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Abstract. We represent chord collections by simplicial complexes. A
temporal organization of the chords corresponds to a path in the com-
plex. A set of n-note chords equivalent up to transposition and inversion
is represented by a complex related by its 1-skeleton to a generalized Ton-
netz. Complexes are computed with MGS, a spatial computing language,
and analyzed and visualized in Hexachord, a computer-aided music anal-
ysis environment. We introduce the notion of compliance, a measure of
the ability of a chord-based simplicial complex to represent compactly a
musical object. Some examples illustrate the use of this notion to char-
acterize musical pieces and styles.
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1 Introduction

Musical objects and their properties are often represented by spatial structures
to understand their algebraic nature, and to study compositional strategies. The
spiral array [6], the Tonnetz [7] and orbifolds [4,17] are examples of such spaces.
Among their numerous properties, they are respectively well adapted to deter-
mine key boundaries, to represent neo-Riemannian operations and voice-leading
motions. Most of these spaces (the spiral array includes triangles) propose to
represent pitches or chords by points in graph representations.

In this study, we propose to introduce elements of higher dimension than
vertices and edges. We represent n-note chords by simplices of dimension (n—1)
and chord collections by simplicial complexes. The faces of a simplex repre-
sent all sub-chords contained in the chord. The dimension enables more specific
neighborhood relationship between chords and induces more expressiveness in
the chord space. Simplicial complexes are computed with MGS [10], a domain
specific programming language dedicated to spatial computing.

Section 2 provides a short introduction to MGS and simplicial complexes.
In section 3 we present a method to represent collections of chords by simpli-
cial complexes. These collections are either temporal chord sequences, or chord



2 L. Bigo et al.

classes defined by an algebraic property. We show how these last complexes are
related to the generalized Tonnetze. In the last section, we present some methods
for the visualization of musical sequences in these complexes with Hexachord,
a computer-aided music analysis environment. Finally, we introduce the com-
pliance, a measure of the capacity of a complex to represent musical pieces or
musical styles.

2 Technical Background

MGS. MGS is an experimental domain specific language dedicated to spatial
computing, see [10,9]. MGS concepts are based on well established notions in
algebraic topology [15] and relies on the use of rules to compute declaratively
spatial data structures.

In MGS, all data structures are unified under the notion of topological collec-
tion. Simplicial complexes defined below are an example of topological collec-
tions. Transformations of topological collections are defined by rewriting rules [16]
specifying the replacement of sub-collections that can be recursively performed
to build new spaces.

Simplicial Complexes. A simplicial complex is a space built by gluing together
more elementary spaces called simplices. In this work, simplices are glued using
a self-assembly process described below. A simplex (more precisely a p-simplex)
is the abstraction of a space of dimension p. A 0-simplex corresponds to a point,
a 1-simplex corresponds to an edge, a 2-simplex is a triangle, etc. These objects
are often represented geometrically as the convex hull of their vertices as shown
in Figure 1 for p-simplices with p € {0, 1, 2}.

A simplicial d-complex is a simplicial complex where the largest dimension
of any simplex is d. A graph is simplicial 1-complex. Figure 2 shows a simplicial
2-complex.

For any natural integer n, the n-skeleton of the simplicial complex C is defined
by the sub-complex S of C formed by its simplices of dimension n or less.

A (p, q)-path is a sequence of p-simplices such that two consecutive simplices
are glued to a same ¢-simplex. For example, the usual notion of path in a graph
(a sequence of vertices such that from each of its vertices there is an edge to the
next vertex in the sequence) corresponds to the notion of (0, 1)-path.

The f-vector of the simplicial d-complex C is the sequence (fo, f1,-.., fa+1)
where f; is the number of (i — 1)-simplices of C' (by convention, fo = 1 unless C
is the empty complex). For example, the f-vector of the complex at the bottom
right of Figure 2 is (1,7,11,5).

