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1 Introduction

MGS is a high-level programming language dedicated to the nmoglahd simulation of biological
systems. Biological systems, due to their complex mechanema to their highly concurrent
nature, are systems very difficult to model.

The local expression of evolution rules of biological syssecoupled with the modification of
the structure of the described systems (we call these sgstgnamical systems with a dynamic
structureor (DSY [GGMPO02], that is, those which structure evolves along Jiteads to many
problems in the description and manipulation of biologsgdtems. To address these problems,
we propose to use rewriting techniques on complex and dysamiata structures.

Rewriting systems (RS), initially developed for the formatinn of equational reasoning, are
also used to express changes of states in a process. Thg abiRS to specify the changes
of a sub-part of an object by another one tends to identify R& fmsmalism that suits well to
describelocal evolution rules. The simulation of a biological system cansken as the iterated
application (following some given strategy) of rules frorsed of rewriting rules on a data structure
representing the current state of the system.

To add some expressivity to rewriting systems (that is, téugiher than terms that only allow
the representation of tree-like organizations), we haveldped new rewriting techniques applied
to more complex data structures that we t@hlological collectionsThe rule applicatiostrategies
of the transformations allow to specify the interaction maxd the sub-parts of the biological
system.

The topological point of view considers a data structure set&f organized elements follow-
ing a neighborhood relationship that defines which elemehtlse structure are accessible from
a given element. Theansformationsfollowing a local point of view, are functions allowing the
handling of topological collections through the definitmiirewriting rules based on the neighbor-
hood relationship of the collection.

The aim of theMGS project is to integrate the formalism of rewriting systemsiprogram-
ming language for the modeling and simulationms$)y’.

2 Motivations and Objectives

In this paper, we are interested in the use of rewriting, apidsr tool, as a starting point for the
development of a set of tools for the modeling and simuladiiniological phenomenons.

Modeling in biology raises many questions about the toolgste for the description of phe-
nomenons. Indeed, the systems are complex and highly wteaictwith many sub-models inter-
acting at various scales (in time and space). Furthermioeg,dften exhibit an additional feature:
their behaviour depends on the structure (spatial or fanat) itself and this structure is induced
by the behavior.



From a computer science point of view, the phase space o gyestems cannot be definad
priori but must be computed together with the state of the systems. phlase space becomes a
variable of the system itself (see [Gia03]).

Many computation models have been inspired by these prablaised by biological systems.
We can name the CHAM formalism and the Gamma [BFMO01] languagehatake their origins
in chemistry, Run’s systems [@u01] (or P systems) corresponding to the metaphor of ceéis-
brane, or Lyndenmayer’s systems [RS92] (or L systems) iedpy the growth of plants. All these
models share the common property that they allow the spatditof systems in discrete local
anddeclarativemanner:

e discrete In spite of their strength, continuous formalisms makeeékpression of the dis-
crete nature of the biological systems very difficult. Farthore, a discrete approach leads
to adopt an algebraic point of view for the systems that fitd weethe language theory
domain, used for the different models above.

e local: The high complexity of the systems in biology usually leéal$roblems for their
description. Nevertheless, the description of the evotutules consists in the straightfor-
ward specification of the local interactions between thenelgs of the system. The global
behavior can be simulated loytegratingthe local laws on the whole system.

e declarative: A declarative style leads to a specification of the modelseto a mathematical
formalism: the description of the model is small and expwessheoretically well founded
and close to the concepts used by the modelers. Furtherfooregl techniques can be used
to prove the correctness or to check some properties of tiedacal model.

Computation models like L systems, P systems or the abstnaatistry can be seen as a spe-
cific form of rewriting to be applied on different spatial structures: Venn diagréon P systems,
tree-like structures for L systems, a multi-set for abstchemistry. In theMGS project, we are
interested in these different kind of rewriting, to theiifization or generalization, and to their use
for the modeling and simulation of biological processes.

In this paper, we start by presenting the rewriting systenustheir use for the simulation of
dynamical systems. THdGS formalism will then be introduced for the modeling of th@hage
genetic switch.

3 Rewriting and Simulation

In this section, we show how rewriting can be used for the &tran of dynamical system®S),
that is, systems which states evolve in time.

