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1 Introduction

MGS is a high-level programming language dedicated to the modeling and simulation of biological
systems. Biological systems, due to their complex mechanisms and to their highly concurrent
nature, are systems very difficult to model.

The local expression of evolution rules of biological systems coupled with the modification of
the structure of the described systems (we call these systems dynamical systems with a dynamic
structureor (DS)2 [GGMP02], that is, those which structure evolves along time) leads to many
problems in the description and manipulation of biologicalsystems. To address these problems,
we propose to use rewriting techniques on complex and dynamical data structures.

Rewriting systems (RS), initially developed for the formalization of equational reasoning, are
also used to express changes of states in a process. The ability of RS to specify the changes
of a sub-part of an object by another one tends to identify RS asa formalism that suits well to
describelocal evolution rules. The simulation of a biological system can be seen as the iterated
application (following some given strategy) of rules from aset of rewriting rules on a data structure
representing the current state of the system.

To add some expressivity to rewriting systems (that is, to gofurther than terms that only allow
the representation of tree-like organizations), we have developed new rewriting techniques applied
to more complex data structures that we calltopological collections. The rule applicationstrategies
of the transformations allow to specify the interaction mode of the sub-parts of the biological
system.

The topological point of view considers a data structure as aset of organized elements follow-
ing a neighborhood relationship that defines which elementsof the structure are accessible from
a given element. Thetransformations, following a local point of view, are functions allowing the
handling of topological collections through the definitionof rewriting rules based on the neighbor-
hood relationship of the collection.

The aim of theMGS project is to integrate the formalism of rewriting systems in a program-
ming language for the modeling and simulation of(DS)2.

2 Motivations and Objectives

In this paper, we are interested in the use of rewriting, a computer tool, as a starting point for the
development of a set of tools for the modeling and simulationof biological phenomenons.

Modeling in biology raises many questions about the tools touse for the description of phe-
nomenons. Indeed, the systems are complex and highly structured, with many sub-models inter-
acting at various scales (in time and space). Furthermore, they often exhibit an additional feature:
their behaviour depends on the structure (spatial or functional) itself and this structure is induced
by the behavior.



From a computer science point of view, the phase space of these systems cannot be defineda
priori but must be computed together with the state of the system. The phase space becomes a
variable of the system itself (see [Gia03]).

Many computation models have been inspired by these problems raised by biological systems.
We can name the CHAM formalism and the Gamma [BFM01] language which take their origins
in chemistry, P̆aun’s systems [P̆au01] (or P systems) corresponding to the metaphor of cell’smem-
brane, or Lyndenmayer’s systems [RS92] (or L systems) inspired by the growth of plants. All these
models share the common property that they allow the specification of systems in adiscrete, local
anddeclarativemanner:

• discrete: In spite of their strength, continuous formalisms make theexpression of the dis-
crete nature of the biological systems very difficult. Furthermore, a discrete approach leads
to adopt an algebraic point of view for the systems that fits well to the language theory
domain, used for the different models above.

• local: The high complexity of the systems in biology usually leadsto problems for their
description. Nevertheless, the description of the evolution rules consists in the straightfor-
ward specification of the local interactions between the elements of the system. The global
behavior can be simulated byintegratingthe local laws on the whole system.

• declarative: A declarative style leads to a specification of the models close to a mathematical
formalism: the description of the model is small and expressive, theoretically well founded
and close to the concepts used by the modelers. Furthermore,formal techniques can be used
to prove the correctness or to check some properties of the biological model.

Computation models like L systems, P systems or the abstract chemistry can be seen as a spe-
cific form of rewriting to be applied on different spatial structures: Venn diagrams for P systems,
tree-like structures for L systems, a multi-set for abstract chemistry. In theMGS project, we are
interested in these different kind of rewriting, to their unification or generalization, and to their use
for the modeling and simulation of biological processes.

In this paper, we start by presenting the rewriting systems and their use for the simulation of
dynamical systems. TheMGS formalism will then be introduced for the modeling of theλ phage
genetic switch.

3 Rewriting and Simulation

In this section, we show how rewriting can be used for the simulation of dynamical systems(DS),
that is, systems which states evolve in time.

3.1 A Medium for Computation

A rewriting system[DJ90] is a tool used for the substitution of a part of an entity by another. In
computer science, the entities subject to this process are,in general, expressions represented by
formal trees. A RS is defined by a set of rules, and each ruleα → β specifies how a sub-part of
the expression that is matched by the pattern is replaced by anew part computed from expression
β. We’ll be using the terms ofleft hand sideandright hand sideof a rule for respectivelyα andβ.

