
Spatial Computing in MGS

Antoine Spicher1, Olivier Michel1, and Jean-Louis Giavitto2

1 LACL, Université Paris-Est Créteil,
61 av. du Général de Gaulle 94010 Créteil, France
{antoine.spicher,olivier.michel}@u-pec.fr

2 UMR 9912 STMS – Ircam & CNRS, UPMC, INRIA
1 place Igor Stravinsky, 75004 Paris, France

jean-louis.giavitto@ircam.fr

Abstract. This short paper motivates and introduces the tutorial on
MGS and spatial computing presented at UCNC 2012.

Keywords: unconventional programming paradigm, spatial computing,
MGS, topological collection, topological rewriting, dynamical systems with
a dynamical structure.

1 Spatial Computing

The notion of space appears in several application domains of computer science.
Spatial relationships are involved in computer aided design applications, geo-
graphic databases, image processing. . . to cite a few. In these applications, space
and spatial organization arise as the purpose or the result of a computation.

On the other hand, space can also play the role of a computational resource
(e.g., in parallel computation) or of a constraint to the computation itself (e.g.,
in distributed systems).

Spatial Computing is an emerging research field that recognizes that space
can be an input to computation or a key part of the desired result of the com-
putation [6, 3]. Computations are performed in space and concepts like position,
distance metric and shape matter. Space is then no longer an issue to abstract
away, but a first-order effect that we have to make explicit in programs, to use,
produce or optimize.

1.1 Spatial Computer in Physical Space

From the point of view of the computing devices, spatial computers are col-
lections of local computational devices distributed through a physical space, in
which: the interaction between localized agents is strongly dependent on the
distance between them, and the “functional goals” of the system are generally
defined in terms of the system’s spatial structure (e.g., formation control in
robotics, self-assembly, etc.).

Not all spatially distributed systems are spatial computers. The Internet
and peer-to-peer overlay networks may not in general best be considered as

ha
l-0

07
69

28
4,

 v
er

si
on

 1
 - 

30
 D

ec
 2

01
2

Author manuscript, published in "11th International Conference Unconventional Computation & Natural Computation (UCNC 2012).,
Orléans : France (2012)"

 DOI : 10.1007/978-3-642-32894-7_7

http://dx.doi.org/10.1007/978-3-642-32894-7_7
http://hal.archives-ouvertes.fr/hal-00769284
http://hal.archives-ouvertes.fr


spatial computers, both because their communication graphs have little relation
to the Euclidean geometry in which the participating devices are embedded, and
because most applications for them are explicitly defined independent of network
structure.

Spatial computers, in contrast, tend to have more structure, with specific
constraints and capabilities that can be used in the design, analysis and opti-
mization of algorithms.

Systems that can be viewed as spatial computers are abundant, both nat-
ural and man-made, and blur the distinction between “space as a result” and
“space as a resource”. For example, in wireless sensor networks and animal or
robot swarms, inter-agent communication network topologies are determined
by the distance between devices, while the agent collectives as a whole solve
spatially-defined problems like “analyze and react to spatial temperature vari-
ance” or “surround and destroy an enemy.” Similarly, in biological embryos, each
developing cell’s behavior is controlled only by its local chemical and physical
environment, but the eventual structure of the organism is a global property of
the dynamic organization of the cellular arrangement.

1.2 Abstract Spaces in Computation

The elements of a physical computing system are spatially localized and when a
locality property holds, only elements that are neighbors in physical space can
interact directly. So the interactions between parts are structured by the spatial
relationships of the parts.

However, even for non physical systems, usually an element does not interact
with all other elements in the system. For instance, in a program3, from a given
element in a data structure, only a limited number of other elements can be
accessed [11]: in a simply linked list, the elements are accessed linearly (the
second after the first, the third after the second, etc.); from a node in a tree,
we can access the father or the sons; in arrays, the accessibility relationships
are left implicit and implemented through incrementing or decrementing indices
(called “Von Neumann” or “Moore” neighborhoods if one or several changes are
allowed).

Thus the interactions between the elements of a system induce a neighbor-
hood relationship that spans an abstract space. We will show that the structure
of the interactions has a topological nature: the set of elements can be organized
through the interactions as an abstract simplicial complex [13] which is a spatial
representation of the interactions in the system.