3.1 A Medium for Computation

A rewriting systenjDJ90] is a tool used for the substitution of a part of an griig another. In
computer science, the entities subject to this procesdrageneral, expressions represented by
formal trees. A RS is defined by a set of rules, and eachaule [ specifies how a sub-part of
the expression that is matched by the pattern is replacechbyaart computed from expression
5. We'll be using the terms déft hand sideandright hand sideof a rule for respectively ands.

The writinge —* ¢/ means that expressiens transformed by a set of rewriting stepsinin
other terms, there is a sequence of expressions ., e, such thae = ey, e; — €9, 69 — €3, ...,
en_1 — e, ande, = ¢’. This sequence is calledd@rivationof e. The transformation of in ¢’ can
be seen as the result for a computation defined by the regritiles; the derivation corresponds to
the sequence of the intermediate results. The notion ofatérn allows to define some properties
for a set of rules:



e A set of rulegerminatedf all the possible derivations for any expression are otditength.
This means that for each expressigrihere are some expressiatrisuch that —* ¢’ and
where no rule can be applied ¢

e A set of rules isconfluentif, for any expressiore, there are two derivations leading to
expressions) ande), with e —* ¢} ande —* ¢, then, there exists an expressidsuch that
ey —* ¢ ande, —* ¢'.

e If a rewriting systenmterminatesand isconfluentthen, for all expressioathere is aunique
normal formfor that expression.

3.2 Rewriting and Simulation

In order to be able to go from an informal description of abgital phenomenon to a computable
model, many authors [Man01, FMP00, EK02, GGMP02] have proposed to represent the state
of a biological system by a termof the form

h+lo+--+1,

where a sub-term; represents a biological entity or a message (signal, cordmaformation,
action, etc.) sent to an entity. The simulation of the evolubf the biological system is done by
rewriting of the term. Rules of the form

e+m—e +m

are used. The left hand side corresponds to a messagad to the entity: which m is sent to;
the right hand side specifies the new statef the entity and (eventually) some new messagés
Note that the direct interaction between entities can beipé by rules of the form

e1 + ey — €] + ¢
and the creation of a new entity by a rule of the form
e — e/ + 6//

etc.
To summarize, the notions developed for RS and DS can bedetatee following way:

e a state is represented by a term and a sub-term correspotidsdtate of a sub-system;
e the evolution rule is coded by the rules of the RS:

— the left hand side of the rule matches a sub-system whosesgtsrare in interaction,
— the right hand side of the rule computes the result of thesradtion.

Intuitively, we can deduce that, given the state of a DS thhoexpressior, a derivation ofe is
understood as the description of the evolution of the systiemg time; we speak of theajectory
of the system.

Choosing RS as a formalism to describe DS implies to consigdndhdling of time and space
from the discrete point of view, as well as local.

Discrete Time. The handling of time is a key point in the modeling of a DS. Thedel of
time that is naturally induced by the use of rewriting teciuas is aiscretetime, event based: the
application of a rule corresponds to an atomic modificatibthe state of the system and to the
progression of time.



Locality of Space. The + operator used above, connecting entities and signals €s¢se
the spatial and/or functional organization of the modelgstesn. It is used to denote the sub-
parts of the system that are in interaction, as well as toigpée way that the sub-systems are
organized. Consequently, the rules represent the localigeos$ laws of the DS. Furthermore, the
organization of the structures specified in the left hand sidd in the right hand side of the rule
may differ, producing a modification of the system’s struetr his allows the modeling of a class
of DS particularly complex to describe and simulatgnamical systems with a dynamic structure

Nevertheless, even if the parallel between RS @ is easy to observe, it is not straightfor-
ward to set up in a real environment. As a matter of fact, stecthdewriting systems are aimed at
a specific data structure, namely terms. But the term streictoes not allow to represent states of
a system that are not always structured in a tree-like wayighly and arbitrarily structured. The
terms are not expressive enough to take into account thgaaisations. One of the key point is
to extend the RS to data structures arbitrarily complex. Mdetail in the next section how this
extension has been made possible through the developmié@MGS language.