The writinge→∗ e′ means that expressione is transformed by a set of rewriting steps ine′. In
other terms, there is a sequence of expressionse1, . . . ,en such thate = e1, e1 → e2, e2 → e3, . . . ,
en−1 → en anden = e′. This sequence is called aderivationof e. The transformation ofe in e′ can
be seen as the result for a computation defined by the rewriting rules; the derivation corresponds to
the sequence of the intermediate results. The notion of derivation allows to define some properties
for a set of rules:



• A set of rulesterminatesif all the possible derivations for any expression are of finite length.
This means that for each expressione, there are some expressionse′ such thate →∗ e′ and
where no rule can be applied toe′.

• A set of rules isconfluentif, for any expressione, there are two derivations leading to
expressionse′1 ande′2 with e→∗ e′1 ande→∗ e′2, then, there exists an expressione′ such that
e′1 →

∗ e′ ande′2 →
∗ e′.

• If a rewriting systemterminatesand isconfluent, then, for all expressione there is aunique
normal formfor that expression.

3.2 Rewriting and Simulation

In order to be able to go from an informal description of a biological phenomenon to a computable
model, many authors [Man01, FMP00, EKL+02, GGMP02] have proposed to represent the state
of a biological system by a termt of the form

t1 + t2 + · · ·+ tn

where a sub-termti represents a biological entity or a message (signal, command, information,
action, etc.) sent to an entity. The simulation of the evolution of the biological system is done by
rewriting of the term. Rules of the form

e + m→ e′ + m′

are used. The left hand side corresponds to a messagem and to the entitye which m is sent to;
the right hand side specifies the new statee′ of the entity and (eventually) some new messagesm′.
Note that the direct interaction between entities can be specified by rules of the form

e1 + e2 → e′1 + e′2

and the creation of a new entity by a rule of the form

e→ e′ + e′′

etc.
To summarize, the notions developed for RS and DS can be related in the following way:

• a state is represented by a term and a sub-term corresponds tothe state of a sub-system;

• the evolution rule is coded by the rules of the RS:

– the left hand side of the rule matches a sub-system whose elements are in interaction,

– the right hand side of the rule computes the result of this interaction.

Intuitively, we can deduce that, given the state of a DS through expressione, a derivation ofe is
understood as the description of the evolution of the systemalong time; we speak of thetrajectory
of the system.

Choosing RS as a formalism to describe DS implies to consider the handling of time and space
from the discrete point of view, as well as local.

Discrete Time. The handling of time is a key point in the modeling of a DS. The model of
time that is naturally induced by the use of rewriting techniques is adiscretetime, event based: the
application of a rule corresponds to an atomic modification of the state of the system and to the
progression of time.



Locality of Space. The + operator used above, connecting entities and signals expresses
the spatial and/or functional organization of the modeled system. It is used to denote the sub-
parts of the system that are in interaction, as well as to specify the way that the sub-systems are
organized. Consequently, the rules represent the local evolutions laws of the DS. Furthermore, the
organization of the structures specified in the left hand side and in the right hand side of the rule
may differ, producing a modification of the system’s structure. This allows the modeling of a class
of DS particularly complex to describe and simulate,dynamical systems with a dynamic structure.

Nevertheless, even if the parallel between RS and(DS)2 is easy to observe, it is not straightfor-
ward to set up in a real environment. As a matter of fact, standard rewriting systems are aimed at
a specific data structure, namely terms. But the term structure does not allow to represent states of
a system that are not always structured in a tree-like way buthighly and arbitrarily structured. The
terms are not expressive enough to take into account these organisations. One of the key point is
to extend the RS to data structures arbitrarily complex. We’ll detail in the next section how this
extension has been made possible through the development oftheMGS language.

4 A Brief Description of the MGS Formalism

The goal of theMGS project is to study and develop a programming language for the modeling
and the simulation of phenomena which structures are dynamic. Domain specific languages are
usually declarative and organized around a small kernel, define new abstractions and notations
targeted towards new specific application domains. They consequently allow to take into account
the modeled phenomena in a more concise way with a high ability to reuse developed code.

The fundamental point ofMGS is to allow the specification of those states using a new data
structure [GM02] based on the topological organization of the modeled systems. The evolution
function of these systems corresponds to a function that transforms the state of the system. The
specification of these evolution functions is simplified by the definition of a case-based function
based on a powerful pattern language.MGS can be considered a standard functional language
extended with a new data structure, thetopological collections, and a new way to define func-
tions, thetransformations. An alternative point of view is to interpret the transformations as the
application of rules specifying the local evolution of a state seen as a complex data structure.