3 The importance of space in the computation process itself has long been recognized,
for example with the use of spatial relationships to structure and reason about
programs; see [5] for an early reference.

ha
l-0

07
69

28
4,

 v
er

si
on

 1
 - 

30
 D

ec
 2

01
2



2 MGS

MGS is an experimental declarative programming language [10, 12] used as a
vehicle to experiment, to investigate, and to validate new concepts and tools for
spatial computing. MGS relies on 3 ideas:

– a data structure is a field, or more precisely, a topological chain;
– a computation is a chain transformation;
– chain transformations can be specified using a new kind of rewriting.

A field is a classical notion in physics that associate a value to each point of
a space (the temperature in a room is a field). A topological chain is a similar
notion: it associates a value to the parts of a space built by gluing elementary
parts following some constraints. The difference is that the underlying space is
built by associating parts of various dimensions and is not restricted to be a set
of points (points are elementary parts of zero dimension).

We use the term topological collection to stress the spatial view on data
structures, and also because we relax some of the mathematical constraints used
to give a nice algebraic structure to topological chains. Topological collections
can be used to model a physical space or a logical one: we will give some examples
where topological collections are used to model musical processes or to solve
analogy, without referring to the actual euclidean space.

MGS embeds the idea of topological collections and their transformations into
the framework of a simple dynamically typed functional language. Collections
are just new kinds of values. MGS proposes several construction to build new
topologies from existing ones and the rich type structure has proven useful to
face various simulation problems in systems biology, chemistry, synthetic biology,
etc.

Transformations are functions acting on collections. They are defined by a
specific syntax using rewriting rules. They are first-class values and can be passed
as arguments or returned as the result of an application. Such mechanism enables
the definition of powerful polytypic operators [17], as for example the generic
definition of discrete analogs of the differential operators used to manipulate
fields in physics [16].

2.1 Computability versus Expressive Power

Topological collections and their transformation enable the unification in a same
programming language of several biologically or biochemically inspired compu-
tational models, namely: Gamma [1] and the CHAM, P systems [20], L sys-
tems [21], cellular automata [27] and their variants. These models can be rephrased
as the iteration of simple transformations on a topological collection; the differ-
ence coming from the topology of the space underlying the collection. However,
we do not claim that we have achieved a useful theoretical framework encompass-
ing the cited formalisms. We advocate that few notions and a single syntax can
be consistently used to allow the merging of these formalisms for programming
purposes.

ha
l-0

07
69

28
4,

 v
er

si
on

 1
 - 

30
 D

ec
 2

01
2



The field of unconventional computing models, which is devoted to the study
of the complexity of problems using a predefined set of (more or less exotic) basic
operations, is not under focus here. The development of MGS is related to the
field of unconventional programming models: MGS is used to study the expressive
power of the spatial metaphor. The literature on programming language contains
a wealth of informal claims on the relative expressive power of programming
languages. However, this very notion remains difficult to formalize: for instance,
we cannot compare the set of computable functions that a programming language
can represent since nearly all programming languages are universal. As far as we
know, there are only a few attempts to formalize this notion of expressiveness,
see [7, 19]. These works mainly rely on the idea of translating a language into
another, using a limited and predefined form of translation (if any translation is
allowed, a universal language can be the target of the translation of any other
one). However, these notions fail to explain why object-oriented languages (like
C++ or Java) are usually considered as more expressive than their imperative
counterpart (like C).

The spatial metaphor has been proven useful at least at two levels in the
development of new programming model. It is an heuristic to develop alterna-
tive mechanisms in programming languages or to invent new algorithms (for
instance, a variety of successful established techniques for self-organization and
self-adaptation arise from explicitly spatial metaphors, e.g., self-healing gradi-
ents). The spatial metaphor proposes also new techniques originated in topology
and geometry to specify and to analyze programs. These tools depart from the
logical foundations of computer science and put forward alternative and com-
plementary views in the nature of programming and computation.

3 Applications to (DS)2

In fine, unconventional programming languages have to be validated on real
applications. A target application domain for MGS is the modeling and simulation
of dynamical systems and especially those that exhibit a dynamic structure [10]
(in short (DS)2 for “Dynamical System with a Dynamic Structure”). This kind
of dynamical systems is very challenging to model and simulate. For instance,
many biological systems, e.g. in biological development, can be viewed as a
dynamical system in which not only the values of state variables, but also the
set of state variables, its organization and the evolution function, change over
time. New programming concepts must be developed to ease their modeling and
simulation.