4 A Brief Description of the MGS Formalism

The goal of theMiGS project is to study and develop a programming language fntbdeling
and the simulation of phenomena which structures are dynaBwmain specific languages are
usually declarative and organized around a small kerndinel@ew abstractions and notations
targeted towards new specific application domains. Thegegquently allow to take into account
the modeled phenomena in a more concise way with a highyataliteuse developed code.

The fundamental point d/AGS is to allow the specification of those states using a new data
structure [GMO02] based on the topological organizationhef tnodeled systems. The evolution
function of these systems corresponds to a function thasfoams the state of the system. The
specification of these evolution functions is simplified bg definition of a case-based function
based on a powerful pattern languagdGS can be considered a standard functional language
extended with a new data structure, tiopological collectionsand a new way to define func-
tions, thetransformations An alternative point of view is to interpret the transfotioas as the
application of rules specifying the local evolution of atstaseen as a complex data structure.

4.1 Topological Collection

One of the key features of thdGS language is its ability to describe and manipulate entities
structured by arabstract topology Topological collectionsare a unified view of the notion of
data structure [GMO02]. In this framework, a data structsrdefined as an aggregate of elements
organized with a neighborhood relationship. The struotditée defined topological space allows
to specify the organization of the data structure.

Topological Collection and Representation of the State of a (ps)2. Topological collections
suits well to the representation of the states of a compl@anhycal system. The elements of a
collection are the atomic elements of the system.

4.2 Transformations

Topological collections represent an adequate medium tEndxRS. Indeed, the neighborhood
relationship gives a local point of view of the organizatmfithe elements. Theansformations
extend the notion of rewriting systems to structures dsiféthan trees, and are used to specify the
evolution function of the modeled DS. The transformatioa tdpological collectiort consists in
applyinga set oflocal rewriting rules A rewrite ruler specifies the substitution of a sub-collection



by another sub-collection. The application of a rale> f(o,...) on collectionS : (1) selects by
a matching algorithm a sub-collectidfy of S corresponding to an instantiation pétterno, (2)

computes a new collectiofi; as the evaluation of the application of functigronto S; and its
neighborhood, and (3) specifies the insertiors0in place ofS; in S.

The Matching Language. Patterno of the left hand side of the rule specifies a sub-collection;
we represent here the occurrence of an interaction whoserigdorm is given byos. This sub-
collection can have an arbitrary shape, thus making itsacerization delicate. The expressivity
of the pattern language wheseis defined, corresponds to the class of sub-collectionsitzare-
fore of interactions, that we want to specify.

MGS allows the use of two different pattern languages: the firg, dhepatches is very
expressive but complex to use; the other one,pithisis less expressive but easier to use. This
last language consists in the sequential enumeration ghher elements in the collection. Such
an enumeration if called path In the rest of the paper, we’ll only consider this language.

Substitution. The right hand side of the rule specifies a collection thadtuwegs the sub-collection
matched by the pattern specified in the left hand side of tlee @nce again, the specification of
such a collection is not an easy task.

Nevertheless, there is an alternative point of view in theecaf the path matching: the suc-
cession of the patterns describing a sequence of elembatsght hand side of a rule can be an
expression that also evaluates to a sequence of valuesulbitstion is then done element-wise:

element; in the matched pattern is replaced by it element in the right hand side of the rule.
This point of view allows a very concise expression of thesul

Rule Application Strategy. We have just briefly described one rule application (maitgloh
the left hand side and substitution by the right hand sidedveltheless, to have the collection
evolve, it is required to iterate the application of the suba the whole system. Many problems
of “collisions” arise; indeed, what should be selected iugerallows to match more than sub-
collection, or, if a sub-collection can be matched by mosmta rule ?

Therule application strategyleals with those conflicts: it implies on one side the numlber o
sub-collection to match (whatever the rule), emulatingsteynchronous or asynchronous evolu-
tions and on the other side the priority between the differeles.

MGS has many application strategies to allow an easy progragofimost of the possible
evolutions of the model.

The default strategy of theIGS language prototype is to makexaaximal parallelmatching
with a priority on the rules, following the approach adopietindenmayer’s systems [LJ92] that
allows the maximal parallel rewriting on strings.

Even if this strategy is very close to a biological metaphwt twould expect all different
interactions to happen in parallel, it does not allow thecdpion of complex models relying on,
for example, stochastics properties. The next sectionsewon the description of an application
strategy suits well to discrete, stochastic, chemical ktrans, used in the specification of the
phage genetic switch.