Self-assembly Process. A simplicial complex can be built from a set of sim-
plices by applying an accretive growing process [11]. The growth process is based
on the identification of the simplices boundaries. Nevertheless, this topological
operation is not elementary and holds in all dimensions. Figure 1 illustrates the
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process. First, nodes A and B are merged. Then, the resulting edges {A, B} are
merged.

3 Chord Collections Represented as Simplicial Complexes

3.1 Chord Sequences

We use a method presented in [3] to represent chords as simplices. An n-note
chord is represented by a (n — 1)-simplex. In the simplicial representation of
chord, a 0-simplex represents a single pitch class. This method requires some
abstraction on the chord since some information, as its octave or its duration,
are not represented. So from a chord we obtain a set of n pitch classes and then
an (n — 1)-simplex. The simplicial representation of a chord collection is built
by:

1. representing each chord of the collection by a simplex as described above.
2. applying the self-assembly process to the resulting collection of simplices.
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Fig. 1. On the left, 3 simplices. In the center, a 2-simplex and its boundary, representing
the chord {D, A, Bb} and all 2-note chords and notes included on it. On the right, the
identification of boundaries illustrating the self-assembly process.

This method causes that a given pitch class set cannot be represented more
than once in the simplicial complex. If the chords are ordered in the collection,
this order will not be represented. For example, if the collection is a sequence of
chords played successively, each chord will be represented but not their position
in the sequence. We thus represent a temporal chord sequence by a static object,
in the same way a photographer would catch a moving object by letting open
the shutter of his camera. Different temporal chord sequences can be represented
by topologically identical structure. This abstraction enables classifications of
musical sequence based on topological criteria.



4 L. Bigo et al.

Fig. 2. Fifteen first chords of Chopin’s Prelude 4 Op.28. On the left its simplicial
representation. On the right, a path represents the order of chords in a region of the
complex.

Chopin Prelude 4 Op.28. Figure 2 shows the simplicial complex resulting
from the assembly of the fifteen first chords of Chopin’s Prelude 4 Op.28. The
complex exhibits neighborhoods between chords but does not give any informa-
tion about how these chords are ordered in the Prelude. A remarkable fact of
this ordering is that only one note is different between two consecutive chords.
This property holds on for fourteen chords starting from the second one. Being
composed of three-note chords, such a progression corresponds to a (2,1)-path
in the associated simplicial complex: such a path is composed of 2-simplices (the
chords) connected by 1-simplices (the two common notes). This path is partially
presented by black arrows for the five first chords in Figure 2. We have enumer-
ated all the possible (2,1)-paths with length fourteen. It is interesting to note
that there exist exactly 120 possible paths. Finally, among all these possibilities,
the original order used in the Prelude is the one with the smallest distance be-
tween chords in terms of pitch motion. Indeed, the interval characterizing the
moving note in two consecutive chords is a semitone for all transitions. This
example illustrates the topological translation of a well-known compositional
strategy called parsimonious voice leading.

3.2 Chord Classes

We now represent with the same process a set of chords, not organized in time,
but defined by a specific property from a theoretical point of view. In the first
examples, the self assembly process has been applied to chords associated with
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degrees of a scale thus offering a representation of a tonality [3]. The simpli-
cial complex made from the 3-note degrees of the diatonic scale is Mazzola’s
Mobius strip [13]. When assembling tetrahedra representing the 4-note degrees,
the resulting complex is a toroid (the volume bounded by a torus).

An other way to categorize chords is to define equivalence classes. In this
context, algebraic methods constitute useful and elegant tools for the classifica-
tion [2]. Equivalence classes of chords can indeed be formalized as orbits under
some group action. Transposition classes are determined by the action of the
cyclic group Zy on itself. Moreover, a set of chords equivalent up to transpo-
sition and inversion is specified as an orbit under the action of the dihedral
group Dy on the subsets of Zy. Other classifications can be established from
the action of the group of affine transformations Affy [14,13] and the symmetric
group Sy [8]. In the following, we particularly investigate simplicial complexes
resulting from assembly of chords belonging to the same orbit under the action
of D15 on Zy5 because it involves two musically relevant properties. Firstly, the
orbits are equivalent to the 224 Forte classes [2]. Second is that their representa-
tions can be related to generalized Tonnetze. Nevertheless, the generic aspect of
our approach makes possible the simplicial representation of equivalence classes
under the action of any other group (the so-called paradigmatic classification).

