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Abstract
Currently, the widely used notion of activity is increasingly present in computer science. However, because this notion is
used in specific contexts, it becomes vague. Here, the notion of activity is scrutinized in various contexts and, accord-
ingly, put in perspective. It is discussed through four scientific disciplines: computer science, biology, economics, and epis-
temology. The definition of activity usually used in simulation is extended to new qualitative and quantitative definitions.
In computer science, biology and economics disciplines, the new simulation activity definition is first applied critically.
Then, activity is discussed generally. In epistemology, activity is discussed, in a prospective way, as a possible framework
in models of human beliefs and knowledge.
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1. Introduction

In computer science, as pointed out by Akerkar,1 the

notion of activity is a very generic term, which can be

applied to a variety of different topics. This notion of

activity is different from the classical notion used in simu-

lation. The usual activity notion can be found in Tocher,2

who also first described the three-phase approach, as an

optimization of an activity-based simulation. Balci3 pre-

sents the concept of activity as a possible approach to drive

the implementation of a discrete-event simulation kernel.

An object-oriented variant of the three-phase approach

was introduced by Pidd.4

In many fields, the notion of activity can be found. For

example, it is a fundamental issue in computer graphics,

from Z-buffers,5 to current work required for fast render-

ing of different level of details6,7 in complex scenes or

multiresolution modeling in game engines.8 In autonomic

systems,9,10 ensuring the persistence of the self-* proper-

ties requires a feedback loop based on tracking certain

variables that account for activity changes in the system,

from the level of the operating system (e.g. in Solaris 10)

to the level of large cloud-based systems. In everyware/

ambiant/pervasive/ubiquitous systems,11 the key issue is to

track the activity/location of a user to adapt local devices

to the presence/absence and movement of the user’s activ-

ity. Nowadays, any parallel system copes with dynamic

requirements for resources using load-balancing12 algo-

rithms to track the activity taking place in each computing

site to reallocate and reschedule tasks according to changes

in both the demands and the availability of resources.
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When modeling and simulating dynamic systems, the

notion of activity is a key notion, which, in some contexts,

can lead to structure changes of the state space as coined

by Giavitto et al.,13 with the notion of dynamic systems

embedding a dynamic structure. An attempt to quantify

and formalize a simulated system activity has been pro-

posed by Coquillard and Hill14 for model exploration.

Even if many computer science studies attempt to frame

the notion of activity for modeling and simulating systems,

this task remains interdisciplinary. Therefore, to extend the

definition of activity, looking in the mirror of other disci-

plines would be judicious. Although the concept of activity

is found in many disciplines, very few address activity

explicitly. The activity concept is used idiosyncratically.

Analyzing activity in every discipline, in the same study,

should allow federating this notion and building more

abstracted elements. Finally, it is expected that interactions

between disciplines will be facilitated.

This study aims at using the activity notion through

four scientific disciplines: computer science, biology, eco-

nomics and epistemology. Our goal is to analyze activity

answering in every section/discipline the five fundamental

questions:

(i) What is activity in this context?

(ii) Why use it?

(iii) How to define it?

(iv) Where to use it?

(v) When to use it?

It is believed that activity can be used at many specifi-

cation levels, in a federative interdisciplinary approach, to

achieve an activity-based architecture for modeling and

simulating component systems.

If we come back to the definition of the word ‘activity’,

we can realize that it is derived as follows:

‘From Latin: actives. Meaning ‘state of being active, brisk-

ness, liveliness’ recorded from 1520s. A specific deed, action,

function, or sphere of action: social activities – A work, esp. in

elementary grades at school, that involves direct experience by

the student rather than textbook study – An energetic activity;

animation; liveliness – A use of energy or force; an active move-

ment or operation – A normal mental or bodily power, function,

or process – An organizational unit or the function it performs’

(American Heritage� Dictionary.)

This mille-feuille meaning can be refined progressively.

To approach, draw and catch the fundamental entities of

activity, a first attempt should be discursive.

First, a brief state of the art of activity in simulation is

given and then a new definition is proposed (cf. Section 2).

In computer science, cellular interactions and their ability

to exhibit life by reproduction has been majestically mod-

eled by John Von Neumann and his Theory of Self-

Reproducing Automata.15 In Section 3, activity definitions

of Section 2 are applied in the context of the Game of Life

artificial metaphor. ‘Artificial interactions’ are investi-

gated. Then, ‘biological and ecological interactions’ are

considered, modeled and simulated through activity

(approaching the energetic aspects contained in activity,

correlated to the notion of forces and movements initiated

by a source of energy) in Section 4. After the study of both

artificial and biological interactions, activity is considered

in decision processes achieved by men living in society

from an economics point of view (cf. Section 5). Finally,

the reflexivity of the modeling process through the use of

activity definitions is presented. By reflexivity we mean

the modeling mechanisms achieved by the subject with

respect to knowledge and beliefs. The broad sense of mod-

eling (including the decision process) is thus re-considered

in epistemology (cf. Section 6) as a research perspective.

2. Activity in discrete-event systems

We re-introduce here the definitions of activity proposed

by Muzy and Hill.16

2.1. Previous definitions in simulation

Balci described the four major frameworks that were in

use to implement discrete-event simulation kernels.3 These

conceptual frameworks (also named simulation structures,

simulation strategies or world views) guide scientists in

the design and the development of their simulation model.

In this paper we confer particular attention to the activity

scanning approach and to the activity concept itself.

Activity scanning is also called a two-phase approach, the

first phase being dedicated to simulation time manage-

ment, the second phase to the execution of conditional

activities (e.g. during scanning, execution of simulation

functions depend on the fulfillment of specific conditions).

In artificial intelligence this approach is known as rule-

based programming (also known as rule-based systems or

expert systems).17 Buxton and Laski introduced this

approach in the simulation field with the Control and

Simulation Language (CSL).18 In CSL, when a rule is

‘fired’ a corresponding action is taken and the system state

is updated. This approach is often considered to be dual

with the event scheduling method. The fourth conceptual

framework is named the three-phase approach. It is an

optimization of the activity scanning approach proposed

by Tocher a year after the introduction of CSL.2 This opti-

mization is interesting for systems in which potential activ-

ities can be detected at each time step. The first phase is

the same as in the activity scanning approach. The second

phase is different since it handles the execution of all

unconditional activities (avoiding rules scanning for rules

known to always be fired). The third phase is then similar

to the second phase of regular activity scanning (an activ-

ity is considered and executed if the corresponding rule
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can be fired). Pidd4 provides more details on the latter

approaches. Both activity scanning and the three-phase

approach, as described by the literature, rely on a fixed

time increment. The whole simulation is driven by clock

time advance. This time management, often called clock-

based by simulation practitioners, is also named continu-

ous time by theoreticians.19,20 Zeigler20 considers the fixed

timed management as a discretization of a continuous time

function. Owing to data structure management, this

approach can be inefficient when you get a lot of discrete-

event occurrences at the same time, without detecting

activities. In addition, it can also lead to inaccuracies when

high-precision simulations are considered. An event-based

time management where the time is advanced to the next

scheduled event avoids the two previously cited problems.

Let us review the previous definitions (mainly extracted

from Balci3) of the words ‘activity’, ‘event’ and ‘process’,

which are the underlying concepts in this paper. An activ-

ity is an operation that transforms the state of a system

over time. It begins with an ‘event’ and ends by producing

another event (linked to the termination of the activity).

Some definitions in the simulation community consider

that an activity is thus a period of time with a known dura-

tion, constant or random, computed or read in a file if we

have a trace-based simulation. An ‘event’ is what causes a

change in the state of the system (eventually composed of

many components). A process is a sequence of activities

or ‘events’ ordered in time. A process is usually linked to

the object-, actor- or agent-oriented approach in which the

life cycle of an active entity is specified. As can be seen,

events are central for usual world views. We propose here

a new fine-grained definition of activity grounded on dis-

crete events. Then, a full activity-based modeling and

simulation life cycle is presented.

2.2. A new definition of activity

In the previous definitions, activity emerges as a quality of

objects. Traditionally, activity, as a measure (a quantity),

has been scarcely used at the implementation level,14 and

not at all at the conceptual level (except for some recent

exceptions we will show). Nonetheless, in all of the previ-

ous definitions presented in the introduction, discrete

events are central, as countable units. We propose here a

new integrative (qualitative and quantitative) definition of

activity. First, since events occur as a consequence of sys-

tem activities, we can consider the following definition.

Definition 1 (Qualitative activity in a discrete-event sys-

tem). A system is qualitatively ‘inactive’ when no events

occur and qualitatively ‘active’ otherwise.

Second, at the beginning of the 1990s, a C++ simula-

tion library, named Meijin++ , proposed an interesting

implementation of a discrete-event simulation kernel. It

proposed a dynamic processing of events with different

data structures selecting at runtime the best data structure

depending on the number of events, or their frequency of

occurrence and on the overhead needed to copy data from

one structure to the other. We consider here the following

definition.

Definition 2 (Quantitative activity in a discrete-event

system). The sum of both ‘internal quantitative activity’

and ‘external quantitative activity’ is equal to quantitative

activity, over a simulation time period. Discrete events

can be of two types: internal or external to the atomic

model (endogenous or exogenous). ‘Quantitative internal

activity’ corresponds to the number of internal discrete

events, over a simulation time period. Internal activity

provides information about the quantity of internal compu-

tations within atomic models. ‘Quantitative external activ-

ity’ corresponds to the number of external discrete events,

over a simulation time period. External activity provides

information about the quantity of messages exchanged by

atomic models.