5 The Lambda Bacteriophage in MGS

5.1 Abstract Chemistry

Abstract chemistris a computation procedure inspired by chemical reactidhs.initial intuition
of the computation paradigm is that the state of a chemidatisa can be represented byraulti-
set a multi-set is a set where multiple occurrences of the sdemaent may occur, in the same



way that many molecules of the same species are present solitgon, establishing therefore a
concentration of the species.

Multi-sets can be represented by terms whose formal bgjldperator+ (introduced in sec-
tion 3.2) iscommutativeand associative For example, ifa, b andc represent chemical species,
expressioria + b) + (b + ¢) evaluates a multi-set containing one occurrence arfidc and two of
b. Associativity and commutativity allow respectively taweve the parentheses and to permute
the operands of the operator. Therefore

(a+b)+(b+c)=a+b+b+c=a+b+c+b=...

Commutativity and associativity simulate a Brownian motidrihe multi-set elements such
that two elements may encounter at any time. So, computimg ukese multi-sets consists in
applyingchemical reactionsrepresented by rewriting rules, according to the elememitsions.
For example, rules:

m:at+a—at+at+b ro:a+b—a+b+b r3:b+b—b+b+a

represent catalytic reactions of second order betweenaulele of type: andb (a collision of two
molecules catalyse the formation of a third one, the twaahmolecules being not consumed).

5.2 Abstract Chemistry in MGS
Abstract chemistry is straightforward using the notiorsvpted byMGS.

A Multi-Set Seen as a Topological Collection. The chemical soup is represented with a multi-
set. As for all standard data structures, a multi-set careBertbed through a local neighborhood
between the elements. Here, commutativity and assodiasiNow all elements to collide. We then
define a topological collection where each element is n@ighbball the others, the neighborhood
being the possibility for two elements to react.

Reaction and Transformation. As stated before, a chemical reaction can be translated as a
rewriting rule. The set of rules that is taken by a chemicéltsan, can therefore be specified as
aMGS transformation. As an example, if we take rulgesr, andr; of the preceding paragraph,
their translation ilMGS is straightforward:

trans catalytic = {

ri: ‘a ‘a=>"‘a, ‘a, ‘b ;
rz: ‘a, ‘b=>"%'a, ‘b, 'b;
r3: ‘b, ‘b=>"'"a ‘b, ‘Db

}

Thet r ans keyword states that a new transformation whose namatial yt i c is defined. The
three rules of the transformation are identical to the ptegerewriting rules, at the difference that
the operator of constructiof is replaced byMGS’s neighborhood’s operator that is the comma
(introduced in the framework of the topological collecsoend the matching of paths). The first
rule states that if an entity whose valu€ ia (it is a constant value) is in the neighborhood of a
second entity of valuéa, then this path can be rewritten in the sequenae ‘ a, ‘b, where
the two entities of typé a remain, and where a new kind of specieb, is introduced.



5.3 Abstract Chemistry for the Simulation of a Chemistry Soup

The usual strategy used in artificial chemistry (in an atonic framework for example) is the
maximal parallel strategy proposed as the default strate®@yGS. Nevertheless, this strategy is
not adequate for the description and simulation of "real'nulcal reactions because it does not
take into account the different kinetics of the chemicattieas.

A standard stochastic strategy allows to parametrize esehbly an application probability.
This is found iNMGS as well as in other languages, like Elan [BK02] for example.pi@ose in
the next section a specialization of this strategy to take account the modeling and simulation
of stochastic biochemical systems.