Dp action on Zp. In the case of the action of the dihedral group, orbits can
be identified by an intervallic structure shared by all the chords of the orbit
(and only these chords) [2]. This representation should not be confused with the
interval vector. The intervallic structure represents a pitch class set by a series
of consecutive intervals that always add up to V. These intervals are given by a
list up to circular permutation and retrograde, which means up to transposition
and inversion.

Let X be an interval structure. We write C(X) for the simplicial complex
resulting from the assembly of simplices representing chords sharing the interval
structure X.

Contrary to Forte names, the intervallic structure notation gives enough in-
formations to define all chords of the set class without having to refer to a list.
Note that the congruence N of the system do not need to be precised in the nota-
tion since it can be computed by summing elements of the intervallic structure.
For instance C(4, 3,3,2) and C(3,4,5), the simplicial complexes built by assem-
bling minor and major chords, belong to the chromatic system Zis. C(2,2,3),
belongs to a heptatonic system Z.

Chromatic Scale. Catanzaro investigates in [5] properties of simplicial complexes
made from 2-simplices associated with transpositionnaly and inversionnaly re-
lated 3-note chords in Z5. The 12 complexes represent the 12 different orbits of
3-note chords under the action of D15 on Z5. The 12 orbits correspond to the 12
Forte classes of size 3. Among the resulting complexes, the most frequent topol-
ogy appears to be the torus. Thanks to the chord simplicial representation and
self-assembly process described in section 2, we extend this approach to investi-
gate simplicial complexes representing all the other 212 (there are 224 orbits of
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subsets of Z15 under the action of Djs) orbits of n-note chords under this group
action, with 0 < n < 12. Chords are represented as simplices as described in
section 3. Chords grouped together in the same orbit have the same cardinality.
For this reason, they are represented by simplices of the same dimension. Highest
dimensional simplices inside simplicial complexes representing orbits of size n are
(n — 1)-simplices, which represent the n-note chords of the orbit. For example,
the orbit including major and minor chords is represented by a complex result-
ing from the assembly of the 24 2-simplices associated with all minor and major
chords. Complexes of n-note chords are (n — 1)-complexes. For n = 4, they are
built by gluing 3-simplices which are tetrahedrons. Most orbits have 24 distinct
forms (the order of D13). The self-assembly process will then involve 24 different
simplices. For example, the complex representing the set class including seventh
and half-diminished seventh chords, is composed of 24 tetrahedra. Represented
in 3 dimensions, these tetrahedra cross each other, making hard to visualize the
corresponding complex. Orbits that have fewer than 24 distinct forms are said
symmetrical. This happens when some transposition or inversion corresponds to
the identity transformation. These complexes present different topologies which
can be effectively built and studied using the MGS programming language.

Heptatonic scale. We consider here the action of D7 on Z7. Simplicial complexes
built from chords belonging to a heptatonic scale are interesting since they offer
spatial representations of some tonalities. Mazzola’s Mobius strip is an exam-
ple of representation of one particular heptatonic scale, the diatonic scale. It is
obtained by assembling chords whose intervallic structure in Z7 is [2,2, 3]. The
assembly of 3-note chords of interval structure [1, 2, 4] produces a 2-dimensional
simplicial complex in which all 0-simplices (i.e. vertices) are neighbors.

