
Interaction-Based Modeling of Morphogenesis
in MGS

Antoine Spicher, Olivier Michel and Jean-Louis Giavitto

Abstract In this chapter, we advocate a domain specific language (DSL) approach
to overcome the difficulties of modeling and simulating morphogenetic processes.
A careful discussion of the design goals of a DSL leads to the development of an ex-
perimental programming language called MGS. Its declarative approach is based on
the notion of topological collection originating from algebraic topology. Topologi-
cal collections arise naturally when modeling a “dynamical system with a dynamic
structure”, or (DS)2, as the state of the system. The evolution function of the system
is specified by a transformation, which is a set of rewriting rules where each rule
defines a local interaction. We illustrate these notions through different models of
the same morphogenetic process: the growth of a T-shaped structure. The objective
is to show how a variety of models can be consistently handled within the MGS
framework.

1 Introduction

Most research works presented in this book rely on simulation to model, explore and
analyze the behavior of engineered morphogenetic processes. Computer simulation
is a tool of choice, if not the only systematically available one, for their design. In
this context, making the implementation of computer simulation faster, easier, and
reusable is absolutely crucial. Yet, the modeling and simulation of such systems
remain today difficult and error-prone for at least two reasons:

• The spatial organization of morphogenetic systems is dynamic and requires ad-
vanced computer representations, often at different scales.

A. Spicher, O. Michel: Algorithmic, Complexity and Logic Laboratory (LACL),
CNRS, Department of Computer Science, Université de Créteil, 94010 Créteil, France
({antoine.spicher,olivier.michel}@u-pec.fr). J.-L. Giavitto: Institut de Recherche et Coordi-
nation Acoustique/Musique (IRCAM), CNRS, 75004 Paris, France (giavitto@ircam.fr).

1

2 Spicher, Michel & Giavitto

• Models of morphogenetic processes require a coupling between patterning and
development: the evolution of a system’s spatial structure depends on its state,
while at the same time the evolution of its state depends on its spatial structure.

This situation often leads to the development of ad hoc simulation frameworks,
which are dedicated to a particular problem and rely on a particular spatial rep-
resentation. In contrast, this chapter advocates a domain specific language (DSL)
approach to cope with the difficulties encountered when elaborating a computer
simulation of natural and engineered morphogenesis.

Designing a DSL for the Simulation of Morphogenesis

DSLs are specially tailored programming languages designed to solve problems in
a particular domain [41]. To this end, they provide useful abstractions and notations
for the domain at hand. They are more attractive than general-purpose languages
for programming in a dedicated domain due to their ease of coding, systematic
reuse, better productivity, reliability, maintainability, and flexibility [61]. Further-
more, DSLs are usually small and declarative1 as opposed to imperative.

Compared with ad hoc simulation platforms, a language dedicated to the mod-
eling and simulation of morphogenesis offers more expressive power and wider ap-
plicability. For instance, it can facilitate the comparison of various morphogenetic
models by providing a uniform and consistent environment for their description and
simulation. It can also leverage the “know-how” gathered from various models by
enabling model sharing, reuse and coupling.

Yet, the DSL approach must also face difficulties similar to the ad hoc approach.
While it addresses the need for generality, there is no unifying formalism that can
include all morphogenetic processes. The “wholesale” modeling of morphogene-
sis would mobilize a great number of models of many types (genetic, mechani-
cal, chemical, etc.) requiring a wide range of formalisms (from continuous to dis-
crete, from deterministic to stochastic) and styles (for example, some models adopt
a space-centric view, while others rely on an agent-centric view).

Short of integrating this diversity at a theoretical level, it is nevertheless pos-
sible to develop a framework to unify programming for simulation purposes. The
feasibility of code-level unification is based on three key findings:

• Despite the variety of formalisms and styles used in the simulation of morpho-
genesis, the vast majority of them capture morphogenetic processes as dynamical
processes. However, the structure of these dynamical systems is itself dynamic.

• Space-centered or entity-centered modeling can be reconciled through an
interaction-oriented view. The problem is then to offer sufficiently expressive
means of specifying sophisticated interactions.

1 Declarative programming focuses on what should be computed instead of how it must be done.
Objects and constructions are close to the mathematical standards that enable an easier mathemati-
cal reasoning on programs. Thus a declarative program is an executable specification not burdened
by the implementation details and remains close to the mathematical model.

Interaction-Based Modeling of Morphogenesis in MGS 3

• The various spatial organizations that underlie the state of a developmental sys-
tem can be subsumed under the abstract viewpoint of topological chains. How-
ever, this does not presume the difficulties of achieving an effective implementa-
tion.

Based on these observations, the MGS project started in the early 2000’s with the
goal of elaborating a DSL dedicated to the modeling and simulation of morphogen-
esis [22]. Since then, the notions investigated in MGS have been validated by the
simulation of numerous examples of processes involved in morphogenesis, such as
self-assembly [53, 28, 5], models of gene regulatory networks [21], systems biology
(mainly at a cellular level) [25, 50, 42, 54], synthetic biology [19], plant growth [48]
and other natural developmental cases [51, 30].

Outline of the Chapter

In the rest of this introductory section, we elaborate upon the above three findings, as
they constitute the rationale behind MGS. However, this discussion is not a prerequi-
site for understanding the self-contained presentation of the MGS language exposed
in Section 2. This presentation focuses on the notions of topological collections and
transformations used to represent respectively the state of a morphogenetic process
and its evolution function. Section 3 illustrates these constructions with different
models of the same example: the development of a T-shaped structure. The objec-
tive is to show how a variety of models can be handled consistently within the MGS
framework.

1.1 (DS)2: Coupling Patterning and Development

In his famous last publication from 1952 entitled “ The Chemical Basis of Morpho-
genesis ” [60], Alan Turing elaborates a dynamical systems view of morphogenesis,
where he characterizes a developing organism as a set of variables that change over
time and capture the state of the system along with its developmental changes. He
also conducts a study of the set of all possible trajectories of this system. With a
great vision of the fundamental challenges posed by morphogenesis, he writes:

The interdependence of the chemical and mechanical data [describing the state of a growing
embryo] adds enormously to the difficulty, and attention will therefore be confined, so far
as is possible, to cases where these can be separated.

Accordingly, Turing decides to focus his attention on simplified cases in which me-
chanical aspects can be ignored and chemical aspects are the most significant.

Since Turing, it has become a widespread idea that dynamical systems offer gen-
eral principles for formalizing, understanding and designing self-organization pro-
cesses such as the ones encountered in morphogenesis. However, in the great major-
ity of models proposed to describe developmental processes, the shape (mechanical

4 Spicher, Michel & Giavitto

data) and the content (chemical data) are clearly decoupled, making these models
usually fall into two categories2:

• formalisms that focus on pattern formation in an initially homogeneous but static
substrate, and

• generative formalisms that specify the creation and the evolution of a dynamic
shape, irrespective of the processes that may take place within the shape.

Examples of the first category are given by reaction-diffusion systems, activator-
inhibitor models, or random Boolean networks. They rely on various model of dy-
namical systems (Table 1). Examples of the second category include Lindenmayer
systems (L-systems) [36], membrane computing [46], graph grammars [49], self-
assembly systems, and others (Table 2).

Table 1 Formalisms that can be used to specify structured dynamical systems according to (a) the
underlying space in which the patterning process takes place, (b) a continuous or discrete repre-
sentation of time, and (c) the state variables of the system’s components. “Numerical Solutions”
refer to explicit numerical solutions of partial differential equations (PDE) or systems of coupled
ordinary differential equations (ODE).

C: continuous
D: discrete PDE Coupled ODE Numerical

Solutions
Cellular

Automata

(a) Space C D D D
(b) Time C C D D
(c) States C C C D

Table 2 Generative formalisms that can be used to specify the evolution of a shape, according
to the topology connecting the components of the shape. In a multiset, all elements are considered
connected to each other. In a sequence, elements are ordered linearly: this case includes lists and ex-
tends to tree-like structures (lists of lists). Uniform structures involve a regular neighborhood, e.g.,
a rectangular lattice where each element has exactly four neighbors. Group-Based Fields (GBF,
Section 2.1.4) are a powerful tool relying on mathematical groups to represent such structures.
The first four cases describe spatial structures that can be accurately depicted by a graph. Beyond
graphs, nD combinatorial structures are used to define arbitrary connections between components
of various dimensions. The MGS language (next section) can handle all these types of shapes.

Topology: multiset sequence uniform arbitrary graph nD combinatorial
structures

Formalism: membrane
system

L-systems GBF map L-systems,
graph-grammars

MGS

2 This distinction is somewhat contrived. For instance, cellular automata have been devised to
study self-reproduction of distinct entities, but these entities are represented by specific patterns in
a predefined medium.

Interaction-Based Modeling of Morphogenesis in MGS 5

Dynamical Systems with a Dynamic Structure (DS)2

Naturally, various extensions of existing formalisms have been proposed to address
the coupling of patterning and development, and blur the above distinction. For
example, the original L-systems have been later extended with the notion of pa-
rameters [47]. This enabled models of plant growth and differentiation, such as An-
abaena Catenula, based on a chemical paradigm of reaction-diffusion by activation-
inhibition. On the one hand, a growth model specifies where diffusion and reaction
are possible while, on the other hand, concentrations of chemicals control growth
rate and shape change.