4.1 Topological Collection

One of the key features of theMGS language is its ability to describe and manipulate entities
structured by anabstract topology. Topological collectionsare a unified view of the notion of
data structure [GM02]. In this framework, a data structure is defined as an aggregate of elements
organized with a neighborhood relationship. The structureof the defined topological space allows
to specify the organization of the data structure.

Topological Collection and Representation of the State of a (DS)2. Topological collections
suits well to the representation of the states of a complex dynamical system. The elements of a
collection are the atomic elements of the system.

4.2 Transformations

Topological collections represent an adequate medium to extend RS. Indeed, the neighborhood
relationship gives a local point of view of the organizationof the elements. Thetransformations
extend the notion of rewriting systems to structures different than trees, and are used to specify the
evolution function of the modeled DS. The transformation ofa topological collectionS consists in
applyinga set oflocal rewriting rules. A rewrite ruler specifies the substitution of a sub-collection



by another sub-collection. The application of a ruleσ ⇒ f(σ, ...) on collectionS : (1) selects by
a matching algorithm a sub-collectionSi of S corresponding to an instantiation ofpatternσ, (2)
computes a new collectionS ′

i as the evaluation of the application of functionf onto Si and its
neighborhood, and (3) specifies the insertion ofS ′

i in place ofSi in S.

The Matching Language. Patternσ of the left hand side of the rule specifies a sub-collection;
we represent here the occurrence of an interaction whose generic form is given byσ. This sub-
collection can have an arbitrary shape, thus making its characterization delicate. The expressivity
of the pattern language whereσ is defined, corresponds to the class of sub-collections, andthere-
fore of interactions, that we want to specify.

MGS allows the use of two different pattern languages: the first one, thepatches, is very
expressive but complex to use; the other one, thepathsis less expressive but easier to use. This
last language consists in the sequential enumeration of neighbor elements in the collection. Such
an enumeration if called apath. In the rest of the paper, we’ll only consider this language.

Substitution. The right hand side of the rule specifies a collection that replaces the sub-collection
matched by the pattern specified in the left hand side of the rule. Once again, the specification of
such a collection is not an easy task.

Nevertheless, there is an alternative point of view in the case of the path matching: the suc-
cession of the patterns describing a sequence of elements, the right hand side of a rule can be an
expression that also evaluates to a sequence of values. The substitution is then done element-wise:
elementi in the matched pattern is replaced by theith element in the right hand side of the rule.
This point of view allows a very concise expression of the rules.

Rule Application Strategy. We have just briefly described one rule application (matching of
the left hand side and substitution by the right hand side). Nevertheless, to have the collection
evolve, it is required to iterate the application of the rules on the whole system. Many problems
of “collisions” arise; indeed, what should be selected if a rule allows to match more than sub-
collection, or, if a sub-collection can be matched by more than a rule ?

The rule application strategydeals with those conflicts: it implies on one side the number of
sub-collection to match (whatever the rule), emulating thus synchronous or asynchronous evolu-
tions and on the other side the priority between the different rules.

MGS has many application strategies to allow an easy programming of most of the possible
evolutions of the model.

The default strategy of theMGS language prototype is to make amaximal parallelmatching
with a priority on the rules, following the approach adoptedin Lindenmayer’s systems [LJ92] that
allows the maximal parallel rewriting on strings.

Even if this strategy is very close to a biological metaphor that would expect all different
interactions to happen in parallel, it does not allow the description of complex models relying on,
for example, stochastics properties. The next section focuses on the description of an application
strategy suits well to discrete, stochastic, chemical simulations, used in the specification of theλ
phage genetic switch.

5 The Lambda Bacteriophage in MGS

5.1 Abstract Chemistry

Abstract chemistryis a computation procedure inspired by chemical reactions.The initial intuition
of the computation paradigm is that the state of a chemical solution can be represented by amulti-
set: a multi-set is a set where multiple occurrences of the same element may occur, in the same



way that many molecules of the same species are present in thesolution, establishing therefore a
concentration of the species.

Multi-sets can be represented by terms whose formal building operator+ (introduced in sec-
tion 3.2) iscommutativeandassociative. For example, ifa, b andc represent chemical species,
expression(a + b) + (b + c) evaluates a multi-set containing one occurrence ofa andc and two of
b. Associativity and commutativity allow respectively to remove the parentheses and to permute
the operands of the+ operator. Therefore

(a + b) + (b + c) = a + b + b + c = a + b + c + b = . . .

