function give

Minimum at ¢ = 6.069 with 7(6.069) = 36.1°C
Maximum at ¢t = 22.29 with 7°(22.29) = 36.7°C,
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which means that there is only a 0.6°C difference between the high and low
basal body temperature during a 28 day menstrual cycle by the approxi-
mating function. The data varied by 0.75°C.

The day with the maximum increase in temperature is where the deriva-
tive is at a maximum. This is the vertex of the quadratic function, T"(t).
Clearly, the maximum can be found by the midpoint between the roots of
the quadratic equation. However, we can also use the derivative of T"(t) or
the second derivative of T'(t). The second derivative is given by

T"(t) = —0.0016572t + 0.02350.

The second derivative is zero at the maximum of 7"(t), which occurs at the
Point of Inflection at t = 14.18 with 7'(14.18) = 36.4°C.

The maximum rate of change in body temperature is
T'(14.18) = 0.054° C/day.

This model suggests that the peak fertility occurs on day 14, which is con-
sistent with what is known about ovulation.

There are more applications developed at the end of this chapter. But,
let us introduce more important concepts to understand them even better.

2 MAXIMA, MINIMA, AND CRITICAL POINTS

The example above shows that finding when the derivative is zero can give
important information about the graph of a function. Another way to view
this phenomenon is to examine any graph of a smooth function (which is a
function that is continuous and differentiable). It is clear that when you are
at a high point of the graph (that is not an endpoint), then the tangent line
must be horizontal, which says that the derivative is zero.

Definition: A smooth function f(z) is said to be in-
creasing on an interval (a,b) if f'(z) > 0 for all z in the
interval (a,b). Similarly, a smooth function f(z) is said
to be decreasing on an interval (a,b) if f’(z) < 0 for all
z in the interval (a, b).

A high point of the graph is where f(z) changes from increasing to de-
creasing, while a low point on a graph is where f(z) changes from decreasing
to increasing. In either case, the derivative passes through zero.
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Local Extrema

y y =f(x)
f(a) is a Local Maximum

f(x)<0 f(x) >0
f(x)>0

f(b) is a Local Minithum
1

a b X
Figure 2: Graph of a general polynomial function indicating the local ex-
trema according to the sign of the derivative.

Definition: A smooth function f(z) is said to have a lo-
cal mazimum at a point ¢, if f'(c) = 0 and f'(z) changes
from positive to negative for values of = near c¢. Similarly,
a smooth function f(z) is said to have a local minimum
at a point ¢, if f'(¢c) = 0 and f/(z) changes from negative
to positive for values of x near c.

Clearly, it is important to find where the derivative is zero to find these
highest and lowest points on a graph.

Definition: If f(z) is a smooth function with f'(z.) = 0,
then z. is said to be a critical point of f(x).

Finding critical points helps find the local high and low points on a graph,
but some critical points are neither maxima or minima.

3 GRAPHING POLYNOMIALS

We applied these definitions to a cubic function describing body temperature
over a month. Let us examine how finding critical points can help us graph
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other polynomials. Consider the following examples.

Consider the following function:
f(z) = 2® — 62 — 15z + 2.

Use the information to help sketch a graph of f(z).

Solution: We begin by taking the derivative,
fl(x) =32 — 120 —15=3(z + 1)(z — 5).

f(x) = x° - 6x% - 15x + 2
(-1,10) |

Figure 3: Graph for the cubic polynomial of Example 1.

The derivative is zero when z, = —1 or 5. Evaluating the function at
the critical points, we find f(—1) = 10, which gives a local maximum at
(—1,10), and f(5) = —98, which gives a local minimum at (5, —98). The y
-intercept is (0,2) another easy point to add to our graph, so we now have
good information to make a reasonable sketch of the graph, which is shown
in Figure 3. Note that since this is a cubic equation, the z-intercepts are
very hard to find. <
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4 THE SECOND DERIVATIVE AND CONCAVITY

Since the derivative is itself a function, then if it is differentiable, one can
take its derivative to find the second derivative often denoted f”(z). The
sign of the second derivative tells where the first derivative is increasing
or decreasing. If the first derivative is increasing or the second derivative
is positive, then the original function is getting“steeper”. The function
is said to be concave upward. If the first derivative is decreasing or the
second derivative is negative, then the original function is said to be concave
downward. Thus, the second derivative is a measure of the concavity of a
function. For our smooth functions described above, we can see that maxima,
generally occur where the function is concave downward, while minima occur
where the function is concave upward. This property is often summarized
in the following test.

The Second Derivative Test: Let f(x) be a smooth
function. Suppose that f'(z.) = 0, so z. is a critical
point of f. If f"(z.) < 0, then z. is a relative mazimum.
If f"(z.) > 0, then z. is a relative minimum.

If we return to our example above where f(z) = 23 — 622 — 15z + 2, then
we see that the second derivative is

f"(z) = 6z —12.

The critical points occur at . = —1 and 5. Evaluating the second derivative
at the critical point . = —1, we find f”(—1) = —18, which says the function
is concave downward at —1, so this is a relative maximum. Similarly, the
second derivative at the critical point z. = 5 is f”(5) = 18, which says the
function is concave upward, so this is a relative minimum. <

5 POINTS OF INFLECTION

When the second derivative is zero, then the function is usually changing
from concave upward to concave downward or visa versa. This is known as
a point of inflection. A point of inflection is where the derivative function
has a mazimum or minimum, so the function is increasing or decreasing
most rapidly. In the application above for the variation of body temperature
over one month of a menstrual cycle, the point of inflection represented the
potential time of peak fertility by finding where the basal body temperature
was increasing most rapidly.
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From a graphing perspective, the point of inflection shows the visual
change in concavity. It is not nearly as important as extrema, but does
provide one more point to aid in graphing the function.

Once again returning to our example above of f(z) = z° — 622 — 15z + 2,
where the second derivative is f”(z) = 6z —12, we can easily find the point of
inflection. We see that f”(z) = 0 when z = 2. Thus, the point of inflection
occurs at (2, —44). This can be see on the graph of Figure 3. q

6 EXAMPLES OF GRAPHING

This section provides a series of examples to supplement this chapter and
help with the homework problems. The first examples examine graphing
problems. The second example returns to the height of a ball in the air, while
the last example uses the derivative to find the maximum and minimum
population from a study.

When you want to sketch a graph, the most important part of sketching
the graph is finding the extrema (maxima and minima). These are found
by finding the derivative and setting it equal to zero. The solutions of the
equation for the derivative equal to zero give the critical values, which are
substituted back into the the original function. By adding the z and y-
intercepts (if possible) and any asymptotes (if they exist) to the sketch,
you can get a fairly good idea of what the graph looks like. The second
derivative provides nice information to aid with the graph, but it is not
nearly as essential in getting a good looking graph.

Use the techniques developed in this chapter to find any local or relative
minima and maxima and points of inflection for the following polynomial,

y = 12z — 23,

then sketch a graph of the function.

Solution: The y-intercept should always be easy, and in this case, we readily
see that (0,0) is both an z and y-intercept. We can factor this equation and
solve for the z-intercept. To find the z-intercept, set y = 0, then factor and
solve the equation,

—z(z? —12) =0 or x = 0, +2V/3.

To find the extrema, we take the first derivative of the function and set
it equal to zero. Then we solve for z., where y’ = 0.
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y' = 12-322= -3z —4) = -3z +2)(x—2) =0
T, = —2,2.

We evaluate the original function at the critical points, giving y(—2) = —16
and y(2) = 16, so the critical points of the function are (—2,—16) and
(2,16). Clearly, the first point is a minimum and the second is a maximum.
However, we can check this with the second derivative test. We take the
second derivative and evaluate at the critical points to see if they are minima
or maxima.

n

y" = —6z
y"(2) = —6(2) = —12 is concave downward, indicating a maximum,

y"(—2) = —6(—2) = 12 is concave upward, indicating a minimum.

Derivatives of f(x) = 12x — X
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Figure 4: Graph of the function of Example 4 and the graph of its first and
second derivatives.

Thus the point (—2, —16) is a local minimum and the point (2,16) is a
local mazimum. The points of inflection occur at the point where the second
derivative is equal to zero. In this case, the inflection point is at = 0. This
means that the concavity direction changes at point (0,0). The concavity is
upward to the left of (0,0), and downward to the right of (0,0). The graph
of Figure 4 shows the function and its first and second derivatives. <
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Use the techniques developed in this chapter to find the local or relative
minima and maxima and points of inflection for the following polynomial,
Yy = zt — 8122,

then, sketch a graph of the function.

Solution: See the discussion in Example 4

The steps one should always take to create a graph are
as follows:

1. Find any z or y-intercepts. (Often z-intercepts are
too difficult to find.)

2. Find any vertical or horizontal asymptotes.
3. Find extrema (local minima and maxima).
4. Find any points of inflection.

The y-intercept is easily found as (0,0), which is both an z and y -
intercept. We can factor the equation above and solve for the z-intercept

222> -8) =0 or x=0,+2V2

The critical points z. can be found when the first derivative of the function
is set equal to zero.

y' =4r® — 162 = dz(2? — 4) = dz(z — 2)(z +2) =0

The critical points are at . = —2,0,2. As before, we evaluate the function
at each of the critical points, y(—2) = —16,y(0) = 0, and y(2) = —16, so
the critical points of the function are (-2, —16), (0,0), and (2, —16). Clearly,
the first point is a minimum, the second is a maximum, and the third is a
minimum again.

Again we can check with the second derivative (though usually this step
can be omitted because function evaluation gives the relative height of ex-
trema). The nature of these critical points can be found by evaluating the
second derivative function at the critical points of the first derivative func-
tion. If the result is negative it indicates a maximum and if the result is
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positive it indicates a minimum.
y" = 122% — 16 = 4(3z> — 4) =0,
y"(-2) = 4[3(-2)? -4 =32,
y"(0) = 4[3(0)% — 4] = —16,
y"(2) = 4[3(2)* —4] =32.
Thus the critical points indicate local minima at (+2,—16) and a local

Derivatives of f(x) = x* - 8x2

20

Figure 5: Graph of the function of Example 5 and the graph of its first and
second derivatives.

maximum at (0,0). The inflection points occur at the zeros of the second
derivative function, which are at approximately (+1.155,—8.889). These
characteristics are illustrated in the graph of Figure 5. <

Height of the Ball Revisited

Consider a ball that is thrown vertically with a initial upward velocity of
64 ft/sec (so vg = 64). The acceleration due to gravity is g = —32 ft/sec?.
With these values, the height of the ball satisfies

h(t) = 64t — 162
Find how high this ball travels.
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Solution: There are two good ways to solve this problem. From our knowl-
edge of the height function being a quadratic, we could simply find the
vertex of the parabola, knowing that it must be at the top of the flight of
the ball. Another physical property that can be used to find this mazimum
for flight of the ball is to recognize that at the top of its flight the ball is
temporarily stopped, then its velocity becomes negative as the ball falls back
to the ground. Thus, finding the time when the velocity is zero gives the
time of the maximum height of the ball.
The velocity function from our differentiation rules is

v(t) = 64 — 32t.
Solving the velocity equal to zero,
64 — 32t = 0,

gives the critical time, ¢ = 2 sec. The maximum height of the ball is found
by substituing this critical time into the original height equation, so

h(2) = 64(2) — 16(2)% = 64ft. 4

Study of a Population

The ocean water is monitored for fecal contamination by counting certain
types of bacteria in a sample of seawater. Over a week where rain occurred
early in the week, data were collected on one type of fecal bacteria. The
population of the particular bacteria (in thousand/cc), P(t), were best fit
by the cubic polynomial

P(t) = —t> + 9> — 15¢ + 40,
where 7 is in days.

a. Find the rate of change in population per day, dP/dt. What is the
rate of change in the population on the third day?

b. Use the derivative to find when the relative minimum and maximum
populations of bacteria occur over the time of the survey. Give the pop-
ulations at those times. Also determine when the bacterial count is most
rapidly increasing.

c. Sketch a graph of this polynomial fit to the population of bacteria.
When did the rain most likely occur?

Solution: a. To find the rate of change in population per day, we take the
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derivative of P(t).

— = -3t 18t — 15.
dt +

Evaluating this on the third day gives
P'(3) = 12(x1000/cc/day).

Population of Bacteria

)
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o
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x
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t (days)
Figure 6: Graph for the function of Example 7.

b. The critical points are found by setting the derivative equal to zero.
This particular quadratic factors easily, so
P'(t) = —3t* +18t — 15 = —3(t — 1)(t — 5) = 0.
It follows that the critical values are ¢, = 1 or 5. Substituting the critical

values into the population function, we have

Minimum at ¢ = 1 with P(1) = 33(x1000/cc),
Maximum at ¢ = 5 with P(5) = 65(x1000/cc).

To find when the population of bacteria is increasing most rapidly, we
take the second derivative and set it equal to zero. (Finding the point of
inflection.) Thus, we have

P"(t) = —6t+18 = —6(t — 3) = 0.
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It follows that the population is increasing most rapidly at ¢ = 3 with
P(3) =49(x1000/cc). Above we see that this maximum increase is

P'(3) = 12(x1000/cc/day).

c. In Figure 6 we have the graph of this population. Notice that the
population at ¢ = 7 with P(7) = 33(x1000/cc), which matches the local
minimum given above. From the graph, we can guess that the rain fell on
the second day of the week with storm runoff polluting the water in the days
following. <

7 EXERCISES

Sketch the curves of the functions below. List the maxima, minima, and
points of inflection for each graph. Also, give the z and y-intercepts and
any asymptotes if they exist.

1.y =15+ 2z — 22, 2.y =z — 12z,
3.y = 22> — 322, 4. y=z*—222 41,
2
5.y =z* — 32z, 6.y =2z + -,
X

7. Body temperatures of animals undergo circadian rhythms. A subject’s
temperature is measured from 8 AM until midnight, and his body temper-
ature, T' (in °C), is best approximated by the cubic polynomial

T(t) = 0.002(t* — 45¢* + 600t + 16000),

where ¢ is in hours.

a. Find the rate of change in body temperature %. What is the rate of
change in body temperature at noon ¢ = 127

b. Use the derivative to find when the maximum temperature of the
subject occurs and when the minimum temperature of the subject occurs.
What are the body temperatures at those times?

8. Over a 7 day period in the summer, data were collected on an algal bloom
in the ocean. The population of algae (in thousand/cc), P(t), were best fit
by the cubic polynomial

P(t) = t3 — 9> 4 15t + 30,

where £ is in days.
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dP
a. Find the rate of change in population per day, T What is the rate

of change in the population on the first day, ¢t = 27

b. Use the derivative to find when the relative minimum and maximum
populations of algae occur over the time of the survey. Give the populations
at those times. Over what intervals of time is the population increasing?

c. Sketch a graph of this polynomial fit to the population of algae. Show
clearly the maximum and minimum populations on your graph and include
the populations at the beginning of the survey (¢ = 0) and at the end (¢t = 7).

9. In lab we saw the experimental fit of Oy consumption (in pl/hr) after a
blood meal by the beetle Triatoma phyllosoma. Below is a cubic polynomial
fit to measurements for a different individual “kissing bug,”

1
§t3 — 62+ 20t + 120,

where t is in hours, for 0 <t < 12.

Y(t) =

. . . dy )
a. Find the rate of change in Oy consumption per hour, e What is
the rate of change in the Oy consumption at ¢ = 67

b. Use the derivative to find when the minimum and maximum Oy con-
sumption for this beetle occurs during the experiment. Give the O3 con-
sumption at those times.

c. Sketch a graph of this polynomial fit to the O consumption. Show
clearly the maximum and minimum Os consumption on your graph and
include the Oy consumption at the beginning of the study (¢ = 0) and at
the end (¢t = 12).

10. Many ecological studies require that the subject studied is correlated
with the temperature of the environment (especially insects and plants).
Over a 20 hour period, data are collected on the temperature, 7'(¢)in degrees
Celsius. The temperature data are found to best fit the cubic polynomial

T(t) = 0.01(1600 — 135¢ + 27> — ¢3),

where ¢ is in hours (valid for 0 < ¢ < 20).

a. Find the rate of change in temperature per hour, %. What is the
rate of change in the temperature at 3 AM, ¢t = 37

b. Use the derivative to find when the minimum and maximum temper-
atures occur. Give the temperatures at those times.

c. Sketch a graph of this polynomial fit to the temperature. Show clearly
the maximum and minimum temperatures on your graph and include the
temperatures at the beginning of the study (¢ = 0) and at the end (¢ = 20).
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11. a. An impala is migrating across a field that has been fenced with a
180 cm fence. To escape it needs to jump this fence. Assume that the
impala jumps the fence with just enough vertical velocity, vy to clear it. If
the height (in cm) of the impala is given by

h(t) = vot — 490¢2,

then find the velocity v(¢) = h'(t) of the impala at any time (in sec), t > 0,
before hitting the ground.

b. Find when the velocity is equal to zero in terms of vy. This is the
time at the maximum height. Since the impala is 180 cm in the air at this
time, use the equation for the height, h(t) to compute the initial velocity,
v, with which the impala must launch itself to clear the fence.

c¢. With the initial velocity computed above, determine how long the
impala is in the air, when jumping over the fence.
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CHAPTER 14:
THE DERIVATIVE OF ¢ AND In(z)

This chapter examines the derivatives of the functions e” and In(z). These
special functions often arise in biological problems that include biochemical
kinetics or population dynamics. The derivatives of these functions are used
to find extrema for a number of biological applications.

1 PROZAC

Fluozetine, more commonly known by its trade name Prozac, is a selective
serotonin reuptake inhibitor (SSRI). This drug is used to treat depression,
obsessive compulsive disorder, and a number of other neurological disorders.
It works by preventing serotonin from being reabsorbed too rapidly from
the synapses between nerve cells, prolonging its availablity, which improves
the patient’s mood. Fluoxetine is metabolized in the liver and transformed
into a slightly less potent SSRI, norfluozetine. Both compounds bind to
plasma protein, then become concentrated in the brain (up to 50 times
more concentrated). Fluoxetine and norfluoxetine are eliminated from the
brain with characteristic half-lives of 1-4 days and 7-15 days, respectively.

When performing studies of drugs, it is very important to understand
the kinetics of the drug in the body. When the drug is metabolized into
another active form, then the modeling becomes more complex. However,
understanding how the body handles a drug is crucial to providing therapeu-
tic levels of a drug and not allowing the drug’s levels to become too elevated
in the body. A number of first order kinetic models have been developed,
and we will examine some equations that describe the concentrations of
fluoxetine (F'(¢)) and norfluoxetine (N(¢)) in the blood.

1.1 HALF-LIFE OF A DRUG

We begin this study with a discussion of the half-life of a drug. (This
argument carries over to the half-life of radioactive material also.) Consider
a subject taking a 40 mg oral dose of fluoxetine, which is rapidly taken
into the blood stream to a concentration of 21 ng/ml. As reported in a
study with healthy volunteers [1], the half-life of fluoxetine was 1.5 days. If
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we assume instantaneous uptake of the drug (which actually takes several
hours), then we have the initial blood concentration of fluoxetine given by

F(0) =21 ng/ml

When a drug is either filtered out by the kidneys or metabolized by
some organ such as the liver proportional to its concentration, then the
drug is said to exhibit first-order kinetics and it decays exponentially with
a characteristic half-life. Fluoxetine is metabolized in both the brain and
liver, so satisfies the kinetic equation

F(t) = 21e7kt.
With a half-life of 1.5 days, we have
F(1.5) = 10.5 = 21e~ 1%,

Solving this equation for k, we have

el5k _ o

k=In(2)/1.5 = 0.462.

Thus, a good model for blood plasma concentration of fluoxetine following
a 40 mg oral dose is given by

F(t) — 216_0'462t.

2 NORFLUOXETINE KINETIC MODEL

Fluoxetine is metabolized in the liver and through a hepatic biotransfor-
mation becomes norfluoxetine (through a demethylation). Norfluoxetine
continues to act as potent and specific serotonin reuptake inhibitor, but
has the added advantage of lasting much longer. (Some researchers believe
that this is the primary therapeutic form of the drug because of its long
persistence in the brain compared to fluoxetine.) Using the data from the
Sunnybrook website' and taking the half-life to be 9 days for norfluoxetine,
a reasonable model using linear kinetics for the blood plasma concentration
of norfluoxetine is given by the equation

N(t) _ 27.5(6_0'077t o 6_0'462t).

'www.icomm.ca/shsc/kinetics/fluoxeti.html. last visited on 04/19/04
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(Note that all data from the Sunnybrook website! cannot be fit to a lin-
ear kinetic model, so this model chooses the peak value and half-life to be
consistent. )

Figure 1 shows a graph of the fluoxetine and norfluoxetine concentrations
from the models above. The graph supports the findings of some researchers
that norfluoxetine provides much of the therapeutic dose of Prozac.

Prozac Metabolism
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Figure 1: Graph of the blood concentration for fluoxetine and norfluoxetine.

We want to use our techniques from Calculus to determine the rate
of change of fluoxetine and to find the time of maximum blood plasma
concentration of norfluoxetine and what that concentration is. To solve these
problems, we need to learn the formula for the derivative of the exponential
function.

3 DERIVATIVE OF ¢f®

The exponential function e® is considered a special function. It is the only
function (up to a scalar multiple) that is the derivative of itself.

The derivative of the exponential function, e*, is

d

E(em) =e".
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Note that by our scalar multiplication rule, then the derivative of f(z) =
ke® is f'(z) = ke®.

From the definition of the derivative and using the properties of expo-
nentials, we see that

d erth o e —1

—e
e = lim —— =1 z
) = fim—y a0 T h

One definition of the number e is the number that makes

eh—l_

lim 1.

h—0

Geometrically, the function e is a number raised to the power z, whose
slope of the tangent line at x = 0 is 1.

The derivative of €** is given by

%(ekw) = kek®,
Find the derivative of
f(z) = 5e732.