This extended L-system can be seen as a dynamical system, yet the set of vari-
ables characterizing its state (i.e., the concentration of the chemicals in each cell of
the organism) itself changes in time due to the development of new cells. We call
such systems dynamical systems with a dynamic structure, denoted in short (DS)2,
to stress their specificity [18].

Today, using the widespread availability of inexpensive computing power, it is
possible to build computational simulations of very large, coupled models. It re-
mains, however, that the simulation of processes that modify themselves due to their
own activity—a distinctive feature of morphogenesis—is a problem of great com-
plexity. From the viewpoint of programming, a main challenge is to come up with
a local description of the shape and the evolution of the state. In fact, if the set of
variables that describes the system cannot be known in advance, it is impossible to
specify a global evolution function. It does not mean that there is no such function,
but simply that it cannot be defined explicitly. This is especially the case when the
individual (local) interactions between the system’s entities are well characterized
but the corresponding global evolution function cannot be deduced from these inter-
actions. The macroscopic (global) evolution of the system must be computed as the
“temporal and spatial integration” of all the various local and dynamic interactions
between the system’s elements.

1.2 Space-Centric, Agent-Centric and Interaction-Oriented
Modeling

The seminal article of Turing introduces two models: a set of coupled ordinary dif-
ferential equations (ODEs) and a formulation based on partial differential equa-
tions (PDEs). In the former, each cell is characterized by the concentration of two
morphogens and the corresponding equations describe the exchange of morphogens
between two adjacent cells due to diffusion and the reactions within a cell. In the
latter, there are no cells: the system is described as a continuous medium where
morphogens diffuse and react in each point of the domain. In both cases, the spa-
tial structure (whether a set of cells or a continuous domain) is fixed a priori. If
this where not the case, Turing would have faced the “interdependence” problem

6 Spicher, Michel & Giavitto

that he himself stressed, namely the coupling between the spatial structure and the
processes that take place in this domain.

There are two ways of looking at this coupling: from the viewpoint of the spatial
structure or from the viewpoint of the processes within this structure. In discrete
models, this is the well-known difference between space-centric and agent-based
models. For example, a prey-predator model can be instantiated using cellular au-
tomata in which the state of a cell represents the presence of a prey, the presence of
a predator or the absence of both [16]. This is the spatial viewpoint. The model can
also be instantiated by a population of individuals that represent preys or predators,
and are able to interact if they are in the same neighborhood. This is the agent-centric
viewpoint.

The same distinction arises in continuum mechanics models between the Eule-
rian and the Lagrangian formulations (Fig. 1). The Eulerian formulation focuses on
what is occurring at a fixed point in a reference frame as time progresses (as in cellu-
lar automata). In the Lagrangian formulation, an observer follows the position (and
other properties) of a spatial element of the system’s structure as it moves through a
reference space and time (as in agent-based models).

Unifying the Agent-Centric and the Space-Centric Approaches

This distinction has a significant impact on the programming style of the simulation:
object-oriented languages and multi-agent systems have been developed to support
the agent-centric view, while spatial computing languages [3, 1] support the space-

X

Y

X

Y

X

Y

X

Y

Eulerian mesh

Lagrangian mesh

state t state t+1
Fig. 1 In fluid dynamics, the Eulerian specification of a flow field describes how the fluid flows
over time at each point of a fixed reference frame. In a Lagrangian description, the properties
(position, stress, etc.) of a local piece of changing shape follow the piece as it moves.

Interaction-Based Modeling of Morphogenesis in MGS 7

centric view. Leaving apart the difference of entities (“elementary piece of space”
vs. “agent”), the essential difference between the two approaches resides in the ex-
pression of the system’s evolution:

• in the agent-centric view, an entity evolves by receiving a message from another
entity, whereas

• in the space-centric view, an entity evolves by querying its neighborhood.

If the spatial structure is static, this neighborhood can be fixed a priori, but if it
is dynamic, then the difference between the two points of view starts to vanish.
“Elementary pieces of space” become agents that can be dynamically created and
rearranged through time. Thus with respect to the simulation of morphogenesis, the
two styles diverge only in the expression of the local evolution of an elementary
entity: triggered by the entity itself or triggered by another entity.

Neither framework is satisfactory because they both focus on the local evolu-
tion of a single entity, which is not expressive enough. For example, to handle the
problem of collision of particles in cellular automata, one must either consider a
two-phase evolution step (propagation and collision) [55] or turn to lattice gas au-
tomata, a variant that considers the coupled evolution of more than one cell [9]. In
agent-based modeling, the problem of coordinating synchronously several agents
also leads to the development of more flexible schemes [39, 38, 34].

We propose to overcome the limitation of both agent-based and space-based ap-
proaches by focusing on the interactions between entities (whether agents or ele-
ments of space). Interactions specify the simultaneous evolution of a (usually small)
subset of the entities composing the system (Fig. 2).

1.3 A Unifying View of Spatial Organization

Viewing a system through the interactions of its elements, instead of its decom-
position into elements or the location of these elements, brings forth a new struc-

agent-oriented interaction space-centric interaction arbitrary interaction
(a) (b) (c)

Fig. 2 (a) In space-centric interactions, the state of a spatial element (black) evolves by following
the state of its neighbors (gray). (b) In agent-based modeling, the evolution of an agent A (black)
is triggered by another agent (gray) that includes A in its relationships. In these first two cases, an
elementary evolution step is limited to an individual entity. (c) More generally, interaction-based
modeling enables the simultaneous evolution of arbitrary subsets of entities.

8 Spicher, Michel & Giavitto

...

S′ ∈V (A)S

s(0)

S1
1

s(1)

S0
1

S1
i

s(t)

Fig. 3 The interaction structure of a system S resulting from the subsystems of elements in inter-
action at a given time step. In the interaction view, the decomposition of a system S into subsys-
tems S1,S2, . . . ,Sn is functional: the state si(t +1) of subsystem Si depends solely on the previous
state si(t). However, the decomposition of S into the Si’s can itself depend on the time steps.
Thus we write St = {St

1,S
t
2, . . . ,S

t
nt } for the decomposition of system S at time t and we have:

si(t +1) = ht
i(si(t)) where ht

i is the “local evolution function” of St
i corresponding to an interaction

between the elements of St
i . The successive decompositions St ,St+1, . . . can be used to capture the

elementary parts, i.e., the smaller sets created by intersection between the St
i’s. These elementary

parts corresponds to the agents in agent-based modeling (Fig. 2b) or to elementary pieces of space
in space-centric approaches (Fig. 2a). The interaction structure A is the lattice of inclusions. The
leaves V (A) of the lattice are the elementary parts of S.

ture [23, 26, 27]. The main idea is the following: if an element s interacts with
a subsystem Si = {s1, . . . ,sn} (a subset of other elements), then it also interacts,
at least conceptually, with any subset S′i included in Si. This is a closure property,
which derives an abstract structure from the subsets of elements. These subsets form
a lattice, and it is possible (and fruitful) to view this lattice in topological terms as
an “abstract simplicial complex” [26] (Fig. 3).

The notion of cellular complex is introduced more formally in the next section. It
corresponds to a space built by appropriately gluing cells3, which represent elemen-
tary pieces of space of various dimensions. This space is very abstract: it consists of
subsets of elements that compose the system and are involved in local interactions.
We call this space A to distinguish it from R3 where the elements are physically
located. Spaces A and R3 are a priori different. However, if the interactions sat-
isfy a locality property4, only elements that are neighbors in physical space R3 can
interact directly. In this case, space A is strongly related to R3.

We can illustrate via several examples the relevance of considering arbitrary sub-
sets of basic elements as “cells” with a given dimension, both in space-based and in
agent-based descriptions. Some physical quantities are naturally linked with pieces
of space of a given dimension. For instance, chemical concentration, heat, magnetic
or electric charges are all associated to volumes; flux are associated to surfaces;
tension to lines; temperature, potential, displacement are associated to points. In
a biological tissue, the biological cells are volumes that exchange signals through
their 2D manifold membranes. The shape of the membrane is constrained by the

3 The term “cell” refers here to a topological notion, not to a biological cell.
4 The locality property states that matter/energy/information transmissions happen at a finite speed.
This property is not always relevant, even for physical systems, for instance because processes may
occur on two distinct time scales: changes on the fast time scale may appear instantaneous with
respect to the slow time scale, enabling the interaction of arbitrarily far elements.

Interaction-Based Modeling of Morphogenesis in MGS 9

cytoskeleton which is a 1D branching structure. Signaling between cells is achieved
by the exchange of molecules (which are points at this level of abstraction; but if
one is interested in the way they interact, the DNA or the proteins are themselves
linear sequences folded into 3D shapes), and so on.

A Shift of Perspective

The interaction-based programming style reverses the perspective adopted in the
agent-based and spatial approaches5. Instead of proceeding by first specifying the
elements in the system, one must define the topological structure A (i.e., the neigh-
borhood relationships) allowing their interactions. The subsystems (in particular, the
components of the system) are then identified with the cells of A .

In this framework, the state of a (DS)2 simply corresponds to the assignation of a
(local) state to each component. The topology of A restricts the possible transition
functions of a subsystem S, as the current state of S only depends on the previous
state of S and its neighbors. Now, however, S is not restricted to be one agent or one
spatial element: it can be any arbitrary population of agents or an arbitrary subspace.
Furthermore, the evolution function not only specifies the evolution of local states
but also their coupled evolution with the topology itself.