Cayley Graphs and Generalized Tonnetze. Let S be the 1-skeleton of a chord-
based simplicial complex built from a set of chords equivalent up to inversion and
transposition. .S is a graph composed by vertices representing all the pitch classes,
and edges representing 2-note chords associated with a particular interval. If a
pitch class is connected to an edge associated with an interval i (for example
a minor third), it is easy to see that, thanks to the transposition operation of
the dihedral group, every other pitch class in S will be connected to an edge
associated with i as well. As a consequence, the neighborhood of each pitch class
of S can be defined by the same set of intervals J. For this reason, S can be
related to a generalized Tonnetz in which pitch classes are neighbor following a
particular set of intervals. Moreover, by considering J as a generating set of a
subgroup of intervals I, one can consider the Cayley graph Cay(I, J) associated
with the group presentation < J|R > where R is the set of relations linking the
elements of J. Cay(I, J) can be related to S.

A simplicial complex C(X) is thus related to a particular generalized Tonnetz
defined by intervals contained in chords having the interval structure X. But a
generalized Tonnetz can be related to several simplicial complexes. For example
C(1,3,4,4),C(1,3,5,3) and C(1, 3,1, 3,1, 3) are all related to the same generalized
Tonnetz in which two pitch classes are neighbor if they are separated by an
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interval class in {1,3,4,5}. For N = 12, among the 64 generalized Tonnetze
computed by enumerating all possible interval class sets, only 30 correspond to
a 1-skeleton of a chord-based simplicial complex.

4 Using chord-based simplicial complexes for
computational music analysis

In this section, we present methods to visualize musical sequences in chord-based
complexes. These methods are implemented in Hexachord, a computer-aided
music analysis environment.

4.1 Sequence visualization in unfolded chord-based complexes

Unfolding simplicial complexes. As previously mentioned, simplicial com-
plexes are often hard to visualize. Depending on their topological properties,
simplicial complexes can be unfolded as infinite planes to make their visualiza-
tion easier. The major difference between a simplicial complex and its unfolded
representation is that in the former, pitch classes are represented once, and in
the latter, by an infinite number of occurrences. Moreover, the graph correspond-
ing to the unfolding can be embedded in the euclidean space such that parallel
1-simplices relate to the same interval class. An essential advantage of this un-
folding is that it preserves the neighborhood between elements. The neighbors
in the unfolded representation are the neighbors in the original representation.
The unfolded representation is built as follows: one chord of the set class is rep-
resented by its simplex. Then, 1-simplices (i.e., edges) are extended as infinite
lines. The interval labelling the edge is assigned to the line and all its paral-
lels. Pitch classes and chords are organized and repeated infinitely following the
lines by respecting the assigned intervals. By considering 1-skeletons of unfolded
C(3,4,5) and C(2,4,3,3) (Figure 3), one get respectively the neo-Riemannian
Tonnetz [7] and the Gollin 3D Tonnetz [12].

Chord classes complexes resulting from the assembly of n-note chords are un-
folded as (n—1)-dimensional infinite spaces. C(5, 7) is unfolded as an infinite line,
C(3,4,5) and C(2,2,3) as infinite triangular tessellations. Note that n-simplices
don’t systematically tessellate the n-dimensional Euclidean space. For example,
2-simplices (triangles) tessellate the 2D plan but 3-simplices (tetrahedra) do
not tessellate the 3D space. For this reason, the 3D unfolded representation of
complexes as C(2,4, 3, 3) contains some holes.

Visualization in Hexachord. Hexachord? is a computer-aided music analysis
environment, based on the previous simplicial representations. A first function-
ality is the visualization of the sequence of chords in a midi file inside some
simplicial complexes related to generalized Tonnetze.

3 Presentation videos available at http://vimeo.com /38102171
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Fig. 3. On the top, the unfolding process is applied to C(3,4,5) by extending C Major
1-simplices to infinite lines on the plane. At the bottom, unfolding process is applied
to C(2,4,3,3) in the 3D space.

Hexachord offers the visualization of musical sequences in unfolded repre-
sentations of simplicial complexes built from 3-note chords. As previously men-
tioned, these unfoldings are infinite 2D triangular tessellations*. When a midi
file is read, cells representing played pitch classes and chords are filled in real-
time in light yellow (Figure 6). Their remanence (in an alternate color) can be
adjusted to render the motion as a path in the complex.