Solution: From our rule of differentiation and the formula above, we have

f'(z) = —15e732. 4

4 APPLICATION OF THE DERIVATIVE TO THE PROZAC KINETIC
MODEL

We will use the derivative of the exponential function to find the rate of
change of fluoxetine and norfluoxetine at various times, then find when the
maximum concentration of norfluoxetine occurs and what that concentration
is. We begin by finding the derivatives of the functions modeling blood
plasma concentration of fluoxetine and norfluoxetine. From above, we have
the concentration of fluoxetine is

F(t) — 21670.4621:’
so the derivative is given by

F'(t) = (—0.462)21e= 0462 — _g 7020462t
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Similarly for the blood plasma concentration of norfluoxetine
N(t) = 27.5¢7 0077 _ 97 50462
so its derivative is

N'(t) = (=0.077)27.5¢ 07T _ (—0.462)27.5¢ 0-462¢
12_705670.462t _ 2.1175670'07’”.

If we want the rate of change of blood plasma concentrations of these
two compounds at times t = 2 and 10, then we evaluate the rate of change
of fluoxetine blood plasma concentration as

F'(2) = —9.702¢7%4622) — _3.85 ng/ml/day,
F'(10) = —9.702¢7%46210) = _(.0956 ng/ml/day.

Similarly, the rate of change of norfluoxetine blood plasma concentration is

N'(2) = 12.705¢ %4622 _ 21175 0077(2) = 3.23 ng/ml/day,
N'(10) = 12.705¢~046200) _ 91175¢~0-077(19) = _(.855 ng/ml/day.

These calculations show that at ¢ = 2 the blood plasma concentration
of fluoxetine is dropping quite rapidly, while blood plasma concentration of
norfluoxetine is rising at a similar rate. The calculations at ¢t = 10 show
that the blood plasma concentration of both compounds are falling at fairly
slow rates.

41 MAXIMUM CONCENTRATION OF NORFLUOXETINE

The maximum concentration of norfluoxetine is found by determining when
the derivative is equal to zero. Thus,

N'(t) = 12.705¢ %462 — 2.1175¢ 007"t = ¢

or
2.1175¢ 70077 — 19 705¢~0-462¢
This gives
e”00TT  12.705
e—0462t 91175

e0.385t
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It follows that the maximum occurs at

0.385t = In(6)
tmaer = 4.654 days.

The maximum blood plasma concentration of norfluoxetine (as seen on
the graph) is
N (tmaez) = 16.01 ng/ml.

5 HEIGHT AND WEIGHT RELATIONSHIP FOR CHILDREN

The average height and weight of girls is given in Table 1. Ehrenberg noted

age(years) | height(cm) | weight(kg)
5 108 18.2
6 114 20.0
7 121 21.8
8 126 25.0
9 132 29.1
10 138 32.7
11 144 37.3
12 151 414
13 156 46.8

Table 1: Average height and weight of girls between 5 and 13 years of age.

that there was a logarithmic relationship between the height and the weight
of children. Figure 2 shows a graph of the data of Table 1, showing the
height as a function of weight of girls ages 5 through 13 using data on the
average height and weight of girls in the U. S.

The formula for the height, H, as a function of weight, w, is given by

H(w) =49.51In(w) — 34.14.
We would like to find the find the rate of change of height with respect to

weight for the average girl.

6 DERIVATIVE OF In(z)

We cannot easily use the definition of the derivative to find the derivative
of the natural logarithm.
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Height vs. Weight of Girls
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Figure 2: Graph obtained from the data of Table 1.

The derivative of the natural logarithm, In(z), is

4 (1)) = L.

dz T

This relationship is most easily demonstrated after learning the Funda-
mental Theorem of Calculus, which centers about the integral.

6.1 DERIVATIVE OF THE HEIGHT AND WEIGHT RELATIONSHIP FOR CHILDREN

The relationship given above is easily differentiated with respect to w, using
the derivative for the natural logarithm. It follows that

dH  49.5

dw ~ w
From this relationship, it is clear that as the weight increases, the rate of
change in height decreases. For example, we can see that at a weight of
20 kg.

H'(20) = 49.5/20 = 2.475 cm/kg,
while at a weight of 49.5 kg.
H'(49.5) = 49.5/49.5 = 1 cm/kg.
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Note that this is not the rate of change of the height as a function of the
age, which we saw to be nearly linear in the first chapter of this book.

1. Find the derivative of

Solution: From our properties of logarithms and the formula above, we have
f(z) = In(z?) = 21n(z), so
2
! —_ —
7)==,

2. Find the derivative of the following function:

9(z) =In (V).

Solution: We first use the properties of logarithms to change the expression
so that it only includes In(x)

oe) = (V) = In(a") = S In(a),
1
!

g(x) = % 4
The examples below explore more differentiation of the exponential and
logarithm functions, including the graphs of these functions. There are ex-
amples of a polymer drug delivery device, radioactive decay, and the growth

of fish with the von Bertalanffy equation.

Graphing Exponential and Logarithms

Consider the following function
y=2e0% _1.
Graph this function and find its derivative.

Solution: The domain of this function is all values of z. The y-intercept
satisfies
2¢ 020 —1=1

The z-intercept satisfies

2797 -1 = 0

26—0.2.’E —

60.2.’E - 92

z = 5In(2) = 3.466.
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For large values of z, the exponential function decays to zero. Thus, there

is a horizontal asymptote to the right with

Often when there is an exponential function, there is a horizontal asymp-
tote going either to the right (negative constant times ) or to the left (pos-

y=—1.

itive constant times x). The graph of the function is given by Figure 3.

y=2e0%_1

-2

Horizontal Asymptote

-4

-2 0 2 4 6 8 10

Figure 3: Graph of the exponential function of Example 3.

The derivative of this function satisfies

Since the exponential function is always positive, the derivative is always
negative though the derivative does approach zero as x becomes large (ap-
proaching the horizontal asymptote). Thus, this function is always decreas-

ing, which is

y' =2(—0.2)e” %% = —0.4e 027

clearly shown in the graph.

Finding local extrema

Consider the following function

y =z — In(x)
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Find the first and second derivatives of this function. Find any local ex-
trema, then graph the function.

Solution: The derivative for this function is given by

dy 1 1 z-1
dr z oz
The second derivative is given by
d%y _ 1
de?2 2’

This function is only defined for z > 0. Thus, there is no y-intercept.
However, there is a vertical asymptote at x = 0. We find extrema by setting
the derivative equal to zero. The derivative is zero only when the numerator
of the above expression for the derivative is zero, so £ = 1. This gives an
extremum at (1,1).

y=x-—In(x)

0 2 4 6 8 10

Figure 4: Graph of the logarithmic function of Example 4.

Since the second derivative is always negative, which says that this func-
tion is concave upwards. It follows that the extremum computed above is a
minimum. The graph of the function is given by Figure 4. <
Polymer Drug Delivery System

This problem compares drug concentration in the body following an injection
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and compares this to the new polymer drug delivery devices. Drugs have
long been administered by either a pill or an injection. The result is that
the body receives a fairly high dose rapidly, then the drug remaining in the
blood disappears in an exponentially decaying manner. Recently, scientists
have invented polymers that can be implanted to deliver a drug or hormone
for a much longer period of time. For example, there are several long term
birth control devices that are injected just below the skin. These devices
deliver the hormones estrogen and progesterone at sufficiently high levels
for extended periods of time to prevent pregnancy. These new drug delivery
devices are a hot area of research for a variety of medical conditions. These
devices could aid diabetes sufferers with a more uniform level of insulin or
they could deliver chemotherapeutic drugs to cancer patients over a much
longer period of time at lower doses to maximize their efficacy.

Drug Concentrations

Polymer Drug Delivery
1000 T T

10

=

y

=y

Concentration (ug/dl)
Concentration (ug/dl)

0 10 20 30 40 50 0 20 40 60 80 100
t (Days) t (Days)

Figure 5: Figures for the concentration functions of the injected drug (k(t))
and polymer device delivered drug (c(t)) of Example 5.

We want to study equal quantities of drug delivered by an injection and
by a polymer drug delivery device. When a drug is delivered by an injection,
the drug is cleared relatively rapidly by either filtration of the kidneys or
metabolism. The concentration in the blood is given by the formula

k (t) = Aoe_qt.

where Ay and ¢ are constants representing the amount of drug injected and
the rate that the drug is cleared from the body. When the same drug is
delivered by a polymer delivery device, then it is typically described by two
decaying exponentials. This system is given by the model

c(t) = Co(e™™" — &™),
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where ¢(t) is the concentration of the drug and Cjy, r, and ¢ are constants
depending on the drug delivery system with ¢ > rCj is a constant that
indicates the level of the drug or hormone trapped in the polymer delivery
device. The kinetic constants r and ¢ are associated with the decay of the
polymer that releases the drug and the degradation of the drug in the body
of the patient, respectively. For the amounts of drug to be the same, then

AO = Co/’r‘.
Consider a specific example where the injected drug satisfies
k(t) = 1000e~%2¢,

where the k(t) is a concentration in pg/dl and the time ¢ is in days. The
same amount of drug is delivered by a polymer drug delivery device and is
given by

C(t) — 10(670'0” _ 670.21:)’

where the ¢(t) is a concentration in pg/dlL

Find the rate of change in concentration for both k(t) and ¢(t) at t =5
and 20. Also, determine the maximum concentration of ¢(¢) and when it
occurs. Graph each of these functions.

Solution: We begin by finding the derivatives of k() and c(t). Using the
rule of differentiation for exponentials, we find that
k'(t) = (-0.2)1000e %% = —200e~°%
and
¢'(t) = 10(—0.01e %01t — (—0.2)e 0%) = 2¢7 0% — 0.1 00,

If we want the rate of change of the drug concentrations at times ¢ = 5
and 20, then the injected drug gives declining rates of change

E'(5) = —200e"020) = —73.58 ug/dl/day,
E'(20) = —200e %2 = _3.66 ug/dl/day.
Similarly, the rate of change of the polymer delivered drug is
c'(5) = 2¢7020) —0.1¢7%0'0) = 0.64 pg/dl/day,
¢'(20) = 2e702(20) _ (1700120 — _0.045 pug/dl/day.

The maximum is found by taking the derivative of ¢(t) and setting it equal
to zero. From the derivative above, we have
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2e—02t _ 91001t — .
0.le " = 2702

e~ 001402t _ 9

L0190 — 9.

Thus, ¢t = In(20)/0.19 = 15.767 days. The maximum occurs at ¢(15.767) =
8.11 pg/dl

Figure 5 shows the graph the two functions, k(¢) and ¢(¢). The graph on
the left of Figure 5 shows the large amount from the injection, which decays
very rapidly. By setting the two concentrations equal to each other, we can
readily find that the functions are equal when ¢ = 24.29 days with concen-
trations of 7.766 ug/dl. The injected drug falls off very rapidly, continuing
its decline, while the polymer delivered drug maintains a relatively constant
level over a much longer time. The right panel of Figure 5 shows the graph
of the polymer delivered drug over a longer period of time (with the injected
drug appearing as dashed lines). Its maximum concentration is easily seen
in the graph. The graph of Figure 5 shows the obvious advantages of the
time released drug if it has serious side effects or toxicity. <

Potassim Isotope 43

Naturally-occurring potassium is not radioactive, but radioactive isotopes
can be manufactured from natural potassium. Potassium isotope 43 decays
at a rate proportional to the amount of the radioactive potassium available.
After it emits a beta ray, it reverts to calcium. (**K goes through a $-decay
with a neutron changing to a proton to produce **Ca.) This can be used as
a tracer for studying the effectiveness of potassium absorption in the body.

Suppose we begin with a 10 mCi (millicurie) sample of *3K. This sub-
stance has a half-life of 22 hours. Find the amount of *K after 5,20, and
50 hours. Also, find the rate of loss of 3K after 5,20, and 50 hours.

Solution: If a radioactive substance has a half-life of £ hours, then it decays
exponentially to half its original amount in z hours. Let K (¢) be the amount
of 3K, then an expression for the amount of 3K is given by

K(t) = 10e ¥,

where the constant & must be determined based on the half-life. If the
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amount of K(t) drops to 5 mg in 22 hours, then we know that

K(22) = 5=10e"2%
e = 1/2
ek = 2

By taking the natural log of both sides, we see that
22k = In(2) or k = In(2)/22 ~ 0.0315.
Thus, we can write the expression for K(t) as
K(t) = 10e~t1(2)/22 1000315t

With this expression for K (t), we can readily find the amount of 43K
after 5,20, and 50 hours. We have

K(5) = 10e % ~ 10e %17 ~ 8.54 mCi,
K(20) = 10e 2% ~ 10e70%30! x 5.325 mCi,
K(50) = 10e %% ~ 10e~1" ~ 2.07 mCi.

To find the rate of change in the amount of K (t) at a given time, we need
the derivative of K(t). From the rule for differentiating the exponential
function, we have

k'(t) = —10ke*t.

With this expression for k’(t), we can readily find the rate of change in the
amount of 43K after 5,20, and 50 hours. We have

E'(5) = —10ke % ~ —0.315¢7 %17 ~ —0.269 mCi/h,
E'(5) = —10ke 2% x~ —0.315¢726301 ~ —0.168 mCi/h,
E'(5) = —10ke 5% ~ —0.315¢7 157 ~ —0.0652 mCi/h.

This gives an estimate at each time of how much beta radiation is coming
from the sample of 4*K. <

von Bertalanffy Equation
As a fish ages, it reaches a maximum size. A model for fish growth was

developed by von Bertalanffy, which has an exponential solution.

a. Data shows that on average a lake trout takes 5.5 years to reach 2 kg
and 15 years to reach 5 kg. When these data are fit to the von Bertalanffy
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equation, an equation for weight as a function of age is given by
W(a) = 20.2(1 — ¢~ 0-019),

Find the rate of change of weight, W, with respect to the age, a. Graph
the solution of the von Bertalanffy equation showing the intercepts and any
asymptotes.

b. Solve the above equation for age, a, as a function of the weight, W.
Differentiate this function, finding the rate of change of age with respect to
weight. Graph this function showing any intercepts and asymptotes.

Solution: a. Write the von Bertalanffy equation as follows,
W (a) = 20.2 — 20.2¢0-019

then differentiating with respect to the age, a, gives

CZ—W = —20.2(—0.019)e~0019 = (.3838¢0-019% kg /yr.
a

This says that the function is monotonically increasing (as we would expect
for growth of a fish).

This equation goes through the origin, and it is easy to see that for large
values of a the exponential decays to zero, which implies that asymptotically
the fish grows to a weight of 20.2 kg. This is the horizontal asymptote.
Figure 6 is a graph of the von Bertalanffy equation.

b. Next solve the equation
W = 20.2 — 20.2¢ 0019

for the age, a. It follows that

20.2¢ 009  — 9202 W
00190 _ 202-W
20.2
HN019 20.2
202 — W
1 20.2 1
- 1 - 1n(20.2) — In(20.2 — W)).
0.019 n<20.2—W) 0019 ((20:2) = In( )

Thus, we can write the age, a, as a function of the weight, W. It is given by

a(W) = 158.2 — 52.63In(20.2 — W).
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von Bertalanffy Equation
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Figure 6: Graph of the function for the growth of a fish obtained from the
von Bertalanffy equation of Example 7.

Unfortunately, this expression cannot be directly differentiated without
the chain rule (to be learned soon). However, try a substitution of Z =
20.2—W. (Note that dZ/dW = —1, which is just a sign change.) With this
substitution, we have

a(Z) = 158.2 — 52.63In(Z),

and J )
a
7= —52.632.
We will find with the chain rule that
da da dz

aw ~az " aw
Since Z =20.2 — W and dZ/dW = —1, the formula gives
da 52.63

aw ~ 202-W
The graph of the inverse function for the von Bertalanffy equation given
by a(W) has a domain of W < 20.2. There is a vertical asymptote at W =
20.2. The derivative above shows that this function is strictly increasing.
Since the function W (a) passes through the origin, its inverse function also
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Inverse von Bertalanffy Equation
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Figure 7: Graph for the inverse function of the von Bertalanffy equation
depicted in Figure 6.

passes through the origin
a(0) = 158.2 — 52.63In(20.2) = 0.

Figure 7 shows the graph of this inverse function. N

7 EXERCISES
Find the derivative of the following functions:
1. f(z) =22 —3e™% — 1, 2. f(z) = 2z — 7In(z) + %7,
1 L 3 1 1

Sketch the curves of the functions below. Give the domain of each of the
functions. List all maxima and minima for each graph. Also, give the x and
y-intercepts and any asymptotes if they exist.

5.y =100 (e70-05% — ¢=022) 6.y=20(1—e?),
7.y = 2% —2In(z), 8.y =4In(z),

9. Some hormones have a strong effect on mood, so finding a delivery
device that delivers a hormone at a more constant level over a longer period



228 CHAPTER 14. THE DERIVATIVE OF ¢* AND In(z)

of time is important for hormone therapy. Suppose that a drug company
finds a polymer that can be implanted to deliver a hormone, h(t), which is
experimentally found to satisfy

h(t) =40 (670.00515 _ 670.15t) ,

where h is in nanograms per deciliter of blood (ng/dl) and ¢ is in days.

a. Find the maximum concentration of this hormone in the body and
when this occurs.

b. Determine all intercepts and asymptotes, then graph h(t) for 0 <
t < 150. Use the graph to approximate how long the hormone level remains
above 20 ng/dl

10. Let Y (¢) be a population of yeast in a sugar solution that begins with a
concentration of 10 yeast/ml.
a. If the concentration of yeast is given by

Y (t) = 10e™,

then find the value of a assuming that the concentration doubles every 2
hours.

b. Differentiate this function to find the rate of increase in the concen-
tration of yeast per hour.

c. Evaluate the concentration of yeast at ¢t = 1, 2, and 5 hours, and the
rate of increase in the concentration of yeast per hour.

11. In an earlier section, we studied the population of the U. S. The pop-
ulation in 1790 was 3.93 million, and the growth rate was about 35% per
decade.

a. If the population P(t) is increasing exponentially, then the population
at time t can be described by

P(t) = 3.93¢*,

where P is in millions and ¢ is in years after 1790. The population in 1800
is 5.31 million. , Determine a in the expression above.

b. Differentiate this function to find the function which represents the
annual rate of growth (in millions/yr).

c. Use the expressions in Parts a. and b. to estimate the population in
1850 and 1860 and the annual growth rates at each of those dates.

d. If the actual populations in 1850 and 1860 are 23.2 and 31.4 million,
respectively, then determine the percent error between this model and the
actual populations.
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e. Take the difference of the populations in 1850 and 1860 and divide
by 10 to estimate the annual growth rate for that decade and compare that
value to the values you obtained in Part c.

12. White lead, 2!°Pb, is a radioactive element that appears in the pigment
of paints and can be used to date oil paintings. This helps determine modern
art forgeries. 2!°Pb undergoes a (- decay to 2'°Bi. Radioactive substances
decay at a rate proportional to the amount of the substance available.

a. Suppose that a 1 g sample of paint contains 6 ug of 21°Pb. The
amount of 219Pb, R(t) satisfies the equation,

R(t) = 6e ¥,

where the constant k is to be determined. If the half-life of 21°Pb is 22 years,
then find k.

b. Find R'(t), then determine the rate of change in the amount of 2!°Pb
at t = 20, 50, and 100 years.

c. Suppose a fresh 1 g sample of pigment gives 60 counts per minute
(cpm) (from the 3 decay of the 2!Pb), and a 1 g sample of the same pigment
from a historic painting releases 8 cpm, estimate the age of the painting.

13. The cutlassfish is a valuable resource in the marine fishing industry in
China. A von Bertalanffy model is fit to data for one species of this fish
giving the length of the fish, L(¢) (in mm), as a function of the age, a (in
yr). An estimate of the length of this fish is

L(a) = 589 — 375¢~0-168a

a. Find the L-intercept and any asymptotes. What is the maximum
possible length of this fish?

b. Determine how long it takes for this fish to reach 90% of its maximum
length. Sketch a graph of the von Bertalanffy model.

c. Differentiate L(a) with respect to a, then determine how fast the
average fish is growing when it is 5 years old.

14. The field metabolic rate (FMR) or the total energy expenditure per day
in excess of growth is calculated for pronghorm fawns using Nagy’s formula

E(z) =0.774 4+ 0.727 In(z),

where z is the mass of the fawn (in g) and E(z) is the energy expenditure
(in kJ/day).
a. Compute the derivative E'(z).
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b. Find the energy expenditure when z = 10,000, then compute E’(10,000).
Give a biological interpretation of these results.
c. Graph E(z) for z € [5000,20000].
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CHAPTER 15:
PRODUCT RULE

Many mathematical techniques are valuable for the study of cancer, includ-
ing the mathematics of image processing, calculations of therapeutic doses,
epidemiology of cancer in a population, and growth studies. This section
begins with a model used to predict the growth of a tumor. This model
introduces the product rule of differentiation to find when the tumor is
growing most rapidly. The product rule is useful in other growth models
and graphing.

1 GOMPERTZ MODEL FOR TUMOR GROWTH

Tumors can only grow as large as the nutrient supply available to the tumor
cells. Tumor angiogenesis is the proliferation of blood vessels that penetrate
into the tumor to supply nutrients and oxygen and to remove waste products.
The center of the tumor largely consists of dead cells, called the necrotic
center of the tumor. The tumor grows outward in roughly a spherical shell
shape. If the tumor fails to produce signaling proteins for angiogenesis, then
the tumor can only grow to a certain size with available nutrient supplies.

Simpson-Herren and Lloyd [2] studied the growth of a number of tumors
(see Figure 1). One tumor they studied was the C3H Mouse Mammary
tumor, which is stimulated by a provirus. By using tritiated thymidine,
they measured the cell cycles for the mammary tumors in mice. From this,
they were able to find the growth rate for these tumors. Figure 1 has a
graph showing the population of tumor cells and the growth rate of the
tumor at the various sizes of the tumor. (The graph includes the curve for
the Gompertz model.)