Such a structure is well-known in algebraic topology: the state of a (DS)2 can be
represented by a topological chain that associates some values with each cell of the
cellular complex [33].

Over the past half-century, there have been notable efforts to develop compre-
hensive formulations from physics and geometry based on topological chains. The
use of chains and cochains to structure the modeling and simulation of physical sys-
tems can be traced back to at least the 1960’s with Branin [6], who applied these
notions to network analysis and circuit design. Later, Tonti and co-authors [56, 57]
developed comprehensive discrete formulations of physical laws from first princi-
ples [40, 58]. Several studies have subsequently developed this approach in the field
of physical modeling and computer-aided design (CAD), notably by Shapiro using
the Chain programming language [45] and various follow-up works [8, 15, 12, 13].
Chains have also been used in numerical computation as a tool to structure and
generalize the notion of “mesh” [4].

One major goal of these studies is to unravel a proper set of definitions and differ-
ential operators that make it possible to operate the machinery of multivariate cal-
culus in a finite discrete space. The motivation is to find an equivalent calculus that
operates intrinsically in discrete space, without the reference to the discretization of
an underlying continuous process. This line of research is particularly developed in
the field of “geometric modeling”, with several recent achievements [11, 31].

However, these works do not focus on the modeling of dynamical structures in
the way developed here. Their technical apparatus focuses on uniform computations
and metric structures, whereas the MGS language (presented in the next section) re-

5 Although the interaction-based view could also be qualified as “spatial” because of the topolog-
ical structure of A , the term “spatial” will be used in this section to qualify only space-centered
models referring to the physical space.

10 Spicher, Michel & Giavitto

lies only on combinatorial structures. We believe that the combinatorial approach is
less constrained, therefore potentially more amenable to algorithmic computations.

1.4 The MGS Approach to the Simulation of Morphogenesis

The discussion in the previous sections can be summarized by a simple slogan: the
specification of morphogenetic processes must be

• local,
• interaction-based,
• on topological chains.

The idea is to describe the global dynamics of morphogenesis by summing up local
evolutions triggered by local interactions that modify quantities associated to the
topological cells of a cellular complex as well as the topological organization of
these cells. In this setting, two subsystems S and S′ do not interact because they are
identified per se but because they are neighbors. This property enables the potential
interaction of components that do not yet exist in the beginning of the simulation
and do not know each other at their time of creation.

This approach has been instantiated in an experimental DSL for the modeling
and simulation of morphogenesis, called MGS (which stands for “ encore un Modèle
Général de Simulation ” in French, meaning “ yet another general model of simula-
tion ”). For technical reasons, the algebraic structure needed on topological chains
has been relaxed and the resulting structure is called a topological collection.

Transformations are used to define the interactions that make the system evolve.
Transformations are functions acting on collections and defined by a specific syntax
using rewriting rules. The mechanics of rewriting systems are familiar to anyone
who has done arithmetic simplifications: an arithmetic expression can be simplified
by repeatedly replacing parts of the expression, called subexpressions, with other
subexpressions. For example, using the rule

x
y
· y

z
⇒ x

z

(where x, y and z are pattern variables representing arbitrary non-null numbers),
the expression 7

3 ·
3
11 ·

11
5 can be rewritten by successive applications of this rule as

follows:
7
3
· 3

11
· 11

5
=⇒ 7

11
· 11

5
=⇒ 7

5
.

A “transformation” generalizes this process to topological collections with rules
based on local interactions:

• the left-hand side of the rule (the “pattern”) defines the elements in the system
that interact;

• the right-hand side of the rule defines the fate of the elements in interaction.

Interaction-Based Modeling of Morphogenesis in MGS 11

Topological	
 collec+on	
 at	
 +me	
 t	
 Topological	
 collec+on	
 at	
 +me	
 t+1	

le$	
 hand	
 side	
 of	
 the	
 rule	

Sub-­‐collec+on	

Local	
 interac,on	

Transforma+on	

=	

Topological	
 rewri+ng	

Local	
 evolu,on	
 law	

pa1ern	
 matching

right	
 hand	
 side	
 of	
 the	
 rule	

Sub-­‐collec+on	

Interac,on	
 result	

topological	
 surgery

Fig. 4 A topological collection is used to represent the state of a (DS)2 at time t. An MGS trans-
formation gathers one or several rules that specify the local evolution functions of the (DS)2: the
left-hand side of a rule defines a sub-collection of elements in interaction using a pattern matching
mechanism; the right-hand side defines the evolution of this sub-collection. “Topological surgery”
extends the notion of substitution used in rewriting systems to build the new state.

(Fig. 4). MGS rules are able to specify the evolution of the quantities associated to
the cells of the underlying space as well as the cells and their topological organiza-
tion.

2 Short Introduction to MGS

MGS embeds the idea of topological collections and transformations into the frame-
work of a dynamically typed, applicative language. In our context, dynamically
typed means that there is no static type-checking and that type errors are detected at
run-time during evaluation. MGS is an applicative programming language: operators
acting on values combine values to yield new values, they do not act by side-effect.

Collections constitute the only data structure available in MGS, i.e., the unique
way of aggregating values with respect to some neighborhood relationship. Trans-
formations are functions acting on collections and defined by a specific syntax using
rules.

2.1 Topological Collections

A topological collection can be viewed as a slight generalization of the notion of
field. In physics, a field is the assignment of a quantity to each point of a spa-
tial domain [35]. MGS handles spatial domains defined by abstract cellular com-
plexes [59].

12 Spicher, Michel & Giavitto

We start by introducing the notion of abstract cellular complex (Section 2.1.1)
and its use to implement topological collections. Then, we present specific instanti-
ations of topological collections as different kinds of graphs:

• graphs without neighbors via records (Section 2.1.2)
• complete graphs via (multi)sets, and linear structures via sequences as members

of the category of monoidal collections (Section 2.1.3)
• regular graphs via group-based fields (GBFs, Section 2.1.4)
• irregular graphs via proximal collections, i.e., neighborhood relationships gener-

ated by a distance function between elements (Section 2.1.5).

MGS provides topological collections based on abstract cellular complexes. This
type of topological collections includes all the above types and extends to higher
dimensions. Yet, specific types (such as monoidal collections, GBFs, or proximal
collections) also have a usefulness because they correspond to specific topologies
that can be implemented more efficiently.

Finally, we introduce a way to “glue” multiple collections of the same type, as it
is often the case in nested topological collections, using subtyping (Section 2.1.6).

2.1.1 Abstract Cellular Complexes

An abstract cellular complex (ACC) is a formal construction that builds a space in
a combinatorial way from simpler objects called topological cells. Each topological
cell abstractly represents a part of the whole space: points are cells of dimension
0, lines are 1D cells, surfaces are 2D cells, etc. The structure of the whole space,
corresponding to a partition into topological cells, is described by incidence rela-
tionships, which relate a cell to the other cells in its boundary.

More formally, an abstract cellular complex K = (C,≺, [·]) is a set C of abstract
elements, called cells, provided with a partial order≺, called the incidence relation,
and with a dimension function [·] : C→N such that, for each c and c′ in C: c≺ c′⇒
[c]< [c′]. We write c ∈ K when a cell c is a cell of C. A cell of dimension p is called
a p-cell. For example, graphs (which are made of only 0- and 1-cells) are examples
of one-dimensional ACCs. Another example is depicted in Fig. 5.

(−3,0) (3,0)

(0,4)

5 5

6

12

c2

f

c1 c3

e3e2e1

f

c3 e2

e3 e1

c1

c2

Fig. 5 On the left, the Hasse diagram of boundary relationship of the ACC given in the middle: it
is composed of three 0-cells (c1, c2, c3), of three 1-cells (e1, e2, e3) and of a single 2-cells (f). The
three edges are the faces of f , and therefore f is a common coface of e1, e2 and e3. On the right,
a topological collection associates data with the cells: positions with vertices, lengths with edges
and area with f .

Interaction-Based Modeling of Morphogenesis in MGS 13

F = {B,C}A B CE = {A,B}

Fig. 6 The 0-cells A and B are 1-neighbors because they are faces of the 1-cell E. The 1-cells E
and F are 0-neighbors because the 0-cell B is a common face. The sequence of 0-cells “A,B,C” is
a (0,1)-path of length 3, and the sequence of 1-cells “E,F” is a (1,0)-path of length 3.

A p-cell c and a q-cell c′ are said incident if one lies in the boundary of the other,
i.e., c≺ c′ or c′ ≺ c. Particularly, c is a face of c′, which is denoted c < c′, if they are
incident and p = q−1. Conversely, the cell c′ is called a coface of c. An example of
incidence relationship is commented in Fig. 5.

More elaborated neighborhoods can be defined from the incidence relationship.
In MGS, the (n, p)-neighborhood is used: two cells c and c′ are q-neighbor either if
they have a common border of dimension q or if they are in the boundary of a q-
cell (of higher dimension). If the two cells are of dimension p, we say that they are
(p,q)-neighbors. A (p,q)-path is a sequence of p-cells such that two consecutive
cells are q-neighbors. For example, the usual notion of “path” in a graph, i.e., a
sequence of vertices such that from each of them there is an edge to the next vertex
in the sequence, corresponds to the notion of (0,1)-path (Fig. 6).