Commutativity and associativity simulate a Brownian motion of the multi-set elements such
that two elements may encounter at any time. So, computing using these multi-sets consists in
applyingchemical reactions, represented by rewriting rules, according to the elementscollisions.
For example, rules:

r1 : a + a→ a + a + b r2 : a + b→ a + b + b r3 : b + b→ b + b + a

represent catalytic reactions of second order between molecules of typea andb (a collision of two
molecules catalyse the formation of a third one, the two initial molecules being not consumed).

5.2 Abstract Chemistry in MGS

Abstract chemistry is straightforward using the notions provided byMGS.

A Multi-Set Seen as a Topological Collection. The chemical soup is represented with a multi-
set. As for all standard data structures, a multi-set can be described through a local neighborhood
between the elements. Here, commutativity and associativity allow all elements to collide. We then
define a topological collection where each element is neighbor of all the others, the neighborhood
being the possibility for two elements to react.

Reaction and Transformation. As stated before, a chemical reaction can be translated as a
rewriting rule. The set of rules that is taken by a chemical solution, can therefore be specified as
a MGS transformation. As an example, if we take rulesr1, r2 andr3 of the preceding paragraph,
their translation inMGS is straightforward:

trans catalytic = {
r1 : ‘a, ‘a => ‘a, ‘a, ‘b ;
r2 : ‘a, ‘b => ‘a, ‘b, ‘b ;
r3 : ‘b, ‘b => ‘a, ‘b, ‘b

}

Thetrans keyword states that a new transformation whose name iscatalytic is defined. The
three rules of the transformation are identical to the preceding rewriting rules, at the difference that
the operator of construction+ is replaced byMGS’s neighborhood’s operator that is the comma
(introduced in the framework of the topological collections and the matching of paths). The first
rule states that if an entity whose value is‘a (it is a constant value) is in the neighborhood of a
second entity of value‘a, then this path can be rewritten in the sequence‘a, ‘a, ‘b, where
the two entities of type‘a remain, and where a new kind of species,‘b, is introduced.



5.3 Abstract Chemistry for the Simulation of a Chemistry Soup

The usual strategy used in artificial chemistry (in an algorithmic framework for example) is the
maximal parallel strategy proposed as the default strategyin MGS. Nevertheless, this strategy is
not adequate for the description and simulation of "real" chemical reactions because it does not
take into account the different kinetics of the chemical reactions.

A standard stochastic strategy allows to parametrize each rule by an application probability.
This is found inMGS as well as in other languages, like Elan [BK02] for example. Wepropose in
the next section a specialization of this strategy to take into account the modeling and simulation
of stochastic biochemical systems.

The presence of stochastic phenomenon in a large number of physical system is no longer
to be proved. These last years, a growing number of researchers have studied randomness and
noise present in biological systems. The interested readershould refer to [MSD04] where the
detail is given of many stochastic phenomena happening in biology, and this from the molecular
level to the cellular level. Before presenting the integration of the SSA (standing forStochastic
Simulation Algorithm) in MGS, we introduce some mathematical notions (in a form very close to
the presentation made in [MSD04]) to help its understanding.

5.3.1 Chemical Reactions and Master Equation

The behavior, along time, of a spatially homogeneous soup ofmolecular species can be described
by a chemical equation called themaster equation[Gil77] (ME). This ME describes the transition
of the system from a state to another in probabilistic terms.StateX of the system is supposed to
be given by a concentration of each of the chemical products in the soup. The evolution ofp(X, t),
the probability of the system to be a stateX = (. . . , xi, . . . ) at timet by

p(X, t + ∆t) = p(X, t)[1−
N

∑

j=1

(αj∆t)] +
N

∑

j=1

βj∆t

wherexi is the amount of chemical speciesi in reaction in the system;N is the number of reactions;
αj∆t the probability that, the system being in stateX at timet, thej reaction takes place between
time t andt+∆t; βj∆t the probability that thej reaction puts the system in stateX at timet+∆t.