There have been a number of mathematical models that can closely
match the growth of a tumor. Laird [1] showed that tumor growth satisfies
equations developed by Gompertz, provided the number of tumor cells is
sufficiently large (see Figure 1). The growth function is given by the equation

G(N) = N(b—aln(N)),

where N are the number of tumor cells and ¢ and b are constants that
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Mouse Tumor Growth
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Figure 1: Graph for the tumor growth rate at different tumor sizes (size in
terms of population of cancer cells).

are matched to the data measuring the growth of a tumor. Note that this
function is not defined for N = 0, so it is assumed that the tumor has a
certain size before applying this model. For the data above, the best fit
curve is given by

G(N) = N(0.4126 — 0.0439 In(N)).

As with the logistic growth function, this function is zero when growth
is zero or the growth of the tumor stops. When the growth of the tumor
stops, the tumor cells are at equilibrium and the tumor is at its maximum
size supportable with the available nutrient supply. We would also like to
know when the tumor is growing most rapidly. This will occur when the
derivative is zero.

The equilibrium is found when

G(N)=N(b—aln(N)) =0.
Since N > 0, this occurs when b — aIn(N) = 0. This is equivalent to

In(N) = b/a
N, = ¢,

Thus, N, = €% is the unique equilibrium and is similar to the carrying
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capacity seen for the logistic growth function. For the specific data given
above, the

Ne — 60.4126/0.0439 — 69.399 — 12’072,

which matches the P-intercept on the graph above.
Finding the derivative of G(N) presents a new problem in differentiation.
We need to develop the product rule for differentiation to differentiate G(INV).

2 PRODUCT RULE

Let f(z) and g(z) be differentiable functions. The prod-
uct rule for finding the derivative of the product of these
two functions is given by:

df (z)
dz

dr +g(z)

In words, this says that the derivative of the product of two functions is
the first function times the derivative of the second function plus the second
function times the derivative of the first function.

Power Function

We begin by verifying the product rule with a simple example. Consider
f(xz) = 2% We know that f'(z) = 5z%. Let fi(z) = 22 and fa(z) = 23,
then f(z) = f1(z)f2(z). From the product rule we have

f(z) = fi(2) f3(2) + fi(2) f2(z) = 2*(32%) + (22)a® = 5a™. <

Polynomials

Consider the function given by
f(z) = (2 — 2z)(2? + 5).

Find the derivative of f(z) by using the product rule. Next multiply the
terms in f(x), then take the derivative of the resulting polynomial. Show
that these give the same functions, verifying the product rule.

Solution: The product rule is carried out by multiplying the first term times
the derivative of the second term, plus the second term multiplied by the
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derivative of the first term.

') = (2% —22)(2z) + (z® + 5)(3z° - 2)
= 2z% — 42?4+ 32* — 222 + 1522 — 10
f'(z) = 5zt + 922 —10.

We should be able to obtain the same result by multiplying the terms in
f(x) and then taking the derivative of the resulting polynomial.

flz) = 2° +52% — 223 — 10z = z° + 32° — 10z
f'(z) = 5z 49z —10.

Thus, it is easy to see that the two methods do indeed yield the same result.
<

Other Functions

Consider the function given by
9(@) = (2 + 4) In(a).

Find the derivative of g(z) by using the product rule.

Solution: Again we multiply the first term times the derivative of the second
term and add the second term multiplied times the derivative of the first
term. Recall that the derivative of the natural logarithm equals the inverse
of the argument.

d(z) = (2° + 4)(1/z) + [In(z)](2z) = = + 4/z + 2z In(z). 4

3 MAXIMUM GROWTH FOR THE GOMPERTZ TUMOR
GROWTH MODEL

To find the maximum growth, we apply the Product Rule to the Gompertz
Growth function

G(N) = N(b—aln(N)),
giving
Z—Ji _ N(—%>+(b—aln(N)),
dG

IN (b —a) —aln(N).
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The maximum occurs when G'(N) = 0, which is when

If we apply this to the Gompertz model for the mouse mammary tumor,

aln(Npax) = b—a.
Npax = e(b/a—l).

then we find that the maximum occurs at the population

This value is substituted into the Gompertz growth function and gives

Ninax = el9397D — 4, 441(x10%).

the maximum growth of mouse mammary tumor cells as

G (Nmax) = 4441(0.4126 — 0.0439 In(4441)) = 195.0(x10° /day).

Ricker’s Function

Consider the Ricker’s function R(z) = 5ze~%1%. (We will see this function
in later population studies.) Let us sketch a graph of this function, finding

all extrema and points of inflection.

R(x)

Solution: First we note that the only intercept is the origin, (0,0). Next we
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Figure 2: Graph of the Ricker’s function of Example 4.

use the product rule to differentiate this function.

R'(z) = 52(—0.1e7%1%) 4 5¢7 %1% = 5¢7012(1 — 0.1x).
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Since the exponential function is never zero, R'(z) = 0 implies that the only
critical point satisfies 1 — 0.1z = 0 or £ = 10. Thus, there is a maximum at
(10,50e~1) or (10,18.4).

Next we take the second derivative or the derivative of R'(z). Again we
use the product rule to obtain

R"(z) = 5e7%1%(-0.1) 4+ 5(=0.1)e7%1%(1 — 0.1z) = 0.5~ %1%(0.1z — 2).

The point of inflection is found by solving R”(z) = 0, which is very
similar to our equation for the critical point. Its not hard to see that the
point of inflection occurs at £ = 20. Thus, there is a point of inflection at
(20,100e~2) or (20,13.5). <

4 APPLICATIONS TO GRAPHING

One of the primary applications of the derivative is finding the critical points
where minima and maxima occur, which aids in sketching a graph.

y =xIn(x)
1.4 ; !

0.5 1 15 2

Figure 3: Graph of the function of Example 5.

Consider the function given by

f(z) = zln(z).
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Determine the domain of the function and find any intercepts. Find any
critical points, then sketch the graph of f(z) for 0 < z < 2.

Solution: The domain of the function is > 0. Thus, there is no y-intercept.
However, it can be shown that the limit as  tends to 0 from the right is
0. (You can show this with your calculator, but proof of this result requires
more advanced Calculus techniques.) The z-intercept is readily found by
solving f(z) = 0, which gives z = 1.

To find the critical points we differentiate f(z) and set it equal to zero,
giving

fl(z) == (i) +In(z) = 1 + In(z) = 0.

Thus, the critical value of z. satisfies In(xz.) = —1 or xc = e+ = 0.3679.
The function value at the critical point 1s f ( 1) —e & —0.3679. Thus,
there is a minimum on the graph at (e~ ~1). The graph of the function
is seen in Figure 4. <q

Consider the function given by

f(@) = 2 - a)e”

Find the z and y-intercepts and any asymptotes. Find any critical points,
then state if it is a local maximum or minimum. Sketch the graph of f(z).

Solution: Since f(0) = 2, the y-intercept is (0,2). Since the exponential
function is never zero, the z-intercept is easily seen to be (2,0). In the
limit as x tends to —oo, the exponential function goes to 0. An exponential
function dominates any polynomial function (as seen in the computer lab
earlier), so f(z) goes to 0, which means that there is a horizontal asymptote
to the left.

The critical points are found by differentiating f(z) and setting it equal
to zero, so

fl(z) = (2—x)e" + (-1)e® = (1 —xz)e” = 0.

It is easy to see that the critical value of z. is z. = 1. The function value
at the critical point is f(1) = e! a2 2.718. Thus, there is a maximum on the
graph at (1,e). The graph of the function is seen in Figure 3. <
Tumor Growth

Suppose the the growth of a tumor is given by the Gompertz growth function
G(W) =W (0.5 — 0.051n(W)),
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y=(2-x¢
5 ! ! !

(1.6}

Figure 4: Graph of the function of Example 6.

where W is the weight of the tumor in mg and the time units are days. Find
the equilibrium weight of the tumor. Find the maximum growth rate for
this tumor, then sketch the graph of G(W).

Solution: The equilibrium is found by solving G(W) equal to zero, so
GW) = W(0.5-0.05ln(W)) =0,
0.5 - 0.05In(W) = 0,
In(W) = 10
W = e'%=22026 mg.
To find the maximum growth, we differentiate G(W), so
G'(W) = W(-0.05(1/W) + (0.5 — 0.05In(W)),
— 0.45 — 0.05In(W) = 0.
Thus,
In(W) = 9,
W = ¢ =8,103 mg.
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Gompertz Growth Function
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Figure 5: Graph of the tumor growth function of Example 7.

with a maximum growth rate of

G(8,103) = 8,103(0.5 — 0.051n(8, 103)) = 405.2mg/day.

Figure 5 is a graph of this function.

5 EXERCISES

Find the derivatives of the following functions:

1. f(z) = (2% — 322 + 7)(z* — 222 + 62 — 1),
2. f(z) = (2° — ¥ +1)(32 + 8),

3. f(z) = 2% + 21/«

4 f(z) =~ In() - 2(a® - 1)

Find the derivative and sketch the curves of the functions below. Give the
domain of each of the functions. List all maxima and minima for each graph.

Also, give the z and y-intercepts and any asymptotes if they exist.
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5.y = 3ze~ 002 6. y=(z—2)e 7,
1

T.y= - In(z), 8.y = (z% - 3)e?,

9. y = 22 In(z).

10. Many biologists in fishery management use Ricker’s model to study the
population of fish. Let P, be the population of fish in any year n, then
Ricker’s model is given by

P.y1 = R(P,) = aPye .

Suppose that the best fit to a set of data gives a = 5 and b = 0.004 for the
number of fish sampled from a particular river.

a. Let Py =100, then find P;, P, and Ps.

b. Sketch a graph of R(P) with the identity function, showing the inter-
cepts, all extrema, and any asymptotes.

c. Find all equilibria of the model and describe the behavior of these
equilibria.

11. Repeat Exercise 10 with ¢ = 8 and b = 0.002

12. In fishery management, it is important to know how much fishing can
be done without severely harming the population of fish. A modification of
Ricker’s model that includes fishing is given by the model:

Py1 = F(P,) = aP,e """ — hP,,

where ¢ = 4 and b = 0.002 are the constants in Ricker’s equation that
govern the dynamics of the fish population without any fishing and A is the
intensity of harvesting fish.

a. Let h = 0.5 and Py = 100, then find P, P5, and Ps.

b. With A = 0.5, find all equilibria for this model and describe the
behavior of these equilibria.

c. Find all equilibria for this model and describe the behavior of these
equilibria when h =1 and h = 2.

d. How intense can the fishing be before this population of fish is driven
to extinction? That is, find the value of h that makes the only equilibrium
be zero (or less than zero).

13. When coughing, the windpipes contract to increase the velocity of air
passing through the windpipe to help clear mucus. The velocity, v, at which
the air flows through the windpipe depends on the radius, r of the windpipe.
If R is the resting radius of the windpipe, then the velocity of air passing
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through the windpipe satisfies:
v(r) = Ar*(R —r),

where A is a constant dependent on the strength of the diaphram muscles.
Find the value of r that maximizes the velocity of air and determine the
velocity of the air flowing through the windpipe.
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CHAPTER 16:
QUOTIENT RULE

In this section, we examine the kinetics of hemoglobin molecules for carrying
O3 to the cells of the body. A quotient rule is developed to examine the max-
imum rate of change in Oy affinity. In earlier sections, we studied graphing
of rational functions, but had no techniques for finding critical points. The
ability to find the derivatives of rational functions allows locating minima
and maxima of these functions.

1 HEMOGLOBIN AFFINITY FOR O.

Hemoglobin is the most important molecule in our erythrocytes (red blood
cells). For mammals, this very important compound has evolved to carry
O from the lungs to the tissues and remove COgy from the tissues back
to the lungs. For adult humans, the hemoglobin molecule consists almost
exclusively of two « and two § polypeptide chains (there are other types of
peptide chain such as 7 in fetal blood). Each polypeptide chain contains a
porphyrin ring with iron near the active binding site. The four polypeptide
chains fold into a quaternary structure that has evolved to very efficiently
bind up to four molecules of O,. A single mutation causes the disease sickle
cell anemia, where structure of one 8 chain is varied and distorts the binding
efficiency, so Oy transport is diminished.

Oxygen is key to efficient metabolism and is required by all of our cells.
The hemoglobin molecule takes advantage of cooperative binding to effec-
tively load and unload O9 molecules from the blood to the cells in the tissues.
In cooperative binding, the binding of one molecule facilitates the binding
of one or more other molecules by causing structural changes to the pro-
tein. Cooperative binding plays a role in many biochemical processes where
a steep dissociation curve is needed in the equilibrium kinetics. This coop-
erative binding results in a variant form of the Michaelis-Menten velocity
curve (5) that we studied in an earlier section and takes on a characteristic
S-shape that results in a protein having more of an on/off function in its
kinetic properties. The steepness in the dissociation curve is needed for ef-
fective Oy exchange. Where the dissociation curve is steep, a small partial
pressure difference in the concentration of O9 results in easy unloading of
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Og at the tissues. In the lungs, the Oy readily loads onto the hemoglobin
molecules, while a different dissociation curve allows the removal of COs.

Oxygen affinity of hemoglobin is important in understanding the gas-
transport properties of this molecule. Ranney and Sharma (see Figure
6) give the kinetic dissociation curve for hemoglobin under a variety of
conditions. Typical of most kinetic reactions, the dissociation curve for
hemoglobin is highly sensitive to pH, temperature, and other factors. Oxy-
gen affinity is usually expressed by a dissociation function that measures
the percent of hemoglobin in the blood saturated with O2 as a function of
the partial pressure of Os. (The partial pressure of O, is often measured in
torrs where 100 torrs is the atmospheric concentration of Og.) The fraction
of hemoglobin saturated with O9 satisfies the function

PTL

v =gy

where y is the fraction of hemoglobin saturated with O5 and P is the partial
pressure of O9 measured in torrs. The Hill coefficient is n in the expres-
sion above, representing the number of molecules binding to the protein,
while K is the binding equilibrium constant. Typically, hemoglobin shows
a nonlinear form that has a Hill coefficient of 2.7 — 3.2 though it can bind
cooperatively up to 4 molecules of Os. Under conditions typical of blood,
experimental measurements show that the values of n and K are 3 and
19, 100, respectively. In Figure 1 we see a graph of this Oy saturation curve.

Where the dissociation curve is steepest, the Oy binds and unbinds to
hemoglobin over the narrowest changes in partial pressure of Os. This al-
lows the most efficient exchange of O in the tissues. That is, when a tissue
is low in Og, then the hemoglobin in the blood is more likely to have its
O, dissociate and diffuse into the Oy depleted cell. This steepest part of
the dissociation curve is where the derivative is at its maximum. Clearly,
evolution is likely to choose an animal that has hemoglobin with a dissocia-
tion curve that matches the steepest part of the curve to the existing partial
pressure of Q9 near the tissues. For our dissociation curve given above, we
want to find where the derivative is largest. This corresponds to the point
of inflection for this curve. Since the curve is defined by a rational function,
we need to develop a quotient rule to find its derivative.
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Saturation of Hemoglobin
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Figure 1: Graph of the fraction of saturated hemoglobin (y) vws. the Oq
partial pressure (P).

2 QUOTIENT RULE

Let f(z) and g(z) be two differentiable functions. The
quotient rule for finding the derivative of the quotient of
these two functions is given by:

a (f($)> _ 9(@)f'(z) — f(z)g'(x)
dz \ g(x) [9(z)]? '

where f/(z) and ¢'(z) are the derivatives of the respective
functions.

In words, the quotient rule says that the derivative of the quotient is“the
bottom times the derivative of the top minus the top times the derivative of
the bottom all over the bottom squared.”

Rational Function

Suppose we want to study the function

_$2—2£L‘—|—1
==

f(z)

2—r—2"
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We can apply the quotient rule to this function to find its derivative. We
obtain

b (@1 —-2)20-2)— (22 —-20+1)(2s —1) 2> —6z+5
fi(z) = (72— z — 2)2 _(xQ—w—2)2'

For graphing this function, we would like to find intercepts, asymptotes,
and extrema. The y-intercept is given by y = f(0) = —1/2. The z-intercept
is found by solving f(z) = 0. This is solved by setting the numerator equal
to zero, but

224+ 1=(z—-1)2=0,

which gives the z-intercept as x = 1.
The vertical asymptotes are found finding when the denominator is zero,
SO

?—r-2=(x+1)(z—-2) =0.

This gives the vertical asymptotes £ = —1 and x = 2. The horizontal
asymptote is found by looking at f(z) for large values of z. The largest
exponents in the numerator are both 2, so for large z, f(z) behaves like
z?/z? = 1, which gives the horizontal asymptote y = 1.

y:(x2—2x+l)/(x2—x—2)

Figure 2: Graph of the function of Example 1.

The critical points are found by setting the derivative equal to zero,



2. QUOTIENT RULE 247

which again requires setting the numerator equal to zero. Thus,
22 —6zx+5=(z—1)(z —5) =0.

Thus, the critical points are z. = 1 and z, = 5. Evaluating the function
f(z) at these critical points, and we find a local maximum at (1,0) and a
local minimum at (5,8/9). A graph of this function is seen in Figure 2. «

Differentiate Functions

1. Differentiate the following function:

Solution: Applying the quotient rule:

oy @+l -1-z-22  1-a?
f(-’L')_ ($2+1)2 —($2+1)2.

2. Differentiate the following function:

2060.175
T 50 + 01

g9(z)

Solution: The quotient rule is applied giving:

(50 + eO.lt)260.1t _ 2060.1t ) 0.160'1t 10060.115

! _ = .
g (z) = (50 + 0-16)2 (50 + €0-1%)2 q

Graphing a Rational Function
Consider the function:
2?2 — 6z +9
f(z) = ~L_9
Differentiate this function. Find all intercepts, asymptotes, and extrema.
Graph the function.

Solution: The quotient rule for differentiation is applied to f(z) yielding

by (=222 -6)— (> —6z+9)-1 2?2—4z+3
f(CU) = ($_2)2 - ($_2)2

The y-intercept is given by y = f(0) = —9/2. The z-intercept is found by
solving f(z) = 0. This is solved by setting the numerator equal to zero, but

22 —6z+9=(z—3)2=0,
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which gives the z-intercept as z = 3.

The vertical asymptotes occur when the denominator is zero, so there is
a vertical asymptote at x = 2. There are no horizontal asymptotes as the
power of the numerator exceeds the power of the denominator.

y = (X% - 6x + 9)/(x - 2)

1
N N N N N N ' N N
T

Figure 3: Graph of the function of Example 3.

The critical points are found by setting the derivative equal to zero,
which again requires setting the numerator equal to zero. Thus,

22 —4z4+3=(z—1)(z—3)=0.

Thus, the critical points are z. = 1 and z, = 3. Ewvaluating the function
f(z) at these critical points, we find a local maximum at (1,—4) and a local
minimum at (3,0). A graph of this function is seen in Figure 3. q

Genetic Control

In 1960, Jacob and Monod won a Nobel prize for their theory of induction
and repression in genetic control. Many metabolic pathways in cells use
endproduct repression of the gene or negative feedback to control important
biochemical substances, such as the enzymatic pathways for production of
amino acids. When sufficient quantities of a particular substance, such as an
amino acid, the cell shuts down the pathway that produces that substance
to avoid unnecessary build up of the substance. From biochemical kinetics,
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it can be shown that production of a substance x satisfies a rate function of
the following form:

a
R(z) = i
Consider the specific rate function given by
90
@) =g rar

Differentiate this rate function. Sketch a graph of this rate function and
its derivative. Find all intercepts, any asymptotes, and any extrema for the
rate function and its derivative. When is the rate function decreasing most
rapidly?

Solution: The rate function has an R-intercept, R(0) = 90/27 = 10/3.
There is a horizontal asymptote of R = 0, since the power of the denomi-
nator exceeds that of the numerator. From the quotient rule, the derivative

satisfies )
27 0 —90(2 —180
Ry GTEE0-00020) 1800
(27 + z2) (27 + z2)
For z > 0, the derivative of the rate function is negative, so this is decreasing.
There is clearly a maximum at x = 0. (A rate function does not make sense

for x < 0. Figure 4 shows a graph of the rate function.

Repression Rate Function Derivative of Rate Function

R(X)
R'(x)

0 5 10 15 20 0 5 10 15 20

Figure 4: Left: Graph of the rate function for the Repression in genetic
control of Example 4. Right: Graph of the derivative of this rate function.

The derivative has an intercept at (0,0) and also has a horizontal asymp-
tote R’ = 0. To find any extrema of the derivative function, we find the
second derivative. Since the derivative can be written,

_ —180x
2722 + 54x2 + 24’

R'(z)
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The second derivative is given by

RY(z) = —180(272 + 5422 + z*) + 180x(108z + 42°)  540(z” — 9)
N (272 + 54x2 + z4)? (27 +22)3

where some algebra is required for the last quantity. Clearly, this second
derivative is zero when z = 3 (z = —3 is outside the domain). Thus, R'(z)
has a minimum at (3, —5/12). A graph of the derivative of the repression
rate function is given in Figure 4.

It follows that the original rate function is decreasing most rapidly at
T =3. <

3 DISSOCIATION CURVE FOR HEMOGLOBIN

The dissociation curve for O2 with hemoglobin is shown in Figure 1. The
specific function that was graphed was

P3
P)=———.
v(P) = {5700 1 5
We want to determine the partial pressure of O9 that results in the steepest

part of the curve above. To find the slope of the curve, we compute the
derivative using the quotient rule. The derivative satisfies

3P2%(19,100 + P3?) — P3(3P?)
(19,100 + P3)2
57,300P?
(19,100 + P3)2°

Figure 5 is the graph of this derivative We can see that the maximum
derivative occurs at about Ppy = 21 torrs. To find the exact value of the
maximum derivative, we compute the second derivative and set it equal to
zero. The second derivative is given by

114,600P(19, 1002 + 38,200P% + PS) — 57, 300P2(114, 600P2 + 6.P°)

n
P) —
y(P) (19, 10022 + 38200P3 + P6)2

—229,200P(P3 — 9,550)
(19,100 + P3)3

y"'(P) =

The last expression requires some algebra or Maple to derive from the
first. The second derivative is equal to zero when either P = 0 or 95501/3 =
21.22. Thus, the point of inflection, which is where the derivative is at a
maximum, occurs at P = 21.22 with y(P) = 0.333 or about 1/3 of the
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Derivative of Dissociation Curve
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Figure 5: Graph of the derivative of the Dissociation function given in
Figure 1.

hemoglobin is saturated by Os.