We mentioned in the previous section that pitch classes and chords occur at
multiple locations in unfolded representations. As a consequence, multiple paths
can be chosen to represent the same sequence of chords. Figure 4 illustrates
this phenomenon by a simple example. The sequence representation at the top
shows that the transition from C' to G can be interpreted as different motions
in C(1,2,9), for the reason that this region of the unfolded representation of the
complex includes two occurrences of the pitch class C' and three of G.

The user can thus choose to illuminate every location representing a played
element, or just one in order to observe motions locally, as shown at the bottom
of Figure 4. Locations are chosen by following both a static and dynamic criteria.
The static criterion imposes that when several elements are played together, the
filled cells must be as close as possible from each other. In other words, the region
containing filled cells must be as compact as possible. This criterion allows to
interpret pitch class sets as geometrical shapes. The dynamic criterion imposes
the evolution from a set of elements to another one, to be represented by the

4 3D representation of unfolded tetrahedral spaces composed by 4-note chords in
Hexachord is currently under development.
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Fig. 4. Visualization with Hexachord of the pitch sequence [C,G] in a region of the
unfolded representation of C(1,2,9). On the top each cell labelled by the played pitch
is illuminated. On the bottom, pitch classes are illuminated in a single location. Arrows
represent possible interpretations of the motion during the sequence.

smallest possible motion. This second criterion facilitates the interpretation of a
motion as a geometrical transformation.

4.2 Introduction of the compliance

We call compliance the capacity of a space to reveal the regularity of an object
and/or its evolution, when represented into it. Informally, a regularity is some-
thing which cannot be interpreted as randomness.

In the context of our musical study, we will consider only a limited set of
spaces. Objects refer to pitch class sets. Their evolutions are interpreted as pitch
class sequences and pitch class set sequences. Spaces are simplicial complexes
whose 1-skeletons are a generalized pitch class Tonnetze. These complexes are
built by assembly of simplices representing pitch class sets related by trans-
position and inversion as described in the previous section. Any possible pitch
class set can be used to build a particular simplicial complex among the 224. Its
1-skeleton relies to one of the 30 generalized Tonnetze described in section 3. Be-
fore giving a more precise definition of the compliance, let’s look at an example
motivating our approach.

Chord sequence in C(3,4,5) The interpretation of measures 143 to 176 of the
second movement of Beethoven "Ninth Symphony" has been frequently studied
as a succession of neo-Riemannian operations R and L [7,1].

The representation of this sequence in the Tonnetz reveals a geometric regu-
larity due to interval properties shared by the space and the chord sequence [7].
This regularity can be noticed in C(3,4,5) due to the deep relation, highlighted
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Fig. 5. Chord sequence extracted from Beethoven 9*" Symphony.

in the previous section, between this complex and the original Tonnetz. Figure 6
compares representations of this chord sequence in C(3,4,5) and C(1,2,9). The
spatial regularity emerging in C(3,4,5) illustrates the compliance of this space
with this chord sequence. We see two main reasons for this regularity:

1. 3-note chords used in this sequence are represented by 2-simplices thus by
compact objects.

2. The regular alternation between the neo-Riemannian operations L and R
represents the sequence as following a straight trajectory.

The first property is static, the second one is dynamic. In the following we
investigate the static property by proposing a method to measure compactness of
pitch class sets in simplicial complexes. Of course, compactness is not the only
property to take into consideration when estimating the regularity of musical
objects representations in these complexes. Nevertheless, it makes an interesting
first indication.

Fig. 6. Evolution of the chord sequence extracted from Beethoven 9** Symphony in
unfolded representation of C(3,4,5) (on the left) and C(1,2,9) (on the right).

4.3 Measure of compactness

As a first example of compliance, we propose here a method to calculate com-
pactness of a pitch class set in a simplicial complex by a sub-complex. We define
the compactness of a simplicial complex A at the dimension m by

fm+1(A)

()

m-compactness(A)=
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In other words, the m-compactness compares the number of m-simplices the
complex has, with the number of m-simplices it could mazximally have given its
number of vertices. The values of m—compactness lie in the real interval [0, 1].