Topological Collection of an ACC

Similar to a field that associates some quantity with the points of a spatial domain, a
topological collection C of an ACC is a finite function labeling the cells of the ACC
with a value (Fig. 5). Thus the notation C(c) refers to the value of C on cell c. Since
a cellular complex may contain an infinite number of cells, we restrict ourselves to
collections labeling a finite number of cells. We write |C| for the set of cells for
which C is defined. The collection C can be written as a formal sum

∑
c∈|C|

vc · c, where vc
df
=C(c).

With this notation, the underlying ACC is left implicit but can usually be recovered
from the context. By convention, when we write a collection C as a sum

C = v1 · c1 + · · ·+ vp · cp,

we stress that all ci are distinct. Notice that this addition is associative and commuta-
tive. The above notation is used directly in MGS to build new topological collections
on arbitrary ACCs of any dimension.

Topological collections are a weakened version of the notion of topological chain
developed in algebraic topology [43]. They were introduced in [24] to describe ar-
bitrary complex spatial structures that appear in biological systems [25], and other
dynamical systems with a time varying structure [18, 29]. From the viewpoint of
computer science, topological collections are reminiscent of data-fields, studied e.g.
by B. Lisper [32]. Data-fields are a generalization of the “array” data structure, in

14 Spicher, Michel & Giavitto

which the set of indices is extended to finite subsets of Zn (see also [20]). With topo-
logical collections, in contrast, the underlying space is arbitrary. In fact, the type of
a topological collection is determined by the chosen ACC.

Graphs are a particularly important class of ACCs in MGS since it has been
showed in [23] how customary data structures (sets, lists, vectors, trees) can be seen
as graph-based topological collections: the elements in a data structure are the quan-
tities assigned by the collection to the nodes of a graph; the incidence relationship
correspond to the edges of the graph and allows the usual data traversal.

In addition to scalar values (such as symbols, Booleans, integers, floats, strings,
or lambda-expressions), the current implementation of MGS allows the programmer
to handle several types of collections. The elements in a collection can be any type
of values, including collections, thus achieving complex objects in the sense of [7].
Through examples, we informally sketch out in the next sections the collection types
that we use.

2.1.2 Records

An MGS record is a map that associates a value with a name called a slot. The value
can be of any type, including other records or collections. Accessing the value of a
slot from a record is achieved with the dot notation: expression { a=1, b="red" }.b
evaluates to the string "red". New types of records can be defined using a specific
syntax: for instance, record T = {a:int, b:string} defines a type T of records
in which slots a and b are respectively labeled by an integer and a string.

The topologies associated with records are the “totally disconnected” ones: slots
in records have no neighbors. Seen as graphs, records’ vertices correspond to the
slots and labels to the values associated with the slots—but they have no edges.

2.1.3 Monoidal Collections

A specific neighborhood relationship that plays an important role in the rest of this
chapter is the full relation. With this relation, every element in the collection is a
neighbor of all the other elements. This corresponds to the multiset data structure.

Multisets, along with sets and sequences, are called monoidal collections be-
cause they can be built as monoids equipped with the join operator. A sequence
corresponds to a join operation that has no special property except associativity;
multisets are obtained with an associative and commutative join; and sets when the
join operator is associative, commutative and idempotent. The join operator with its
properties induces the topology of the collection and its associated neighborhood
relationship. It is a linear graph for sequences and a complete graph for sets and
multisets.

We write a::m to add a value a in a monoidal collection m. The notations seq:(),
bag:() and set:() refer to the empty sequence, the empty multiset and the empty
set, respectively.

Interaction-Based Modeling of Morphogenesis in MGS 15

e

2 ·n

n

2 ·n+e

0 ·n= 0 ·e

nnw

2 ·n

e

2 ·n+e

0 ·n= 0 ·e
= 0 · nw

(a) (b)

Fig. 7 (Left) A GBF defining a NEWS grid, with two generators e and n. (Right) A GBF defining
an hexagonal grid with three generators e, n and nw, and a constraint n−nw = e.

2.1.4 Group-Based Fields

Topological collections can be defined as Group-Based Fields (GBF), which are
considered as associative arrays whose indices are elements of a group [17]. The
latter is defined by a finite presentation, i.e., a set of generators together with some
constraints on their combination. Thus a GBF can be pictured as a labeled graph
where the underlying graph is the Cayley graph of the finite presentation. The labels
are the values associated with the vertices and the generators are associated with the
edges.

For instance, in order to define a NEWS grid (a rectangular lattice in which each
node has four neighbors) we may use two generators e (east) and n (north), support-
ing addition, difference and multiplication by an integer, as illustrated in Fig. 7a.

Similarly, an hexagonal grid (6 neighbors for each vertex) can be defined by
means of three generators n, e and nw (north-west) and a constraint n− nw = e,
as illustrated in Fig. 7b. Notice that such grid is adequate to represent cells with a
hexagonal shape, since the grid can be paved with hexagons centered on the posi-
tions in the grid. As shown by the dashed path, we have 2 · n+ e = 2 · e+ n+ nw,
which can be also checked in an algebraic way, by substituting nw with n−e in this
equality as allowed by the constraint.

The GBF structure is thus adequate to define the arrangement of a grid, in any
number of dimensions. A GBF type is specified by the presentation of the underlying
group: a list of generators and a list of equations. For example, in the case of the
hexagonal grid:

gbf H = < n, e, nw; nw+e= n >

MGS only handles Abelian groups, thus the commutation equations are implicit and
we use an additive notation.

The relationships between Cayley graphs and group theory are pictured in Fig. 8.
A word (a sum of generators) is a path. Path composition corresponds to the group
addition. A closed path (a cycle) is a word equal to 0 (the identity of the group).
An equation v = w can be rewritten v−w = e and corresponds to a cycle in the

16 Spicher, Michel & Giavitto

0

n

n

2 ·n

n

e
e e e

w = n+e+n

w

n

n

w+2 ·n
0

n+e−n−e= 0

n

e

−n

−e

e+e+n−n−e−e= 0

e e
n −n

−e−e
Fig. 8 Graphical representation of the relationships between Cayley graphs and group theory. The
GBF pictured here is G=<n,e> (the equations specifying the commutation between the generators
are implicit). A node in this graph is an element of the group G. A path is a sum of generators and
their inverses. The empty path is 0 and corresponds to the null displacement. In any Cayley graph,
backtracking paths are closed paths. An equation corresponds to a closed path specific to the group
structure. On the right, the diagram shows a closed path corresponding to the commutation between
n and e, that is: n+e= e+n or, equivalently, n+e−e−n= 0.

graph. There are two types of cycles in the graph: cycles that are present in all
Cayley graphs and correspond to group laws (intuitively: a backtracking path such
as e+ n− n− e) and closed paths specific to the group’s own equations (e.g., e−
n−e+n). In this framework, a graph connectivity property such as “there is always
a path going from any node P to any node Q” is equivalent to saying that “there is
always a solution x to equation P+ x = Q”.

2.1.5 Proximal Collections

Proximal collections are graphs whose neighborhood relationship is specified by
a relation given on the elements of the collection (Fig 9). For example, let r be a
relation on integers such that

fun r(x, y) = abs(y - x) < 10

Then, we are able to define a proximal collection as follows:

proximal MyProx = r

It means that two integers n and m are neighbors in a collection of type MyProx if
and only if (iff) their “distance”, as specified by r, is less than 10. We call r the
indicator relation of a proximal collection such as MyProx.

2.1.6 User-Defined Subtypes

There is often a need to distinguish between collections of the same type (e.g.,
several multisets nested in another multiset). This can be accomplished by vari-

Interaction-Based Modeling of Morphogenesis in MGS 17

Fig. 9 A proximal collection is a set of elements equipped with a relation that defines which
elements are neighbors. This sketch shows a set of 7 elements located in the 2D plane, in which
two elements are neighbors iff the distance between them is below some constant.

ous means, among which we chose subtyping. The subtype of a collection can be
thought of as a “color” that does not change the structure of the collection. A col-
lection subtype declaration may look like:

collection MySet = set
and collection AnotherSet = set
and collection AnotherMySet = MySet[int]

This example specifies a hierarchy of three subtypes: AnotherMySet is a subtype of
MySet, itself a subtype of set, and AnotherSet is also a subtype of set but is not
comparable with MySet. Note that the above declaration allows restriction on the
types of the elements: a set of subtype AnotherMySet can only contain integers.

For each type T , there is an associated predicate with the same name that can
be used to check if a value has type T . For example, the expression MySet("this
is a string") returns false. Extra utility functions, such as querying the size,
“pretty-printing”, constructors or accessors, can also be instantiated when a type is
defined.

2.2 Transformations

Usually in physics, fields and their evolution are specified using differential opera-
tors. MGS generalizes these operators in a rewriting mechanism called transforma-
tion. A transformation is the application of some local rules following some strategy.
A transformation T is written as a set of rules:

trans T = { . . . rule; . . . }

When there is only one rule in the transformation, the enclosing braces can be
dropped. A rule is a basic transformation taking the following form:

18 Spicher, Michel & Giavitto

pattern =⇒ expression

It specifies a local evolution of the field: the left-hand side (lhs) of the rule typi-
cally matches elements in interaction, and the right-hand side (rhs) computes local
updates of the field (Fig. 4). The application of a local rule a⇒ b in a collection C

1. selects a subcollection A that matches the pattern a,
2. computes a new subcollection B as the result of the evaluation of the expression

b instantiated with the collection A, and
3. substitutes B for A in C.

This type of rewriting removes the part matched by the left-hand side and replaces
it with the part computed by the right-hand side.