Measuring quantitative activity has been used with suc-

cess for the simulation of spatially distributed systems by

Muzy et al.21 Note a crucial distinction: quantitative activ-

ity is defined at the simulator level and is a metric of com-

putational resource usage, while qualitative activity is

defined at the model level although it can be used at the

simulator level.

Having proposed a new definition of activity, we now

want to know how activity can be used in the usual model

and simulator architecture of Discrete-Event System

Specification (DEVS). First, considering qualitative activ-

ity, atomic models can be defined as embedding a binary

state variable: qualitativeActivity={active,inactive}. This

has been widely used in DEVS (cf., e.g., Muzy et al.22 and

Wainer and Giambiasi23), where cells can be active or

inactive. At each time step, knowing that some atomic

models are active and others are inactive, simulators can

focus computations only on active atomic models.24 This

is the activity tracking mechanism. Hence, activity track-

ing is defined as the ability of simulators to automatically

detect active atomic models, focusing simulation resources

only on these atomic models, during a simulation run.

Cellular automata (CA) are a good application case for

activity tracking. When simulating CA, the Hash-Life

algorithm, recently re-introduced in the Golly software

(see http://golly.sourceforge.net/), is a very good example

of activity tracking. Spatial patterns of qualitative activity

are detected at various sizes, from the well-known elemen-

tary patterns to complex meta-cells. A memoization opti-

mization, more classically used in recursive algorithms,

uses a hash table, where discovered patterns are directly

linked to their simulated future thus avoiding unnecessary

re-computation. This activity tracking strategy enables to
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simulate huge cell spaces (above 1050 cells) on a regular

personal computer.

3. Determination of activity
configurations in CA

Considering wave propagations in space, through CA, con-

stitutes a direct analogy with activity propagation paths.

(Standard CA consist of an infinite lattice of discrete iden-

tical sites, each site taking on a finite selection of, for

instance, integer values. The values of the sites evolve syn-

chronously in discrete time steps according to determinis-

tic rules that specify the value of each site in terms of

the values of neighboring sites. CA are models where

space, time and states are discrete.) ‘Activity’ is located in

space where the wave propagates. ‘Inactivity’ is located

in space where the wave does not propagate. When build-

ing the corresponding simulator, computational resources

can be allocated dynamically to track activity. The alloca-

tion of simulator resources depends on ‘how sparse’ is the

activity. Categories of activity propagations can be classi-

fied between two extrema: (i) a large wave spreads, at the

same time, in every site of the space, computations need to

be achieved in every site, without accounting for activity

tracking (which would be inefficient); (ii) a single thin

wave smoothly propagates in a huge space; activity track-

ing exhibits very good performances.

During a propagation, activity in space can be deter-

mined quantitatively and qualitatively. At the lowest level,

basic activity corresponds to a simple binary state of cells.

At the highest level, activity configurations can be identi-

fied to build an activity map of activity propagation.

Elements of the map correspond to well-defined reproduc-

tive and re-occurring configurations. The whole activity

level can be quantitatively determined as a percentage of

active cells in space. Quantifying and tracking activity

configurations and simple active cell change states is

described hereafter.

3.1. Simulation in an excitable medium

The simulation of wave propagation can be implemented

combining existing efficient algorithms and an activity-

based description of the system.

3.1.1. Excitable medium. The CA considered in this paper

are applied to an excitable medium. An ‘excitable

medium’ is a nonlinear dynamic system that can propagate

a wave. Medium areas that have just propagated a wave

lose their propagation capacity for a given period, called

the refractory period.

Activity-based states can be used to build dynamically

a set of active cells in which computations occur and, con-

versely, computations do not concern inactive cells.25

Here, the cellular automaton uses a 3D von Neumann

neighborhood with three major states:

1. Activated state: a cell remains in this state for a

predefined amount of time.

2. Refractory state: a cell evolves to this state after

spending a predefined period of time in the acti-

vated state. In this state, a cell cannot be excited

by an activated neighboring cell. A cell remains in

this state for a predefined amount of time.

3. Inactive state: a cell remains in this state until a

neighboring cell turns into the activated state, in

which case the cell becomes activated.

For example, these three activity-based states can be used

to roughly model the electrical stimulation of heart cells.

Depolarizing heart cells can be represented as activated

cells. Repolarizing heart cells can be represented as refrac-

tory cells. Finally, other heart cells’ states can be repre-

sented as inactive cells. A more precise model of the heart

electric stimulation can be found in Siregar et al.26

3.1.2. Background on Hashlife. Hashlife27 is a simple, yet

powerful, algorithmic technique, which allows the simula-

tion of very large CA using memoization. Memoization

consists of avoiding the repetition of the same computa-

tions. Computation results are progressively stored in

memory. The algorithm stores for every configuration of

cells the result of the computation of the next iteration.

However, to be efficient, this optimization requires the cell

configurations already encountered to be accessed easily.

Two mechanisms can be used to achieve this goal: (i) an

octree for 3D representation (quadtree for 2D representa-

tion); and (ii) a hash table for the configurations of cells

storage.

An octree is a tree data structure28 where each node is

either a branch which can have up to eight child nodes, or

a leaf. In the case of Hashlife, a complete octree is used:

each branch has exactly eight children. Each node does

not store its children instances but only their memory

addresses. It allows having only one instance of each cell

configuration which is shared between many nodes. In

Figure 1, a branch has its eight children composed of the

same cells configuration. Thus, this branch has only eight

pointers to the address of the same instance (@b). The

comparison of cells configurations can be achieved simply

by comparing their eight children’s memory addresses.

In the hash table, the key corresponds to the eight chil-

dren memory addresses and the value corresponds to the

instances of the corresponding cells configurations.

Knowing the eight children composing a configuration, it

is possible to access the corresponding instance in the

map. Because the result of the next iteration is stored with

the instance, if it has already been computed, it is also
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accessed at the same time. Obviously, if it is the first time

that the cell configuration is encountered, it will not be

present in the hash table; this configuration should be

added to the hash table and its next iteration computed.

3.2. Limitations of the activity definition at the cell level

To fully understand how this algorithm accounts for activ-

ity, it is important to clearly determine what is the activity

in this context. Thus, in the next part we try to apprehend

this concept and formulate a definition of activity allowing

a better understanding of the algorithm performances.

3.2.1. A first activity definition for excitable medium. A first-

level definition can be established:

Activity Hypothesis 1: cell activity

If qualitative activity corresponds to a state change in a

cell, then, in a memoized cellular automaton, activity is

defined at the cell level, and, intuitively the more cells that

change state, the more the quantitative activity increases

and then the more the computation overhead increases.

To verify this hypothesis, two simulations have been

run in excitable medium with various parameters. The

simulation of wave propagation takes place in a cube of

10, 2433 cells.

In the first simulation, new waves appear randomly

according to an exponential law distribution of rate para-

meter λ= 0:1 (1 stimulation every 10 time steps on aver-

age). These waves appear randomly on the entire cube. In

the second simulation, new waves appear according to an

exponential law distribution of rate parameter λ= 0:125 (1

stimulation every 8 time steps on average). Waves appear

on a corner.

Figure 2 represents the percentage of active cells on the

entire cube. Logically, the second simulation, which has

more waves initiated, has rapidly more activity on the

entire cube than the first simulation. If Activity hypothesis

1 were correct, the execution time of the second simula-

tion should become larger at each time step (cf. Figure 3),

as soon as the activity of simulation 2 becomes greater

than the activity of simulation 1.

The quantitative activity of cells has no direct impact

on simulation performances. Although there is a factor of

seven less activity at the same time in simulation 1, the

slowest time step computations are about 15 times slower

than in simulation 2. In simulation 2, one computation is

always computed in less than 0.03 s whereas in simulation

1 computations are completed up to 0.4 s.

These results demonstrate that a large number of active

cells does not involve necessarily a large execution time.

Indeed, this is due to a difference in the quantity of config-

urations between simulation 1 and simulation 2. There are

less dissimilar configurations of cells generated in the sec-

ond simulation. In the first simulation, because waves are

initiated in many points in the cube, a lot of new configura-

tions of cells occur.

As depicted in the example of Figure 4, even if simula-

tion 1 has less cells activated, there will be more different

configurations of cells than in the second simulation where

all the wave are very similar. Therefore, since Hashlife

uses memoization, the execution time cannot be only

related to cell activity, another definition of activity needs

to be explored.

Activity Hypothesis 1 is false

If qualitative activity corresponds to a state change in a

cell and activity is defined at the cells level, then, in a

memoized cellular automaton, an increasing number of

state changes in cells does not involve necessarily a com-

putational overhead.

Figure 2. Percentage of qualitative activity on the entire cube
at each time step.

Figure 3. Execution time of each time step.

Figure 1. Example of multiple aggregations of the same branch
instance.
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3.2.2. Activity definition at the cells configuration level.

Activity Hypothesis 2: activity configurations

If qualitative activity corresponds to a state change in a

cell and inactivity corresponds to no state change in a cell,

then, in a memoized cellular automaton, a configuration

consists of a set of active and inactive cells and an increas-

ing number of configurations involves necessarily a com-

putational overhead.