4 MITOTIC MODEL

Multicellular organisms begin with exponentially growing cell populations
(recall Chapter 7), but soon must regulate this cell growth to develop partic-
ular patterns and shapes and differentiate their cells into organs with specific
functions. The adult organism maintains a fairly constant number of cells,
which means that cells must recognize whether or not there is a need to
divide, a process known as mitosis. Cancer is often the breakdown of this
control, with cells dividing when they normally would not. One significant
question that has yet to be adequately answered is how a cell, such as a
skin cell, recognizes its neighboring environment of other cells and knows
whether or not it should divide. (A skin cell obviously needs to undergo
mitosis when either wear or damage of the skin requires replacement cells.)

The regulation of mitosis is a very important biological process that
is currently being studied extensively. This research tries to understand
how cells determine when they should undergo mitosis. One controversial
biochemical theory developed in the late 1960s was that cells communicated
with neighboring cells by tissue-specific inhibitors known as chalones (see
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Figure 6). The chalones are released by cells and diffuse in the environment
to affect the cells nearby. If there are sufficient quantities of these chalones,
then cells are inhibited from undergoing mitosis.

One of the proposed mechanisms is that chalones bind specifically to
certain proteins involved in mitosis. The chalones inactivate the mitotic
proteins, leaving the cell in a quiescent state. This inhibition process of
effector molecules binding to a protein is often modeled using a Hill function
with a special rational form. Let P, represent a certain cell density at
a particular time n, then an appropriate mathematical model for the cell
density at the next time period (P,+1) that considers the mitotic divisions
and cell loss that are dependent on the cellular density with inhibition due
to crowding is given by the following equation:

2P,

P =f(P,) = T+ (bB,)

where b and ¢ are parameters that are fit to data based on chalone kinetics.
The function f(FP,) is known as an updating function, which will be studied
in more detail in a future section. Notice that when the cell density P,
is very low, then the denominator of the model is insignificant. This gives
the equation P41 = 2P, so for low density the population doubles in each
time period, using a standard discrete Malthusian growth model learned in
Chapter 7.

Let us study the specific mitotic model given by the equation

2P, 2P,

P == P = = .
n1 = f(Fn) 1+ (0.01P,)* ~ 1+ 10-8P%

We would like to determine what the cell density is at equilibrium, which
is when the cell density remains constant for all time intervals. Thus, the
new cells produced match the numbers that are lost in a given time interval.
In addition, we would like to graph the updating function f(P,) and give
some biological interpretations of the graph.

4.1 EQUILIBRIA OF THE MITOTIC MODEL

At equilibrium, the population density is the same at all time intervals.
Thus, FP,+1 = P, = P,, which when substituted into the equation above
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gives

2P,
1+10-8P4
P,(1+10 %P} = 2P,
P,(1078P*—1) = 0.

Pe

Thus, either P, = 0 or P, = 100. The first equilibrium is when the trivial
equilibrium when no cells exist, while the second equilibrium would ideally
be the preferred density of cells in a particular tissue.

4.2 GRAPHING THE MITOTIC UPDATING FUNCTION

To study the graph of f(P,), we examine the intercepts, asymptotes, and
any extrema. Clearly, the only intercept is (0,0), passing through the origin.
The denominator is always positive, so there are no vertical asymptotes. We
also see that the power of P, in the denominator is 4, which exceeds the
power of P, in the numerator. For P, sufficiently large, as P, increases,
the denominator increases more rapidly than the numerator, so there is a
horizontal asymptote at y = 0.
To find any extrema, we differentiate f(P,), which gives

2(1+1078P} - 2P, -4 x 1078P3
(1+10-8P%)2

2-6x108p:

(1+10-8P%2 "

fl(Pn) =

Setting this derivative equal to zero, we have

2-6x10 8P = 0
1
P = 3 x 108
P, = 75.98.

It follows that the maximum of the updating function occurs at (75.98,113.98).
In Figure 6 we see a graph of the updating function.

The graph above shows that the greatest production of cells occurs at
a cell density of 75.98, then it declines fairly rapidly. At a cell density
of P, = 100, the production equals the number dying so the model is at
equilibrium. If one were to have a fairly high density, then this model would
predict a toxic effect from the crowding, resulting in a major die-off so that
the next time period would have a very low density. This model is clearly
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Mitotic Updating Function
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Figure 6: Graph of the updating function of the Mitotic example, including
the identity map, which will later be shown to be important in computing
equilibria.

very simplistic, but it does demonstrate some of the important concepts
behind biochemical inhibition.

5 EXERCISES

Find the derivatives of the following functions:

23 —In(z) 2 12— " _

VT 1 22 +5 ze?®
3. = - — 4. = — .
f(z) 24z e’ f(z) 2 —e*t 2z +1

Find the derivative and sketch the curves of the functions below. Give the
domain of each of the functions. List all maxima and minima for each graph.
Also, give the z and y-intercepts and any asymptotes if they exist.

2 T
T e
5.y = , 6. y— ,
4 z+1 Y z+1
2 2
¢ —2x + 2 T
7.y = 8. y=
Y z—-1 YTy
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9. Consider the chalone model for mitosis given by the equation

2P,

Py = f(P) = T+ (bP,)°

where b = 0.05 and ¢ = 2.

a. Let Py = 10, then find P;, P,, and Ps.

b. Sketch a graph of f(P) with the identity function for P > 0, showing
the intercepts, all extrema, and any asymptotes.

¢. Find all equilibria of the model and describe the behavior of these
equilibria.

10. Repeat Exercise 9 with b = 0.02 and ¢ = 5.

11. Some entomologists use Hassell’s model for studying the population
of insects. Let P, be the population of a species of beetle in week n and
suppose that Hassell’s model is given by

_aby
- 14bP,

Suppose that the best fit to a set of data gives a = 5 and b = 0.004 for this
species of beetle.

a. Let Py =100, then find P, P, and Ps.

b. Sketch a graph of H(P) with the identity function for P > 0, showing
the intercepts and any asymptotes.

¢. Find all equilibria of the model and describe the behavior of these
equilibria.

Pn—|—1:H(Pn)
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CHAPTER 17:
CHAIN RULE

In biology, there are often functional relationships where one measurable
quantity depends on another, while the second quantity is a function of a
third quantity. The first example below connects some of the ideas from
previous sections on height and weight of girls, then creates a composite
function to find the rate of change of weight with respect to age. This
functional relationship uses composite functions. The differentiation of a
composite function requires a special rule for differentiation, the chain rule.

1 AVERAGE HEIGHT AND WEIGHT OF GIRLS

In the first chapter of the book , we found that over a range of ages the
rate of growth of girls in height remained relatively constant. That is, the
relationship between height and age was approximated fairly well by a linear
function. In the allometric chapter, we saw that there is a power law rela-
tionship height and weight of animals, so one would predict that a power law
might work reasonably well for girls. Table 1 has both, heights and weights
for average American girls between the ages of 1 and 13.

The height as a function of age is graphed in the left panel of Figure 1
with the least squares best fit straight line for the data of Table 1 given by

h(a) = 6.45a + 73.9.

As noted in Chapter 2, this equation shows that the average girl grows
about 6.45 cm/yr. The relationship between the height and weight of a girl
satisfies an allometric model as we saw on Chapter 6. The average weight of
a girl is plotted against her height in the right panel of Figure 1 and fitted
by the best allometric model through the data. The best equation is given
by

W (h) = 0.000720R%17.

With this information, we would like to connect these formulae and de-
termine the rate of change in weight for a girl at any particular age (between
1 and 13). We will create a composite function to give the weight as a func-
tion of age, then use the chain rule to find the rate of change of weight with
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age(years) | height(cm) | weight(kg)
1 75 9.5
2 87 11.8
3 94 15.0
4 102 15.9
) 108 18.2
6 114 20.0
7 121 21.8
8 126 25.0
9 132 29.1
10 138 32.7
11 144 37.3
12 151 414
13 156 46.8

Table 1: Heights and weights of average American girls between ages 1 and

13.

respect to age.

2 CHAIN RULE

Consider the composite function f(g(x)). Suppose that
both f(u) and u = g(x) are differentiable functions. The
chain rule for differentiation of this composite function

is given by

4 _dfdv
dr  dudz’

Another useful form of the chain rule is the differentiation

formula given by

d

7 (@) = f(9(2))d ().

Polynomial Function

Counsider the function

h(z) = (z* + 2z — 5)°.
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Figure 1: Left: Graph for the least squares best fit for the height of the
average American girl given in Table 1. Right: Graph of the weight as a
function of height, W (k) = 0.000720h%17 with data from Table 1.

Find #/(z).

Solution: This can be considered a composite of the function f(u) = u® and
the function g(z) = 22 + 2z — 5. Tt is easy to find the derivatives of both f
and g. We have

f'(u) = 5utv'and
gd(r) = 2z+2.

From the formula above, we see that

B(z) = 5(g(x))*(2z + 2) = 5(z? + 22 — 5)*(2z + 2). q
Algebraic and Non-algebraic functions
1. Differentiate the following function:
f(z) = (2 — 422 + e 2%)5.

Solution: The function f(z) can be considered a composite of the function

and the function
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It is easy to find the derivatives of both f; and f,. We have
filu) = 6u’u’
fix) = 32% -8z —2e7%2
From the chain rule, we see that
f'l@) = 6(f2(2))’f3(z)
fl(z) = 6(z® — 42 + e72)5(32% — 8z — 2¢722).

2. Consider the function
h(z) = >

Find A/(z).
Solution: This can be considered a composite of the function f(u) = e* and
the function g(z) = 2 — 22. The derivatives of f and g are
f'(u) = e*u* and ¢'(z) = —2z.
From the formula above, we see that
H(z) = 2% (—2z).
3. Differentiate the following function:

g(z) = (4z + In(z* + 422 + 1))

Solution: To analyze the function g(z), we have a couple of composite func-
tions to consider. Let the functions

gi(u) = ut
g2(z) = 4z + In(he(x)).
Then the chain rule first gives g} (u) = 4u®u’ or
d'(z) = 4g2(2))’ g3 () = 4(4z + In(z" + 42” + 1))’ gy ().

To find the derivative of go(z), we need to differentiate the composite
h(z) = hq(ho(x)), where

hi(v) = In(v) with A} (v) = (1/v)v’

and,
ho(x) = z* + 42% + 1 with hy(z) = 42® + 8z,
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S0

_ Rh(z)  4z® 48

" he(z) 2t +4x?4 17

But g4(z) =4+ h'(z). So combining the results above, we see that
473 + 8z

zt+422+1)°

W(w) = hi (ha(2))hy(z)

d(z) = 4(4z + In(z* + 42% + 1))3 (4 +

3 RATE OF CHANGE IN WEIGHT

From the data above, we found that the weight W as a function of height h
is given by
W (h) = 0.000720R*17.

while the height as a function of age is
h(a) = 6.45a + 73.9.

Because the height is a linear function the rate of change of height with
respect to age is the constant 6.45 cm/yr. We will use the chain rule to find
the rate of change of weight with respect to age, then graph both the weight
as a function of age and the rate of change of weight as a function of age.

Writing weight as a composite function, we have

W (a) = 0.000720(6.45a + 73.9)%17.

The left panel in Figure 2 shows a graph of this function with the data of
Table 1.

Average Weight of Girls Change of Weight of Girls

W(h) = 0:01008(6:45a + 73.9)*%

Weight (kg)
N
a1

Weight Change (kg/yr)

W(h) = 0.00072(6.45a + 73.9)>*

o 2 4 6 8 10 12 14 0o 2 4 6 8 10 1 u
Age (yrs) Age (yrs)

Figure 2: Left: Graph of the function for the average American girl weight

given by W (a) = 0.000720(6.45a + 73.9)>'7 and the data of Table 1. Right:

Graph for the derivative of the average American weight function.
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By the chain rule, the derivative of the weight function is given by

aw _dw dn
da  dh da’
with
aw 1.17 dh
T 2.17(0.000720)h and da 6.45.

Combining these and substituting the expression for h, we see that

W'(a) = 0.01008(6.45a + 73.9)117.

The right panel of Figure 2 shows a graph of the derivative giving the
rate of change in weight with respect to age. This graph is almost linear,
since it is to the 1.17 power. The actual average weight changes are given
for the data above. We see that the model underpredicts the weight gain
for older girls.

4 MORE APPLICATIONS

The Bell Curve

An important function in statistics is the normal distribution function, which
classically gives the Bell curve. A normal distribution function is given by

2
a x
N(z) = — —-— .
(z) o P ( 202)
where a is a normalizing factor and o is the standard deviation. We would

like to find the points of inflection for this curve and determine its signifi-
cance. Also, plot this function for several values of o.

Solution: To find the points of inflection, we need to take the derivative
twice. Its clear that this is an even function, and that its maximum occurs
at z = 0 with N(0) = a/o. We take the first derivative of N(z) and obtain

N'(z) = gexp (-j-j) (~z/o?) = —‘;—”gexp (-j-j) .

Note that N'(z) =0 at z = 0, as expected.
The second derivative requires the product rule along with the chain
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rule. The result is given by

N"(z) = —§ (:c (—z/0?) exp (—Z—i) + exp (-i-i) -1)

N(x)

Figure 3: Graphs of the Normal Distribution curves for different values of
o.

The points of inflection occur when N”(x) = 0, which is easily seen to
be when either £ = —¢ or £ = ¢. Thus, the points of inflection occur
one standard deviation out the normal distribution function. It turns out
that 68% of the area under the normal distribution occurs in the interval
—0 < z < 0. In Figure 3 we show a graph of the normal distribution with
c=1,2,3, and 4. 4

Hassell’'s Model

In the product rule section, we learned that Ricker’s model is often used by
fisheries to study fish populations. Entomologists often use Hassell’s model
to study the dynamics of insect populations. We will examine the dynamics
of this model in more detail later. For this example, we will simply find
equilibria and graph the updating function. Suppose that a study shows
that a population, P,, of butterflies satisfies the dynamic model given by
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the following equation:

81P,

P11 =H(P,) = 0 F0.0025,)%"

where n is measured in weeks. Begin by finding all equilibria for this model.
For the updating function H(P), find the intercepts, all extrema, and any
asymptotes for P > 0, then sketch a graph of the updating function.

Solution: The equilibria are found by solving P, = H(PF,), which is equiva-
lent to solving

P.(1+0.002P,)* = 81P,.

So either
P. =0 or (1+0.002P,)* = 81,

which gives 1 4+ 0.002P, = 3 or P, = 1000.

Analyzing H(P), we find that the only intercept is (0,0) and that there
is a horizontal asymptote with H = 0 (the power of the denominator is
greater than the power of the numerator). To find where the maximum
occurs, we differentiate the updating function using both the quotient rule
and the chain rule for the term in the denominator. First, we differentiate
the denominator using the chain rule, so

d
51+ 0.002P)* = 4(1 + 0.002P)(0.002).

From the quotient rule, it easily follows that

1+ 0.002P)* — P - 4(1 + 0.002P)30.002
(1+0.002P)8

(1 —0.006P)

(1 +0.002P)>"

H(P) = sit

The last step requires a little algebra cancelling similar quantities from the
numerator and denominator.

To find critical points, we set the derivative equal to zero. Solving
H'(P) = 0, we first note that this is zero only if the numerator is zero.
Thus, we have

1 —0.006P =0 or P =500/3 = 166.7.

With H(500/3) = 4271.5, the mazimum occurs at (166.7,4271.5). A
graph of the updating function with the identity function is shown in Figure
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Hassell's Updating Function
4500 , : .
' ' — P, =HP) |

4000 : : --- Idrgntity Map

0 500 1000 1500 2000
p

n
Figure 4: Graph of the Hassell’s updating function of Example 4 with the
identity function.

4. Note that the identity function intersects H(P) at the equilibrium point.
q

Growth of Fish

Fish have been shown to satisfy the von Bertalanffy equation, relating
the length of fish with age. There is also an allometric relation between the
weight of a fish and its length. In this example, we form a composite function
that describes the weight of a fish as a function of its age. A reasonable model
for the length of lake trout using the von Bertalanffy equation is

L(t) = 120(1 — ™2,

where t is the age of the trout in years and L is the length in cm. An
approximate allometric model that relates the weight of a lake trout to its
length is given by the equation

W (L) = 0.000015L3,

where W is the weight in kg.

Graph both the length and the weight of the lake trout as a function of
age, then determine the rate of change in weight as a function of age. For
the graphs, give any intercepts and asymptotes. Graph the rate of change
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in weight as

Solution: The von Bertalanffy equation for the lake trout has the origin
for its intercept (which is the same for the allometric model). Since the
exponential function becomes vanishingly small for large ¢, there is a hori-
zontal asymptote for the length equation of L = 120 ¢m. Similarly, because
the length approaches a constant, the allometric model has the weight ap-
proaching a constant with W = 25.9 kg. In Figure 5 we see the graph of

L(%).
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a function of age.

Length of Lake Trout

0 5 10 15

Age (yrs)
Figure 5: Graph of the function L(t) of Example 5.

The composite function for the weight of the fish can be written

W(t) = 0.000015(120(1 — e~02%))3,
W(t) = 2592(1—e 023

A graph of this function is shown in Figure 6.

Finally, we apply the chain rule to the equation for the weight of the

lake trout

aw _ W dL
dt  dL dt’
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Weight of Lake Trout Change in Weight of Lake Trout

30 25
25} 9t
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Figure 6: Left: Graph of the function W (¢) of Example 5. Right: Graph of
the function of fish weight rate of Example 5.

The two derivatives are given by

dL

— = 120(0.2)e "
= 0(02)e"?,
dw

—— = 0.000045L>.
T 0.000045

Multiplying these two expressions together and inserting the von Bertalanffy
equation for the lake trout, we have the rate of change in weight for a lake
trout with respect to its age

d
d—V: = 0.000045L%(24)e %% = 15.55¢ *2¢(1 — e 024)2.

In Figure 6 we see a graph of this rate equation, showing rapid weight
gain initially reaching a maximum weight gain around age 5, then slowing
to almost no change in rate of weight gain for older lake trout. The second
derivative could be used to compute the maximum rate of increase in weight.
This is left as an exercise for the reader. <

5 EXERCISES

Find the derivatives of the following functions:
1. f(z) = (2 — 3z + 4)%, 2. f(z) = 2%(2® — 22 + 1)3,

2
z 2

4+ In(z?), 4. f(z) = (22— ™),

2r +1

3. flz) =
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Find the derivative and sketch the curves of the functions below. Are these
functions even, odd, or neither? List all maxima and minima for each graph.
Find the second derivative of these functions, then locate the points of in-
flection. Also, give the x and y-intercepts and any asymptotes if they exist.

5.y = 26_“”2/2, 6.y = In(z® + 1),
7y — 10z 8y — e?®
YT 0+ 0122 VT U r ey

9. A study of American girls ages 4-13 in the 90 percentile found that their

height h (in cm) as a function of their age a (in years) satisfies the equation
h(a) = 6.44a + 82.1.

The same study found that their weight W (in kg) as a function of their
height is given by
W (R) = 0.0000302h2-84.

a. What is a rate of growth in height? Be sure to include units in your
answer.

b. Write an expression for the composite function that gives the weight
as a function of age. Differentiate this function to find W'(a) using the chain
rule.

c. What is the rate of change in weight at ages 4, 8, and 13?7 Be sure to
include units for your answer.

10. Hassell’s model is often used to study populations of insects. Suppose
that the updating function for the population of a species of moth P is given
by

5P

H(P) = (1+ 0.002P)%

a. Find all equilibria of the model by solving the equation H(P,) = P,.
b. Determine the intercepts, all extrema, and any asymptotes for P > 0,
then sketch a graph of H(P).

11. The continuous logistic growth model is a very important model used in
Biology. Suppose that a population of bacteria satisfies the logistic growth

model
100

B(t) = 1+ 9e0.028
where ¢ is in minutes and B is in thousands of bacteria/ml.
a. Compute both the first and second derivatives of B(t).
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b. Find the B-intercept and any asymptotes for the model of this pop-
ulation, then sketch a graph of B(t). Also, find the point of inflection.

c. Determine B'(0) and find any asymptotes for the function B'(t).
Find the maximum of this function, then sketch its graph.

12. The lecture notes have an example for the weight of a lake trout as a
function of age, and it was given by the formula

W(t) = 25.92(1 — e 0%)3

where W is in kg and # is in years. Find the age at which the lake trout are
increasing their weight most rapidly.

13. The growth in length of sculpin is approximated by the von Bertalanffy
equation
L(t) = 16(1 — e™*%),

where t is in years and L is in cm. An allometric measurement of sculpin
shows that their weight can be approximated by the model

W (L) = 0.07L3,

where W is in g.

a. Find the intercepts and any asymptotes for the length of a sculpin,
then sketch of graph showing the length of a sculpin as it ages.

b. Create a composite function to give the weight of the sculpin as a
function of its age, W (t). Find the intercepts and any asymptotes for W (t),
then sketch of graph showing the weight of a sculpin as it ages.

c. Find the derivative of W (t) using the chain rule. Also, compute the
second derivative, then determine when this second derivative is zero. From
this information, find at what age the sculpin are increasing their weight the
most and determine what that weight gain is. Be sure to give the units of
weight gain.

14. Suppose that after a burn a pioneering plant community has its biomass
accumulating according to the following growth model,

P(t) = 20(1 — e792%),

where ¢ is in years and P is in metric tons. The herbivores that graze on
this plant community satisfy the equation

H(P) =3(1—e %P,

where H is in metric tons of the biomass of herbivores.
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a. Sketch a graph of P(t), showing any intercepts and asymptotes. Com-
pute the derivative to determine the rate of change in biomass of the plant
material. What is the rate of change in biomass at ¢t = 0, 2, 10, and 20
years?

b. Create the composite function to find the biomass of the herbivores
as a function of time H(t). Differentiate this function, then find the rate of
change in biomass of the herbivores at ¢t = 0, 2, 10, and 20 years



CHAPTER 18:
OPTIMIZATION

In biology, animals are frequently devising optimal strategies to gain advan-
tage. These might result in reproducing more rapidly, or better protection
from predation. It has been argued that primitive animals long ago split
into the prokaryotes (bacterial cells) and eukaryotes (cells in higher organ-
isms like yeast or humans) from a common ancestor, which had elements
of both. One argument contends that eukaryotic cells added complexity,
size, and organization for advantage in competition, while the prokaryotes
stripped down their genome (eliminated ”junk” DNA) to the minimum re-
quired for survival, to maximize reproduction. These arguments suggest
that organisms try to optimize their situation to gain an advantage.