Transformations are a powerful way to define functions on topological collec-
tions that comply with the underlying spatial structure. For instance, a discrete ana-
log of differential operators can be defined using transformations [29]. For multisets,
transformations simply reduce to associative-commutative rewriting [10] also called
multiset rewriting.

2.2.1 Patterns

We present here a subset of the MGS pattern language. These expressions have a
generic meaning, i.e., they can be interpreted in any collection type. The grammar
of these pattern expressions is:

pat := x
∣∣ {...} ∣∣ x,y

∣∣ x < y
∣∣ x:P

∣∣ x/exp,

where pat and pat ′ are patterns, x ranges over the pattern variables, P is a predi-
cate and exp is an expression evaluating to a Boolean value. The explanation below
provides an informal semantics for these patterns.

Variables

A pattern variable x matches exactly one element in the topological collection. The
variable x can then occur elsewhere in the rest of the rule to denote the value asso-
ciated to the matched cell. The notation x̂ is used in the rest of the rule to denote
the cell itself. Patterns are linear: two distinct pattern variables always refer to two
distinct cells.

Record Patterns

The construction {...} is used to match a record. The content of the braces can be
used to match records with or without a specific field (eventually constrained to a
given field type or field value). For instance, {a, b : string, c = 3} is a pattern that
matches a record with fields a, b of type string and c with value 3.

Interaction-Based Modeling of Morphogenesis in MGS 19

Neighborhoods

A pattern is a composition of pattern variables. There are three composition opera-
tors:

1. The composition denoted by a simple juxtaposition (such as “x y”) does not
constrain the arguments of the composition.

2. a. When two pattern variables are composed using a comma (as in “x,y”), it
means that the cells matched by x and y must be p-neighbors. The default
value for p is 1 and can be explicitly specified during the application of the
transformation if needed.

b. When the collection is a GBF, it is possible to specify a particular direction
for the neighborhood relationship: the pattern x |n> y matches two elements
x and y such that: if x labels the cell x̂, then y labels the cell x̂+n.

3. The last composition operator corresponds to the face operator: a pattern “x< y”
(resp. “x > y”) matches two cells x̂ and ŷ such that x̂ < ŷ (resp. x̂ > ŷ).

Guards

The expression pat/exp matches the subcollections matched by pat verifying exp.
Pattern pat:P is a syntactic shortcut for (pat as x)/P(x). For instance, x:int
matches an element x provided that x is an integer and y/y > 3 matches an element
y provided that y > 3 holds (the operator > is overloaded and denotes the numeric
comparison as well as the incidence relationship).

2.2.2 Rules, Transformations and Application Strategies

A transformation is a set of rules. When a transformation is applied to a collection,
the default strategy is to apply the first rule as many times as possible in parallel (a
rule can be applied if its pattern matches a subcollection). In the remaining collec-
tion, the second rule is applied as many times as possible in parallel with the first
rule, and so on. This strategy is the maximal parallel application strategy used in
L-systems or in Paun systems [46]. Several other strategies are available in MGS
such as the Gillespie application strategy based on Gillespie’s stochastic simulation
algorithm used to model chemical reactions [52]. Strategies provide a fine control
over the choice of the rules applied within a transformation. They are often non-
deterministic, i.e., when applied to a collection C, only one of the possible outcomes
(randomly chosen) is returned by the transformation.

A transformation T is a function like any other function and also a first-class
value. It means that, e.g., a transformation can be passed as an argument to another
function or returned as a result. This allows to compose transformations very easily,
leading to a higher-order functional programming style.

The expression T (c) denotes the application of one transformation step to the
collection c. A transformation step consists of applying the rules according to a
specific rule application strategy. A transformation step can be effortlessly iterated:

20 Spicher, Michel & Giavitto

T [iter= n] (c) denotes the application of n transformation steps to c,

T [fix] (c) applies the transformation T until a fixed point is reached.

Note that transformations are first class functions (which are first class value).

3 Growth of a T-Shape in MGS

In this section, we show MGS at work by elaborating three different versions of the
same problem: the development of a T-shaped structure. This challenge has been
proposed as a benchmark example in [3] to compare different spatial computing
languages with each other, in particular how they behaved in three paradigmatic
tasks: (a) the creation of a coordinate system, (b) the growth of a structure of a given
shape, and (c) the patterning of this structure. Our interest here is to demonstrate
the benefits of a DSL approach such as the MGS language, i.e., how the flexibility
brought by the notions of “topological collection” and “transformation” makes it
possible to accommodate various modeling styles and program reuse. To this aim,
we will develop three models:

• one based on cellular automata’s regular space-time lattice (Section 3.1),
• one based on proximal collections, corresponding to an “amorphous medium”

under asynchronous evolution (Section 3.2),
• one using cellular complexes in 2D, starting from an empty space (Section 3.3).

In all models, we assume that the T-shapes start developing from one or a few en-
tities in two successive phases: in the first growth phase (FGP), the process follows
a vertical direction to form the stem of the T. In the second growth phase (SGP), the
two horizontal segments at the top of the T grow in parallel.

We will not elaborate here on the preliminary acquisition of “vertical” and “hori-
zontal” directions, as this type of positional information is not the focus of our exam-
ple. Therefore, in the cellular automata model, we will use an anisotropic neighbor-
hood that makes these directions explicit; in the amorphous medium model, we will
rely on the coordinates of each node; and in the cellular complex model, some cell
walls will receive labels (which will be explicitly propagated) to guide the asymmet-
ric growth. Obviously, acquiring positional information by local means in an initial
symmetric medium is a problem in itself (see for instance [62, 44, 2, 14, 37]), but
the implementation of the various algorithms proposed in the literature is relatively
straightforward. All examples presented here are actual MGS programs (the MGS
interpreter and documentation are accessible at http://mgs.spatial-computing.org).

Genetic Control

This part, shared by all three example models, corresponds to the “genetic control”
of the growth. It describes the local state of an entity, which contains here two coun-
ters, cptV and cptH : the first counter regulates the duration of FGP (the stem of

Interaction-Based Modeling of Morphogenesis in MGS 21

the T) and the second counter regulates the duration of SGP (the hat of the T). Thus
a cell is simply a record with two counters:

record Cell = { cptV, cptH }

We define a constant called seed to represent the initial state at time t = 0:

let seed = { cptV =5, cptH =3 }

The FGP subtype is a cell with the additional constraint that the counter cptV be
different from zero:

record FGP = Cell + { cptV 6=0 }

Note that MGS types are highly expressive: although they can be dependent on cer-
tain values, they are neither inferred nor statically type-checked.

Then, a cell finds itself in the second growing phase SGP iff the first counter has
reached zero but not the second counter:

record SGP = Cell + { cptV =0, cptH 6=0 }

We also need a value to represent an empty location in the cells’ spatial organization.
For this, we define both a symbol ‘Empty and a record Empty representing entities
that do not possess any of the counter fields:

record Empty = { ∼cptV, ∼cptH }

To manage the two counters, we rely on the functions NextFGP and NextSGP:

fun NextFGP (c:FGP) = c + { cptV = c.cptV −1 }
fun NextSGP (c:SGP) = c + { cptH = c.cptH −1 }

The c:FGP group following the function name declares an argument c of type FGP

(same for SGP). The + operator in the body of the functions denotes an asymmetric
merge of records. The expression r1 + r2 computes a new record r with the slots
of both r1 and r2: r.a has the value of r2.a if the slot a is present in r2, else it has
the value of r1.a. The asymmetric merge enables updating a slot knowing only the
slot to update: this makes it possible to further refine the record by adding new slots
without changing the code that was already written.

3.1 Cellular Automaton Implementation

Spatial Specification

The model based on cellular automata (CA) starts by specifying the underlying lat-
tice. In MGS, we use the GBF defining a NEWS grid:

gbf NEWS = < north, east >

To define an initial population, we use the function create NEWS generated by the
previous type definition. The arguments of this function are an initialization function
and the range of the generators used to iterate over a set of nodes. More precisely,
the expression

22 Spicher, Michel & Giavitto

create NEWS(f, p, q)

creates an instance of the GBF NEWS in which the node northx + easty is labeled6

by the value f (x,y) for 0 ≤ x < p and 0 ≤ y < q. Hence, the initial state state0 is
computed by

fun init (x, y) = if (x=5 and y=3) then seed else ‘Empty

let state0 = create NEWS(11, 11, init)

The initial state is a 11× 11 grid, where all nodes except one at position (5,3) are
labeled by ‘Empty.

Evolution Rules

The evolution of the CA is specified by two rules, one for each phase FGP and SGP.
According the first rule, a cell in the FGP state extends to a north neighbor if this
neighbor is empty:

trans Rules = {
c:FGP |north> ‘Empty ⇒ c, NextFGP(c);
c:SGP <east> ‘Empty ⇒ c, NextSGP(c);

}

In the second rule, a cell invades its neighbor to the east or west if this neigbor is
empty. The syntax <east> refers either to the |east> or to the <east| direction (where
<east|= |−east>).

The two elements matched in the left-hand side of a rule are replaced by the two
elements computed in the right-hand side. In this case, the first element c remains
untouched and the second element changes from ‘Empty to a cell with a counter
that has decreased with respect to c.

By default, a transformation applies as much as possible (in space) the rules of
a transformation. Thus, one application of a transformation corresponds to one ele-
mentary synchronous evolution step of a CA. The application is iterated to compute
the successive states of the system: Rules[fixpoint](state0) (a possible trajec-
tory is illustrated in Fig. 10).