The presence of stochastic phenomenon in a large numberysfcgh system is no longer
to be proved. These last years, a growing number of resegarblage studied randomness and
noise present in biological systems. The interested resti@uld refer to [MSDO04] where the
detail is given of many stochastic phenomena happeningoilodpy, and this from the molecular
level to the cellular level. Before presenting the integnatof the SSA (standing foBtochastic
Simulation Algorithmin MGS, we introduce some mathematical notions (in a form veryectos
the presentation made in [MSDO04]) to help its understanding

5.3.1 Chemical Reactions and Master Equation

The behavior, along time, of a spatially homogeneous soupobdécular species can be described
by a chemical equation called theaster equatiofGil77] (ME). This ME describes the transition
of the system from a state to another in probabilistic ter8tateX of the system is supposed to
be given by a concentration of each of the chemical produdtss soup. The evolution @f X, t),

the probability of the system to be a stéfe= (..., x;,...) attimet by

N

p(X,t+ At) = p(X, )L =Y (AL + > BiAL

J=1

wherez; is the amount of chemical specigs reaction in the systendy is the number of reactions;

a; At the probability that, the system being in stafeat timet, the j reaction takes place between

timet¢ andt + At; 3;At the probability that the reaction puts the system in stateat timet + At.
WhenAt goes td), we get the classical form of the ME

(X, 1) al
o = ;ﬁj _p(Xat);O‘j

One can notice that the transition of a state of the systenessribed through the change of
probabilities of the system to be found in a given state. The d&pproach consists in trying to
describe a set of equations for each possible transitionceswlve thensimultaneouslylt is quite
easy to generate a single trajectory, but when the dimensitwe problem gets higher, the possible
trajectories face a combinatorial explosion and the pralidecomes intractable. A solution to this
problem is proposed by Gillespie [Gil77] who, rather thaiitivwg explicitly the ME, produces the
trajectories in choosing theactionsand theelapsed timesince last reaction occurred according
to the probability distributions such that the probabibifyproducing a given trajectory be exactly
the same as the solution of the ME.

5.3.2 Gillespie’s Two Algorithms

Two algorithms are proposed in [Gil77] to solve the ME desediabove, by making the hypothesis
that all chemical species are spatially homogeneouslsilolised. These algorithms are called SSA



for Stochastic Simulation AlgorithmAt each time-step, the chemical system is in a single and
unique state. The algorithm simulates the temporal evaudif the system by computing when
and which reaction should take place.

We suppose that the system is in statat timet, that it is composed od/ chemical species
that can interact followingV chemical reactions. We denote reactidt)s with p ranging froml
to N. We then define

e P(7, 1) the probability that the next reactidt), takes place in the infinitesimal time interval
(t+7t+7+dr);

e ¢, thestochastic reaction constanof reactionR,;

¢ h, the number of distinct molecular combinations that carvatgireactionz,;

e a, the propensity function of reactiafd,,;

e a,dt = h,c,dt the probability that a reactioR,, takes place in the intervad, ¢t + dt).

Gillespie proved that
P(r, p)dr = a,e "% dr (1)

This equation leads to a first straightforward Gillespid¢pathm calledfirst reaction methodIt
consists in choosing an elapsed timér each reactiorR,, according to the probability’(r, 11).
The reaction with the lowest elapsed time is selected antiegppn the system making its state
evolve. A new probability distribution is then computed fors new state and the process is
iterated.
Gillespie also proposed to separate (1) into two indeperatebability distributions given by
the following equations
a
P(p) = =~ 2
Zj a;
P(r)dr = Z aje” ™% dr 3

J

Equation (2) computes the probability for reactiBp to be the next reaction to take place; equa-
tion (3) takes into account the amounof time elapsed to compute the time when the reaction did
occur. By using a random number generator and by deriving tivesprobability distributions, we
get the second Gillespie’s algorithm called tifieect method Difference between both methods
stands in the selection of the reaction to be applied. Ferdbcond version, the elapsed time and
the reaction are independently computed with respect talaisons (2) and (3). This procedure
is more efficient because only two random numbers have to ipeted againstv (one for each
reaction) for the first version.

5.3.3 Integration of Gillespie’s Algorithm in MGS

MGS integrates thdirst reaction methods an additional stochastic strategy. Let us have a look
on how to use it in the example of coupled auto-catalytic eqoa of Lotk&. The reaction rules,
together with their owrstochastic reaction constanase the following:

X+YT - X+Y1+Y with C' = 0.001

1Computing the stochastic constant is one of the hardestftaskho wishes to use SSA for the modeling and
simulation of biochemical systems. The interested reddeuld refer to [DCBD03, ZDCBDO03] that describes two
experiences in that field.