For example, the three configurations of Figure 5,

which have different numbers of active cells, will be com-

puted in the same way by Hashlife. A configuration with

less active cells (like the one with only inactive cells, in

configuration 1) does not require less computation time

than other configurations 2 and 3, with more active cells.

3.2.3. Activity definition based on the model and algorithm. The

definition and tracking of activity configurations is required

to implement efficiently Hashlife. Model activity consists

of the number of new configurations of cells. Here, the

number of cells changing state is not the main factor of

activity:

• a simulation with a high cellular activity can have

little global quantitative activity if the same config-

urations of cells re-appear regularly;
• conversely, a simulation with less cell activity can

exhibit a higher global quantitative activity if the

cells changing state evolve rapidly to various

configurations.

Figure 6 shows the number of new configurations of cells

found at each computation in both simulations. When com-

pared with Figure 3, we figure out that the number of activ-

ity configurations is strongly related to the execution time

required by Hashlife. In simulation 1, even if the number

of cells in which the number of state changes is lower than

for simulation 2 (see Figure 2), supplementary new config-

urations occur thus requiring more computations.

Activity Hypothesis 2 is partially true

If qualitative activity corresponds to a state change in a cell

and inactivity corresponds to no state change in a cell, and

if, in a memoized cellular automaton, a configuration con-

sists of a set of active and inactive cells, then an increasing

number of configurations can involve a computational

overhead, depending on the activity tracking algorithm.

3.3. To sum up

A first attempt at activity definition in cellular models has

been provided. Topological patterns (configurations) of

both active and inactive cells have been proved to com-

plete a basic cell activity definition. The configurations

definition opens new research perspectives for abstracting

multi-level configurations. For example, in the fractal pro-

pagation (cf. Figure 7), a fractal configuration can be

detected at many levels of details.

Figure 5. Examples of configurations of cells.

Figure 6. Number of new configurations at each time step.

Figure 4. Examples of simulations configurations.
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Two definitions have been experimented through mem-

oized CA and can be generalized to CA. Considering this

extension as a postulate, the following two activity hypoth-

eses are obtained.

Activity definition 1: activity in cells

In a cellular automaton, qualitative activity corresponds to

a state change in a cell and inactivity corresponds to no

state change in a cell.

Activity definition 2: activity configurations

In a cellular automaton, a configuration consists of a set of

qualitatively active and inactive cells.

A possible issue of this activity definition is the diffi-

culty in estimating beforehand the level of activity of a

model. Nothing guarantees that fewer possible cell states

involve fewer different configurations during the simula-

tion. The only simple way to be sure of a model activity is

to simulate it, and to detect it using ad hoc algorithms.

Concerning CA implemented through Hashlife:

• What is activity in this context? An activity config-

uration consists of a configuration of active and

inactive cells.
• Why use it? Focusing on the occurrence of new pat-

terns allows a reduction in the number of computa-

tions in models where new occurrences are not so

frequent.
• How to define it? It is the frequency of occurrence

of new configurations of cells which have not been

already computed.
• Where to use it? In the implementation of simula-

tors of CA models.
• When to use it? When tracking pattern activity

enables better performances than classical methods

(depends on the model simulated).

4. Activity in living systems

Within the context of biology and ecology, the answer to

the question of activity leads, at first glance, to this simple

and definitive response: ‘activity is anything but death’.

Thus, any biological object can be considered as active if

it is alive, but things are not so simple. Let us consider

some sub-cellular parts such as mitochondria, ribosomes,

cell nuclei, endoplasmic reticulum, etc. Are mitochondria

alive? No, mitochondria are cellular organelles, structures

which can produce some energetic compounds (ATP)

using sugar and oxygen (respiration). They are a kind of

machine dedicated to chemical energetic transformations.

Are they active? Yes.

The notion of function also has to be considered. A bio-

logical system is the locus of a set of functions and, some-

times, the number of functions can be reduced, altered, in

the case of malfunctioning (nutrient deficiencies, patholo-

gies, etc.). In addition, some functions are involved in

homeostasis (a property of living systems, which regulate

their internal environment and tend to maintain a stable

milieu interieur, sensu Claude Bernard) which aims at

maintaining other vital functions. Regarding functions, the

‘active’ status could be linked to the ability to maintain at

least one expected function. However, maintaining the

alive state is much more complicated.

Finally, the definition of activity in this context seems

strongly connected to the dialectical concept of life and

death. However, it is not our goal to attempt to give a defi-

nition of life (scientists cannot yet agree on an absolute

definition). Modeling and simulation of biological systems

can lead to one of the following two situations:

1. The system we are interested in is of sub-cellular

type. In such conditions, the system is supposed to

be encapsulated into one, or more, living cells. The

structure ‘cell’ is then considered alive as long as

the system is active.

2. The system is composed of one or more cells. This

system is active as long as one cell at least is alive,

which does not mean that the system itself is still

alive.

Hence, we can see that defining a biological system activ-

ity depends on the aggregation level at which the model is

defined (sub-cellular, cellular, tissue, organ, organism,

population, etc.).

4.2. Activity definition

Let us now focus on the concept of activity. What is the

essence of biological activity? The chemical point of view

can help: any biological object which is the locus of both

exchanges (gas, liquids, nutrients, molecules, etc.) and

transformations (chemical transformations), which result

in maintaining the integrity of the object, is declared

active. At this point the problem of time granularity arises.

If one observes a biological object with a very small step

of time, some (short) inactivity phases can appear. Thus,

the object can be considered as inactive if and only if its

inactivity is recorded on a large enough interval of time.

From a wider point of view, the inactivity of a biological

object is stated on a statistical basis.

Figure 7. Fractal configurations.
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Basically, biological objects are systems. In other

words, their activity is correlated with the exchanges and

transformations (of matter and energy) between the parts

of the system and between the system and its environment.

As a first result of these few considerations, we can say

that the activity of a biological system consists of (i) track-

ing the internal/external exchanges and transformations,

(ii) verifying the integrity of the system, then (iii) drawing

a statistic. Finally, one can consider that the definition of

biological activity we sketched above is rather consistent

with the definition of the quantitative activity in DEVS:

‘the sum of both internal and external discrete events over

a simulation time period is equal to the quantitative activ-

ity of the system’.

4.2. Measuring and quantifying activity

The activity measurement of a biological/ecological sys-

tem is a real challenge. We all know that measurement

influences the system under study, and this is particularly

true for living systems. Among others, a standard method

consists of measuring the CO2/O2 gas exchanged between

the system and the atmosphere. This is in fact an indirect

measurement of the respiration/photosynthesis activity

ratio of the system. However, this measurement is a global

one which cannot describe accurately the relative activities

of the system components.

One particular characteristic of biological and ecologi-

cal systems is redundancy. Thanks to redundancy, some

unpredictable (unknown) properties not directly traceable

to the system components can appear throughout its func-

tioning. This is generally called the ‘emergence property’.

Redundancy is double: structural redundancy (several

identical structures execute the same function) and func-

tional redundancy (the same function is executed by sev-

eral and different structures). Here again we highlight the

notion of function(in biology, at a first glance, a behavior

is the result of the execution of multiple functions), indeed,

it immediately appears that if a function is executed

(i.e.the system is active), one or more structures can be

implicated. Thus, the measurement of a function by means

of its production over time (concentration of metabolic

compounds, number of descendants, etc.) cannot be a reli-

able estimation of the activity. In other words it does not

give information about what is active and what is inactive

in the system.

4.2.1. Useless activity. This is a wider problem. In the con-

text of modeling and simulation, the problem addressed

could embed a lot of active processes, which can poten-

tially participate at various levels to the response. In this

case, it is essential to test which processes have signifi-

cantly contributed to the response. Some statistical and

efficient methods are available to reach this goal.

4.2.2. Activity of the whole. Is a system active or inactive?

Is its activity quantifiable? These are some crucial ques-

tions. Figure 8 depicts the variation of CO2 concentration

(in parts per million [ppm]) at Mauna Loa (Hawaii). The

positive trend indicates the increase due to human activi-

ties. However, we can see that there is an obvious seasonal

variation. The variation corresponds to the active period

(i.e. from spring to the end of summer) alternating with

the inactive period of vegetation (autumn and winter). In

some sense, the curve gives a measure of the system activ-

ity. The derivative (i.e. the slope) indicates the velocity at

which the system evolves (accelerations and slowing down

phases). Minima and maxima point out some short periods

where the CO2 fixation equals the respiration of

ecosystems.

An analogy-based reasoning led us to consider the sim-

ple case of a cellular automaton (a bounded grid) which

aims at simulating the dynamics of several populations

competing for space. The rules that dictate the evolution

of cells are probabilistic. The probability of changing state

depends on the neighborhood of the cell (be it a von

Neumann, a Moore or even a more exotic neighborhood

pattern), i.e. the number of individuals of each species and

their state (age, reproduction potentiality and so on) that

surrounds the cell. Each cell can take one of a finite, and

known, number of states (uncolonized, species 1, species

2, ., species n) and we attempt to evaluate the activity of

the system through time.