When∆t goes to0, we get the classical form of the ME

∂p(X, t)

∂t
=

N
∑

j=1

βj − p(X, t)
N

∑

j=1

αj

One can notice that the transition of a state of the system is described through the change of
probabilities of the system to be found in a given state. The ME approach consists in trying to
describe a set of equations for each possible transition andto solve themsimultaneously. It is quite
easy to generate a single trajectory, but when the dimensionof the problem gets higher, the possible
trajectories face a combinatorial explosion and the problem becomes intractable. A solution to this
problem is proposed by Gillespie [Gil77] who, rather than writing explicitly the ME, produces the
trajectories in choosing thereactionsand theelapsed timesince last reaction occurred according
to the probability distributions such that the probabilityof producing a given trajectory be exactly
the same as the solution of the ME.

5.3.2 Gillespie’s Two Algorithms

Two algorithms are proposed in [Gil77] to solve the ME described above, by making the hypothesis
that all chemical species are spatially homogeneously distributed. These algorithms are called SSA



for Stochastic Simulation Algorithm. At each time-step, the chemical system is in a single and
unique state. The algorithm simulates the temporal evolution of the system by computing when
and which reaction should take place.

We suppose that the system is in stateα at timet, that it is composed ofM chemical species
that can interact followingN chemical reactions. We denote reactionsRµ, with µ ranging from1
to N . We then define

• P (τ, µ) the probability that the next reactionRµ takes place in the infinitesimal time interval
(t + τ, t + τ + dτ);

• cµ thestochastic reaction constant1 of reactionRµ;

• hµ the number of distinct molecular combinations that can activate reactionRµ;

• aµ the propensity function of reactionRµ;

• aµdt = hµcµdt the probability that a reactionRµ takes place in the interval(t, t + dt).

Gillespie proved that
P (τ, µ)dτ = aµe

−τΣjajdτ (1)

This equation leads to a first straightforward Gillespie’s algorithm calledfirst reaction method. It
consists in choosing an elapsed timeτ for each reactionRµ according to the probabilityP (τ, µ).
The reaction with the lowest elapsed time is selected and applied on the system making its state
evolve. A new probability distribution is then computed forthis new state and the process is
iterated.

Gillespie also proposed to separate (1) into two independent probability distributions given by
the following equations

P (µ) =
aµ

∑

j aj

(2)

P (τ)dτ =
∑

j

aje
−τΣjajdτ (3)

Equation (2) computes the probability for reactionRµ to be the next reaction to take place; equa-
tion (3) takes into account the amountτ of time elapsed to compute the time when the reaction did
occur. By using a random number generator and by deriving these two probability distributions, we
get the second Gillespie’s algorithm called thedirect method. Difference between both methods
stands in the selection of the reaction to be applied. For this second version, the elapsed time and
the reaction are independently computed with respect to distributions (2) and (3). This procedure
is more efficient because only two random numbers have to be computed againstN (one for each
reaction) for the first version.

5.3.3 Integration of Gillespie’s Algorithm in MGS

MGS integrates thefirst reaction methodas an additional stochastic strategy. Let us have a look
on how to use it in the example of coupled auto-catalytic equations of Lotka2. The reaction rules,
together with their ownstochastic reaction constantsare the following:

X + Y1 → X + Y1 + Y1 with C = 0.001

1Computing the stochastic constant is one of the hardest taskfor who wishes to use SSA for the modeling and
simulation of biochemical systems. The interested reader should refer to [DCBD03, ZDCBD03] that describes two
experiences in that field.

2Studied later by Volterra, after the first world war as a modelfor the study of an eco-system of prey-predator.
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Figure 1: Results of the simulation, with Gnuplot, of the Lotka equations for two sets of different
parameters. The oscillations are coupled with the available food‘X. When food is no longer there,
Y1 are rapidly overtaking.

Y1 + Y2 → Y2 + Y2 with C = 0.01
Y2 → Z with C = 10

First rules express that a given preyY1 reproduces by feeding a certain kind of foodX that remains
constant (X is supposed to be an infinite resource). Second rule states that a given species of
predatorY2 reproduces by feeding from speciesY1; the last rule expresses the disappearance of
speciesY2 by natural causes.