2Studied later by Volterra, after the first world war as a mddethe study of an eco-system of prey-predator.
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Figure 1: Results of the simulation, with Gnuplot, of the Lap#quations for two sets of different
parameters. The oscillations are coupled with the avaladdd' X. When food is no longer there,
Y1 are rapidly overtaking.

Yi+4Y, - Y5+Y, with C' = 0.01
Y, — 7 with C' = 10

First rules express that a given préyreproduces by feeding a certain kind of fo&dhat remains
constant § is supposed to be an infinite resource). Second rule statsthiven species of
predatorY; reproduces by feeding from specigg the last rule expresses the disappearance of
speciesy; by natural causes.

A stochastic reaction constant has to be given to each riighvweorresponds to the average
probability that a particular combination of moleculeslwiteract in the next infinitesimal time in-
tervaldt. The expression of these equation$/6S is straightforward: molecules are represented
by symbols and the constants by th@arameter of the rules:

trans lotka volterra = {
‘X, ‘YL ={ C=0.001}=> #2 ‘Y1, ‘X
‘Y1, 'Y2 ={ C=0.01 }=>#2 'VY2
‘Y2 ={ C =10 }=> Z

}

The application of the transformation to an initial statguiees to use thet r at egy option
whose value has to be set‘tgi | | espi e:

| otka_volterraliter fun _ -> (tau == 5.0),
strat egy ‘“gillespie
] (#1000 “ X, #100 ‘Y1, #100 ‘Y2, bag:()) ;;

Figure 1 gives the result of two simulations of the model.

The initial state is a multi-set because it is required tdilfubillespie’s hypothesis of having
an homogeneous soup; this is verified in the case of a multegelogy [FMPO0O0]. Each rule
application increment8IGS system variablé au by the computed value. During the application



of the transformation, the value bhu is available anywhere in the transformation to do any kind
of computation. The iterations above stop as sodreasreaches or goes ovér The use of t er
allows to have a fine control over the number of applied tr@mséations.

The C options in the expression of the rules are used&S to compute the new value of
after each rule application. The algorithm is:

1. for each ruleR,, according to the path pattern of the rule, the value of ihefunction
is computed (for example, for the first rul¢, = |' X| = |' Y1| where|' X| represents the
number of occurrences 61X in the collection),

2. for each rule, the valud, = H, * C,, is computed (’, being given by theC option of the
rule),

3. for each rule, the valug, = Ai * [n ( ) is computed.
1

random/()

Rule R; with the smallest; value is chosen anfited one timeand on the collection argument of
the transformation, after instantiation of the path pattdihe system variableau is incremented
by ther; value associated to the rule.

5.4 Application To the Modeling of the Bacteriophage Genetic Switch of the A Phage

The stochastic simulation of biochemical systems becorsefilwhen the number of molecules
and/or the time interval is very small. We describe in thigtiea the use oMGS for the descrip-
tion and the simulation of a well-known biological procets® regulation of the\ phage

5.4.1 Biological Context

The lambda phage [Pta92] is a virus that infects the celle®@bicteriunEscherichia coli It is a
phage that has two possible outcomes:

1. replication andytic phase where the virus dissolves and destroys the host ekdgsing
about 100 virions ;

2. integration of its DNA in the DNA of the bacterium, and $tairthelysogenighase.

In thelysogenigphase, the virus will silently replicate at each cell dieisi Moreover, a lysogeny
produces an immunity towards further phage infection, lmtemting the bacterium from the de-
struction during a possible new infection by a phage. Undeta conditions (exposure to U.V.
for example) a lytic phase can beduced the viral DNA is released from the bacterial DNA and
starts a normal replication and a lysis.

Based on the local conditions, it is one of the two possiblespbdhat is chosen, the decision
being under the control of a small region of the phage genanteifidred base pafiscompara-
tively to the 48502 base pairs of the bacterium genomes) aitvdoogene$ (cl and cr@) and two
promoter§. This regulatory region is called tlgenetic switch

The region of the DNA (see figure 2) of thephage is composed of two genes cl and cro
coding respectiviley for the proteins Cl and CRO. During tl@scription, the RNA polymerasSe

3A base pairis a couple A-T or G-C on the double helix of strands of DNA.

4A geneis a part of the DNA that codes for an information (a proteineigample).

SCRO stands fo€ontrol of Repressor andther things

A promoteris a specific site on the DNA, before the gene, whose role idw ghe initiation of the transcription
process.