Quantitative activity is defined as the recording of the

number of each of the states i, i∈ ½1 . . . n�, at each time

step t of the simulation: ni(t). This allows calculating,

from collected data, the slopes (Vi), as an approximation

of the derivative: Vi(t)= ni(t +�t)�ni(t)
�t

. The slope corre-

sponds to the average rate of quantitative activity of the

Figure 8. Monthly mean of CO2 concentration (in ppm) at
Mauna Loa (Hawaii). The dashed line represents the monthly
values. The solid line represents the seasonally corrected data
(moving average of seven adjacent seasonal cycles centred on
the month to be corrected) showing a positive trend attributed
to the increasing human activities. Reproduced with kind
permission from the NOAA29
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whole system. Then, for each time step we haveP
i= 1, ..., n (Vi)= 0 and

P
i= 1, ..., n (Vi)

2 ≥ 0. Thus, the aver-

age rate of evolution (or speed) of the automaton is

V (t)= 1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i= 1, ..., n Vi(t)ð Þ2

q
. However, even if V (t)= 0,

some modifications M can persist and compensate each

other. Thus, M tð Þ= 1
n

P
j= 1, ...,E Pj(t), where Pj(t) is the

entity (j) modified at the instant t and E the overall number

of entities. Here M(t) is the average of qualitative activity

changes of entities N . We have M(t)= 0 in the case of

inactivity but M is a constant (> 0) in the case of equili-

brium. Since V (t)and M(t) are in the same dimension, the

activity function A(t) of the system takes the form

A(t)=V (t)+M(t)= 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i= 1, ..., n

Vi(t)ð Þ2
s

+
X

j= 1, ...,E

Pj(t)

0@ 1A
However, this simple proposal suffers from the lack of

defining accurately what a ‘change of state’ is. Change of

state could take many forms, discrete changes or continuous

as well (a variation of energy level, for instance). Perhaps

the latter statement constitutes a crucial point to go deeper in

the reflection about what activity signifies, and how the con-

cept could help in saving computing resources and get (i) a

better description of the dynamics and (ii) a better apprecia-

tion of the potentialities of the systems under study.

• What is activity in this context? Activity can have

different meanings depending on the aggregation

level at which the system is considered.

• Why use it? To determine which components of a

system (cell, individual, population, ecosystem,

etc.) participate in the achievement of a particular

task (or behavior) and in some cases which compo-

nents are essential to maintain the integrity of the

system. The prediction of the activity variation over

time of simulated biological systems (set of func-

tions, organism, ecosystem, etc.) can help in opti-

mizing some actions (therapies: optimal frequency/

dose of medication impulses; ecological engineer-

ing and management: best date, or state of a sys-

tem, to engage actions, modifications, treatments,

introduction of species, etc.).
• How to define it? Today, no simple definition can

be given in this context. However, we make this

proposal, as a basis for further studies: any biologi-

cal object which is the locus of exchanges (gas,

liquids, nutrients, molecules, etc.) and of transfor-

mations (chemical transformations) which result in

maintaining the integrity of the object itself or the

system to which it belongs is declared qualitatively

active.
• Where to use it? In experimental biology and ecol-

ogy and within the prediction tasks of the system

behavior (modeling and simulation).
• When to use it? In decision making (experiments

and modeling) and to improve the effects of some

actions on systems. Crucial in the analysis of sys-

tem functioning. For instance, which genes

involved in a network (so-called pathway) are acti-

vated/inhibited as a response to a (fluctuating)

Figure 9. Activity function of a three-states cellular automaton through time: ‘1’ = M(t); ‘2’ = V(t). (a) Using a high rate of
reproduction of one of the three states, the system presents a cyclic activity (quasi-stationary equilibrium) with an alternation
between intense activity periods and short inactivity periods. (b) Using a low rate of reproduction (i.e. the highest probability to
reproduce for one of the three species into a free adjacent cell is below a threshold value), the system converges to an equilibrium
state in which V(t) is null but M(t) shows that the system is still active. Reproduced with kind permission from Elsevier.30
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signal coming from the environment of the system

under study?

5. Activity in economics and decisions

Activity is a central notion in economics. Therefore, before

re-defining or using a concept of activity, we need first to

review what is economical activity and how economical

activity is investigated in the framework of economic the-

ories. In the second part, computational activity is modeled

through optimal control theory. Optimal control is used in

economics to mathematically model and find optimal deci-

sions. Finally, a notion of activity, compatible with both

economics and computer science, is proposed for activity

evaluation.

5.1. Economical activity

Following Malinvaud:31

‘Economics is the science which studies how scarce resources

are employed for the satisfaction of the needs of men living in

society: on the one hand, it is interested in the essential opera-

tions of production, distribution and consumption of goods,

and on the other hand, in the institutions and activities whose

object is to facilitate these operations’.

Economics is interested by the satisfaction of the needs

of men living in society in combination with scarce

resources. Indeed, all studies in economics begin with the

observation of the fact that human needs are infinite while

resources are limited. The confrontation of these two

observations involves compatibility problems and so deci-

sion problems: there is a need for allocation’s decision

rules at an individual level (allocation of budget for con-

sumption or choice of input quantities for production, for

example) or at a collective level (street lighting or national

defense, for example).

According to this definition, economics is concerned

with all human ‘activities’, consumption or production

problems, but also with all problems involving human

activities such as, for example, allocation of time to tooth

brushing. The economic approach to human behavior by

Becker32 has even extended economics’ fields to questions

traditionally covered by the sociology of the family econ-

omy and marriage market economy policy, economics of

education, economics of altruism, suicide, religious atti-

tudes, etc. In fact, according to Becker and his followers,

economics should not be distinguished from the other dis-

ciplines, but should be seen as a method that would be the

only one able to provide a unified explanation of a wide

range of human activities.

In this sense, an economic activity is a phenomenon

impacting a scarce resource. The impact of this activity

can be measured individually by economic agents’

utilities.

Considering this definition (activity is what economic

actors do, utility is usually the result of an economic activ-

ity), the notion of economic activity has been considered

differently by economic fields:

• In the mainstream neoclassical economics, the

focus is not on actors’ activities, but on their result

(profit and utility).
• In behavioral economics, the focus is on activity

selection (what actors do), not on utility. Some

models, such as rule rationality, tentatively intro-

duce maximization back into activity selection.

5.1.1. (Neo)classical economics and the concept of
rationality. Activity is a ‘core underlying’ concept of every

classical economic study: a core concept because most

human activities are studied by economic theories, using

several rationality models to determine how activities are

selected, but also an underlying concept because econo-

mists mostly consider equilibrium situations computed

with agents’ utilities. They consider the activities conse-

quences (the utility of the resulting situation) not the path

(the activities themselves).

The rationality of an agent determines how he decides

what to do concerning economic activities. Simon33 distin-

guished between two kinds of rationality that can be

bounded:

• The substantive rationality: ‘behavior is substan-

tively rational when it is appropriate to the achieve-

ment of given goals within the limits imposed by

given conditions and constraints’.33 The orthodox

economists, from neoclassical economics, adopt the

assumption that agents decision making is based

upon substantive rationality.
• The procedural rationality: ‘behavior is procedu-

rally rational when it is the outcome of appropriate

deliberation. Its procedural rationality depends on

the process that generated it’.33 Behavioral rational-

ity corresponds to the decision process itself, not to

the data used by this process (substantial rational-

ity). Bounded behavioral rationality is not an opti-

mization process anymore. This kind of rationality

can be viewed as an alternative assumption to sub-

stantive rationality, but it has never supplanted it in

the mainstream economists.

However, none of these rationality models consider activi-

ties themselves. Both consider alternative ‘utility bags’,

and eventually the process to select the best bag (proce-

dural rationality). Rule rationality is one way to bring

activity back into the economic agent decision process.
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5.1.2. Behavioral economics and rule rationality. Whereas

neoclassical economics focuses on the economic activities

results (the utility), behavioral economics priorities are the

opposite: its main problem is how actors choose their

activities, how they choose what to do. One of the forerun-

ners in behavioral economics, Robert Aumann, winner of

the Nobel prize, proposed a form of bounded behavioral

rationality called rule rationality by opposition to the tradi-

tional ‘Act rationality’.

‘Ordinary rationality means that when making a decision,

economic agents choose an act that yields maximum utility

among all acts available in that situation; to avoid confusion,

we henceforth call this act-rationality. In contrast, under rule

rationality people do not maximize over acts. Rather, they

adopt rules, or modes of behavior, that maximize some mea-

sure of total or average or expected utility, take over all deci-

sion situations to which that rule applies; then, when making

a decision, they choose an act that accords with the rule they

have adopted.’

(Aumann34)

The economic actor progressively learns what the best

rules for different configurations are, and when he has to

make a decision, he does not choose the best action, but

the best rule in the current configuration, and applies it.

Aumann gives many examples of this model, for exam-

ple the Ultimatum game without iteration. In the

Ultimatum game, at each stage, player A decides how to

divide e100 between himself and player B, for example

e70/e30. If player B accepts, the repartition is made

accordingly. If player B rejects the proposition, no one

gets anything. If agents are perfectly rational (in the sense

of substantive rationality), A knows that for the last nth

game, B should accept any repartition, because e1 is better

than nothing. Recursively, A deduces that for the

(n� 1)th game, the (n� 2)th, . the reasoning will be the

same, and B should accept.