The derivative was a valuable tool in finding critical points on graphs.
These critical points were local minima or mazima for the function. This
is one of the valuable applications of Calculus, where an optimal solution is
found for some problem.

1 CROW PREDATION ON WHELKS

Sea gulls and crows have learned to feed on various mollusks by dropping
their prey on rocks to break the protective shells. Reto Zach [2,3] performed
a detailed study of Northwestern crows (Corvus caurinus) on Mandarte
Island, British Columbia to learn more about their habit of selecting and
consuming whelks ( Thais lamellosa). Some ecologists argue that studies on
the behavior of such interactions gives insight into the decision making of
optimal foraging.

Zach observed that Northwestern crows, perched above the beaches, flew
to the intertidal zone and searched carefully for the largest whelks they could
find. After selecting a whelk (occasionally more than one), the crows flew
to a favorite rocky area, where they flew vertically upwards and released the
whelk. The whelk would hit the rocks. If the whelk split open, the crow
would remove the edible parts. However, if it failed to break, the crow would
seize the whelk again, fly vertically, and drop the whelk again, repeating this
process until the whelk broke open and could be consumed. (One crow took
20 drops to open one whelk.) Zach observed that the crows usually flew to
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Figure 1: How do crows optimize their technique for feeding on whelk?

height of 5 meters with little variation. He also noted that it took a little
over 4 drops on average for the whelks to break open. Can this behavior be
explained by an optimal foraging decision process? Is the crow exhibiting a
behavior that minimizes its expenditure of energy to feed on whelks?

In Zach’s® first experiment, he selected a collection of whelks and sorted
them according to size (small, medium, and large). He then dropped these
whelks from various heights until they broke, and recorded how many drops
at each height were required to break each whelk. A graph of his results is
shown in Figure 2.

Notice that it is clearly easier to break open larger whelks, and an-
other experiment confirmed that crows selectively chose the largest available
whelks. It was noted that there was a gradient of whelk size on the beach,
suggesting that the crows’ foraging behavior was affecting the distribution
of whelks in the intertidal zone, with larger whelks further out. If the larger
whelks are easier to break open, then clearly the crows benefit by selecting
the larger ones because they do not need as many drops per whelk, and they
gain more energy from consuming a larger one. The study showed that the
whelks broken on the rocks were remarkably similar in size, with the average
whelk weighing about 9 grams. Next, Zach observed the height of the drops

'www.illuminations.nctm.org/imath/912/Whelk, last visited 05/01/04
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Figure 2: Graph for the experiment of number of dropped whelks vs. hight
of the drop for three different whelk sizes.

and number of drops required for many crows eating whelks, using a marked
pole on the beach near a favorite dropping location. Figure 3 are histograms
of his observations.
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Figure 3: Histograms of the height of the drops and number of drops of
whelks performed by many different crows [2].

So why do the crows consistently fly to about 5.2 m and use about 4.4
drops to split open a whelk? Can this be explained by a mathematical
model for minimizing the energy spent, thus supporting an optimal foraging
strategy?

2 MATHEMATICAL MODEL FOR ENERGY

From Physics, we know that the energy is directly proportional to the ver-
tical height that an object is lifted. (This is commonly called the work put
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into a system.) Thus, the energy that a crow expends breaking open a whelk
depends on the amount of time the crow uses to search for an appropriate
whelk, the energy in flying to the site where the rocks are, and the energy
required to lift the whelk to a certain height and drop it times the number
of vertical flights required to split open the whelk. We will concentrate only
on the energy of this last component of the problem, as it was observed that
the crows kept with the same whelk until they broke it open rather than
searching for another whelk when one failed to break after a few attempts.

L
| A \ |®

Figure 4: Diagrams of the crow’s foraging strategy [3].

Thus, the energy that we measure is given by the height (H) times the
number of drops (N) or

E =EkHN,

where k is a constant of proportionality. Notice that flying higher and
increasing the number of drops both increase the use of energy.

Data from Zach’s research was used to find a function that expresses
the number of drops (N) as a function of the height (H). Since it always
requires at least one drop, the proposed function is

a
H-b

The graph in Figure 5 shows the least squares best fit of this function

to Zach’s data and gives a = 15.97 and b = 1.2009.

N(H) =1+

Hm) |[15] 2| 3 | 4 |[5]6] 7 | 8 |10 ] 15
N(H) | 56 |20 [ 10.2 [ 7.6 |6 | 5| 43383125
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Figure 5: Graph showing the best fitting curve through the data by Zach

on dropping large whelk until they broke open.

It follows that the Energy function becomes

E(H) = kH <1+ HL_[)

A graph of this function with the values of a and b above and k£ = 1 is shown
in Figure 6. A minimum energy is readily apparent from the graph with the
value around 5.6 m, which is close to the observed value that Zach found
the crows to fly when dropping whelks.

To find the specific value from our formula, we take the derivative and
set it equal to zero, solving for H. The derivative of the expression of E(H)
uses the product rule and either the quotient rule or chain rule giving:

a aH _ H? — 2bH + b2 — ab
H-b (H-b2) (H — b)2

E'(H)=k (1 +

For the derivative to be zero, the numerator must be zero. But the numer-
ator is just a quadratic equation (refer to Chapter 4 if necessary). With
the values of @ and b above, the numerator is zero for both H = 5.602 and
H = —3.185. Obviously, the second answer does not make sense for this
problem (it is a maximum of this function, and a negative height), so the
minimum energy occurs at H = 5.602 m. This agrees with the graphical
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Energy Function
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Figure 6: Graph of the Energy function for dropping a whelk until it opens,

E(H) = kH(1 + a/(H — b)).

observation, and the experimental results.

3 OPTIMAL SOLUTION

One application of the derivative is to find critical points where often a
function has a relative minimum or mazimum. An optimal solution for a
function is when the function takes on an absolute minimum or maximum
over its domain.

Definition: An absolute minimum for a function f(z)
occurs at a point x = ¢, if f(c) < f(z) for all z in the
domain of f.

A function does not necessarily have an optimal solution. However, smooth
functions on a closed interval always have absolute extrema as stated in the
theorem below.
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Theorem: Suppose that f(z) is a continuous, differen-
tial function on a closed interval I = [a,b], then f(z)
achieves its absolute minimum (or maximum) on I and
its minimum (or maximum) occurs either at a point
where f'(z) = 0 or at one of the endpoints of the in-
terval.

4 OPTIMAL STUDY AREA

An ecology student goes into the field with 120 m of string and wants to
create two adjacent rectangular study areas with the maximum area possible.
Figure 7 presents a diagram of the two study plots.

Area of Research Plots

350

300F

250f

2001

A(X)

150f

100f

50

00 5 10 15 20 25 30

Figure 7: Left: Diagram of the rectangular study regions the ecology student
would like to make. Right: Graph of the rectangular area of one region of
the study field with respect to .

If each region has length y and width z, sharing one common length
between, then from the diagram above it is clear that the amount of string
needed to mark off the region is

P =4z + 3y.
The area of each rectangular plot is
A = zy.

Clearly, the optimal solution uses all the string, so P = 120. We can
solve the first equation for y and obtain
120 — 4z
= T
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Thus, area can be written as a function of z with

_ x(120 — 4x)
B 3
The domain of this function is 0 < z < 30, which is where the area is

positive. The right panel of Figure 7 shows a graph of this area function.
Differentiating A(z), we find

A(z) = 40z — 42°3.

Al(z) = 40 — 8?‘"”

A critical point occurs when A'(z) = 0, so 40 — 8z/3 = 0 or z = 15. From
the equation above for y, we see that the optimal y value is 20. Thus, to
maximize the study areas, the ecology student should make each of the two
study areas 15 m wide and 20 m long or 300 m2.

The following examples illustrate a range of typical problems.

Absolute Extrema of a Polynomial

Consider the cubic polynomial f(x) defined on the interval 0 < z < 5, where
f(z) = 23 — 62 4 9z + 4.

Find the absolute extrema of this polynomial on its domain.

Solution: We begin this problem by finding the derivative of f(x),
fl(z) =32% — 120+ 9 =3(z* — 42+ 3) = 3(z — 1)(z — 3).

Thus, we have critical points at £ = 1 and z = 3. To find the absolute
extrema, we evaluate f(x) at the critical points and the endpoints of the
domain. We obtain (see Figure 8,

f(0) =4 (an absolute minimum),
f(1)=38 (a relative maximum),

f(B)=4 (an absolute minimum),
f(5) =24 (the absolute maximum).

Crop Yield

The yield of an agricultural crop depends on the nitrogen in the soil. Crops
cannot grow without a source of nitrogen (except many legumes), but if
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Absolute Extrema

f(x):x3—6x2+9x+4

Figure 8: Graph of the polynomial function showing its absolute and relative
maxima and minima.

there is too much nitrogen, it becomes toxic and decreases the yield also.
Suppose that the yield of a particular agricultural crop satisfies the function

N
Y(N)=——.
() 1+ N?
where N is measured in some scaled units. Graph Y (V) and find the level
of nitrogen that produces the maximum crop yield.

Solution: For this function, the domain of interest is N > 0. Again we
differentiate the yield function to find the critical points. From the quotient
rule (Chapter 16), we see that

_(1+N*)-N-2N  1-N?

Yi(N) = (1+ N2)2 - (1+N?2)?°

The critical points are found by solving Y/(N) = 0, which is true when
the numerator of the derivative is 0. So the critical points are N = 1 and
N = —1. Only the first of these are in the domain with

Y (1) = 0.5, which is an absolute maximum.

The endpoints are N = 0 and N tending to infinity. Since Y (0) = 0, it is
an absolute minimum. As N tends to infinity, Y (V) decreases toward 0,
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Crop Yield
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Figure 9: Graph of the function of the crop yield (Y (N)) vs. the amount of
nitrogen (N) of Example 2.

confirming that we found the absolute maximum. Figure 9 shows a graph
of this function. <

Wire Problem

A wire length L is cut to make a circle and a square. How should the cut
be made to maximize the area enclosed by the two shapes?

Solution:

In Figure 10 is a diagram showing how the wire creates the circle and the
square after being cut. The perimeters of the two figures are constrained to
the length of the wire, so

L =27r 4+ 4z,

where r is the radius of the circle and z is the length of one side of a square.
Notice that the domain is limited by 0 < z < L/4.
The area which is to be maximized is given by the formula

A =7r? 4 22
From the constraint, we can solve for r in terms of L and z giving

_L—4m
r= o
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Area (Circle + Square)
0.08 T T T
nr 4x
0.07f

radius =1

0.04f

side= x

0'000 0.05 0.1 0.15 0.2 0.25
X (Length of Side of Square)

Figure 10: Left: Diagram depicting how the circle and the square of Exam-
ple 3 are cut. Right: Graph of the area function of Example 3.

This is substituted into the formula, for the area to form a function depending

only on z:

A(z) = 7(11 ;:m) + 2.

This is differentiated with respect to z. The chain rule (see Chapter 17)
is applied to the first term in A(x) and the power rule applies to the second
term giving:

m@g:392:@l29+ax:z((4+”)w_£>.

47 T e

To find extrema, we set A’(z) = 0, which is equivalent to
4+ m)z = L.

Thus, there is a relative extrema at

L
Y

z
If we take the second derivative of A(x), we obtain
Ay =2 4250,
™

Thus, the function is concave upward and the critical point found above
is a minimum, not a maximum. (This will be the absolute minimum of
this function.) Note that the formula for A(z) is a parabola pointing up
(coefficient of the quadratic term is positive), so geometrically, we know this
was a minimum. The absolute maximum must be one of the endpoints.
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Checking at z = 0 and z = L/4, we obtain

The first of these has the smaller denominator, so is the larger. Thus,
the maximum occurs when the wire is completely used to create a circle.
Geometrically, we know that a circle is the most efficient conversion of a
linear measurement into area, so the area produced with the wire completely
bent into a circle produces the maximum area. The right panel of Figure 10
shows a graph of the area as a function of x with the left end of the graph
corresponding to the wire being completely bent into a circle and the right
end corresponding to the wire being bent entirely into a square. <

Optimal Production of a Pharmaceutical

Bacteria often regulate the production of their proteins based on their rate of
growth. Some proteins are produced in higher quantities during high growth
rates, while others tend to be produced at a higher rate as the bacteria enter
a phase of stress due to limitations in some nutrient source. In the stationary
phase, bacteria tend to produce all proteins at a significantly lower rate.

Suppose that the production of a pharmaceutical agent, @), depends on
the population of some bacteria, B, in the following manner:

Q(B) — 2B6_0'002B.

This function is similar to the Ricker’s model that we studied before (see
Chapter 15). When the population of the bacteria is low, then production
of the pharmaceutical agent is low as there are not many bacteria producing
the pharmaceutical agent. However, when the bacterial population is high,
then the effects of stress cause the bacteria to produce other proteins, which
again lowers the production of the pharmaceutical agent. There should
be an intermediate optimal level of production when there are sufficiently
many bacteria producing the agent, yet not enough of them to suppress its
production.

The growth of bacteria in culture typically satisfies a logistic growth
model (a model that we will later develop). Suppose that the population of
bacteria satisfies this growth law and is given by:

2000
B = 1 gge0mr

Find the time when the production () is at a maximum.
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Solution: The problem asks to find the time when the production of the
pharmaceutical agent is at a maximum. However, the production of the
pharmaceutical is a function of the population of bacteria, Q(B), (in units of
agent), and the population of bacteria is a function of time, B(t) (with time
in minutes). Thus, we need to create the composite function Q(B(t)), which
is a function that depends on time, t. The production is at its maximum
when dQ@/dt = 0 (assuming there is a maximum production).

Finding d@/dt requires the differentiation of a composite function, which
uses the chain rule of differentiation. The chain rule for differentiating this
composite function gives

dQ dQdB  _, ,
o T aga = @ (BB

We begin by finding the derivative of Q(B), which uses the product rule
and satisfies

Q'(B) = 2¢7%992B(1 _0.002B).

(Details of this are left to the reader as it is very similar to the computations
for Ricker’s model seen in the Chapter 15.) Notice that this has a maximum
at B = 500 with Q(500) = 1000e~! = 367.9. Figure 11 shows a graph of the
production of the pharmaceutical agent, (), as a function of the population
of the bacteria, B.

Next we compute the derivative of B(t) = 2000(1 + 99¢~0-01)~1. This
uses the chain rule twice. By the chain rule

B'(t) = —2000(1 + 99¢ %01%)72(99~001%)(—0.01)
— 19806—0.01t(1 + gge—0.0It)—Q.

We can readily see that this function is always positive or constantly increas-
ing. However, it increases at different rates with varying times. Figure 12
is a graph of the population of bacteria, B, as a function of time, t.

These computations make it easy to find dQ/dt, as dQ/dt = Q' (B(t))B'(t)
from above. Our calculations above show

Q'(B(t))B'(t) = 39600928 (1 — 0.002B)e"1 (1 4- 99¢~0-011) =2,

For example, if we wanted to know the rate of production at £ = 0, then
first we note that B(0) = 20. We substitute this into the formula above to
obtain

d
d—(f = 3960904 (1 — 0.04)e’ (1 4 99¢°) =2 = 0.365 units/min.
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Production of Pharmaceutical
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Figure 11: Function of the prodution of the pharmaceutical agent (Q) vs.

the bacteria population (B).

Note that Q(B(0)) = 40e~29%* = 38.43 units.

The rate of production at ¢ = 1000 has B(1000) = 2000/(1 + 99¢~10) =
1991 and is given by

dq

o 3960e 392(1 — 3.982)e 1%(1 + 99¢19) "2 = —0.0099 units/min.

Thus, the production is dropping by ¢ = 1000, though the loss is small at
this time. Note that Q(B(1000)) = 3982e~3-%82 = 74.26 units.

So what is the maximum amount of pharmaceutical produced. This will
be when d@Q/dt = 0. However, this will occur when 1 — 0.002B = 0, as
all other terms in the expression for d@)/dt are positive. This implies that
B = 500. When we solve B(t) = 500, we find

2000(1 + 99¢~%%1%) =" = 500 or 2000 = 500 + 49500~ """,

Thus,
e 001 — 33 or t = 1001n(33) = 349.65 min.

The value of Q(B(1001n(33))) = 1000e~! = 367.9 units, which is substan-
tially higher than at either ¢ = 0 or ¢ = 1000. Figure 13 shows a graph of
the composite function, Q(B(t)).

4
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Population of Bacteria
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B(t) (# Bacteria)
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t (min)

Figure 12: Graph of the function of the bacteria population growth of Ex-

ample 4.

5 CHEMICAL REACTION - OPTIMUM AT ENDPOINTS

One of the simplest chemical reactions is the combination of two substances
to form a third. This reaction is written,

A+B-* x.

If the initial concentration of substance A is a and the initial concentra-
tion of B is b, then the law of mass action gives the following reaction rate
for the bimolecular reaction

R(z) = k(a — z)(b—z),0 < z < min(a,b),

where &k is the rate constant of the reaction and z is the concentration of
X during the reaction. What is the concentration of X where the reaction

rate is at a maximum?
For graphing purposes, suppose that k¥ = 50 (sec '), @ = 6 (ppm), and
b= 2 (ppm), so
R(z) = 50(6—z)(2—x)
5022 — 400z + 600, 0<z<2.

From our theorem above, we seek critical points where the derivative is zero
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Production of Pharmaceutical
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Figure 13: Graph of the composite function of Example 4.

or the endpoints of the domain. The derivative equal to zero gives
R'(z) =100z — 400 = 0 or z = 4.

Note that this critical point is outside the domain (and produces a negative
reaction rate). So we turn to examining the endpoints. A graph of R(z) is
shown in Figure 14. We see that the maximum rate is at the beginning of
the reaction with no product X (R(0) = 600) and the minimum occurs at
x = 2, where the reaction rate is zero.

6 EXERCISES

1. Find the area of the largest rectangle with a base on the z-axis and the
upper vertices on the parabola y = 12 — z2. Give the dimensions of this

rectangle.

2. A rectangular study plot is bounded on one side by a river, and the other
three sides are to be blocked off by a fence. Find the dimensions of the plot
that maximizes the area enclosed with 20 meters of fence.

3. An open box with its base having a length twice its width is to be
constructed with 600 in? of material. Find its dimensions that maximize
the volume.
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Reaction Rate
600 T T T
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Figure 14: Graph of the function of the chemical reaction rate (R) with
respect to the product concentration ().

4. Find the dimensions of an open rectangular box with a square base that
holds 32 in® and is constructed with the least building material possible.

5. Find the dimensions of a right circular cylindrical can with both a top and
a that holds one liter (1000 cm?) and is constructed with the least amount
of material possible.

6. The strength of a rectangular beam is proportional to the product of
its width and the square of its depth. Find the dimensions of the strongest
beam that can be cut from a circular log with a radius of r.

7. A catalyst for a chemical reaction is a substance that controls the rate of
the chemical reaction without changing the catalyst itself. An autocatalytic
reaction is one whose product is a catalyst for its own formation.

A+ x5 x.
The rate of this reaction v = dz/dt is given by the formula
v =kz(a —x),

where a is the initial concentration of the substance A, x is the concentration
of the product X, and k is the rate constant of the reaction. Find the
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concentration z that produces the maximum rate of reaction.

8. Nutrients in low concentrations inhibit growth of an organism, but high
concentrations are often toxic. Let ¢ be the concentration of a particular
nutrient (in moles/liter) and P be the population density of an organism
(in number/cm?). Suppose that it is found that the effect of this nutrient
causes the population to grow according to the equation:

1000¢
P(e) =1 o0e”

a. Find the concentration of the nutrient that yields the largest pop-
ulation density of this organism and what the population density of this
organism is at this optimal concentration.

b. Sketch a graph of the population density of this organism as a function
of the concentration of the nutrient.

9. One question for fishery management is how to control fishing to opti-
mize profits for the fishermen. We will soon study the continuous logistic
growth equation for populations. One differential equation describing the
population dynamics for a population of fish F' with harvesting is given by

the equation,
dF F
—=rF|(1—-— | —zF
a ( 1{) T

where r is the growth rate of this species of fish at low density, K is the
carrying capacity of this population, and z is the harvesting effort of the
fishermen. We will show that the non-zero equilibrium of this equation is
given by

(r— =)

Fo=K———~-.
T

One formula for profitability is computed by the equation
P =xF,,

SO

Find the maximum profit possible with this dynamics. What is the equilib-
rium population at this optimal profitability? Also, determine the maximum
possible fish population for this model and at what harvesting level this oc-
curs. (Clearly, this is a grossly oversimplified model, but can give some
estimates for long range management.)
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10. (From [1]) Semelparous organisms breed only once during their lifetime.
Examples of this type of reproduction strategy can be found with Pacific
salmon and bamboo. The per capita rate of increase, r, can be thought of
as a measure of reproductive fitness. The greater r, the more offspring an
individual produces. The intrinsic rate of increase is typically a function
of age, . Models for age-structured populations of semelparous organisms
predict that the intrinsic rate of increase as a function of z is given by

() = In[i(z)m(z)] ’

X

where [(x) is the probability of surviving to age x and m(z) is the number
of female births at age z. Suppose that

l(x) = e %
and

m(x) = bx®,

where a, b, and ¢ are positive constants.
a. Find the optimal age of reproduction.
b. Sketch graphs of I(z), m(z), and r(z) for a = 0.1, b =4, and ¢ = 0.9.