This definition of compactness depends on the dimension m. For example,
the 1-skeleton of a tetrahedron (composed by 4 vertices and 6 edges) has a 1-
compactness equal to 1 and a 2-compactness equal to 0. Naturally, these different
forms of compactness are related. Especially, the existence of high dimensional
simplices induces compactness of the lower levels. For example, if a complex
includes a 3-simplex (a tetrahedron), it includes by definition its four vertices
too, which are all neighbor and thus compact. Thus, compactness at high level
induces compactness at lower levels. However, compactness to low level does
not necessarily induces compactness to higher levels. For example, four neighbor
vertices don’t necessarily surround a 3-simplex.

The pitch class set A is represented in C by a sub-complex C4 of C. Cy4 is
composed by all simplices in C representing an element included in A (pitch
classes, 2-note chords, etc.). In other words, C,4 is the intersection between Sy
(the simplicial representation of A as defined in Section 3) and C. The topological
aspect of C4 thus results from the constitution of C. Figure 7 shows the inter-
section between chord (C, E,G, Bb) and C(3,4,5) and between chord (C, G, B)

and C(2,3,5).
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Fig. 7. On the left, the simplicial representations of chords (C, E, G, Bb) (top) and
(C,G, B) (bottom) and on the right their intersection respectively with C(3,4,5) and
C(2,3,5).
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The compliance relates the m-compactness of an n-sized pitch class set A in
a complex C by the formula:

fm+1 (SA N C)

(m+1)

where S4 is the simplicial representation of A.
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Statistics on Chord Sequences. A musical sequence can be seen as a sequence
{Ai}ic[o,size] of pitch class sets. Each time a new pitch class is played, or a played
pitch class is stopped, a new set is created and concatenated in the sequence.
The duration of a pitch class set A; is noted d; and the total duration of the

size
sequence is noted D = > d;. We can thus compute the m-compactness of a

=0
complex C with the sequence {A;} by computing

1 sizefm Slmc
BXZ[ +1(A )

X dz]
= ()

Some Applications. This approach can be useful in musical analysis since it
enables classification. For example, one can be interested in finding most com-
pliant spaces with a chord progression, a whole piece or a corpus related to a
style or an author. Figure 8 shows the average 2-compactness of the 12 com-
plexes built from 3-note chords for four Jazz standards. Each red bar represents
the average compactness of the piece in a particular complex. Some similarities
between these histograms seem to represent common practices in Jazz. In partic-
ular, most 2-compact spaces are for each piece C(2,3,7), C(2,4,6) and C(3,4,5).

Turnout.mid Eternal_child.mid
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Fig. 8. Average compliance of the 12 complexes built from 3-note chords with the
standards Turn Out The Stars of Bill Evans (top left), Eternal Child of Chick Corea
(top right), Ask Me Now of Thelonious Monk (down left) and As Time Goes By of
Art Tatum (down right).
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Figure 9 shows the same measure on the whole second movement of Beethoven’s
9th Symphony and Schoénberg’s Klavierstiicke Op.19-6. The difference of style
is here expressed by the need to switch from C(3,4,5) to C(2,3,7) to visualize
compact 3-note chords.

Symphony_9_2.mid Klavierstiicke_Op19-6_Sehr_Langsam.mid

2-compactness.
2-compactness

&

& &

: |

= =

Fig. 9. Average compliance of the 12 complexes built from 3-note chords with second
movement of Beethoven 9** Symphony (left) and Schoenberg Klavierstiicke Op. 19-6.

Another possible application is harmonization by spatial criteria. An extra
pitch class is added to a pitch class set when it maximizes the compliance of a
given space with this set.