A stochastic reaction constant has to be given to each rule, which corresponds to the average
probability that a particular combination of molecules will interact in the next infinitesimal time in-
tervaldt. The expression of these equations inMGS is straightforward: molecules are represented
by symbols and the constants by theC parameter of the rules:

trans lotka_volterra = {
‘X, ‘Y1 ={ C = 0.001 }=> #2 ‘Y1, ‘X;
‘Y1,‘Y2 ={ C = 0.01 }=> #2 ‘Y2;
‘Y2 ={ C = 10 }=> ‘Z

}

The application of the transformation to an initial state requires to use thestrategy option
whose value has to be set to‘gillespie:

lotka_volterra[iter = fun _ -> (tau == 5.0),
strategy = ‘gillespie
](#1000 ‘X, #100 ‘Y1, #100 ‘Y2, bag:()) ;;

Figure 1 gives the result of two simulations of the model.
The initial state is a multi-set because it is required to fulfill Gillespie’s hypothesis of having

an homogeneous soup; this is verified in the case of a multi-set topology [FMP00]. Each rule
application incrementsMGS system variabletau by the computedτ value. During the application



of the transformation, the value oftau is available anywhere in the transformation to do any kind
of computation. The iterations above stop as soon astau reaches or goes over5. The use ofiter
allows to have a fine control over the number of applied transformations.

TheC options in the expression of the rules are used byMGS to compute the new value ofτ
after each rule application. The algorithm is:

1. for each ruleRµ, according to the path pattern of the rule, the value of theHµ function
is computed (for example, for the first ruleHµ = |‘X| ∗ |‘Y1| where|‘X| represents the
number of occurrences of‘X in the collection),

2. for each rule, the valueAµ = Hµ ∗ Cµ is computed (Cµ being given by theC option of the
rule),

3. for each rule, the valueτµ =
1

Aµ

∗ ln

(

1

random()

)

is computed.

RuleRi with the smallestτi value is chosen andfired one timeand on the collection argument of
the transformation, after instantiation of the path pattern. The system variabletau is incremented
by theτi value associated to the rule.

5.4 Application To the Modeling of the Bacteriophage Genetic Switch of the λ Phage

The stochastic simulation of biochemical systems becomes useful when the number of molecules
and/or the time interval is very small. We describe in this section the use ofMGS for the descrip-
tion and the simulation of a well-known biological process,theregulation of theλ phage.

5.4.1 Biological Context

The lambda phage [Pta92] is a virus that infects the cells of the bacteriumEscherichia coli. It is a
phage that has two possible outcomes:

1. replication andlytic phase where the virus dissolves and destroys the host cell, releasing
about 100 virions ;

2. integration of its DNA in the DNA of the bacterium, and start of the lysogenicphase.

In the lysogenicphase, the virus will silently replicate at each cell division. Moreover, a lysogeny
produces an immunity towards further phage infection, by protecting the bacterium from the de-
struction during a possible new infection by a phage. Under certain conditions (exposure to U.V.
for example) a lytic phase can beinduced: the viral DNA is released from the bacterial DNA and
starts a normal replication and a lysis.

Based on the local conditions, it is one of the two possible phases that is chosen, the decision
being under the control of a small region of the phage genome (a hundred base pairs3, compara-
tively to the 48502 base pairs of the bacterium genomes) and of two genes4 (cI and cro5) and two
promoters6. This regulatory region is called thegenetic switch.

The region of the DNA (see figure 2) of theλ phage is composed of two genes cI and cro
coding respectiviley for the proteins CI and CRO. During the transcription, the RNA polymerase7

3A base pairis a couple A-T or G-C on the double helix of strands of DNA.
4A geneis a part of the DNA that codes for an information (a protein for example).
5CRO stands forControl of Repressor andOther things.
6A promoteris a specific site on the DNA, before the gene, whose role is to allow the initiation of the transcription

process.
7The RNA polymerase is the enzyme responsible for the transcription.
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Figure 2: Description (taken from [Mes06]) of the regulatory region of the genetic switch. The
DNA has two genes, cI and cro coding respectively for the proteins CI and CRO. These proteins
are able to dimerize and bind on the operators OR1, OR2 and OR3. Operator OR1 overlaps Pr,
OR3 overlaps Prm and OR2 overlaps both Prm and Pr. Binding of the RNA-polymerase on those
promoters (starting the transcription of both genes) is activated or inhibited by the dimers, and is
therefore regulated.

binds to the promoters of these genes (respectively Prm and Pr) to synthesize the mRNA that
is then translated into monomer proteins CI and CRO. These monomers dimerize into CI2 and
CRO2 which can bind to the operators.8 Operators 0R1, OR2 and OR3 overlap the promoters (see
figure 2). The absence or presence of dimers bound to the promoters, eases or hinders the binding
of the RNA polymerase, thus regulating the expression of cI and cro. Binding of the dimers to the
promoters follows certain rules of affinity:

• CI2 binds first to OR1, then OR2 and finallly OR3;

• CRO2 binds first to OR3, then OR2 and finally OR1;

• if CI 2 is bound to OR1, it facilitates the binding of another dimer CI2 to OR2 and conse-
quently the binding of the RNA polymerase on the Prm promoter.This property does not
hold for CRO2;

• the RNA polymerase can be bound to Pr but CI2 has to be bound to OR2 so that it can be
bound to Prm.