3.2 Proximal Collection Implementation

Spatial Specification

A proximal collection contains elements whose neighborhood is defined by a pred-
icate. Here, the elements are located in a 2D plane and two points P and Q may
interact if their relative distance is below 100:

6 Note that node labels are not necessarily unique because two different sums may produce the
same node (for instance in the hexagonal lattice). However, MGS ensures that each node is visited
only once in the specified domain, even if the “coordinates” of the node are not unique.

Interaction-Based Modeling of Morphogenesis in MGS 23

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

`Empty	
 `Empty	

`Empty	

`Empty	

`Empty	

`Empty	
 state0	

cptV=4	

cptH=3	

state0	

cptV=3	

cptH=3	

cptV=4	

cptH=3	

state0	

cptV=2	

cptH=3	

cptV=3	

cptH=3	

cptV=4	

cptH=3	

state0	

cptV=1	

cptH=3	

cptV=2	

cptH=3	

cptV=3	

cptH=3	

cptV=4	

cptH=3	

state0	

cptV=0	

cptH=3	

cptV=1	

cptH=3	

cptV=2	

cptH=3	

cptV=3	

cptH=3	

cptV=4	

cptH=3	

state0	

cptV=0	

cptH=3	

cptV=1	

cptH=3	

cptV=2	

cptH=3	

cptV=3	

cptH=3	

cptV=4	

cptH=3	

state0	

cptV=0	

cptH=2	

cptV=0	

cptH=3	

cptV=1	

cptH=3	

cptV=2	

cptH=3	

cptV=3	

cptH=3	

cptV=4	

cptH=3	

state0	

cptV=0	

cptH=2	

cptV=0	

cptH=2	

cptV=0	

cptH=1	

cptV=0	

cptH=3	

cptV=1	

cptH=3	

cptV=2	

cptH=3	

cptV=3	

cptH=3	

cptV=4	

cptH=3	

state0	

cptV=0	

cptH=2	

cptV=0	

cptH=2	

cptV=0	

cptH=1	

cptV=0	

cptH=3	

cptV=1	

cptH=3	

cptV=2	

cptH=3	

cptV=3	

cptH=3	

cptV=4	

cptH=3	

state0	

cptV=0	

cptH=1	

cptV=0	

cptH=0	

t = 6 t = 7 t = 8 t = 9

Fig. 10 The first 9 steps of the CA evolution. During the transition between states 6 and 7 the
same rule finds two mutually exclusive matches: dividing a cell to the right or dividing it to the
left. They are concurrent because the central cell is “consumed” and cannot be used in another
rule application during the same time step. Because of that, horizontal growth is asymmetric (one
branch is always one step farther than the other). Which branch grows first is randomly chosen
during rule matching. The final step (not displayed here) adds a cell to the left branch.

proximal AMORPH = fun n -> 100 > (n.x*n.x + n.y*n.y)

(the right-hand side is an anonymous function, a lambda expression in MGS nota-
tion). By sampling the point randomly, we obtain the usual amorphous medium [1]:

fun init (i, acc) = { x=random(100), y=random(100) }::acc

let state0 = (seed+ { x=50, y=25 }) :: fold(init, AMORPH:(),999)

The fold applies to the integer 999. When an integer p is used where a collection
is expected, it corresponds to a cardinal, i.e., a set of p elements from zero to p−1.
Thus the above fold iterates 999 times. The accumulator is initialized with the value
AMORPH:(), which denotes the empty collection of type AMORPH. During the itera-
tions, a record with two random slots x and y is added to the accumulator acc. The
insertion of a new element in the collection is denoted by :: (such operation exists

24 Spicher, Michel & Giavitto

only for monoidal collections: this is the case of proximal collections, which are
multisets of elements with a dedicated neighborhood function).

Evolution Rules

Two auxilliary predicates are used for the evolution function. The predicate north

is true if its second argument is lower than the first (following the y direction) and
if the distance following x is less than 2. The definition of east west is similar but
we restrict the variation to the y axis:

fun north (n1, n2) = (n2.y < n1.y) & 2 > abs(n2.x-n1.x)
fun east west (n1, n2) = 2 > abs(n2.y-n1.y)

The transformation implementing the evolution function contains two rules similar
to the CA rules:

trans Rules = {
n1:FGP, n2:Empty / north(n1, n2) ⇒ n1, n2+NextFGP(n1)
n1:SGP, n2:Empty / east west(n1, n2) ⇒ n1, n2+NextSGP(n1)

}

Two elements n1 and n2 match one of these rules iff

• they are neighbors (via the comma operator),
• the first element n1 satisfies a phase predicate,
• the second element n2 is an empty place (i.e., an Empty record with no cptV or

cptH slots),
• n2 is to the north of n1 in the first rule, or to the east west of n1 in the second

rule (constraints achieved by specifying a “guard” using the “ / ” operator).

In the right-hand side of the rule, the elements that replace the elements matched in
the left-hand side are computed by asymmetric merge of records: here, the counter
of n2 is updated with the counter of n1 decreased by one (Fig. 11).

By default, the maximal parallel application strategy is used in the application
of the rules. However, it is easy to trigger only one rule at each transformation,
achieving a fully asynchronous evolution:

Rules[fixpoint,strategy=‘asynchronous](state0)

The MGS pattern matching engine randomizes the matching in order to achieve a
non-deterministic evolution.

Fig. 11 Proximal collection evolution: (left) initial step, (center) two intermediate steps, (right)
final step. FGP cells (stem growth) are shown in blue, SGP cells (hat growth) in black.

Interaction-Based Modeling of Morphogenesis in MGS 25

3.3 Cellular Complex Implementation

In the two previous examples (cellular automata and proximal collections), the
T-shape grew in a preexisting medium. There was no actual “development”, but
rather a patterning process during which the building of the shape required the rep-
resentation of “empty” places “to invade”.

In contrast, the approach presented here builds the shape intrinsically, without
relying on the organization of a predefined space. The spatial structure underlying
this object is an ACC (see Section 2.1.1) using 2-cells to represent the basic entities.

Spatial Specification

We start from an initial state made of one rectangular face:

let state0 =
letcell v1 = new vertex()
and v2 = new vertex()
and v3 = new vertex()
and v4 = new vertex()
and e12 = new edge(v1, v2)
and e23 = new edge(v2, v3)
and e34 = new edge(v3, v4)
and e41 = new edge(v4, v1)
and f = new acell(2, (e12,e23,e34,e41))

in
{ x = ..., y = ... } * v1

+ { x = ..., y = ... } * v2
+ { x = ..., y = ... } * v3
+ { x = ..., y = ... } * v4
+ ‘Basal * e12 + ‘Apical * e34
+ ‘Lateral * e23 + ‘Lateral * e41
+ seed * f

The letcell construct introduces a recursive definition of related cells. The defini-
tion is recursive because if a cell c is the face of c′, then c′ is a coface of c. letcell
takes care of completing the necessary information, e.g., in the previous statement,
we specify only the face of f, implicitly adding f to the coface of the other cells.
The new vertex and new edge operations are a shortcut for the general primitive

new acell(dimension [, faces list [, cofaces list]])

where the lists of faces or cofaces are optional and can be partial. In summary, the
whole statement takes the form:

letcell ...cell creation and bonding...
in collection-specification

where the collection specification builds a collection using the cells introduced by
the let command (and other cells, if needed). Finally, the ACC is built using the
notation v*c, which associates value v to cell c, and the addition + to amalgamate
all labeled cells.

26 Spicher, Michel & Giavitto

‘Basal

‘Lateral

‘Apical

‘Lateral

v2

v3 v4

v1

f

v
v’

f

v’

(a) (b)
Fig. 12 (a) The initial state is a 2-cell and its faces. (b) A face and its corresponding edges exert
forces on the vertices at their boundaries.

In the above expression, a record of positions x and y is associated to the vertices,
and the edges are labeled by symbols distinguishing among three types of edges
(Fig. 12a). The idea is that growth takes place on the ‘Apical side during FGP and
along the ‘Lateral sides during SGP.

Evolution Rules

We first specify the transformation used to compute the “mechanics” of the system.
For the sake of simplicity, we resort to mass-spring systems and Aristotelian me-
chanics (i.e., force proportional to speed, not acceleration). This avoids the burden
of double integration and does not change the results, because we are only interested
in the final steady state. Every edge is a spring with resting length L0 and coefficient
k. The transformation

let sum (acc, v) = { x=acc.x+v.x, y=acc.y+v.y }

trans<2> MecaFace[k,L0,dt] = {
f ⇒ let n = cardinal(icells(f̂, 0)) in

let g = icellsfold(sum, { x=0.0, y=0.0 }, f̂, 0)
in f + { x = g.x/n, y = g.y/n }

}

only matches the 2-cells (this is specified by <2> after the trans keyword). Param-
eters k, L0 and dt are additional arguments of the transformation. For each cell f
the number of 0-cells in its border is computed: f̂ refers to the cell matched by the
pattern variable f, and the expression icells(f̂, 0) returns the set of faces of f̂ of
dimension 0 (“i” stands for “incident”). Operator cardinal returns the number of
elements in the set, while primitive icellsfold serves to iterate over the 0-cells in
the border of f̂. The reduction function is used to compute the center of mass of the
corners of parallelogram f.