Experiments show that when the Ultimatum game is

played only once, without any knowledge or any contact

with the other player, player B will apply a threshold of

around e20. Explanations based on pride or threat do not

fit anymore, since player B does not know, see or have any

contact with its opponent and plays only once. But rule

rationality gives an explanation: player B has learned that

in a general case, it is not good to accept too bad offers,

both for reputational and threat reasons. Even if these rules

do not apply here, they usually apply. So because in the

real world it would be act-rational to do so, it is here rule-

rational to refuse a e90/e10 offer.

Another example concerns an experiment with bees and

flowers. Bee behavior is studied in a field of artificial flow-

ers with two colors: blue and yellow. An artificial mechan-

ism allows choosing which flowers give nectar. At the

beginning of the experiment, only blue flowers give nectar.

Bees begin to explore the field and quickly visit only blue

flowers to get nectar. After some time, the blue flowers

stop giving nectar and yellow flowers start giving some.

The bees continue to go only to the blue flowers and

finally die from starvation. The explanation of Aumann is

that this kind of situation is not possible in nature. Bees

have learned by evolution that it is interesting to recognize

the flowers that give nectar and to stick to them because it

is efficient. When they are put in the experimental environ-

ment they continue to apply this rule (stick to the identified

color), they are rule-rational, even if this is not the best

choice in this situation. Evolutionary learning has the same

role as experience for human learning.

The interesting point about rule rationality is that agents

reason about activity (the rules activation), not about facts.

They choose their action, not their consequences (the opti-

mal situation). They are activity-aware, not situation-aware

anymore. Moreover, past activities determine current activ-

ities (via rule learning).

5.1.3. Economical activity evaluation. To summarize, activity

is an underlying concept in mainstream economics, but

progressively emerges as a more central concept in beha-

vioral economic studies such as rule rationality. However,

even in behavioral economics, the concept of activity itself

is very rare and has to be deduced from the model. The

focus is on activity selection, not on activities themselves.

For this reason, to measure activity is still a challenge not

considered by economists.

An evaluation of economic activity would have to be

different from the main and well-studied indicator utility:

if an agents eats three donuts, its utility is decreasing for

each donut (it can even be negative for the last one: this is

the decreasing marginal utility hypothesis), but the activity

volume should be roughly the same. Another problem is

that a precise evaluation of such economic activity would

require describing it precisely, and we reach here the lim-

its of the economic field as a science: economics considers

actors (humans or institutions) as ‘black boxes’, with

inputs and outputs. Describing the activity (and not only

its selection process as in behavioral economics) would

require to enter the black boxes, which are management

(for institutions) or psychology (for humans) application

fields. This field delimitation may be an explanation for

the current absence of activity as a core concept in eco-

nomic theory.

The genericity of component-based simulation

approach may indeed bring some interesting and new

results when applied to economic models. Quantitative

activity as the number of discrete events received by the

system is well suited to the economics field since it does

not require the description of the activity itself. It requires

however discrete events, whereas classical economics con-

siders equilibrium and continuous functions (atomicity

hypothesis). Translated into the economic field and

166 Simulation: Transactions of the Society for Modeling and Simulation International 89(2)



vocabulary, activity would be the number of events con-

cerning scarce resources (consumption, production,

transaction, etc.). It can be used to describe where

‘something’ happens and when. Classical economics

describe the result. Behavioral economics explains why

activity analysis could describe what happens (where

and when). More importantly, it could describe what

happens, the spaciality and the dynamicity of the system,

without entering the black box. For example, let us con-

sider a city-wide economic transaction analysis.

Classical economics would give the global welfare and

its repartition between the actors (people and firms).

Behavioral economics would explain why people would

buy such item and accept to pay such prices. An activity

analysis would give us the repartition of the events in

the city and its evolution. An observer could know

where most of the production/consumption/transactions

occur and when. Differentiation between external and

internal activities depends on the subject analyzed. If the

focus is a city, any event occurring inside the city

increases internal activity, whereas events relating to

other cities (such as population or production transfer)

are external activity.

5.2. Optimal control model of activity

Here we consider the following problem: a modeler is

designing a simulator for solving some model. As in every

modeling approach, his main goal is to increase his knowl-

edge about a particular system, simulating his model, and

thus increasing his information level. Here, activity measures

the number of calculations achievable by the machine. The

modeler has to adapt the available computational resources

to the level of information he wants to obtain.

5.2.1. Mathematical model. The modeler tries to obtain

information of various types on a time interval ½0; T �. Let
be Iit the information of type i= 1, . . . , nf g available to

the modeler in t ∈ ½0; T �. We assume that model’s value

increases with the levels of various types of information

available: V (I1t, . . . , Int). The value function is then

V (I1t, . . . , Int)=�n
i= 1fi(Iit)

To choose a particular, and convenient form of function

fi, we assume now that the rate of value increase is

decreasing with time. So the value function V (I1t, . . . , Int)

regarding the various levels of information is strictly con-

cave. This can be explained by the fact that for large

amounts of information a further refinement of the infor-

mation provides little value to the model. Moreover,

beyond a certain ‘saturation threshold’ f‘or a certain type

of information, we consider that it becomes difficult to

treat this additional information leading to value decrease.

Therefore, we obtain

V (I1t, . . . , Int)=�n
i= 1(βiIit �

αi

2
I2it) ð1Þ

With βi ∈R
* ,+ and αi ∈R

* ,+ (the set of positive real

numbers including 0), we notice immediately that
∂V (�)
∂Iit

=βiIit � αiIit ≥ 0, bIi ≡ βi

αi
. So, it is obvious that the

modeler never wants to obtain a level of information i

greater than bIi. Parameters βi > 0 and αi > 0 reflect the

fact that, for a given level of information, an increase of

the level of a certain type of information does not gener-

ally have the same effect as an increase of the same level

of an another type of information.

Activity measures the number of calculations achieved

by the machine, over a period of time, in order to increase

Iit. Obtaining information of type i requires the allocation

of a certain amount of activity Pit. Allocating activity

between the augmentations of various types of informa-

tion, the modeler will take into account that

0≤�n
i= 1Pit ≤P, where P represents the maximal capacity

of the computer.

The level of information of type i increases with Pit but

at a decreasing rate. So, the evolution equation of the infor-

mation i is

_Ii = fi(Pit) ð2Þ

where fi(Pit) is a strictly concave function of Pit. More spe-

cifically, we assume that

_Ii = γ iPit �
ρi

2
P2

it ð3Þ

(We conventionally denoted by an upper dot the derivative

of a variable regarding time. Here _Ii = dI
dt
. Furthermore,

the resolution of Equation (4) ensures that the acceptable

range of the various activity values for the modeler is such

that f 0i (Pit)≥ 0.) In Equation (3), γ i ∈R
* ,+ and ρi ∈R

* ,+

reflect the differences between the various fact functions

fi(Pit).

Finally, the modeler’s maximization program is:

max
Pit; t∈ ½0;T �; i= f1, ..., ng

ðT

0

�n
i= 1(βiIit �

αi

2
I2it )dt ð4Þ

_I i = γiPit � ρi

2
P2

it; i= f1, . . . , ng
Ii0 = 0; IiT free; i= f1, . . . , ng

Pit ≥ 0; i= f1, . . . , ng; 8t ∈ ½0; T �
�n

i= 1Pit ≤P; 8t ∈ ½0; T �bIi � Iit ≥ 0; i= f1, . . . , ng; 8t ∈ ½0; T �

Let λit be the covariable of Iit, the Hamiltonian function

of program 4 is

H(I1t, . . . , Int,P1t, . . . ,Pnt, λ1t, . . . , λnt)

=�n
i= 1(βiIit �

αi

2
I2it )+�n

i= 1λi(γ iPit �
ρi

2
P2

it) ð5Þ

Muzy et al. 167



In order to take into account the threshold of the vari-

ous types of information and the constraints on the levels

of activity we introduce the following the Lagrangian

function:

L(I1t, . . . , Int,P1t, . . . ,Pnt, λ1t, . . . , λnt, σt, μ1t, . . . , μnt)

=H(:)+ σt(P��n
i= 1Pit)+�n

i= 1μi(bIi � Iit) ð6Þ

The maximum principle leads to the following resolu-

tion conditions (these conditions are necessary and suffi-

cient because of the strict concavity of the Lagrangian

function regarding the activity levels and the information

levels):

• Static optimality conditions:

∂L(�)

∂Pit

= λi(γ iPit � ρiPit)� σt ≤ 0; Pit ≥ 0 and

Pit = ∂H(�)

∂Pit

= 0; i= f1, . . . , ng; 8t∈ ½0; T � ð7Þ

∂L(�)

∂σt

=P��n
i= 1Pit ≥ 0; σt ≥ 0 and σt

∂L(�)

∂σt

= 0

ð8Þ

∂L(�)

∂μit

= bIi � Iit ≥ 0; μit ≥ 0 and μit

∂L(�)

∂μit

= 0 ð9Þ

• Evolution equations of the covariables (whenever
_λit exists, that means until bIi is reached):

_λit = � ∂L(�)

∂Iit

=αiIit � βi � μit ð10Þ

• Evolution equations of the information stocks:

_Ii = ∂L(�)

∂λit

= γ iPit �
ρi

2
P2

it ð11Þ

• Transversality conditions:

λiT = 0; i= f1, . . . , ng ð12Þ

• Conditions at the junction points τ (cf. Leonard and

Long:35 ossible junction points are those for which

a value bIi is reached and the terminal time T ;

indeed these junction points are characterized by

jumps in costate variables):

λiτ� � λiτ+ =π(τ)
∂(bIi � Iit)

∂Iit

= � π(τ); π(τ)≥ 0 and

π(τ)(bIi � Iit)= 0 ð13Þ

Remembering that the costate variable of a stock mea-

sures the imputed value of this stock at any instant along

the optimal path (cf. Leonard and Long:35 for this reason,

costate variables are called shadow prices in economics),

conditions (12) can be explained as follows: since the

modeler is free to choose the terminal value of a particular

information stock, this value has to be such that his mar-

ginal contribution to model’s value is zero at the end of

the planning horizon.