Applications of MGS in the biological field are described for example in [22, 23,
2, 18, 26, 8]. The relations between MGS and the simulation of discrete dynamical
systems are investigated in [25, ?], the link between the MGS rule application
strategies and stochastic simulation is sketched in [24].

MGS has also been used in other application area like self-assembly [15], auto-
nomic computing [14] or automatic music analysis [4]. “Conventional” questions

ha
l-0

07
69

28
4,

 v
er

si
on

 1
 - 

30
 D

ec
 2

01
2



still apply to “unconventional” program, and for instance, the model-checking
of a small fragment of MGS is presented in [9].

All the examples presented during the tutorial are examples of actual MGS

programs. The MGS interpreter is freely accessible from the MGS home page at
http://mgs.spatial-computing.org.

Acknowledgements

We would like to express our gratitude to H. Klaudel, F. Delaplace and F.
Pommereau at the Univ. of Evry, P. Prusinkiewicz at the Univ. of Calgary,
and J. Cohen at the Univ. of Nantes for numerous discussions on biological
modeling and formalization. We benefited from inspiring interactions with the
unconventional computing community and especially S. Stepney at the Univ. of
York, C. Teuscher at Portland State Univ., J. Durand-Lose at Univ. of Orleans,
the membrane computing community with G. Paun at Univ. of Sevilla and M.
Gheorghe at the Univ. of Sheffield. The chemical model of computation has
been often challenging and we thanks J.-P. Bantre, T. Priol and P. Fradet at
INRIA. Annick Lesne, R. Doursat, P. Bourgine and the french complex system
community has provided a lot of motivations and insights. And great thanks are
obviously due to the first supporters of the spatial computing movement: J. Beal
at BBN, F. Gruau at Univ. of Paris South, S. Dulman and many others. This
work has been funded by the CNRS, the Univ. of Evry, the Univ. of Paris-Est,
Ircam, Inria and the ANR projects Autochem and SynBioTIC.

References

1. J.-P. Banâtre, P. Fradet, and D. Le Métayer. Gamma and the chemical reaction
model: Fifteen years after. LNCS, 2235:17–44, 2001.

2. P. Barbier de Reuille, I. Bohn-Courseau, K. Ljung, H. Morin, N. Carraro, C. Godin,
and J. Traas. Computer simulations reveal properties of the cell-cell signaling
network at the shoot apex in Arabidopsis. PNAS, 103(5):1627–1632, 2006.

3. J. Beal, S. Dulman, K. Usbeck, M. Viroli, and N. Correll. Organizing the
aggregate: Languages for spatial computing. CoRR, abs/1202.5509, 2012.
http://arxiv.org/abs/1202.5509.

4. L. Bigo, J.-L. Giavitto, and A. Spicher. Building topological spaces for musical
objects. In Mathematics and Computation in Music, volume 6726 of LNCS, Paris,
France, Juin 2011. Springer.

5. E. G. Coffman, M. J. Elphick, and A. Shoshani. System deadlocks. Computing
Surveys, 3(2):67–78, 1971.

6. A. De Hon, J.-L. Giavitto, and F. Gruau, editors. Computing Media and Languages
for Space-Oriented Computation, number 06361 in Dagsthul Seminar Proceed-
ings. Dagsthul, http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=

2006361, 3-8 september 2006.

7. M. Felleisen. On the expressive power of programming languages. Science of
Computer Programming, 17(1-3):35–75, Dec. 1991.

ha
l-0

07
69

28
4,

 v
er

si
on

 1
 - 

30
 D

ec
 2

01
2



8. J.-L. Giavitto. The modeling and the simulation of the fluid machines of syn-
thetic biology. In M. Gheorghe, G. Paun, G. Rozenberg, A. Salomaa, and S. Ver-
lan, editors, Membrane Computing - 12th International Conference, CMC 2011,
Fontainebleau, France, August 23-26, 2011, Revised Selected Papers, volume 7184
of LNCS, pages 19–34. Springer, 2011.

9. J.-L. Giavitto, H. Klaudel, and F. Pommereau. Integrated regulatory networks
(irns): Spatially organized biochemical modules. Theoretical Computer Science,
431(0):219 – 234, 2012.