All these rules together lead to a complex behaviour and the genetic regulation of the transcription;
simply stated, each of the two proteins CI and CRO will inhibit each others and increase its own
synthesis (they self-inhibit themselves when their expression becomes too high). According to the
local conditions, one of the two proteins will take over the other one (in terms of concentration)
and the system will enter either a lytic (CRO wins) or a lysogeny phase (CI wins).

5.4.2 The Bio-Chemical Equations

Figure 3 describes the model followed for our modeling. It follows exactly the four rules for the
dimers CI2 and CRO2 presented above. Nevertheless, it is simplified since it does not consider the
set of dimers-operator bonds.

Actually, we have focused on the subset of the bonds that are most-likely to happend. CI2

binding on OR2, with OR1 free, could have been taken into account; but this state is rare [Mes06].
We also consider that cI is expressed when OR2 is occupied by CI2 and OR3 is free. The cro gene
is expressed when both OR1 and OR2 are free.

The set of interactions (dimerization, binding of proteinson the DNA and gene expression) are
treated as biochemical equations:

CI −→C0
. (4)

8Theoperatorsare small regions of the DNA that are recognized by molecularcomplexes inducing a transcriptional
regulation.
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Figure 3: Regulation network of the genetic switch of theλ phage: when CI2 and CRO2 bind to the
operators, they regulate the expression of genes cI and cro.Monomers CI and CRO are described
in circles and diamonds; diamers are made out of monomers. The drawing follows the description
of the DNA given in figure 2.

2 CI ←→C12 C21
CI2 (5)

D + CI2 ←→C1 C−1
D1 (6)

D1 + CI2 ←→C2 C−2
D2 (7)

D2 + CI2 ←→C3 C−3
D3 (8)

D2 + P −→Ct
D2 + P + CI (9)

CRO −→C′

0
. (10)

2 CRO ←→C′

12
C′

21
CRO2 (11)

D + CRO2 ←→C′

3
C′

−3
D′

3 (12)
D′

3 + CRO2 ←→C′

2
C′

−2
D′

2 (13)
D′

2 + CRO2 ←→C′

1
C′

−1
D′

1 (14)
D + P −→C′

t
D2 + P + CRO (15)

D′

3 + P −→C′

t
D2 + P + CRO (16)

Equations 4 and 10 describe the natural degradation of the CI and CRO monomers. Equa-
tions 6–8 and 12–14 express the bindings of the dimers on the operators; the different states of the
DNA are represented: constantD corresponds to the DNA with no bonds,D1, D2 andD3 to the
DNA with 1, 2 or 3 dimers CI2 bound, andD′

3, D′

2 andD′

1 to DNA with 1, 2 or 3 dimers CRO2
bound (see figure 3). The gene expression is given by reactions 9, 15 and 16, where P stands for the
RNA polymerase. Each reaction is parameterized with a stochastic constant,Ci for the reactions
involving CI andC ′

i for CRO.
From our biochemical point-of-view, the bacteria is seen asan homegeneous chemical solution

where the reactions described above are taking place.

5.5 Translation in MGS

The translation into anMGS program is straightforward. Each equation is translated into a
rewriting rule (or two if the equation corresponds to a reversible reaction) and the value of the
C constants, corresponding to the valuesCi and C ′

i, are determined by biological experiments



(see [KN05]). The set of constants is given below:

lk0 = k′

0 = 0.005

k12 = k′

12 = 0.01

k21 = k′

21 = 0.25

k1 = k2 = k3 = k′

1 = k′

2 = k′

3 = 9.768

k−1 = k−2 = 15.0

k−3 = 2022.38

k′

−1 = k′

−2 = 245.371

k′

−3 = 29.77

kt = k′

t = 0.5

The MGS program below is the straightforward translation of the biochemical reactions, where
the various molecular complexes are abstractly represented by symbols.