11. A female otter hears the cries of distress from her young in a den across
and up the river from where she is foraging. (See the diagram below.)
Assume that she is initially at Point A with the den residing at Point C.
She wants to reach her young in the minimum amount of time. Assume she
can run along the bank at v1 = 10 ft/sec and swim through the river as
vy = 6 ft/sec. The river is 200 ft wide and the den is 500 ft up the river.
(We are ignoring the current in the river.) If the distance she runs along the
bank (from A to B) is d; and the distance she swims (from B to C) is dy,
then the time for her to reach the den is given by the formula
T-% b
U1 V2
a. Use the diagram in Figure 15 to form an expression for the time as
a function of z (the distance downstream from the den, where she crosses),
T(x).
b. Use your expression for the time 7'(z) to find the minimum time for
the otter to reach her pups. Give both the distance z and the time at the
minimum.
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A 200 - x B X

Figure 15: Diagram for Problem 11.
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CHAPTER 19:

LOGISTIC GROWTH AND NONLINEAR
DYNAMICAL SYSTEMS

This chapter extends the qualitative analysis of discrete dynamical models
from material developed earlier in this text. The discrete logistic growth
model is one of the most important models used in ecological studies, yet
it can produce very complicated dynamics. This model can exhibit chaos,
which is a significant area of research in mathematics. This chapter extends
our tools for understanding these models by analyzing the behavior of several
biological models near their equilibria.

1 DISCRETE LOGISTIC GROWTH MODEL

In an earlier chapter we studied the Discrete Malthusian growth model,
which showed exponential growth. This model is appropriate for early
phases of population growth for most animal populations. However, as a
population grows, it encounters crowding pressure due to many factors such
as toxic build up or space and resource limitation.

In 1913, Carlson [1] studied a growing culture of yeast. Table 1 gives the
population for these yeast at one hour intervals. We would like to develop
a mathematical model to describe the growth of this culture.

There are two standard forms of the discrete population models. The

Time | Population | Time | Population | Time | Population
1 9.6 7 174.6 13 594.8
2 18.3 8 257.3 14 629.4
3 29.0 9 350.7 15 640.8
4 47.2 10 441.0 16 651.1
5 71.1 11 513.3 17 655.9
6 119.1 12 559.7 18 659.6

Table 1: Population of a yeast culture at an hour interval.
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first form uses a growth function, G(py,).

Pn+1 = Pn + G(pn)

This form is stating that the population at the next time interval (n + 1)
is equal to the population at the current time interval (n) plus whatever
net growth occurred because of the current population, G(p,), during the
specific time interval.

An alternate form, which gives the general discrete dynamical system, is
given by the

Pnt1 = F (pn)

This is an iterative map where the population at the (n + 1)% time
depends on the population at the n'® time. The function F(p) is called the
updating function as it produces the next population in an iterative scheme.
A graph of the updating function has the (n+ 1)t generation on the vertical
axis, while the n'® generation is on the horizontal axis.

It is clear that the population of yeast in Table 1 does not satisfy a
Malthusian growth, which has a linear updating function and grows expo-
nentially without bound. The next obvious addition to the updating func-
tion is the addition of a quadratic term, which should be negative to reflect
a decrease in the growth of a population due to crowding effects.

The Logistic Growth model can be written,

P,
Pn+1:Pn+TPn (1_M)a

with growth rate r and carrying capacity M.

This equation has the Malthusian growth model as seen before with the
additional term —rP?/M. The parameter M is called the carrying capacity
of the population.

The behavior of the Logistic growth model is substantially more compli-
cated than that of the Malthusian growth model. There is no exact solution
to this discrete dynamical system. The ecologist Robert May (1974) stud-
ied this equation for populations and discovered that it could produce very
complicated dynamics. In its simplest form the Logistic growth model can
be written:

Tpt1 = pn(l — 2n),
where the parameter y varies between 0 and 4. For a good description of this
model complete with Java applet simulations see the website of B. Fraser.!

'www.apmaths.uwo.ca/~bfraser /version1/iterated.html, last visited on 04/14/04
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2 YEAST MODEL

The graph below shows a plot of p,y1 vs. p, from Table 1. (This is ac-
complished by plotting the population from one time against the population
from the previous time. For example, the first two points are ((9.6,18.3)
and (18.3,29.0).) A least squares best fit of a quadratic function passing
through the origin is applied to these data, and it is shown in the left panel
of Figure 1. The graph of the line p,+1 = p, (the identity map) is also
shown, and its importance for studying discrete dynamical models will be
discussed later. This equation becomes the updating function.

Updating Function for Yeast Model Yeast Model Simulation

— 2
P,., = 1.5612p - 0.000861p

600

500 5001
400 : 400F
£ o
<300 300}
P.1=P
200 n+l n 200t

100 : 100}

— Logistic Model
o Carlson Data
200 400 600 2 4 6 8 10 12 14 16 18

P Hours

Figure 1: Left: Graph of the updating function and the identity line. Right:
Graph of the data of Table 1 and the model p, ;1 = 1.56p, — 0.000861p?2 .

Our discrete logistic growth model for the yeast experiment above is given
by
Prs1 = 1.56p, — 0.000861p2.

The right panel of Figure 1 shows a simulation showing both the data and
the model, assuming that we begin with pg = 9.6. As we can see, the model
does a fairly reasonable job of simulating the data from this fairly simplistic
model.

Qualitatively, we see the same initial roughly exponential growth, then
both models seem to level off at approximately the same value. This is the
carrying capacity of the population. The equation above shows r = 0.56
and /M = 0.000861, so M = 650.4. This is clearly a little low based on the
original table. Furthermore, the model is shifted in time, not rising as soon
as the original data. (If a nonlinear least squares fit of the simulation to the
time series were applied with the value of Py varying, then a very close fit
would occur.)
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3 EQUILIBRIA

This section extends our study of discrete dynamical equations to nonlinear
functions in order to find what can be learned about their qualitative behav-
ior. The linear discrete dynamical models were introduced before the chap-
ters on differentiation showing the modeling of populations with Malthusian
growth and on other models given in Chapter 8, such as one for breathing.
As noted above, there is no general solution for the logistic growth model.
However, we would like to learn more about this very important model from
population biology. Here we introduce the key steps for studying the quali-
tative behavior of discrete dynamical equations.
Consider the general discrete dynamical equation

Py = f(P)-

The first step in any analysis of a discrete dynamical equation is finding
equilibria, which is simply solving an algebraic equation. An equilibrium
point of a discrete dynamical system is a point where there is no change
in the variable from one iteration to the next. Mathematically, this occurs
whenever there is a solution to

Pe:f(Pe)'

Graphically, this is when f(P,) crosses the line P, 1 = P,, the identity map,
which is one reason why this line was shown above.

Consider the original discrete Logistic equation listed above with r > 0.
The equilibria are found by solving,

P,
P, = P.+rP, (1——e>

M
P,
P(1-=2) =
T e( M) 0
P, = 0,M.
Thus, the equilibria for the Logistic growth model are either the trivial

solution 0 (no population) or the carrying capacity M.

4 OTHER BEHAVIOR OF THE LOGISTIC GROWTH MODEL

Before learning more mathematical tools for studying the discrete Logistic
growth model, it is useful to examine some of the wealth of behaviors that
are possible for this model.
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Logistic — Other Behavior

This applet shows simulations of the logistic growth model for various choices
of r and M. You can vary the values of these parameters and see how the
simulation changes over the first 50 iterations.

Model Simulation r = 0.5 Model Simulation r = 1.8

1200} 1 1200}

1000f 1000f

0 10 20 30 40 50 0 10 20 30 40 50
n n

Model Simulation r = 2.3 Model Simulation r = 2.65

12001 12001

1000} . 1000}

0 10 20 30 40 50 0 10 20 30 40 50
n n

Figure 2: From the top left corner: Logistic growth model with » = 0.5 and
M = 1000, Logistic growth model with r = 1.8 and M = 1000, Logistic
growth model with r = 2.3 and M = 1000, Logistic growth model with
r = 2.65 and M = 1000.

Robert May (1974) demonstrated that the discrete Logistic growth model
could display very complicated dynamics. Watch what happens in the ap-
plet mentioned above as we choose different values of . For example, try
the values r = 0.5,1.8,2.3, and 2.65. (Note that the solution of the discrete
Logistic equation only gives solutions at the integer values of n, so the con-
necting lines are only drawn to help visualize the behavior of the system.)
The series of graph in Figure 2 shows the simulations of the logistic growth
model with the values of r listed above. The first value of r shows the curve
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smoothly ascending to carrying capacity of 1000. The second value of 7 has
the population ascend and actually overshoot 1000, then oscillates about
1000, getting closer to the carrying capacity as n increases. In both of these
cases, the equilibrium population of 1000 is said to be stable. When r = 2.3,
the solution oscillates about 1000, taking on the values of approximately 690
and 1180. This solution is said to have a period of 2. The last case shows
the population oscillating almost randomly about 1000. This last situation
could have either a very high period of oscillation or actually be chaotic.
See what happens when you change the value of M.

5 STABILITY OF THE LOGISTIC GROWTH MODEL

The applet [Logistic — Other Behavior| showed that the behavior of the
discrete logistic model changes very dramatically as the parameter r varies.
We would like to have some mathematical tools that help us predict some
of these behaviors. If we write the discrete logistic growth model

F,
Pn-l—lz.f(Pn):Pn‘l‘TPn (1__71)’

M
then the derivative of the function f(P) proves to be a valuable tool for de-
termining the behavior of the discrete dynamical system near an equilibrium
point.
The discrete logistic growth model, as given by the equation above, has
two equilibria,
P.,=0 and P, = M.

It is easy to see that the derivative of f(P) is given by
f(P)=1+r—2rP/M.
At P, = 0, the derivative satisfies
fl(0)=1+r,

which for r positive always results in solutions growing away from this equi-
librium. (If 7 is a negative number between —1 and 0, then the solution
of the discrete logistic growth model decays to 0 or the population goes to
extinction.)

The more interesting behavior occurs around the second equilibrium,
P, = M. Below is a summary of the types of behavior that are observed
for a discrete dynamical system near an equilibrium, P,. (In all of the
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descriptions below, we are assuming that the simulation begins “near” the
equilibrium value.)

6 BEHAVIOR OF THE DISCRETE DYNAMICAL MODEL NEAR
AN EQUILIBRIUM

1. If f/(P.) > 1, then the solutions of the discrete dynamical
model grow away from the equilibrium (monotonically). Thus,
the equilibrium is unstable.

2. If 0 < f'(P.) < 1, then the solutions of the discrete dynam-
ical model approach the equilibrium (monotonically). Thus,
the equilibrium is stable.

3. If -1 < f'(P.) < 0, then the solutions of the discrete dy-
namical model oscillate about the equilibrium and approach it.
Thus, the equilibrium is stable.

4. If f'(P.) < —1, then the solutions of the discrete dynamical
model oscillate but move away from the equilibrium. Again,
the equilibrium is unstable.

Returning to the logistic growth model, we can evaluate the derivative at
the larger equilibrium, P, = M. From the formula for the derivative, it is
easy to see that

f[(M)=1-r.

From our list of behaviors above, it is follows that

1. If 0 < r < 1, then the solution of the discrete logistic model
monotonically approaches the equilibrium, P, = M, which was
the case observed for the experiment with the yeast.

2. If 1 < r < 2, then the solution of the discrete logistic model
oscillates about the equilibrium, P, = M, but the solution still
asymptotically approaches this equilibrium.

3. If 2 < r < 3, then the solution of the discrete logistic model
oscillates about the equilibrium, P, = M, but the solution
grows away from this equilibrium. ( r > 3 results in negative
solutions.)

The following examples on the logistic growth model should help under-
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stand the process on analyzing discrete dynamical equations, finding equi-
libria and determining the stability of the equilibria. We also include the
Malthusian growth model to see how this analysis applies to this discrete
dynamical model.

Consider the discrete logistic growth model given by the equation
Poy1 = f1(P,) = 1.3P, — 0.0001P2,
where 7 is measured in weeks.

a. Assume that Py = 200 and find the population for the next three
weeks, P;, P, and Ps.

b. Find all the equilibria for this model. Sketch a graph of the updating
function (the right hand side of the equation above) along with the line
P11 = P,, showing clearly on the graph the equilibria and the vertex of
the parabola.

c. Use the results from the lecture section to determine the behavior of
the solution near the equilibria.

Solution: a. Given Py = 200, the updating function above generates the
following populations for the next three weeks,

P, = 1.3(200) — 0.0001(200)? = 256,

P, = 1.3(256) — 0.0001(256) = 326,

Py = 1.3(326) —0.0001(326) = 413.5.

b. To find the equilibria, we simply substitute P, for P, and P,y into
the discrete logistic growth model. This gives

P, = 1.3P.—0.0001P?
0 = 0.3P.—0.0001P? = P,(0.3 — 0.0001P,),
P, = 0 and
0.3 —0.000lP, = 0 or P, = 3000.

The parabola has P-intercepts of 0 and 13, 000, so the vertex is at (6500, 4225).
The left Panel of Figure 3 has the graph with the identity function and sig-
nificant points shown on the graph.

c. To determine the behavior of the model near the equilibria P, = 0
and 3000, we need to compute the derivative of fi(P.). This is easily done
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Figure 3: Left: Graph of the Logistic updating function of Example 1.
Right: Simulation showing the dynamics of the Logistic equation of Example
1.

using the power rule, so
f1(P) = 1.3 — 0.0002P.

To find the behavior near P, = 0, we compute f](0) = 1.3 > 1. Thus, the
solution monotonically grows away from this equilibrium, which is what we
expect.

At the other equilibrium, P, = 3000, we find f{(3000) = 1.3 — 0.6 =
0.7 < 1. Thus, from the this notes, we see that solutions of the discrete
logistic model monotonically approach this equilibrium. This equilibrium is
said to be stable. We show in the right panel of Figure 3 a simulation of
this model, starting with an initial value of Py = 100 and performing 50
iterations. The simulation shows the solution growing away from P, = 0
and approaching P, = 3000 monotonically. <

We modify the example above slightly and consider the discrete logistic
growth model given by the equation

Poy1 = fo(Py) = 2.7P, — 0.0001 P2,

Find all the equilibria for this model and use the results from this chapter to
determine the behavior of the solution near these equilibria. Again, sketch
a graph of the updating function (the right hand side of the equation above)
along with the line P,; = F,, showing clearly on the graph the equilibria
and the vertex of the parabola.

Solution: As in the previous example, we substitute P, for P,, and P, into
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the discrete logistic growth model giving

P, = 2.7P,—0.0001P?

0 = 1.7P, —0.0001P? = P,(1.7 — 0.0001P,),
P, = 0 and

P, = 17000.

The graph in the left panel of Figure 4 shows the updating function and the
identity map, showing clearly the equilibria.

. P, =27P -00001P . P, =27P -00001P
) X 10 n n n _x10 n+ n n
Vertex (13500, 18225)
(17000, 17000) L75p A
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Py x10* P,

Figure 4: Left: Graph of the Logistic updating function of Example 2.
Right: Simulation showing the dynamics of the Logistic equation of Example
2.

The behavior of the model near the equilibria P, = 0 and 17000 is found
by computing the derivative of fo(P,.). The derivative is given by

f5(P) = 2.7 — 0.0002P.

At P, = 0, the derivative is fo/(0) = 2.7 > 1. Thus, the solution monotoni-
cally grows away from this equilibrium.

At the other equilibrium, P, = 17000, the derivative is f5(17000) =
2.7 —3.4 = —0.7. Since —1 < f4(17000) < 0, the discrete logistic model
oscillates and approaches this equilibrium. This equilibrium is also stable. In
the right panel of Figure 4 we show a simulation of this model, starting with
an initial value of Py = 100 and performing 20 iterations. The simulation
shows the solution growing away from P, = 0, then oscillates and rapidly
approaches P, = 17000. <

Another change in the discrete logistic growth model gives the equation

Poy1 = f3(P,) = 3.2P, — 0.0001P2.
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Find all the equilibria for this model and use the results from the lecture sec-
tion to determine the behavior of the solution near these equilibria. Again,
sketch a graph of the updating function (the right hand side of the equation
above) along with the line P,1; = P,, showing clearly on the graph the
equilibria and the vertex of the parabola.

Solution: As in the previous two examples, we substitute P, for P, and P,
into the discrete logistic growth model giving

P, = 3.2P, —0.0001P2
0 = 2.2P, —0.0001P2 = P,(2.2 — 0.0001P,),

so P, = 0 and
P, = 22000.

The left panel of Figure 5 has the graph of the updating function and the
identity map, showing clearly the equilibria.

P =32P -0.0001P? P =32P -0.0001P?
n+l n n n+l n n

x10° x 10

3 3
Vertex (16000, 25600)
25
(22000, 22000)
2 2
7 7
i P, =0, £ 15
1 1
0.5
0.9, . . . . 0 . . . .
0 0.5 1 15 2 25 3 35 0 10 20 30 40 50

P, x10° Pn
Figure 5: Left: Graph of the Logistic updating function of Example 3.
Right: Simulation showing the dynamics of the Logistic equation of Example
3.

The behavior of the model near the equilibria P, = 0 and 22000 is found
by computing the derivative of f3(P.). The derivative satisfies

f5(P) = 3.2 — 0.0002P.

At P, = 0, the derivative is f3/(0) = 3.2 > 1. Thus, the solution monotoni-
cally grows away from P, = 0.

At the other equilibrium, P, = 22000, the derivative is f5(22000) = 3.2 —
4.4 = —1.2. Since f§(22000) < —1, the discrete logistic model oscillates and
moves away from this equilibrium. Thus, this equilibrium is unstable. We
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show a simulation of this model in the right panel of Figure 5, starting with
an initial value of Py = 100 and performing 30 iterations. The simulation
shows the solution growing away from P, = 0, then it settles into a period 2
oscillation taking on the values 16417 and 25583. <

Growth Rate Function for Logistic Model

An alternate way to look at discrete population growth models is to consider
the population at the (n + 1)*! generation as being equal to the population
at the n'® generation plus the growth of the population, g(p,), between the
generations. The logistic growth model in the form of a growth function
rather than an updating function is given by the equation

Pn+1 = Pn + 9(pn) = pn + 0.05p, (1 — 0.0001py,),

where n is measured in hours. The advantage of this form of the model is
that equilibria occur when the growth rate is zero. Clearly when a popula-
tion stops growing (growth function is zero), then it must be at an equilib-
rium.

a. Assume that py = 500 and find the population for the next three
hours, p1,p2, and p;3.

b. Find the p-intercepts and the vertex for
g(p) = 0.05p(1 — 0.0001p).
Sketch a graph of g(p).

c. By finding when the growth rate is zero, determine all equilibria for
this model and find the stability of the equilibria.

Solution: a. We find the first three iterations by substituting each successive
value into the given updating function. Thus,

pr = po+g(po) =500+ 0.05(500)(1 — 0.0001(500)) = 524,
po = 524+ 0.05(524)(1 — 0.0001(524)) = 549,
p3 = 549 + 0.05(549)(1 — 0.0001(549)) = 574.

(

b. Since g(p) = 0.05p(1 —0.0001p), the p-intercepts are found by solving
g(p) = 0.05p(1 — 0.0001p) = 0,

which gives either p = 0 or 1 — 0.0001p = 0. The latter is equivalent to
p = 10, 000.



6. BEHAVIOR NEAR AN EQUILIBRIUM 303

The vertex occurs halfway between the p-intercepts, so p = 5,000 and
g(5000) = 0.05(5000)(1 — 0.0001(5000)) = 125.

The vertex is the maximum growth rate of the population, so the maximum
this population can grow is 125 individuals/hr.

The graph of g(p) is a standard parabola, which is given in Figure 6
showing the p-intercepts and the vertex.

Growth Rate Function

150 : :
Vertex (5000, 125)
100 o e N S,
g
(@]
0 1 1 1 1
0 2000 4000 6000 8000 10000

p
Figure 6: Parabola describing the growth rate function of Example 4.

c. From the graph of Figure 6, it is clear that the growth rate is zero at
0 and 10,000, so the equilibria occur at p. = 0 and 10,000. The stability
is still determined by differentiating the updating function, not the growth
function,

a1 = f(pn) = 1.05p, — 0.00005p2.

The derivative of the updating function is
#'(pn) = 1.05 — 0.0001p,,.

At P, = 0, the derivative is f'(0) = 1.05 > 1. Thus, the solution is un-
stable and monotonically grows away from P, = 0. At the other equilibrium,
P, = 10000, the derivative is f/(10000) = 0.05. Since 0 < f/(10000) < 1, the
discrete logistic model is stable and the solutions monotonically approach
the equilibrium, P, = 10000. <
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Stability of the Malthusian Growth Model

The discrete Malthusian growth model was substantially easier to study
than the logistic growth model. Its solution was simply an exponentially
growing solution. Use the results from the lecture section to show that the
only equilibrium of the Malthusian growth model is unstable.

Solution: We assume that there is a positive growth rate for a population
of animals satisfying according to the discrete Malthusian growth model, so
r > 0. The general Malthusian growth model is given by

Pn+1 = (1+7’)Pn

The equilibrium is readily found by substituting P, for P, and P41,
giving

P, = (1+7)P, or
rP, = 0
P, = 0.

Thus, the only equilibrium for the discrete Malthusian growth model is
the trivial solution, P, = 0. When we take the derivative of the right hand
side of the model, we find that the derivative is (1+7), which is greater than
one. This means that for any positive growth rate, the discrete Malthusian
growth model is unstable, and the solution monotonically moves away from
the equilibrium. This is in agreement with the exponential growing behavior
shown earlier. <

Logistic Growth with Emigration

We extend the earlier example to include the possibility that the population
might be affected by immigration or emigration. Suppose that the growth
rate for a population is given by

g(p) = 0.71p — 0.001p> — 7.

This says that between each generation there is a 71% growth rate, while
0.001p?2 are lost due to crowding and 7 emigrate. The discrete dynamical
model for this population model is given by

Prs1 = P+ 9(pn) = pp + 0.71p,, — 0.001p2 — 7,
where n is measured in generations.

a. Assume that py = 100 and find the population for the next three
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generations, pi, p2, and ps.

b. Find the p-intercepts and the vertex for g(p) and sketch a graph of
9(p)-

c. By finding when the growth rate is zero, determine all equilibria for
this model.