10. J.-L. Giavitto and O. Michel. Mgs: a rule-based programming language for complex
objects and collections. In M. van den Brand and R. Verma, editors, Electronic
Notes in Theoretical Computer Science, volume 59. Elsevier Science, 2001.

11. J.-L. Giavitto and O. Michel. Data structure as topological spaces. In Proceedings
of the 3nd International Conference on Unconventional Models of Computation
UMC02, volume 2509, pages 137–150, Himeji, Japan, Oct. 2002. LNCS.

12. J.-L. Giavitto and O. Michel. The topological structures of membrane computing.
Fundamenta Informaticae, 49:107–129, 2002.

13. J.-L. Giavitto, O. Michel, J. Cohen, and A. Spicher. Computation in space and
space in computation. In Unconventional Programming Paradigms (UPP’04), vol-
ume 3566 of LNCS, pages 137–152, Le Mont Saint-Michel, Sept. 2005. Spinger.

14. J.-L. Giavitto, O. Michel, and A. Spicher. Software-Intensive Systems and New
Computing Paradigms, volume 5380 of LNCS, chapter Spatial Organization of the
Chemical Paradigm and the Specification of Autonomic Systems, pages 235–254.
Springer, november 2008.

15. J.-L. Giavitto and A. Spicher. Systems Self-Assembly: multidisciplinary snapshots,
chapter Simulation of self-assembly processes using abstract reduction systems,
pages 199–223. Elsevier, 2008. doi:10.1016/S1571-0831(07)00009-3.

16. J.-L. Giavitto and A. Spicher. Topological rewriting and the geometrization of
programming. Physica D, 237(9):1302–1314, jully 2008.

17. J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury, E. Meijer,
and T. Sheard, editors, Advanced Functional Programming, volume 1129 of Lecture
Notes in Computer Science, pages 68–114. Springer, 1996.

18. O. Michel, A. Spicher, and J.-L. Giavitto. Rule-based programming for integrative
biological modeling – application to the modeling of the λ phage genetic switch.
Natural Computing, 8(4):865–889, Dec. 2009.

19. J. C. Mitchell. On abstraction and the expressive power of programming languages.
In TACS’91: Selected papers of the conference on Theoretical aspects of computer
software, pages 141–163, Amsterdam, The Netherlands, The Netherlands, 1993.
Elsevier Science Publishers B. V.

20. G. Păun. From cells to computers: computing with membranes (P systems).
Biosystems, 59(3):139–158, March 2001.

21. G. Rozenberg and A. Salomaa. Lindenmayer Systems. Springer, Berlin, 1992.
22. A. Spicher and O. Michel. Using rewriting techniques in the simulation of dynami-

cal systems: Application to the modeling of sperm crawling. In Fifth International
Conference on Computational Science (ICCS’05), part I, volume 3514 of LNCS,
pages 820–827, Atlanta, GA, USA, May 2005. Springer.

23. A. Spicher and O. Michel. Declarative modeling of a neurulation-like process.
BioSystems, 87(2-3):281–288, Feb. 2007.

24. A. Spicher, O. Michel, M. Cieslak, J.-L. Giavitto, and P. Prusinkiewicz. Stochastic
p systems and the simulation of biochemical processes with dynamic compart-
ments. BioSystems, 91(3):458–472, March 2008.

ha
l-0

07
69

28
4,

 v
er

si
on

 1
 - 

30
 D

ec
 2

01
2



25. A. Spicher, O. Michel, and J.-L. Giavitto. A topological framework for the speci-
fication and the simulation of discrete dynamical systems. In Sixth International
conference on Cellular Automata for Research and Industry (ACRI’04), volume
3305 of LNCS, Amsterdam, October 2004. Springer.

26. A. Spicher, O. Michel, and J.-L. Giavitto. Understanding the Dynamics of
Biological Systems: Lessons Learned from Integrative Systems Biology, chapter
Interaction-Based Simulations for Integrative Spatial Systems Biology. Springer
Verlag, Feb. 2011.

27. J. Von Neumann. Theory of Self-Reproducing Automata. Univ. of Illinois Press,
1966.

ha
l-0

07
69

28
4,

 v
er

si
on

 1
 - 

30
 D

ec
 2

01
2