5 Conclusion and Future Works

Simplicial representation of chords is a powerful tool to analyse chord sequences
and musical style. However, this analysis could be more fruitful by considering
a more complete catalog of chord based complexes. We plan to investigate par-
ticularly complexes built from equivalence classes described by Mazzola [13] and
Julio Estrada [8]. Moreover, the research of a compliant space with a musical
piece rarely ends to a unique complex. The comparison of complex compliance
over the time gives elements for a harmonic segmentation of the piece. A study
of the successive most compliant complexes during a piece gives interesting ele-
ments on composers practices.

Finally, as illustrated for parsimonious voice-leading in section 3.1, we are in-
terested in translating compositional strategies into topological rules that specify
paths on chord complexes.

Acknowledgments. The authors are very grateful to the REPMUS team at
IRCAM, to Jean-Marc Chouvel and Mikhail Malt for endless fruitful discussions.
This research is supported in part by the IRCAM and the University Paris Est-
Créteil Val de Marne.



14 L. Bigo et al.
References
1. Albini, G., Antonini, S.: Hamiltonian cycles in the topological dual of the tonnetz.

10.

11.

12.

13.

14.

15.

16.

17.

In: Chew, E., Childs, A., Chuan, C.H. (eds.) Mathematics and Computation in
Music, Communications in Computer and Information Science, vol. 38, pp. 1-10.
Springer Berlin Heidelberg (2009)

. Andreatta, M., Agon, C.: Implementing algebraic methods in openmusic. In: Pro-

ceedings of the International Computer Music Conference, Singaphore (2003)
Bigo, L., Giavitto, J., Spicher, A.: Building topological spaces for musical objects.
Mathematics and Computation in Music pp. 13-28 (2011)

Callender, C., Quinn, 1., Tymoczko, D.: Generalized voice-leading spaces. Science
320(5874), 346 (2008)

Catanzaro, M.: Generalized tonnetze. Journal of Mathematics and Music 5(2),
117-139 (2011)

Chew, E.: The spiral array: An algorithm for determining key boundaries. Music
and artificial intelligence pp. 51-53 (2002)

Cohn, R.: Neo-riemannian operations, parsimonious trichords, and their "tonnetz"
representations. Journal of Music Theory 41(1), 1-66 (1997)

Estrada, J.: La teoria d1, MuSIIC-Win y algunas aplicaciones al analisis musical:
Seis piezas para piano, de Arnold Schoenberg. Emilio Lluis-Puebla Octavio A.
Agustin-Aquino (2011)

Giavitto, J.L.: Topological collections, transformations and their application to
the modeling and the simulation of dynamical systems. In: Rewriting Technics and
Applications (RTA’03). LNCS, vol. LNCS 2706, pp. 208 — 233. Springer, Valencia
(Jun 2003)

Giavitto, J.L., Michel, O.: MGS: a rule-based programming language for complex
objects and collections. In: van den Brand, M., Verma, R. (eds.) Electronic Notes
in Theoretical Computer Science. vol. 59. Elsevier Science Publishers (2001)
Giavitto, J.L., Spicher, A.: Systems Self-Assembly: multidisciplinary snapshots,
chap. Simulation of self-assembly processes using abstract reduction systems, pp.
199-223. Elsevier (2008), doi:10.1016,/S1571-0831(07)00009-3

Gollin, E.: Some aspects of three-dimensional" tonnetze". Journal of Music Theory
pp. 195-206 (1998)

Mazzola, G., et al.: The topos of music: geometric logic of concepts, theory, and
performance. Birkhauser (2002)

Morris, R.: Composition with pitch-classes: a theory of compositional design. Yale
University Press New Haven and London (1987)

Munkres, J.: Elements of Algebraic Topology. Addison-Wesley (1984)

Spicher, A., Michel, O., Giavitto, J.L.: Declarative mesh subdivision using topo-
logical rewriting in mgs. In: Int. Conf. on Graph Transformations (ICGT) 2010.
LNCS, vol. 6372, pp. 298-313 (Sep 2010)

Tymoczko, D.: The geometry of musical chords. Science 313(5783), 72 (2006)