The next snippet of code integrates the forces and updates accordingly the posi-
tion of the vertices (Fig. 12b):

let dist (v, v’) =
let d1 = v’.x - v.x and d2 = v’.y - v.y
in sqrt(d1*d1 + d2*d2)

Interaction-Based Modeling of Morphogenesis in MGS 27

let sum1 (v, acc, v’) =
let d = dist(v, v’) in
let f = k * (d - L0) / d
in { x=acc.x+f*(v’.x-v.x), y=acc.y+f*(v’.y-v.y) }

let sum2 (k, v, acc, f’) =
let d = dist(f’, v) in
let f = k * (d - sqrt(2.0)*L0) / d
in { x = acc.x+f*(f’.x-v.x), y = acc.y+f*(f’.y-v.y) }

trans<0,1> MecaVertex[k,L0,dt] = {
v ⇒ let Fspring= neighborsfold(sum1(v), {x=0.0, y=0.0 }, v)in

let Ftot = icellsfold(sum2(k, v),Fspring, v̂, 2)
in v + { x=v.x+dt*Ftot.x, y=v.y+dt*Ftot.y }

}

The qualifier <0,1> means that we focus on 0-cells and that the neighborsfold

operation relies on a notion of neighborhood such that two 0-cells are neighbors iff
they are in the border of a common 1-cell (i.e., linked by an edge). The variable
Fspring corresponds to the summation of the spring forces, while Ftot iterates on
the cofaces of dimension 2 of v̂ (there can be several such faces, for instance at the
junction of the lines forming the T). The idea is that each 2-cell exerts an internal
pressure from the inside to the outside, constraining the parallelogram to be convex.
The initial value of the fold is given by the forces computed with Fspring. The ”in”
expression, simply integrates the total forces over a time step dt.

The reduction functions sum1 and sum2 used in the folds are only partially in-
voked: for example, the last two arguments of functions sum1 and sum2 are in com-
mon (here: acc, v’) and provided by default by neighborsfold, so only sum1(v)

and sum2(k, v) are called.
The full mechanical evolution is simply given by computing one evolution step

of the face and one evolution step of the vertices:

fun Meca(ch) = MecaVertex(MecaFace(ch))

There is one additional transformation to compute the cell division:

trans Extrude = {
∼v1 < e12 < ∼f:FGP > e12 > ∼v2
/(2 = dim(f)) & (e12 = ‘Apical)
⇒ letcell v3 = new vertex ()

and v4 = new vertex ()
and e23 = new edge(v2, v3)
and e34 = new edge(v3, v4)
and e41 = new edge(v4, v1)
and e12’ = new edge(v1, v2)
and f’ = new acell(2, (e12,e23,e34,e41))
in (v2 + { x=v2.x + (v2.x-f.x)*random(0.1),

y=v2.y + (v2.y-f.y)*random(0.1) }) * v3
+ (v1 + { x=v1.x + (v1.x-f.x)*random(0.1),

y=v1.y + (v1.y-f.y)*random(0.1) }) * v4
+ ‘Internal * e12’
+ ‘Lateral * e23 + ‘Lateral * e41
+ ‘Apical * e34
+ (NextFGP f) * f’

28 Spicher, Michel & Giavitto

∼v1 < e12 < ∼f:SGP > e12 > ∼v2
/ (2 = dim(f) & (e12 == ‘Lateral)
⇒ ... same code as above, replacing

‘Apical with ‘Lateral, and
‘Lateral with ‘Basal...

}

In this code, a pattern ∼v matches one element but this element can also be matched
by another pattern (in the same transformation but not necessarily the same rule).
Contrary to the classical pattern v, such elements are not removed from the result.
The first pattern
∼v1 < e12 < ∼f:FGP > e12 > ∼v2 / (2=dim(f)) & (e12=‘Apical)

matches one face f, which must be FGP, one edge e12 labeled by the symbol
‘Apical, and the two vertices bounding e12. The vertices and the face remain in
the result but the edge is removed. The right-hand side builds several new cells that
replace e12 (and updates the neighborhood relationships of the remaining cells).

What is built on the right-hand side is a parallelogram (new face f’). The edge
e12’ replaces edge e12 and is now labeled by the symbol ‘Internal to prevent
further development. The “opposite” edge e23 is labeled by ‘Apical in the first
growth phase FGP and ‘Lateral in the second growth phase SGP.

The labels of v3 and v4 are the labels of v2 and v1, respectively, but updated
to have new positions. These positions are computed from the previous positions
shifted by a small random noise. The parallelogram will soon unfold by mechanical
evolution in accordance with the internal pressure and the spring force.

Fig. 13 Growth of the T-shape using cellular complexes. (Top left) initial state, (bottom right) final
state. Times flows from left to right and from top to bottom. In the center row, the images in the
middle and the right show the mechanical relaxation after a cell division.

Interaction-Based Modeling of Morphogenesis in MGS 29

The complete evolution of the system is obtained by composing an extended
period of mechanical iteration (here, we arbitrarily chose 200 steps) with a single
growth step:

fun Step(ch) = Extrude(Meca[iter=200](ch))

Snapshots of the trajectory are given in Fig. 13.

Acknowledgements The MGS project would not have “grown” without the participation of, and
the fruitful interactions with many colleagues. The authors are especially grateful to F. Delaplace
and H. Klaudel at the Université d’Evry, A. Lesne at Université Pierre & Marie Curie (Paris 6)
P. Prusinkiewicz at the University of Calgary, S. Stepney at the University of York, UK. We also
express our gratitude to the colleagues that made possible the development of the spatial comput-
ing initiative (www.spatial-computing.org): J. Beal at BBN Technologies, L. Maignan at
Université Paris-Est Créteil, F. Gruau at Université Paris-Sud, Orsay, S. Dulman at TU Delft, R.
Doursat at the Complex Systems Institute, Paris Ile-de-France, and many others. This research is
supported in part by the French ANR grant “SynBioTIC” 2010-BLAN-0307-03, Université Paris-
Est Créteil, IRCAM (CNRS, UMR STMS 9912) and the RepMus Team at INRIA.

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Knight Jr, T., Nagpal, R., Rauch, E.,
Sussman, G., Weiss, R.: Amorphous computing. Communications of the ACM 43(5), 74–82
(2000)

2. Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In: Proceedings
of the 2008 ACM symposium on Applied computing, pp. 1969–1975. ACM (2008)

3. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate: Languages
for spatial computing. CoRR abs/1202.5509 (2012)

4. Berti, G.: Generic programming for mesh algorithms: Towards universally usable geometric
components. In: H.A. Mang, F.G. Rammerstorfer, J. Eberhardsteiner (eds.) Proceedings of the
Fifth World Congress on Computational Mechanics (WCCMV. IACM (2002)

5. Bigo, L., Giavitto, J.L., Spicher, A.: Building topological spaces for musical objects. In:
Mathematics and Computation in Music, LNCS, vol. 6726. Springer, Paris, France (2011)

6. Branin, F.: The algebraic-topological basis for network analogies and the vector calculus. In:
Symposium on generalized networks, pp. 453–491 (1966)

7. Buneman, P., Naqvi, S., Tannen, V., Wong, L.: Principles of programming with complex ob-
jects and collection types. Theoretical Computer Science 149(1), 3–48 (1995)

8. Chard, J.A., Shapiro, V.: A multivector data structure for differential forms and equations.
Math. Comput. Simul. 54(1-3), 33–64 (2000). DOI http://dx.doi.org/10.1016/S0378-4754(00)
00198-1

9. Chopard, B., Droz, M., Press, C.U.: Cellular automata modeling of physical systems, vol. 122.
Cambridge University Press Cambridge (1998)

10. Dershowitz, N., Hsiang, J., Josephson, N., Plaisted, D.: Associative-commutative rewriting.
In: Proceedings of the Eighth international joint conference on Artificial intelligence-Volume
2, pp. 940–944. Morgan Kaufmann Publishers Inc. (1983)

11. Desbrun, M., Kanso, E., Tong, Y.: Discrete differential forms for computational modeling.
In: Discrete differential geometry: an applied introduction, pp. 39–54. Schroder, P (2006).
SIGGRAPH’06 course notes

12. DiCarlo, A., Milicchio, F., Paoluzzi, A., Shapiro, V.: Solid and physical modeling with chain
complexes. In: Proceedings of the 2007 ACM symposium on Solid and physical modeling,
pp. 73–84. ACM (2007)

30 Spicher, Michel & Giavitto

13. DiCarlo, A., Milicchio, F., Paoluzzi, A., Shapiro, V.: Discrete physics using metrized chains.
In: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, pp. 135–145.
ACM (2009)

14. Doursat, R.: Programmable architectures that are complex and self-organized: From morpho-
genesis to engineering. In: Artificial Life XI: Proceedings of the 11th International Conference
on the Simulation and Synthesis of Living Systems (Alife XI), pp. 181–188. MIT Press (2008)

15. Egli, R., Stewart, N.F.: Chain models in computer simulation. Math. Comput. Simul. 66(6),
449–468 (2004). DOI http://dx.doi.org/10.1016/j.matcom.2004.02.017

16. Ermentrout, G., Edelstein-Keshet, L.: Cellular autornata approaches to biological modeling.
J. theor. Biol 160, 97–133 (1993)

17. Giavitto, J., Michel, O.: Declarative definition of group indexed data structures and approxi-
mation of their domains. In: Proceedings of the 3rd ACM SIGPLAN international conference
on Principles and practice of declarative programming, pp. 150–161. ACM (2001)