Solution: a. As we did in the previous example, we iterate this discrete
logistic model with emigration to obtain the next three generations. Thus,

p1 = po+g(po) =100+ 0.71(100) — 0.001(100)> — 7 = 154,
ps = 154+ 0.71(154) — 0.001(154)% — 7 = 233,
ps = 233+0.71(233) — 0.001(233)2 — 7 = 337.

b. The growth function satisfies

g(p) = 0.71p —0.001p> — 7,
g(p) = —0.001(p? — 710p + 7000),
g(p) = —0.001(p — 10)(p — 700).

The p-intercepts are found by solving g(p) = 0, which gives either
p=10 or p = 700.
The vertex occurs halfway between the p-intercepts, so p = 355 and
9(355) = —0.001(345)(—345) = 119.

Thus, for this logistic growth model, the maximum growth occurs when the
population is 355 with a maximum growth of 119 individuals/generation.

The graph of g(p) is a parabola, which is shown in Figure 7 showing the
p-intercepts at p = 10 and 700 and the vertex.

c. From the graph above, it is clear that the growth rate is zero at p = 10
and 700, so the equilibria occur at p, = 10 and 700. N

U.S. Census with Logistic Growth Model

The Malthusian growth model did not work well for the U. S. census data
over any extended period of time because the growth rate in general has
been declining for most decades in U.S. history. Can we apply the logistic
growth model to the U.S. census data and get a better fit to the data and
avoiding the problems of the time varying nonautonomous model developed
at the end of Chapter 77
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Growth Rate for Logistic with Emigration
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Figure 7: Parabola for the growth rate with emigration of Example 6.

Chapter 7 included the U.S. census data from 1790 to 2000. How does
one find the appropriate updating function for a logistic growth model?
The best fit to a model uses the least squares best fit technique given in
Chapter 3. A least squares best fit to the U. S. census data was performed
to find the best Malthusian growth model and the best logistic growth model.
The best Malthusian growth model is given by

Phi1 = 1.2354F,.

The best logistic growth model satisfies the model

P,
P,1 = F(P,) = P, +0.3064P, (1 - 313?.8) .
We recall that a nonautonomous model fitting the time varying growth (us-
ing a linear fit to the data) satisfied the model

P41 = (1.3835 — 0.0155n) P,.

The simulations of the Malthusian, logistic, and nonautonomous growth
models are graphed in Figure 8 showing how well they compare to the actual
U.S. census data. It is readily apparent that the Malthusian growth model
does not fit the data very well, growing too slow in the early history of
the U.S. and growing too rapidly more recently. The logistic growth model
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appears to fit the data fairly well. Still the best fit is the nonautonomous
model developed in the discrete Malthusian growth chapter.

U. S. Population

— Malthusian Model ' '
300f1 .-~ Logistic Model : : 1
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250f o Census Data T
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Figure 8: Graph of the three different models for the U.S. census data given
in Chapter 7.

By plotting P, 41 versus P, one can see how the data compares to the
updating function for the logistic growth model. The graph of this updating
function with the data is seen in Figure 9 with the identity map P11 = P,.

The logistic updating function very closely follows the census data except
at a couple of points. We have seen that the equilibria are found by the
intersection of the updating function and the identity map. The slope of the
updating function at a point of intersection determines the stability of that
equilibrium.

The equilibria for the logistic growth model above are P, = 0 or 313.8
million. The derivative of the updating function is

F'(P) = 1.3064 — 0.00195P.

It follows that F'(0) = 1.3064, so P, = 0 is unstable as expected. Sim-
ilarly, F'(313.8) = 0.6936, so the equilbrium P, = 313.8 million is stable.
Thus, the logistic growth model fit to the U.S. census data predicts that
the population of the U.S. will growth monotonically, then level off at 313.8
million. Note that this population is not much higher than the 2000 census
value, while actual projections have the U.S. population rising to over 400
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U.S. Logistic Updating Function
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Figure 9: Logistic updating function for the U.S. census data of Example 7.

million by the middle of the next century.

The logistic growth model is easier to analyze than the nonautonomous
model, but the nonautonomous model appears to fit the growth of the U.S.
population better. By extending the analysis of the nonautonomous growth
model, we see that the growth continues until n = 25 (actually 24.7), then
this model has the population beginning to decline. Simulating this model
for 25 decades (until 2040) finds that a maximum population of 318.8 mil-
lion is reached. (Details of this analysis are omitted.) Note that the nonau-
tonomous model and the logistic growth model both seem to predict a simi-
lar maximum population for the U.S. and both are unrealistically low. This
shows that human populations have a more complicated dynamics than
these models can predict with either time-varying or crowding factors. (So-
ciological and technical factors are especially difficult to incorporate into
mathematical models.) Your ecology courses should help explain more de-
tails underlying the assumptions in these models, so explain a little better
when the models are applicable and why they fail in other predictions. It is
unlikely that human population can continue its current course, but what
will be the actual scenario? Mathematical modeling can provide reasonable
estimates for short term growth and allows one to predict several different
possibilities for longer term growth depending on the assumptions that are



7. COBWEBBING 309

entered into the model. q
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Figure 10: Graph describing the cobwebbing method for understanding the
dynamics of the Logistic Growth equation.

7 COBWEBBING

In Chapter 8, we introduced a more geometric way to visualize these dynam-
ical systems, cobwebbing. The website of B. Fraser shows this cobwebbing
for the logistic growth model in a nice applet?. The updating function,
f(pn), is graphed with the identity map, p,+1 = p, on a single graph with
the vertical axis being p,11 and the horizontal axis being p,. The idea is
that you start at any pg, then go vertically to p1 = f(pg). Next you go
horizontally to the identity map to locate p; on the horizontal axis. From
there you find po by going vertically to po = f(p1). This process is repeated
to generate the cobweb of points by this discrete dynamical system. The
sequence of points on the horizontal axis form the solution set generated
by the discrete dynamical system. The graphical representation allows you
make some projections of the behavior of the system. Figure 10 shows a

*www.apmaths.uwo.ca/~bfraser /version1/iterated.html,last visited on 04/14/04
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diagram showing several steps in the cobwebbing scheme for the quadratic
map
Pnt1 = 3pn(l — pn).

8 EXERCISES

1. Consider the discrete logistic growth model given by
P41 = 1.5P, — 0.0025P2.

a. Suppose that the initial population Py is 50. Find the population of
the next three generations, P;, P, and Ps.

b. Sketch a graph of the updating function with the identity map,
P,y1 = FP,. Be sure to show the intercepts of the parabola as well as
the vertex. Find the equilibria and identify them with your graph.

2. Consider the discrete logistic growth model given by
Poi1 = f(Pn) = 1.25P, — 0.00125P2.

a. Suppose that the initial population Py = 2000. Find the population
of the next three generations, P;, P», and Ps. Find all equilibria.

b. Sketch a graph of the updating function, f(P), with the identity map,
P, +1 = P,. Find the intercepts and the vertex of the parabola.

3. Assume that the growth rate of a population P satisfies
g(P) =0.03P(1 — P/600).
The discrete logistic growth model for this population is given by:
Pri1 = Pp+ g(Py).

a. Find the population when the growth rate g(P) is zero (the P-
intercepts) and when it is a maximum (the vertex). Sketch the graph of

g(P).
b. Let Py = 100 and compute P;, P, and P3. Find all equilibria.

4. Assume that the growth rate of a population P satisfies
g(P) = 0.02P(1 — 0.0004P).

The discrete logistic growth model for this population is given by:
P, =P, + g(Fy).
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a. Find the population when the growth rate g(P) is zero and when it
is a maximum. Sketch the graph of g(P).
b. Let Py = 5000 and compute P;, P, and P;. Find all equilibria.

5. A modified version of the discrete logistic growth model that includes
emigration is given by

Pyi1 = f(Py) = 1.1P, — 0.0001P? — 9.

a. Suppose that the initial population Py is 500. Find the population of
the next three generations, P, P», and Ps.

b. Sketch a graph of the updating function with the identity map,
P,+1 = P,. Be sure to show the intercepts of the parabola as well as
the vertex. Find the equilibria and identify them on your graph.

6. A modified version of the discrete logistic growth model that includes
immigration is given by

Pnt1 = f(pn) = 1.2pp — 0-000110?1 —44.

a. Suppose that the initial population Py = 1000. Find the population
of the next three generations, p1, p2, and p3.

b. Sketch a graph of the updating function with the identity map, pp+1 =
pn. Be sure to show the intercepts of the parabola as well as the vertex.
Find the equilibria and identify them on your graph.

7. Consider Hassell’s model that is given by

5Pn
Pt = Hpn) = 1770 003y,

a. Assume that pg = 500 and find the population for the next three
generations, pi, po, and ps3.

b. Find the p-intercepts and the horizontal asymptote for H(p) and
sketch a graph of H(p) for p > 0 along with the identity map, pp+1 = pn.

c. By solving p. = H(pe), determine all equilibria for this model.

8. Consider Hassell’s model that is given by

10p,
prevt = HPn) = 3775 ho01p2
° n

a. Assume that pg = 100 and find the population for the next three
generations, pi, po, and ps.



312 CHAPTER 19. LOGISTIC GROWTH AND DYNAMICAL SYSTEMS

b. Find the p-intercepts and the horizontal asymptote for H(p) and
sketch a graph of H(p) for p > 0 along with the identity map, pp+1 = pn.
c. By solving p. = H(p), determine all equilibria for this model.
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CHAPTER 20:

MORE APPLICATIONS OF NONLINEAR
DYNAMICAL SYSTEMS

Chapter 19 on the discrete logistic growth model established the key ele-
ments for studying the qualitative behavior of a discrete dynamical model.
First, the equilibria for the model are found, then using the derivative of the
updating function, the local stability of the equilibria are determined. This
section extends our analysis to other nonlinear discrete dynamical models,
which in certain cases improves on the discrete logistic growth model. The
study of the stability of these models uses a variety of the differentiation
techniques learned earlier.

The first extension to the study of the Malthusian growth model was
the logistic growth model, which improved on the Malthusian growth model
by accounting for the crowding effects that result in natural limits to popu-
lations. The logistic growth model employs a quadratic updating function,
which becomes negative for large populations. Ecologists have modified the
logistic growth model in several ways to make the updating function more re-
alistic and better able to handle largely fluctuating populations. One model
that is often used in fishery management is Ricker’s model. Populations of
insects undergo large fluctuations, so again the logistic growth with its neg-
ative updating function for large populations is replaced with an alternative
model, Hassell’s model. Below these models are fit to data, then analyzed
using the techniques learned in the previous sections.

1 SOCKEYE SALMON POPULATIONS

Recently, the salmon population in the Pacific Northwest has become suffi-
ciently endangered that many salmon spawning runs could become extinct.
(This already happened years ago in California.) Salmon are unique in that
they breed in very specific fresh water lakes and die. Their offspring migrate
a tortuous path to the ocean, where they mature for about 4- 5 years. Then
an unknown urge causes the mature salmon to migrate at the same time
to return to the exact same lake or river bed where they hatched 4-5 years
earlier. The adult salmon breed and die with their bodies providing many
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essential nutrients that nourish the stream where their young will repeat
this process. Human activity from damming rivers, forestry, which allows
the water to become too warm, and agriculture, which results in runoff pol-
lution, all adversely affect this complex life cycle of the salmon. Many of
the ancient salmon runs have now gone extinct.

This life cycle of the salmon is a clear example of a complex discrete
dynamical system. Because of the importance of this fish to many people
in the Pacific Northwest, there have been many studies of the salmon pop-
ulations. Below is a table listing four year averages of the sockeye salmon
(Oncorhynchus nerka) in the Skeena river system in British Columbia from
1908 to 1952. (The Canadian river systems have not been as severely affected
by other human activities as the ones in the U.S. but rapid development
in their forests are likely to have similar effects.) The table lists the four
year averages from the starting year of the data being averaged. Since it
is 4 and 5 year old salmon that spawn, each grouping of 4 years is a rough
approximation of the offspring of the previous 4 year average of salmon. (It
is complicated because the salmon have adapted to have either 4 or 5 year
old mature adults spawn, but this will be ignored in our modeling efforts.)

Year | Population (in
thousands)

1908 1,098
1912 740
1916 714
1920 615
1924 706
1928 510
1932 278
1936 448
1940 528
1944 639
1948 523

Table 1: Four Year Averages of Skeena River Sockeye Salmon.

We want to use these data to create a discrete dynamical system to de-
scribe the population of salmon in the Skeena river watershed. This system
can be analyzed to determine information about expected salmon runs to
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study the health of the ecosystem.

2 RICKER’S MODEL

The logistic growth model extends the Malthusian growth model and in-
cludes an additional term for the crowding effects on population growth. As
populations become more crowded, the resource limitations result in a de-
crease in the population growth rate. The logistic growth model was given
by

P,i1=PF,+rP,(1—-P,/M),

where P, is the population at the n'* time period, r is the Malthusian
growth rate, and M is the carrying capacity of the population. Our chapter
on the logistic growth model showed that this model did a reasonable job for
predicting certain yeast populations. This model can be applied reasonably
well to unicellular organisms that are provided a fixed amount of nutrient,
such as a culture of yeast growing in a controlled environment. However,
this model does not fit the data for many organisms, such as the salmon
population listed above. If a population experiences large fluctuations, then
for very large populations the logistic growth model may return a negative
population in the next generation, which is clearly unrealistic. Several al-
ternative models have been proposed, where the updating function remains
positive.

One such model is Ricker’s model, which it is claimed was originally for-
mulated using studies of salmon populations. This model is very frequently
used in fisheries management problems. We will apply this model to the
sockeye salmon data listed above.

Ricker’s model is given by the equation
P,;1 = R(P,) = aP,e ",

where a and b are positive constants that are fit to the
data.

In Figure 1 is a graph showing the data of successive generations from
the averaged data listed in Table 1. For example, the parent population of
1908-1911 is averaged to 1,098,000 salmon/year returning to the Skeena
river watershed, and it is assumed that the resultant offspring that return
to spawn from this group occurs between 1912 and 1915, which averages
740,000 salmon/year. This produces the furthest point on the right in the
graph of the left panel of Figure 1.
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Figure 1: Left: Graph of the data listed in Table 1 and the function of
parent offspring vs. parent population. Right: Graph of the function of
the Skeena Sockeye Salmon population according to Ricker’s model and the
data of Table 1.

A nonlinear least squares fit of the Ricker function above is used on the
data and the best Ricker’s model for the Skeena sockeye salmon population
from 1908-1952 is given by

P, = R(Pn) — 1-535Pne_0'000783pn_

Before we analyze this model, we simulate the model using the initial
average in 1908 as our starting point and see how well the model traces the
data of Table 1. A graph of this simulation is in right panel of Figure 1.

We see that the Ricker’s model has the population leveling off at a sta-
ble equilibrium around 550, 000, which is relatively consistent with the data.
There are a few fluctuations, which is what we would expect from the varia-
tions in the environment. However, the model suggests that this is a robust
ecological system that maintains a healthy population. Below we will per-
form a more detailed analysis of this model and use the techniques that
we have developed in earlier sections to find equilibria, graph the Ricker’s
function, and determine the stability of the Ricker’s model.

2.1 ANALYSIS OF THE RICKER’'S MODEL

As in the logistic model, Ricker’s model has two equilibria with one of them
being the trivial or zero equilibrium. The equilibria for this model are found
by setting P, = P, 1 = P,, which gives

P, =aP,e” " or P,(1—ae ) =0.
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From this equation, we readily see that

P, = 0 and
P, = In(a)/b.

Note that the second equilibrium is positive (real for our model) only if
a>1.

The previous section notes that the stability of the equilibria are related
to the derivative of the updating function evaluated at the equilibrium.
Thus, for Ricker’s model, the stability condition for the equilibria is given
by

|R'(P.)| < 1.

Thus, we need to be able to take the derivative of the Ricker’s updating
function, which requires the product rule of differentiation. Applying the
product rule to the Ricker’s function R(P) = aPe~%F gives

R'(P) = aP(—be °F) + ae *F = ae *P(1 — bP).

The equilibrium P, = 0 is stable if R'(0) = a < 1, whileif R'(0) = a > 1,
then the solution monotonically grows away from this equilibrium. At the
equilibrium P, = In(a)/b, the derivative of the Ricker’s updating is

R'(In(a)/b) = ae” ™ (1 — In(a)) = 1 — In(a).

Recall that a > 1 for a positive equilibrium. In Chapter 19, we saw that
the stability of an equilibrium depended on the value of the derivative at
the equilibrium.

The analysis of the Ricker’s model in general is as follows:

1. The solution of Ricker’s model is stable and monotonically
approaches the equilibrium P, = In(a)/b provided a < e =
2.7183.

2. The solution of Ricker’s model is stable and oscillates as
it approaches the equilibrium P, = In(a)/b provided e < a <
e? = 17.389.

3. The solution of Ricker’s model is unstable and oscillates
as it grows away from the equilibrium P, = In(a)/b provided
a > e? =17.389.

Ricker’s Growth Model
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Let P, be the population of fish in any year n. Consider Ricker’s model for
population growth given by the equation

Pui1 = R(P,) = TP,e™002P

Sketch a graph of the updating function R(P) with the identity function,
showing the intercepts, all extrema, and any asymptotes. Find all equilibria
of the model and describe the behavior of these equilibria. Let Py = 100,
and simulate the model for 50 years, graphing the solution.

Solution: First, we see that the only intercept is the origin, (0,0). Since
the negative exponential dominates in the function R(P), there is a hori-
zontal asymptote of P,;1 = 0. To find the extrema, we differentiate R(P).
Applying the product rule we obtain,

R'(P) = 7[P(—=0.02¢ %02F) 4 ¢~ 0-02P) — 7,70:02P (1 _ ( 02P).

This expression is zero only when 1 — 0.02P = 0 or P, = 50. Thus, there is
a critical point for the updating function at

(P.,R(P.)) = (50,350e™") = (50, 128.76).

The graph of the updating function along with the identity function is
shown in the left panel of Figure 3. They intersect at the equilibria, which
are calculated next.

Ricker's Updating Function (a = 7) Ricker's Model
140 — — 100 : .
(50,3507
120F 99
100p X (50In(7),50n(7)) o
Pn+1 = R(Pn) .
- 80F .
ot e a® 97
60f ¢ 1
; _
40p i Pra™f 1 ] _op o-0.02P
P =P e,
20 P ] 95}
% - 50 100 150 200 94 I y ¥ ¥
0 10 20 30 40 50

Pn n

Figure 2: Left: Graph of the Ricker’s updating function according to Ex-
ample 1, and the identity line. Right: Simulation for the solution of Ricker’s
model of Example 1.

To find the equilibria, we substitute P, for P, and P, in the Ricker’s
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model. The resulting equation is given by
P, = TP,e” """,

One equilibrium is given by P, = 0, so we can divide out P,, leaving

1 = 7 0-02P 0-02Pe _ o7

or

This gives the other equilibrium P, = 50 In(7) =~ 97.3.

To find the behavior of the solution near each of these, we must substitute
the value of the equilibrium into the expression for the derivative. First, we
analyze the stability of P, = 0. We see that,

R'(0) =71 -0)=7>1,

which is unstable, and the population grows monotonically away from the
equilibrium P, = 0.

Next we consider P, = 501n(7). Substituting into the formula for the
derivative gives

R'(50In(7)) = 7e%0230m(M)(1 _ 0.02(501n(7)))
= 7e~ "M (1 - 1n(7))
= 1-1In(7) =~ —0.95
Thus, —1 < R'(501In(7)) < 0, so we have a stable equilibrium point with
solutions oscillating, but approaching the equilibrium, P, = 501In(7). The
simulation with Py = 100 is shown in the graph of Figure 3. The solution is

slowly oscillating toward the equilibrium, as can be seen with 50 iterations.
<

Now consider Ricker’s model given by
P’n+1 — gpne—0.0ZPn’
and repeat the previous problem.
Solution: Many of the computations carry over from the example above.
The only intercept is the origin, (0,0), and there is a horizontal asymptote

of P,+1 = 0. The derivative is only slightly changed as the leading constant
is the only variation, so

R'(P) = 9¢ %92P (1 — 0.02P).

As in the previous example, the critical point satisfies P, = 50, which
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gives a maximum at
(P,,R(P,)) = (50,450e™") ~ (50, 165.5).

The graph of the updating function along with the identity function is shown
in Figure ?? with the important points labeled.

Ricker's Updating Function (a = 9) Ricker's Model (a = 9)

200

180
(50,450 7%

150

.

S (50n(9),500n(9))

501

0 50 100 150 200 % 5 0 15 2 % 30
Figure 3: Left: Graph of the Ricker’s updating function according to Ex-
ample 2, and the identity line. Right: Simulation for the solution of Ricker’s
model of Example 2.

The equilibria are found just like the previous example by using P, for
P, +1 and P, in the Ricker’s model. The resulting equation is given by

Pe — gPee—0.0QPe )
The calculations are very similar giving the two equilibria, . = 0 and
P, = 501n(9) = 109.86.
The stability analysis uses the same techniques as before, but the be-

havior changes at the upper equilibrium. Near P, = 0, we evaluate the
derivative and obtain

R'(0)=9¢%(1-0)=9>1,

which is unstable with the population growing away from this equilibrium.
Near P, = 501In(9), we find that

R'(50In(9)) = 9e002(30™m)(1 _ 0.02(501n(9)))
= 1-In(9) ~ —1.197
Thus, R'(50In(9)) < —1, so we have an unstable equilibrium point with

solutions oscillating and moving away from the equilibrium. In Figure ?7?
there is a simulation with 30 iterations, starting with Py = 100. Clearly, the
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solution oscillates with increasing amplitude. The solution goes to a period
2 behavior, oscillating between 55 and 165. N

3 SOCKEYE SALMON OF SKEENA RIVER REVISITED

From the notes above we have that the best Ricker’s model for the Skeena
sockeye salmon population from 1908-1952 is

Poy1 = R(P,) = 1.535P,¢ 000783

We find the equilibria and stability of the equilibria for this particular case.
Let P, = P,+1 = P,, then

Pe — 1_5356—0.000783Pe

50
P.=0 or 1=1.535e %000783F

It follows that e0-000783Fe — 1 535 o
_ In(1.535)
¢ 0.000783

Thus, the two equilibria are P, = 0 and 547.3 with the latter equilibrium
value close to the value observed in the graph of the simulation of Figure 1.
Next we differentiate R(P) and see that

= 547.3.