trans Phage = {
\\Rules for CI
‘CI ={ C = 0.005 }=> undef ;
#2 ‘CI ={ C = 0.01 }=> ‘CI2 ;
‘CI2 ={ C = 0.25 }=> #2 ‘CI ;
‘D0, ‘CI2 ={ C = 9.768 }=> ‘D1 ;
‘D1 ={ C = 15.0 }=> ‘D0, ‘CI2 ;
‘D1, ‘CI2 ={ C = 9.768 }=> ‘D2 ;
‘D2 ={ C = 15.0 }=> ‘D1, ‘CI2 ;
‘D2, ‘CI2 ={ C = 9.768 }=> ‘D3 ;
‘D3 ={ C = 2022.38 }=> ‘D2, ‘CI2 ;
‘D2, ‘P ={ C = 0.5 }=> ‘D2, ‘P, ‘CI ;

\\Rules for CRO
‘CRO ={ C = 0.005 }=> undef ;
#2 ‘CRO ={ C = 0.01 }=> ‘CRO2 ;
‘CRO2 ={ C = 0.25 }=> #2 ‘CRO ;
‘D0, ‘CRO2 ={ C = 9.768 }=> ‘D’3 ;
‘D’3 ={ C = 29.77 }=> ‘D0, ‘CRO2 ;
‘D’3, ‘CRO2 ={ C = 9.768 }=> ‘D’2 ;
‘D’2 ={ C = 245.371 }=> ‘D’3, ‘CRO2 ;
‘D’2, ‘CRO2 ={ C = 9.768 }=> ‘D’1 ;
‘D’1 ={ C = 245.371 }=> ‘D’2, ‘CRO2 ;
‘D0, ‘P ={ C = 0.5 }=> ‘D0, ‘P, ‘CRO ;
‘D’3, ‘P ={ C = 0.5 }=> ‘D’3, ‘P, ‘CRO };;

The bacterium, seen as a chemical solution where the molecules are uniformly distributed follow-
ing a brownian motion, is represented by anMGS multi-set. The initial state consists of a molecule
of DNA with some RNA polymerase. As it has been noticed in the biological reality, the proba-
bility for CI to gain over CRO is low. In order to have the simulation evolve in favor of CI, we put
some additional CI proteins to the initial state:

Bact := ‘D :: #10 ‘P :: #15 ‘CI :: bag:();;

Figure 4 gives the results of eight executions of theMGS program above (the instructions required
for theGnuplot output have not been included). The three first pictures showthe system in a
state that has not yet evolved into a lytic or lysogenic phase; the three following pictures show the
system after a switch has occurred in a lytic phase (only molecules ofCRO remain); the last two
pictures show the system in the lysogenic phase (only molecules ofCI remain).

6 Conclusion

We have shown in this paper the additional expressivity brought by the introduction of a new
transformation application strategy on topological collections. A first version if astandardrule
application strategy that allows to implement a large classof algorithms: therandomized algo-
rithms. A second version which implements Gillespie’s SSA allowsMGS to take into account, in
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Figure 4: Results of the simulation, plotted withGnuplot of the switch of thelambda phage.
The three first show a state of the system where no decision hasoccurred; the three following
pictures show the system in a lytic phase; the two last pictures show the system in a lysogeny
phase. All these simulations are of 2000 iterations on an initial state of a multi-set consisting of
(# 3 ‘CI, ‘D0, #10‘P). The diversity of results perfectly shows the stochastic nature of
the switch phenomenon.

a very straightforward manner, the modeling and simulationof stochastic bio-chemical processes.
It therefore shows the adequation of rewriting to the modeling and simulation of dynamical sys-
tems. The reader should keep in mind that we do not pretend here to compete with special purpose
tools (likeE-Cell [Tak], Cellware [DMS+04] or SBW [FBS+02]) but only to show that it is
possible to quickly develop inMGS realistic models, like the one of the lambda phage, and to
make short simulations.

This work has opened many perspectives. The first one concerns the necessary study of the
matching and reconstruction algorithms ofMGS. Indeed, if simulations on longer time-span and
on larger samples (that is on multi-sets of many millions elements) are required, it becomes
mandatory to specialize the algorithms (which are generic and the same forall topological col-
lectionsof MGS). A first work in that direction has already been made (integration of the syn-
tactic form#n ‘x to express the matching ofn occurrences of the‘x constant) but it has to be
pursued. Furthermore, it should be necessary to integrate in MGS a more optimized version of
SSA [Gil00, Gil01, GB00, PK04].

A second path, more speculative, is about the extension of the work initiated by Gillespie on
multi-sets. Indeed, what does it mean to drop the hypothesisof having a spatial homogeneous
soup and to apply SSA on topologies that are not complete graphs ? We’d like to study, for
example, bio-chemical reactions on non-homogeneous, structured and compartmented spaces (see
for example [TAT05, section 2.5][LDVS05]).
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