18. Giavitto, J.L.: Topological collections, transformations and their application to the model-
ing and the simulation of dynamical systems. In: 14th International Conference on Rewrit-
ing Technics and Applications (RTA’03), LNCS, vol. 2706, pp. 208–233. Springer, Valencia
(2003)

19. Giavitto, J.L.: The modeling and the simulation of the fluid machines of synthetic biology.
In: M. Gheorghe, G. Paun, G. Rozenberg, A. Salomaa, S. Verlan (eds.) Membrane Comput-
ing - 12th International Conference, CMC 2011, Fontainebleau, France, August 23-26, 2011,
Revised Selected Papers, LNCS, vol. 7184, pp. 19–34. Springer (2012)

20. Giavitto, J.L., De Vito, D., Sansonnet, J.P.: A data parallel Java client-server architecture for
data field computations over ZZn. In: EuroPar’98 Parallel Processing, Lecture Notes in Com-
puter Science, vol. 1470, pp. 742–745 (1998)

21. Giavitto, J.L., Malcolm, G., Michel, O.: Rewriting systems and the modelling of biological
systems. Comparative and Functional Genomics 5, 95–99 (2004)

22. Giavitto, J.L., Michel, O.: Mgs: a rule-based programming language for complex objects and
collections. In: M. van den Brand, R. Verma (eds.) Electronic Notes in Theoretical Computer
Science, vol. 59. Elsevier Science Publishers (2001)

23. Giavitto, J.L., Michel, O.: Data structure as topological spaces. In: Proceedings of the 3nd
International Conference on Unconventional Models of Computation UMC02, vol. 2509, pp.
137–150. Himeji, Japan (2002). LNCS

24. Giavitto, J.L., Michel, O.: The topological structures of membrane computing. Fundamenta
Informaticae 49, 107–129 (2002)

25. Giavitto, J.L., Michel, O.: Modeling the topological organization of cellular processes.
BioSystems 70(2), 149–163 (2003)

26. Giavitto, J.L., Michel, O., Cohen, J., Spicher, A.: Computation in space and space in computa-
tion. In: Unconventional Programming Paradigms (UPP’04), LNCS, vol. 3566, pp. 137–152.
Spinger, Le Mont Saint-Michel (2005)

27. Giavitto, J.L., Michel, O., Spicher, A.: Interaction based simulation of dynamical system with
a dynamical structure. In: P. Kropf (ed.) proc. of the Summer Computer Simulation Confer-
ence (SCSC 2011), vol. Track: Modeling and Simulation of Dynamic Structure Systems. The
Society for Modeling and Simulation International (SCS) & ACM, Curran assoc. inc. (2011)

28. Giavitto, J.L., Spicher, A.: Simulation of self-assembly processes using abstract reduction
systems. In: N. Krasnogor, S. Gustafson, D. Pelta, J.L. Verdegay (eds.) Systems Self-
Assembly: multidisciplinary snapshots, pp. 199–223. Elsevier (2008). Doi:10.1016/S1571-
0831(07)00009-3

29. Giavitto, J.L., Spicher, A.: Topological rewriting and the geometrization of programming.
Physica D 237(9), 1302–1314 (2008). DOI http://dx.doi.org/10.1016/j.physd.2008.03.039

30. Giavitto, J.L., Spicher, A.: Morphogenesis: Origins of Patterns and Shapes, chap. Computer
Morphogeneis, pp. 315–340. Springer (2011)

31. Grady, L., Polimeni, J.: Discrete Calculus: Applied Analysis on Graphs for Computational
Science. Springer (2010)

Interaction-Based Modeling of Morphogenesis in MGS 31

32. Hammarlund, P., Lisper, B.: On the relation between functional and data parallel program-
ming languages. In: Proceedings of the conference on Functional programming languages
and computer architecture, pp. 210–219. ACM (1993)

33. Hocking, J.G., Young, G.: Topology. Dover publications, New-York (1988)
34. Kubera, Y., Mathieu, P., Picault, S.: Interaction-oriented agent simulations: From theory to

implementation. In: Proceeding of the 2008 conference on ECAI 2008: 18th European Con-
ference on Artificial Intelligence, pp. 383–387. IOS Press (2008)

35. Leavens, G.T.: Fields in physics are like curried functions or physics for functional program-
mers. Tech. Rep. TR94-06b, Iowa State University, Department of Computer Science (1994)

36. Lindenmayer, A.: Mathematical models for cellular interaction in development, Parts I and II.
Journal of Theoretical Biology 18, 280–315 (1968)

37. Maignan, L., Gruau, F.: Integer gradient for cellular automata: Principle and examples. In:
Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems, SASO
2008., pp. 321–325. IEEE (2008)

38. Mamei, M., Zambonelli, F.: Field-based coordination for pervasive multiagent systems.
Springer-Verlag New York Inc (2006)

39. Mamei, M., Zambonelli, F., Leonardi, L.: Co-fields: Towards a unifying approach to the engi-
neering of swarm intelligent systems. Engineering Societies in the Agents World III pp. 77–98
(2003)

40. Mattiussi, C.: The finite volume, finite element, and finite difference methods as numerical
methods for physical field problems. Advances in Imaging and Electron Physics 113, 1–146
(2000)

41. Mernik, M., Heering, J., Sloane, A.: When and how to develop domain-specific languages.
ACM computing surveys (CSUR) 37(4), 316–344 (2005)

42. Michel, O., Spicher, A., Giavitto, J.L.: Rule-based programming for integrative biological
modeling – application to the modeling of the λ phage genetic switch. Natural Computing
8(4), 865–889 (2009)

43. Munkres, J.: Elements of Algebraic Topology. Addison-Wesley (1984)
44. Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a global coordinate system from local infor-

mation on an ad hoc sensor network. In: Proceedings of the 2nd international conference on
Information processing in sensor networks, IPSN’03, vol. LNCS 2634, pp. 333–348. Springer-
Verlag (2003)

45. Palmer, R.S., Shapiro, V.: Chain models of physical behavior for engineering analysis and
design. Research in Engineering Design 5, 161–184 (1993). Springer International

46. Păun, G.: Membrane Computing. An Introduction. Springer-Verlag, Berlin (2002)
47. Prusinkiewicz, P., Hanan, J.: Visualization of botanical structures and processes using para-

metric L-systems. In: D. Thalmann (ed.) Scientific visualization and graphics simulation, pp.
183–201. J. Wiley & Sons, Chichester (1990)

48. Barbier de Reuille, P., Bohn-Courseau, I., Ljung, K., Morin, H., Carraro, N., Godin, C., Traas,
J.: Computer simulations reveal properties of the cell-cell signaling network at the shoot apex
in Arabidopsis. PNAS 103(5), 1627–1632 (2006). DOI 10.1073/pnas.0510130103

49. Rozenberg G. an Schürr, A., Winter, A.J., Zündorf, A., Ehrig, H., Kreowski, H.J., Monta-
nari, U. (eds.): Handbook of graph grammars and computing by graph transformation, vol. 1:
Foundations, vol. 2: Applications, vol. 3: Concurrency, Parallelism, and Distribution. World
Scientific (1997)

50. Spicher, A., Michel, O.: Using rewriting techniques in the simulation of dynamical systems:
Application to the modeling of sperm crawling. In: Fifth International Conference on Com-
putational Science (ICCS’05), part I, LNCS, vol. 3514, pp. 820–827. Springer, Atlanta, GA,
USA (2005)

51. Spicher, A., Michel, O.: Declarative modeling of a neurulation-like process. BioSystems 87(2-
3), 281–288 (2007)

52. Spicher, A., Michel, O., Cieslak, M., Giavitto, J.L., Prusinkiewicz, P.: Stochastic p systems
and the simulation of biochemical processes with dynamic compartments. BioSystems 91(3),
458–472 (2008)

32 Spicher, Michel & Giavitto

53. Spicher, A., Michel, O., Giavitto, J.L.: Algorithmic self-assembly by accretion and by carving
in MGS. In: Proc. of the 7th International Conference on Artificial Evolution (EA’05), LNCS,
vol. 3871, pp. 189–200. Springer-Verlag (2005)

54. Spicher, A., Michel, O., Giavitto, J.L.: Interaction-based simulations for integrative spatial
systems biology. In: W. Dubitzky, J. Southgate, H. Fuss (eds.) Understanding the Dynamics
of Biological Systems: Lessons Learned from Integrative Systems Biology. Springer Verlag
(2011)

55. Toffoli, T., Margolus, N.: Cellular automata machines: a new environment for modeling. MIT
Press, Cambridge (1987)

56. Tonti, E.: On the mathematical structure of a large class of physicial theories. Rendidiconti
della Academia Nazionale dei Lincei 52(fasc. 1), 48–56 (1972). Scienze fisiche, matematiche
et naturali, Serie VIII

57. Tonti, E.: The reason for analogies between physical theories. Appl. Math. Modelling 1, 37–50
(1976)

58. Tonti, E.: A direct discrete formulation of field laws: The cell method. Computer Modeling in
Engineering & Sciences 2(2), 237–258 (2001)

59. Tucker, A.: An abstract approach to manifolds. The Annals of Mathematics 34(2), 191–243
(1933)

60. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. of London Series
B: Biological Sciences(237), 37–72 (1952)

61. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: An annotated bibliography.
ACM Sigplan Notices 35(6), 26–36 (2000)

62. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. Journal
of theoretical biology 25(1), 1–47 (1969)