Conditions (7)—(9) and (11) imply two possible cases

regarding activity’s allocation at instant t ∈ ½0; T �:

• Let j= f1; . . . . . . ; mg, with m≤ n, be the informa-

tion level for which Iit ≤ bIi at t. Assume first that

�n
j= 1

γj

ρj
≤P. In this case, conditions (7)—(9) per-

mit us to conclude that:

Pjt = γ j

ρj

≡ bPj; 8j= f1, . . . ,mg ð14Þ

Pkt = 0; 8k = fm+ 1, . . . , ng ð15Þ

σt = 0 ð16Þ

• Instead if �n
j= 1

γj

ρj
>P implies that

Pjt ≤ bPj; 8j= f1, . . . ,mg. The same conditions as

before lead to

λjt(γ j � ρjPjt)= σt; 8j= f1, . . . ,mg ð17Þ

Pkt = 0; 8k = fm+ 1, . . . , ng ð18Þ

Equation (17) leads to a repartition rule of total activity

available between the various Pjt. Indeed, for a particular j,

this equation permits us to obtain

λjt(γj � ρjPjt)= λlt(γ l � ρlPlt); 8l = f1, . . . ,mg; l 6¼ j

ð19Þ

Equation (19) can be rewritten

Plt = γ l

ρl

+ λjt(ρjPjt � γ j)

ρlλlt

; 8l = f1, . . . ,mg; l 6¼ j

ð20Þ

So, using Equation (8),

Plt = P�n
i= 1ρlλlt ��m

l = 1(γ lλlt + γlλlt)

�n
i= 1ρiλit

;

8j= f1, . . . ,mg; l 6¼ j ð21Þ

Although this model was deliberately simplified, its res-

olution is made difficult because of cross-impact activity

levels (cf. Equation (21)) and the possible presence of

junction points.
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5.2.2. Model resolution for a single information type. The

model is resolved here for a single information type. The

notation is similar to the general case, except for the omis-

sion of indexes i used to design the various types of informa-

tion. Since the objective function is an increasing function

of It and because I0 = 0 the scope of the modeler is to reach

the maximum amount of information It using Pt = bP up to

the possible point of time τ ∈ ½0; T �, where Iτ =bI .
Two cases are possible regarding the relative values ofbP and P:

1. bP≤P: In this case the modeler chooses the activity

level bP until bI is reached if it is possible on ½0; T �.
Time θ for which bI is reached can be determined

using (11) and the initial condition on It. Indeed,

on t∈ ½0; θ� we can rewrite

_I = γbP� ρ

2
bP2 ) It = (γbP� ρ

2
bP2)t

So θ= 2Î

2γP̂�ρP̂
2. So, on ½0; T �, two situations are

possible:

• If θ≤ T ; the modeler chooses Pt =bP; 8t∈ ½0; θ�
0; 8t∈ �θ; T �

�
and It = (γbP� ρ

2
bP2

)t; 8t∈ ½0; θ�bI ; 8t∈ �θ; T �

(
.

The corresponding temporal path is a line

starting at point (0; bP) and ending at (bI ; bP), in

exactly θ periods.
• If θ > T ; the modeler chooses Pt =

P̂; 8t∈ ½0; T � and It = (γbP� ρ

2
bP2)t; 8t ∈ ½0; T �.

So the terminal value of the stock is

IT = (γbP� ρ

2
bP2)T . The corresponding tem-

poral path is a line starting at point (0; bP) and

ending at (IT ; bP), in exactly T periods.

2. bP≥P: In this case the modeler chooses the activity

level P until bI is reached if it is possible on ½0; T �.
Using the same notation as before, two situations

are possible:

• If θ≤ T ; the modeler chooses Pt =
P; 8t∈ ½0; θ�
0; 8t∈ �θ; T �

�
and It = (γP� ρ

2
P
2
)t; 8t∈ ½0; θ�bI ; 8t∈ �θ; T �

(
.

The corresponding temporal path is a line

starting at point (0; P) and ending at (bI ; P), in

exactly θ periods.
• If θ > T ; the modeler chooses Pt =

P; 8t ∈ ½0; T � and It = (γP� ρ

2
P
2
)t; 8t ∈ ½0; T �.

So the terminal value of the stock is

IT = (γP� ρ

2
P
2
)T . The corresponding tem-

poral path is a line starting at point (0; P) and

ending at (IT ; P), in exactly T periods.

5.3. Activity definition from an economics point of view

Activity has been investigated both in the general econom-

ics framework and using one major modeling approach

used in economics: optimal control theory. We can con-

clude with the following definition of activity:

• What is activity in this context? Any phenomenon

impacting a scarce resource.
• Why use it? Because this is the link between core

economic concepts: classical economics gives the

activities’ result (measured with utilities and global

welfare). Behavioral economics explains why activ-

ities are selected. Activity analysis could describe

where and when events occur. It can give a descrip-

tion of the spatiality and of the dynamicity of an

economic system.
• How to define it? The number of events concerning

scarce resources.
• Where to use it? With any economic model where

economic events occur at different time/locations.
• When to use it? When anyone wants to know what

people do, where and when they do it, not only why

they do it and how happy they are.

6. A prospective approach: activity
framework in models of human beliefs
and knowledge

This last section mainly is prospective. Its function is to

show that concepts such as activity tracking and activity

awareness are unifying ones and that they are particularly

promising when applied to the models of human beliefs

and knowledge.

6.1. A new paradigm in cognitive sciences and in the
psychology of reasoning

In contemporary cognitive science and psychology of rea-

soning, the construction of beliefs and knowledge is

largely seen as relying on complex and heterogeneous

processes.

Nevertheless, although models of such processes often

differ to a large extent in the literature, many researchers

belonging to different disciplines (psychology, artificial

intelligence [AI], epistemology), more and more agree on

the fact that, when reasoning, human minds do not follow

the classical models of rationality, be they of a probabilis-

tic nature (such as the classical models of inference: see

the critiques of Gigerenzer and Goldstein36 and Kahneman

et al.37 or of a deductive and logical nature (such as the

classical models of belief revision: see the critiques of

Pollock38 and Bonnefon39)).
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Following some seminal ideas of Simon40 and, first of

all, grounding their arguments on a significant amount of

new empirical evidences especially since the 1980s, they

put at the forefront the hypothesis that human reasoning is

a resource-limited, context-sensitive, time-consuming, non-

optimal and sometimes non-terminating process.17,37,38,41

There is a strong parallel to be drawn between this new

paradigm for models of reasoning and cognition and our

claim in favor of a general framework based on activity

and activity awareness.

6.2. Concepts already related to activity in cognitive
sciences

Grounding our conceptual and prospective argument on

such a consensual paradigm, it is reasonable to assume that

the best models of the construction of beliefs and knowledge

we can build today are: (1) component-based models in the

sense given in Section 1 of this paper; (2) activity-oriented

models in that the focus is no more on formal and uninter-

preted deductive symbols and on their syntactic links (such

as in the abstract logical models of reasoning dating back to

the first symbolic AI of the 1950s) but on the various, simul-

taneous and concurrent kinds of cognitive and emotional

activities operating in an overall process of reasoning.

It is important to discern that, at this general level of an

activity-oriented conceptual framework, what we call a

component-based approach does not necessarily entail any

strong, nor massive nor weak modular vision of cognition,

in the sense of Fodor42,43 or of Carruthers44 for instance

(see Barrett and Kurzban45 for a review on modularity in

cognitive sciences). There is a strong methodological

advantage in our grounding the conceptual analysis not on

modules but on activities: it gives the possibility to con-

sider such or such thesis or competing argument or algo-

rithm in a process of belief revision, for instance, as a real

competing component of the overall model. Hence, when

we speak of components, no ontological commitment to

real cognitive modules is necessary.

In the following, we present a sample of some more

precise concepts that specifically can be interpreted in

terms of activity tracking and activity awareness.

First, such an interpretation seems possible for the mod-

els of inference. Whereas practical cognition intervenes in

the process of decision making, epistemic cognition inter-

venes in the process of the justification of beliefs.38,46

Ordinarily, due chiefly to time limitations, human minds

seem to operate in a way that both minimizes and opti-

mizes their activity in some given context and facing some

given concern, be it practical or epistemic. From these

considerations, it seems reasonable to assume that ‘concise

and efficient structures’47 emerge or exist in the mind

(and/or in the brain, see Tononi et al.48) and play a major

role both in practical and epistemic cognition.