R I(P) — 1.535 (_0.000783P670.000783P + 6—0.000783P)
= 1.535¢0:000783P (1 _ (.000783P).

Thus, at P, = 0,
R'(0) = 1.535 > 1,

which shows that the equilibrium at 0 is unstable as expected. At P, = 547.3.
R'(547.3) = 1.535e~%4285(1 — 0.4285) = 0.571 < 1,

which implies that this equilibrium is stable with solutions monotonically
approaching the equilibrium, as we observed in the simulation.

4 HASSELL'S MODEL

As noted above, Hassell’s model, which is written in the form of a quotient,
is an alternative to the Logistic growth model and Ricker’s model and is
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frequently applied to insect populations. Hassell’s model for studying the
dynamics of insect populations has the form:

abPy,

Ppi1=H(P,) = A+ bR
n

where a,b, and ¢ are parameters that are chosen to match the data for a
population study of some insect. The numerator of H(P,,) is the Malthusian
growth model, so that at low population densities, the population grows
exponentially. (Recall that this requires a > 1.) As the population increases,
the denominator increases, which slows the rate of growth. The denominator
is a composite function, including a linear function, 1 + bF,,, which is raised
to the ¢ power. Thus, differentiation of H(P,) requires the chain rule.

4.1 STUDY OF A BEETLE POPULATION

Figure 4: We can understand the behavior of the Oryzaephilus surinamen-
sis, the saw-tooth grain beetle population, through discrete mathematical
models.

In 1946, A.C. Crombie [1] studied several beetle populations to try to
better understand their dynamics under the strict control of a constant
amount of food regularly supplied. He maintained the amount of food at
10 grams of cracked wheat added weekly, then regularly took census of the
beetle populations. These experimental conditions match the assumptions
used by the Logistic growth model. One study was on Oryzaephilus surina-
mensis, the saw-tooth grain beetle. Table 5 presents his data (with some
minor modifications to fill in times of uncollected data and an initial one
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week shift).

323

Week | Adults | Week | Adults
0 4 16 405
2 4 18 471
4 25 20 420
6 63 22 430
8 147 24 420
10 285 26 475
12 345 28 435
14 361 30 480

Table 2: Weekly (Oryzaephilus surinamensis) population census according

to A.C. Crombie [1].

By plotting the data of P, 1 vs. P,, we can fit an updating function to
the data, then use this updating function to study the population dynamics
with an appropriate discrete dynamical model. This section compares Has-
sell’s model to the Logistic growth model in chapter 1. In Figure 5 there is a
graph showing the best fit to Crombie’s data for Oryzaephilus surinamensis
for both Hassell’s model and the Logistic growth model. (The best fit for
Hassell’s model was found using the fminsearch routine in MatLab, while
the Logistic growth model used Trendline in Ezcel.)
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Figure 5: Left: Graph for the updating function using three different alter-
natives described in Example 4.1, and the data of Table 2. Right: Simu-
lations for the Hassell and Logistic models for the Saw-Tooth Grain Beetle

data of Table 2.
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With three parameters, Hassell’s updating function is capable of fitting
the data better than the quadratic function of the Logistic growth model.
Hassell’s updating function has the added advantage that it never becomes
negative, which was a property of Ricker’s model. The best model from
Hassell’s formula is given by,

3.255P,

Por = H(Pa) = (1+0.0073P,)08178"

while the best Logistic growth model satisfies
P,,1 = L(P,) = 1.962P, — 0.002189P2.

With the updating functions above, these discrete dynamical models are
simulated and compared to the data of A.C. Crombie [1]. Figure 5 shows
the simulations of the models with the data (assuming the models agree
with the data at week 0). We note that an alternative method of fitting the
models (see section 6) is to apply the least squares best fit to the simulation
rather than finding the best fitting updating function. When this technique
is applied the simulations are very close, but again Hassell’s model fits better.

We can readily see that Hassell’s model does appear to simulate the data
better, especially having the early rapid rise in the population. All seem to
tend toward a similar carrying capacity. For more details on the behavior
of these models, we perform our standard analysis of the discrete models,
locating equilibria and using the derivative to test the local behavior of these
models.

4.2 ANALYSIS OF HASSELL'S MODEL

We return to the general Hassell’s model to obtain the equilibria and deter-
mine stability conditions for the equilibria. Following the usual techniques
for studying discrete dynamical models, the equilibria of Hassell’s model are
found by letting P, = P,, = P,,+1. Thus, we solve
. aP,
(1+bP,)¢

This is equivalent to

P.(1+bP.)¢ = aP..

One of the equilibria is P, = 0, while the other solves (1 4 bP,)¢ = a. This
latter equation is easily solved by taking the c¢* root of each side, then
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completing the algebra, so

1+bP, = a'“or
P, = (a'/¢—1)/b.

Note that the this equilibrium requires the condition a > 1.

To determine the stability of the equilibria, we differentiate the function
H(P). This requires the quotient rule, which in turn requires differentiating
the denominator, which is a composite function. Below we use the chain
rule to differentiate the term in the denominator.

diP(l +bP)¢ = ¢(1 + bP)“ b = be(1 + bP)< L.

Now applying the quotient rule, we find that

_a(14bP)° — abcP(1+bP)*! 14+bP —bcP  1+b(1—c)P

H'(P) = - - .
(P) (1+ bP)2 AT oP)t T YAy op)H

This formula shows that H'(0) = a, but since a > 1 for a positive equilib-
rium to exist, this condition implies that the zero (or trivial) equilibrium in
unstable with solutions monotonically growing away from this equilibrium.
At the other equilibrium, we can evaluate H'(P,) and obtain

1+ (1—c)(a/c—1) c+ (1 —c)alle c

re(.1/c — = =
HUaT =0/ = oy @i — e — 7 aerre ik

+(1—c).

This calculation shows that the stability of the carrying capacity equi-
librium is very dependent on both a and ¢, but not b. Further algebra on
the derivative calculation above and stability results of Chapter 1 give the
following;:

General stability results for Hassell’s model for ¢ > 2:

1. The solution of Hassell’s model is stable and monotonically
approaches the equilibrium P, = (al/ €—1)/bprovided 1 < a <
(¢/(c—1))".

2. The solution of Hassell’s model is stable and oscillates as it
approaches the equilibrium P, = (a'/¢ — 1) /b provided (¢/(c —
1)) <a < (c¢/(c—2))°.

3. The solution of Hassell’'s model is unstable and oscillates as
it grows away from the equilibrium P, = (/¢ — 1) /b provided
a> (c/(c—2))°.
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This result can be readily modified to handle the cases where 1 < ¢ < 2 or
0 < ¢ < 1, but these cases are left to the reader.

BEETLE STUDY REVISITED

When we apply the qualitative analysis results from the logistic growth
chapter or the material above, then we can provide more information about
the models described above. The best Logistic growth model that fits the
Crombie data is given by

P11 = L(P,) = 1.962P, — 0.002189P2,

while the best Hassell’s model for the saw-tooth grain beetle satisfies

3.255P,

Py = H(P,) = .
w1 = H(Fn) (1+0.0073P,)0.8178

For the logistic growth model, the carrying capacity is the non-zero so-
lution to
P, = 1.962P. — 0.002189P2,
0.002189P, = 0.962,
P, = 439.

which gives M = 439. The derivative evaluated at this equilibrium is
L'(439) = 1.962 — 0.004378(439) = 0.04 < 1.

Thus, our stability results show that the logistic growth model predicts that
populations of Oryzaephilus surinamensis will grow monotonically and level
off at the equilibrium P, = 439.

For Hassell’s model, the positive equilibrium is

P 3.255P,
¢ (1 + 0.0073P,)0-8178”
(1+0.0073P,)0818  — 3955,
P, = (3.255"2%3 —1)/0.0073 = 443.

which gives a carrying capacity of M = 443. The derivative evaluated at
this equilibrium is

H'(443) = (0.8178/3.255"23) + (1 — 0.8178) = 0.375 < 1.

Thus, this stability result shows that Hassell’s model predicts that popula-
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tions of the saw-tooth grain beetle will grow monotonically and level off at
the equilibrium P, = 443. The logistic and Hassell’s growth models have
similar carrying capacities with the same qualitative behavior of monoton-
ically approaching this equilibrium. These qualitative behaviors are easily
seen in the simulation graphically shown above. Our studies above show
that functions that look quite different can result in very similar behavior.

Hassell’'s model

Suppose that a population of insects is measured weekly and satisfies Has-
sell’s model. Assume it follows the discrete dynamical model given by the
equation

20p,
n =H n) — )
Pt = H(pn) = 7505

where n is measured in weeks.

a. Assume that py = 200 and find the population for the next four
weeks, p1,p2, and p3. Graph a simulation of the model for 10 weeks.

b. Find the p-intercepts and the horizontal asymptote for H(p) and
sketch a graph of the updating function H(p) for p > 0. (Note that the
vertical asymptote occurs at p = —50, which is outside the biologically valid
range as p should be greater than or equal to 0.) Include the identity map
on the graph.

c. Determine all equilibria, peor this model and discuss their stability.

Solution: a. We iterate this nonlinear dynamical model by Hassell by sub-
stituting the value of pp = 200 into the model. The result is

20(200)

2T 8o

P1 (1 + 0.02(200)) ’
20(800)

= Y _gqn

b2 (1 + 0.02(800)) :
20(941

p3 = —0(9 ) = 949.6.

(1+ 0.02(941))

Figure 6 is the simulation of the first 10 weeks of the insect population.
b. For the updating function, the only intercept for H (p) is (0,0), while
the horizontal asymptote is H = 1000. Biologically, this implies that there
is a maximum number in the next generation, no matter how large the
population starts (which is reasonable considering limited resources). Thus,
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Hassell's Model Hassell's Updating Function
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Figure 6: Left: Simulation for the first 10 weeks of the insect population of

Example 3. Right: Graph of the updating function of the Hassell’s model

of Example 3.

the population (after the initial population) must always remain below P, =

1000. In the right panel of Figure 6 there is a graph of Hassell’s updating

function along with the identity map. The intersections give the equilibria.
c. The equilibria are found by setting pe = pn+1 = pPn, SO We solve

_ 20p,
C140.02p,

€

One solution is clearly p, = 0. Next we multiply both sides by (1 +
0.02p.) /pe, which gives
1+ 0.02p, = 20.

Solving this equation gives the other equilibrium,
Pe = 950.

To determine the stability of the equilibria, we must differentiate H (p).
From the quotient rule,

() = 200+ 0.02) —200.02)p _ 20
P)= (1+ 0.02p)2 ~ 1+0.02p)%

Notice that H'(p) > 0, so H(p) is always increasing. We expect the behavior
of the model near the zero equilibrium to grow exponentially away from 0.
Since

H'(0) =20 > 1,

the equilibrium p, = 0 is unstable with solutions monotonically growing
away from it.
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At p. = 950, we can easily compute the derivative obtaining

20 1

H'(950) = (1+0.02(950)2  20°

Thus, our properties on the stability of discrete dynamical models give
pe = 950 as being stable with all solutions monotonically approaching this
equilibrium. 4

Another Version of Hassell's Model

Suppose that a study shows that a population, P, of butterflies satisfies the
dynamic model given by the following equation:

81P,
(14 0.002P,)%*’
where n is measured in weeks. Let Py = 200, then find P; and P,. Find the

intercepts, all extrema of H(P), and any asymptotes for P > 0. Determine
the equilibria and analyze the behavior of the solution near the equilibria.

P11 =H(P,) =

Solution: The iterations are found in the standard way with

P, = H(200) = 16200/ (1.4)* = 4271,
P, = H(4271) = 43.

Thus, we see dramatic population swings with this model, suggesting an
instability.

Analyzing H(P), we find that the only intercept is (0,0) and that there
is a horizontal asymptote with H = 0 (since the power of the denominator
exceeds the power of the numerator). To find where the maximum occurs,
we differentiate the function.

(14 0.002P)* — P - 4(1 + 0.002P)30.002
(1+0.002P)8

(1 —0.006P)

(1+0.002P)5°

Solving H'(P) = 0, we have 1 —0.006P = 0 or P = 500/3 = 166.7. With
H(500/3) = 4271.5, the maximum occurs at (166.7,4271.5). A graph of the
updating function with the identity function is shown in Figure 7.

As always, the equilibria are found by solving P, = H(P,), which is
equivalent to solving

H'(P) = 81

= 81

P,(1 +0.002P,)* = 81P,.
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Figure 7: Left: Updating function of the Hassell’s model of Example 4.
Right: Simulation for the Hassell’s model of Example 4.

So either P, = 0 or (1 + 0.002P.)* = 81, which gives 1 + 0.002P, = 3 or
P, = 1000. The stability of these equilibria can be determined by examining
the derivative at the equilibria. At P, = 0, H'(0) = 81, which implies from
our rules that the solutions monotonically grow away from 0. At P, =
1000, H'(1000) = 81(—5)/243 = —5/3. This implies that the solution near
this equilibrium oscillates and goes away from the equilibrium. In fact,
this model produces a period 4 solution with the solution asymptotically
oscillating from 163 to 4271 to 42 to 2453. A simulation of this model is
shown in Figure ?7. <

Model for Cellular Division with Inhibition

In the quotient rule of differentiation we learned in Chapter 16, a model
for mitosis control by chalones was introduced. This model suggests that
a biochemical agent known as a chalone is released by cell to inhibit the
mitosis of nearby cells, preventing the over crowding of cells. Early models
of cancer speculated that a break down in this control would lead to canceer.
Consider the mitotic model given by the equation

2P, 2P,

P == P — = .
w1 = f(Fn) 1+ (0.01P,)% ~ 1+ 10 8P%

Find the equilibria for this model and determine the behavior of the popu-
lation near the equilibria. Also, start with an initial population of Py = 10,
and simulate this model for 20 mitotic divisions.

Solution: To find the equilibria, we let P, = P, = P,11 in the discrete
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dynamical model above. We find that

2P,
P,(1+10 8P% 2P,,
P.(1078P} —1) = 0.

Pe

Thus, either P, = 0 or P, = 100, which is what is predicted previously in
the book.
To analyze the behavior near the equilibria, we differentiate f(P), which
gives
F(P) = 2(1+107°P;) — 2P, -4 x 107°P; _ 26 x 10_8P,‘f.
(1+10-8P2%)? (1+1078P2%)?

Since f’(0) = 2 > 1, solutions of the model near the zero equilibrium are
unstable and grow monotonically away from 0. At P, = 100, we see that
f'(100) = —4/(1 + 1)2 = —1. Thus, this equilibrium right on the border
of the stability region. The solutions will oscillate and slowly approach the
equilibrium.

Chalone Model
120 ! ! !

100

80

0 5 10 15 20

(=)

n
Figure 8: Graph of the simulation for the model of Example 5.

The simulation in Figure 8, starting with Py = 10, shows this behavior.
q



332 CHAPTER 20. APPLICATIONS OF DYNAMICAL SYSTEMS

6 HASSELL'S MODEL ALTERNATE FIT

We analyzed the data of A.C. Crombie [1] for the population dynamics of
Oryzaephilus surinamensis, the saw-tooth grain beetle. Our analysis before
concentrated on the updating function, and we found the least squares best
fit to the data for the updating function. The time-series simulations did
not fit the actual data very well, especially the logistic growth model.

This last section uses the nonlinear least squares best fit of the model
simulations directly to the Crombie data of Table 2. The Logistic growth
model is given by

P,+1=P,+rP,(1 - P, /M),

where Fj is the initial population, r is the Malthusian growth rate, and M is
the carrying capacity of the population. These three parameters are varied
to minimized the sum of square errors between the model and the data. (See
graph of Figure 9) The minimum sum of square error is 11,745. The best
fitting parameters are Py = 14.62,r = 0.8847, and M = 440.3. Thus, the
logistic growth model that best fits Crombie’s data is

P
P,y = P,+0.8847P, (1— —"),
41 +0.8847 ( 440'3>

P, = 14.62.

From our work on the logistic growth model, the carrying capacity for
this model is M = 440.3.
The general form for Hassell’s model is given by

Priy=H(P,) = (%) ’

which has the 3 parameters a,b, and ¢ along with the initial condition F.
When a nonlinear least squares is performed with this model, the minimum
sum of square error is 6478, significantly better than the logistic growth
model above. The best fitting parameters are Py = 0.6063,a = 5.799,b =
0.07479, and ¢ = 0.4959. (See graph of Figure 9.) Thus, the Hassell’s growth
model that best fits Crombie’s data is

5.799P,

(1 + 0.07479P,,)0-4959°
Py = 0.6063.

Pn—|—1

From our equilibrium analysis before, this model has a carrying capacity of

M = (a'/® —1)/b = 449.6,
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which is similar to the prediction of the logistic growth model.

This least squares analysis gives similar values for the parameters for
the logistic growth model as compared to our analysis where the updating
function is fit to the data, but very different ones for Hassell’s growth model,
indicating less robustness for Hassell’s model. Figure 9 shows a graph show-
ing the data and the two models. Both models track the data well, but
Hassell’s has a better fit, especially in the earlier weeks. The extra parame-
ter in Hassell’s model is one reason that the curve fits the data better. The
qualitative behavior of these two models is essentially the same. Clearly,
the parameter fits performed here are superior to ones used for the updat-
ing function, but either method can be employed depending on the desired

outcome.
Saw-Tooth Grain Beetle
500 T T T T T
N N N o N 0 9

400} Bl N SR
300}

a” : ; : : :
200f S e SRR SRR e
100¢ —o— Hassell's Model

-o - Logistic Model
: : o Beetle Data

0 5 10 15 20 25 30

Figure 9: Graph of the Hassell’s model of Section 6 compared to the graph
of the Logistic model and the data of Table 2.

7 EXERCISES

1. Many biologists in fishery management use Ricker’s model to study the
population of fish. Let P, be the population of fish in any year n, then
Ricker’s model is given by

P, 1 = R(P,) = aP,e .
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Suppose that the best fit to a set of data gives a = 4 and b = 0.005 for the
number of fish sampled from a particular river.

a. Let Po = 100, then find Pl, PQ, and P3.

b. Sketch a graph of R(P) with the identity function, showing the inter-
cepts, all extrema, and any asymptotes.

c. Find all equilibria of the model and describe the behavior of these
equilibria.

2. Repeat Exercise 1 with ¢ =9 and b = 0.001
3. Consider the chalone model for mitosis given by the equation

2P,

Pn—f—l:f(Pn):W,

where b = 0.05 and ¢ = 2.

a. Let Py = 10, then find P;, P, and Ps.

b. Sketch a graph of f(P) with the identity function for P > 0, showing
the intercepts, all extrema, and any asymptotes.

c. Find all equilibria of the model and describe the behavior of these
equilibria.

4. Some entomologists use Hassell’s model for studying the population of
insects. Let P, be the population of a species of beetle in week n and suppose
that Hassell’s model is given by

_aby
~1+bP,

Suppose that the best fit to a set of data gives a =5 and b = 0.004 for this
species of beetle.

a. Let Py = 100, then find Py, P,, and Ps.

b. Sketch a graph of H(P) with the identity function for P > 0, showing
the intercepts and any asymptotes.

c. Find all equilibria of the model and describe the behavior of these
equilibria.

Pn+1 :H(Pn)

5. The general form of Hassell’s model is used to study a population of
insects. Let P, be the population of a species of moth in week n and suppose
that Hassell’s model is given by

aP,
(14 bP,)c

Suppose that the best fit to a set of data gives a = 10, b = 0.004, and ¢ = 2.
for this species of moth.

P,y1=H(P,) =
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a. Let P() = 100, then find Pl, P2, and P3.

b. Sketch a graph of H(P) with the identity function for P > 0, showing
the intercepts, all extrema, and any asymptotes.

¢. Find all equilibria of the model and describe the behavior of these
equilibria.

6. Repeat the process in Exercise 5 with gives a = 5, b = 0.002, and ¢ = 4.

7. The San Diego Zoo discovered that because their flamingo population was
too small, it would not reproduce until they borrowed some from Sea World.
Scientists have discovered that certain gregarious animals require a minimum
number of animals in a colony before they reproduce successfully. This is
called the Allee effect. Consider the following model for the population of a
gregarious bird species, where the population, IV, is given in thousands of
birds:

1
Nyi1 = N, +0.2N, (1 - E(Nn - 6)2) :

a. Assume that the initial population is Ny = 4, then determine the
population for the next two generations (N; and Na).

b. Find all equilibria for this model.

¢. The model above can be expanded to give

Npy1 = A(Ny) = %Nn + 23_0N72; - %Ng

Find the derivative of A(N). Evaluate the derivative A'(N) at each of the
equilibria found above and determine the local behavior of the solution near
each of those equilibria.

d. Give a brief biological description of what your results imply about
this gregarious species of bird.

8. The modeling of nerve cells often use a cubic response curve to the
membrane potential V. Below we present a overly simple model for the
membrane potential at discrete times for a nerve that can be quiescent or
have repetitive spiking of action potentials. The simplified model is given
by:
Vg1 = Vo + 0.07V, (9 — (Vi — 4)°).

a. Assume that the initial potential is V) = 3, then determine the

membrane potential for the next three time intervals (V;, Vo and V3).

b.Find all equilibria for this model.
¢. The model above can be expanded to give

Vi1 = M(V,,) = 0.51V, + 0.56V,2 — 0.07V,2.



336 CHAPTER 20. APPLICATIONS OF DYNAMICAL SYSTEMS

Find the derivative of M (V). Evaluate the derivative M'(V') at each of the
equilibria found above and determine the local behavior of the solution near
each of those equilibria.

d. Give a brief biological description of what your results imply about
the behavior of the nerve following different initial stimuli.
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