At another level, in the specific domain of the philosophy

of science, similar ideas have arisen. For example,

Thagard49,50 claims that a scientist does not operate as a sin-

gle autonomous information processor and that his or her

work cannot be reduced to a purely logical construction.

According to him, the scientist always belongs to a social net-

work. As a node of this network, he or she co-operates in a

huge distributed information processing system. Hence, from

this socio-psychological viewpoint on science, the collective

construction of knowledge has to solve some problem of opti-

mizing the activity (intensity of interaction) between actors.

Finally, in the domain of cognitive science, the question

of the knowledge and/or the simulation and anticipation of

the contents of the minds of others, frequently called the

mind reading question, has led many to build different and

concurrent models of activity awareness in the mind.

Facing these new trends in psychology of reasoning,

epistemology and cognitive science, our claim is that single

human minds or human minds in networks can, to some

extent, be compared with some systems of computation try-

ing to optimize either their activity or their awareness of the

activity of others, or of themselves, so as to decrease their

execution time. Hence, the aim of this section on activity

models of beliefs and knowledge is to illustrate to what

extent the concepts of activity, activity tracking, activity

awareness, engineering phase, modeling phase and decision

phase could be well adapted to the development of the ideas

and models in these four domains of epistemology: infer-

ence, belief revision, scientific discovery and mind reading.

6.3. Activity in models of inference: reasoning the
frugal way

The model of inference presented by Gigerenzer and

Goldstein36 consists of simple cognitive algorithms which

suggest cues and performs inference from memory. As

such, ‘it uses limited knowledge as input’.36 To compen-

sate for this limitation, such models assume that inductive

inference has to take into account the natural environment

of the cognitive agent. In this case, the environment is

implemented in his memory. Although the algorithm is

not linear and does not use all available information (it

violates the traditional standards of rationality), it leads to

remarkable results compared with other classical models.

Such an algorithm is designed to enable quick decision

making. In this work, the model is multicomponent in that

it is composed of probabilistic atomic mental models: but

the decomposition can be deepened or flattened.

As their success is remarkable, we propose that such

algorithms be considered less arbitrary than others. They

can be taken as examples of more realistic simplifications

of a computational procedure thanks to an ‘activity track-

ing’ process applied to some other, less performing, hence

more fictive, classical models of inference.
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• What is activity in this context? The activity of the

coupled model is the sum of the numbers of internal

and external events of atomic models, over a simu-

lation time period.
• What is optimized activity in this context? It is a

realistic and effective psychological mechanism

(such as the simple algorithms of Gigerenzer and

Goldstein36) which would appear quite different

from the fictive computational processes as they are

hypothesized in classical inference models purely

based on deduction and logic. Optimized activity is

the most efficient (the quickest and the most suc-

cessful) algorithmic process that leads to a certain

cognitive goal: in this sense, it is the one that is the

most efficient relatively to the goal and compared

with other computational models, whereas these

other models lead to useless and time-consuming

(inactive in this sense) computations. Accordingly,

we can make the heuristic hypothesis that activity is

what really happens in the mind, hence, in the brain.
• Why use it? (1) To optimize the rapidity and the

efficiency of the models of inference and decision

making (both in epistemic and practical cognition).

(2) To build more realistic and more reusable mod-

els of the human inference (taking time but not too

much, based on limited resources, highly sensitive

to contexts, etc.).
• Where to use it? In AI in general, in decision mak-

ing, in the modeling of practical cognition or com-

mon sense reasoning, to ameliorate the efficiency

of that kind of complex systems mixing computer-

aided decision making and/or augmented reality

(planes).
• When to use it? We use it when we are sure to pos-

sess a simplifying model of inference for a precise

kind of task.

6.4. Activity in beliefs revision: active cycles of
defeasible reasoning

In his procedural epistemology, Pollock38 suggests view-

ing the process of belief justification as a dynamic, evol-

ving, sometimes non-terminating, process. Its core

hypothesis is that, most of the time, the human mind does

not have enough resources to compute all of the implica-

tions some new candidate belief would have in the set of

the already accepted (because to some extent already justi-

fied) beliefs to be able to genuinely warrant or reject it.

This is the reason why most of our justified beliefs are not

completely warrantable. They are said to be ‘defeasable’:

at any time, during our life, i.e. during our new interac-

tions with others and with the environment, most of our

beliefs can be replaced by their contrary or by other differ-

ent beliefs.

‘In particular, beliefs can be defeated by further reasoning,

and may later be reinstated by defeating their defeaters. So

beliefs may cycle in and out of the set of justified beliefs

many times as reasoning progresses. A belief is only war-

ranted if the cycling eventually stops and the belief subse-

quently remains justified.’

(Pollock,38, pp.20–21)

We propose to design this cycling as analogous to activi-

ties performed by the mind within its set of beliefs. A

belief is warranted or rejected when its justification status

no longer changes.

From a component-based and activity-oriented viewpoint,

it can be suggested to view beliefs as atomic models having

autonomous activity. A given belief model is set to the state

‘warranted’ if one condition of implication is received and if

no condition of rejection has been sent to it. Each belief

model interacts with others by sending to all others its epis-

temic implications, which serves to warrant other beliefs,

and its own condition of warranty so as to verify whether it

still is coherent or not with other already warranted beliefs.

When two beliefs appear to be incompatible, defeasibility

has to occur, either for one or for the other. Thereafter, dif-

ferent strategies of choice for defeasability can be tested:

hence, optimal strategies of constructing systems of beliefs

can be sought through computational experiments.

• What is activity in this context? Activity is the total

number of internal changes of beliefs, only, if the

internal state of a given belief does not change

there is no activity in that the content of the model

corresponding to the cognitive content of the mind

has not changed (even if this belief still perma-

nently interacts with other beliefs so as to test its

compatibility).
• What is an optimized activity in this context?

Activity is the core of the reasoning process of the

mind through which it permanently tries to establish

its belief. A mind is all the more active, from this

viewpoint, as it is subject to doubts and revision of

its beliefs. From this viewpoint, if activity of the

mind is desired, an optimized model can mean a

maximization of activity, not a minimization.
• Why use it? Such vigilance has often been com-

pared with one of the characteristics of the con-

sciousness: versatility, capability to deliberate and

choose. Activity tracking in the context of belief

revision could be similar to some intentional states

tracking.
• How to define it? Activity could be defined as the

measure of the cognitive reactivity or cognitive

attention and vigilance of the mind in a given con-

text. Where to use it? In AI, in cognitive psychol-

ogy, in the modeling of reasoning, in the modeling

of the dynamics of intentional states of the mind.
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• When to use it? When we aim at designing an effi-

cient and rapid model of decision-making, or when

we aim at understanding the process of practical

and epistemic cognition.

6.5. Activity in netcentric social studies of science

According to Thagard:49

‘Socially and cognitively, science involves a tension between

cooperation and competition, and researchers are only begin-

ning to understand how social organization can contribute to

the overall goal of increasing scientific knowledge [.] By

combining a computational understanding of individual cog-

nition with an analysis of scientific communities in terms of

distributed computation, we can start to see how sociological

and psychological accounts of science can be integrated.’

More specifically, as recalled by Thagard49,50 or even by

Dennett,51 in this perspective of a computational philoso-

phy of science, it is desirable to design computational

experiments to test the efficiency of various strategies in

the process of the construction of scientific knowledge. As

any other kinds of distributed computation, a given social

strategy and social dynamics for science can be evaluated

in terms of activity and activity tracking. The components

or nodes of such a coupled model can be the models of the

actors that are cooperating and competing: those actors are

the scientists themselves or the academic institutions they

belong to.

• What is activity in this context? The intensity or

frequency of the information exchanges between

nodes or clusters of nodes, in a given region of the

social network.
• Why use it? It could be a good criterion for evalu-

ating the fruitfulness of a given strategy of interac-

tions and exchanges between actors.
• How to define it? It is the rate and intensity of the

use of a given link between certain nodes in the

context of a given strategy.
• Where to use it? To design and evaluate

social strategies of science (policy of science,

knowledge management), to help to understand

some discoveries in some periods of history of

science.
• When to use it? When we are sure to have enough

data about the network and about the social and

individual strategies. This restriction can be a bot-

tleneck. Such optimized models of social networks

occurring in the construction of science can be used

in historical studies but also in prospective studies,

especially in those concerning the policy and man-

agement of scientific research.

6.6. Activity in the models of mind reading

After having presented a model of mind reading based on

the concepts of control theory where the ‘social interaction

loop’ is internally emulated in a cross-modal emulator (i.e.

a coupling between an egocentric emulator and an allo-

centric emulator, the second one representing the situation,

beliefs, intentions and actions of others), Gärdenfors con-

cedes that

‘It is clear that when modeling the higher levels of inter-

subjectivity with the aid of control theory, methodological

issues become pressing. The number of variables and the

level of complexity will be so high that it will become diffi-

cult to evaluate a model.’

(Gärdenfors,52 p. 235)

Of course, choosing control theory to model mind reading

is consistent with the Gärdenfors’ geometrical and topolo-

gical theory of conceptual spaces.53 However, it is signifi-

cant that when we shift to an alternative theory which

focuses on the massive modularity of mind, such as

Carruthers’, this kind of ‘self-monitoring module’44

becomes less convincing. Carruthers argues that:

‘Naive subjects are bad at reasoning about reasoning – at identi-

fying mistakes in reasoning, at theorizing about standards of good

reasoning, and at improving their own and other’s reasoning.’

(Carruthers,44 p. 184).

This is the reason why, according to him, even in the case

of mind reading, most people use heuristic ways of reason-

ing similar to those experimented by Gigerenzer and

Goldstein.36

• What is activity in this context? Activity is the total

number of events occurring in the coupled model

(the allocentric atomic model + the egocentric

atomic model) over a simulation time period. If we

adopt Gärdenfors’ view, activity awareness is opti-

mal when the optimal control due to a good choice

of the parameters of the allocentric emulator is

reached. If we adopt Carruthers’s view, in the con-

text of the mind reading question, we are invited to

adapt the heuristic models of activity tracking by

Gigerenzer and Goldstein36 in terms of activity

awareness.
• Why use it? It could lead models of mind reading

to more direct confrontation with experimental data

as in Jeannerod.54 For instance, it could help to

choose between a massive modularity approach

(Carruthers) or a topological one (Gärdenfors).
• How to define it? Activity appears here in a context

of activity awareness, similarly to the role of this

same concept in the context of collaborative soft-

ware. Activity awareness measures the degree of
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coincidence, or of efficiency, of a model of

another’s mind seen from the viewpoint of a given

mind.
• Where to use it? In cognitive sciences. Where it is

desirable to enhance our theory of the reasoning or

of the reacting of others: in strategy problems, for

the modeling of collaborative work, for the model-

ing of endomorphic agents.55

• When to use it? In general, activity awareness is

useful when a kind of optimal or ‘frugal’ awareness

is assumed to operate in a given faculty of the

mind.

6.7. Activity in the reasons of beliefs and activity
awareness in cognition

In his sociological theory of beliefs, Boudon56 has shown

that human minds often have what he calls ‘good reasons’

to believe what they believe. A ‘good reason’ is a reason

that leads an agent to a conclusion which he cannot induce

through any other nor more reachable reason, but which is

functionally (biologically, psychologically and/or socially)

advantageous for him, although he still can have some

doubts about the rational legitimacy of this ‘reason’.

Let us assume that a system can survive only if its

resource expenditure allows it to, i.e. only if it is functional

in this broad sense. The survival of the system is decided

through a benefit/cost ratio which has to be greater than 1.

In every context, it is possible to define the ‘benefit’ of the

system as the resources acquired and its ‘cost’ as the

resources expended. Activity can be defined as the number

of transitions of the model of the system. Hence, activity

can be a measure of the resources expended.

So, the activity awareness of the model of a cognitive

system can be used in a module of auto-evaluation operat-

ing at runtime: through that, the model of the cognitive

system can evaluate the achievement of its cognition while

cognizing, and make itself evolve the optimal way. In

other words, this principle of activity awareness could

enhance many of the already existing techniques that are

used in auto-adaptive simulations of cognition.

From this focus on the self-optimization of a cognitive

system through activity awareness, it follows that, in each

context, we will have to complete the list of our questions

and ask what is the kind of benefit (the resource) that can

be acquired.

1. In the case of models of inference, the evolution

will lead to frugal models and the resources

acquired will be of a biological (neurological)

nature.

2. In the case of belief revision, the model of the sys-

tem cannot waste too many resources in reconcil-

ing inconsistent beliefs. So it will have to evolve

toward systems that do only enough belief revision

to enable benefit/cost ratios ≥ 1, i.e. this in an

infrastructure, so just enough to enable the consis-

tency of beliefs to support frugal decision making.

In this context, the acquisition of resources is indi-

rect through support of decision making.

3. In the context of the social network, the benefit

can be considered at two distinct levels: at the net-

work level, this system cannot strain communica-

tion resources beyond satisficing the benefit/cost

ratio; at the individual level, this system cannot

strain communication resources beyond satisficing

the benefit/cost ratio. However, it is not always

clear how these ratios are manifested. For exam-

ple, how large can a social network grow?

4. In the context of mind reading, this functionality

requires high expenditure of mental resources.

Moreover, the kind of benefit can change accord-

ing to the kind of mental capacity modeled. For

example, the kind of benefit that could be acquired

could be the ability not to be outwitted by an

adversary, but not only (it could be the ability to

be easily mind read or not be read by other minds,

etc.). Nevertheless, a challenge could be to search

for a Universal Cognitive Modeler that could opti-

mize many different mental capacities at the same

time.

Finally, it appears that the kinds of benefit could change in

each context but not the principles which are at the basis of

such an optimal activity-aware system architecture. Most

of all, the modules of ‘activity measurement’ and ‘struc-

ture change’, as shown in Figure 10, will be central for a

sufficiently rich evaluation of the contributions of compo-

nents taking place in the ‘internal feedback’ module.

6.8. Life cycle of simulation in activity-based models
of beliefs and knowledge

As we can now understand, first of all, such models of

beliefs and knowledge traditionally tend to belong to the

‘modeling phase’ as it is presented in Section 1: the goal

of the psychologists of reasoning or of the epistemologists

is to model and to explain a given psychological task with

some validated model.

However, in a second step, as also appears in most of

the works we have quoted, and as it is explicitly shown in

the work of Gigerenzer and Goldstein,36 the psychologists

or epistemologists have to look for concurrent models that,

to be realistic, have to minimize execution times and even

maximize reusability. As such, their task is analogous to

that of the software engineers in their ‘engineering phase’:

they have to look for some optimized models too.

Subsequently, as they take into account the limited
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resources of the human mind, such optimized models can

be seen as good candidates for more realistic representa-

tions of what the human brain really does.

Finally, at the end of the simulation cycle, these more

realistic models of beliefs and knowledge construction can

be used for some real applications in AI. In this context

and for this aim, psychologists will have to choose the

most adapted model among the already efficient and rea-

listic models: so, they will enter a ‘decision-maker phase’

too.

Indeed, we can note that, in principle, it remains not

necessary to use a realistic model to perform some intelli-

gent task. Even if it is a good methodological principle in

AI, we do not have to assume that nature already has

explored and selected the most efficient heuristics for the

construction of reasonings and beliefs. Analogously,

modelers of reasoning can, to some extent, explore some

direct link between phase 2 and phase 3, without always

having to ground their models first on realism and on the

explanation of some strategies of reasoning already exist-

ing in nature (phase 1).

Conclusion

According to the conceptual tools used in each discipline,

different points of view on activity emerged based on defi-

nitions provided in Section 2:

• In Section 3, the activity concept is used in a CA

structure, where activity consists of two levels:

– activity in cells: activity corresponds to a state

change in a cell;

– activity in configurations: an activity configura-

tion consists of active and inactive cells.
• In Section 4, a biological characterization of the

activity concept, inspired from chemistry, corre-

sponds to a measure of exchanges (gas, liquids,

nutrients, molecules, etc.) and of transformations

(chemical transformations) which result in main-

taining the integrity of the object itself or the sys-

tem which it belongs.
• In Section 5, from an economical point of view, the

activity concept relates to agent rationality when

affecting scarce resources. It is a measure and a

modeling of sequences of rules activation.
• In Section 6, an epistemological consideration of

activity is considered, from a human-centric perspec-

tive, with the following possible multilevel usages:

– at the inference level, the activity concept is an

abstraction of mind activity; the activity con-

cept corresponds to a ranking of the most effi-

cient (active) algorithms emulating decisions;

– at the beliefs revision level, the activity concept

is a measure of mind activity, in doubts and

revisions of beliefs;

Figure 10. Activity-aware system architecture.
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– at the mind reading level, the activity concept

is an evaluation of the efficiency of a model of

other’s mind by a given mind.

– at the net centric social level, the activity con-

cept is the frequency of information

(ex)changes in/between nodes of a region in a

social network;

– at an awareness level, the Activity concept is

an auto-evaluation of cognition achievement,

through a ratio of resources expanded/acquired.

A three-level hierarchy can be built as an architecture

for constructing component-based systems:

1. Activity tracking: tracking activity, at the component

or configuration levels, allows simulator resources to

be optimized. This first layer can be considered as a

first physical/biological (Sections 4 and 5), material,

characterization of simulation models. Automatic

detection mechanisms reduce execution times.

Analyzing basic changes in activity can also enhance

model understanding (cf. Section 4).

2. Activity evaluation: using the built-in detection

mechanisms of level 1, activity can be measured as

the fractional time that a component contributes

(Section 6). Correlating contribution with outcome,

a credit can be attributed to components. Therefore,

a real measure of performance of components, in a

context, can be achieved. This allows for automatic

composition and re-use of components. In social

sciences, a direct analogy exists between activity

evaluation and the evaluation of rules, actions, deci-

sions, etc.of agents (Sections 2 and 3).

3. Activity awareness: considering cognitive systems

through the concepts of activity and activity track-

ing presents the advantage to let us see these sys-

tems from a dynamical point of view. A second

advantage could be to use this dynamical view-

point and representation to let the system find itself

its optimal design regarding its resource expendi-

ture (assuming that some resource expenditure is

always linked to the type of activity at stake). The

activity awareness of the model of a cognitive sys-

tem can be used in a module of auto-evaluation

operating at runtime (Section 6).

We believe that levels 1 to 3 constitute a cycle (activity

awareness mechanisms can be re-implemented partially or

totally at level 1, the component level, as built-in

mechanisms).
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