’The RNA polymerase is the enzyme responsible for the trgptimor.
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Figure 2: Description (taken from [Mes06]) of the regulgtoegion of the genetic switch. The
DNA has two genes, cl and cro coding respectively for thegingtCl and CRO. These proteins
are able to dimerize and bind on the operators OR1, OR2 and OR&atop OR1 overlaps Pr,

OR3 overlaps Prm and OR2 overlaps both Prm and Pr. Binding of thhe-ptd{ymerase on those

promoters (starting the transcription of both genes) ivaietd or inhibited by the dimers, and is
therefore regulated.

binds to the promoters of these genes (respectively Prm antb Bynthesize the mRNA that

is then translated into monomer proteins Cl and CRO. These mersodimerize into Gland
CRO, which can bind to the operatotperators OR1, OR2 and OR3 overlap the promoters (see
figure 2). The absence or presence of dimers bound to the peosneases or hinders the binding
of the RNA polymerase, thus regulating the expression of dl@a. Binding of the dimers to the
promoters follows certain rules of affinity:

e ClI, binds first to OR1, then OR2 and finallly OR3;
e CRO, binds first to OR3, then OR2 and finally OR1;

e if Cl, is bound to OR1, it facilitates the binding of another dimes © OR2 and conse-
guently the binding of the RNA polymerase on the Prm promoiéis property does not
hold for CRQ;

e the RNA polymerase can be bound to Pr but B4s to be bound to OR2 so that it can be
bound to Prm.

All these rules together lead to a complex behaviour andehetic regulation of the transcription;
simply stated, each of the two proteins Cl and CRO will inhilgitle others and increase its own
synthesis (they self-inhibit themselves when their exgoesbecomes too high). According to the
local conditions, one of the two proteins will take over thibay one (in terms of concentration)
and the system will enter either a lytic (CRO wins) or a lysggeinase (CI wins).

5.4.2 The Bio-Chemical Equations

Figure 3 describes the model followed for our modeling. liokes exactly the four rules for the
dimers C} and CRQ presented above. Nevertheless, it is simplified since it do¢ consider the
set of dimers-operator bonds.

Actually, we have focused on the subset of the bonds that ast-likely to happend. Gl
binding on OR2, with OR1 free, could have been taken into ad¢cbunthis state is rare [Mes06].
We also consider that cl is expressed when OR2 is occupied4g@dlOR3 is free. The cro gene
is expressed when both OR1 and OR2 are free.

The set of interactions (dimerization, binding of proteamsthe DNA and gene expression) are
treated as biochemical equations:

CI —Cy : (4)

8Theoperatorsare small regions of the DNA that are recognized by moleadarplexes inducing a transcriptional
regulation.
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Figure 3: Regulation network of the genetic switch of iyghage: when Gland CRQ bind to the
operators, they regulate the expression of genes cl andvlmoomers Cl and CRO are described
in circles and diamonds; diamers are made out of monomeesdidwing follows the description
of the DNA given in figure 2.

2CI S0 Cn Cly (5)
D + CIQ —Cc, 0 D1 (6)
D1 + CI2 05 C s D2 (7)
D2 + CIQ 050 3 D3 (8)
D2 + P —>Cz D2 —I— P —f- OI (9)
CRO —a . (10)
2 CRO 1, e CRO, (11)
D+ CR02 %C{; !, Dg (12)
Dg + CR02 ey, D/Q (13)
D/2 + CROQ <—>Ci c Dll (14)
D+P —cr Dy + P+ CRO (15)

Equations 4 and 10 describe the natural degradation of thexdIC&RO monomers. Equa-
tions 6—8 and 12—-14 express the bindings of the dimers onpgkators; the different states of the
DNA are represented: constantcorresponds to the DNA with no bonds;, D, andD; to the
DNA with 1, 2 or 3 dimers C} bound, andy, D}, andD] to DNA with 1, 2 or 3 dimers CRQ
bound (see figure 3). The gene expression is given by rea®idlb and 16, where P stands for the
RNA polymerase. Each reaction is parameterized with a ssticheonstant(; for the reactions
involving Cl andC’ for CRO.

From our biochemical point-of-view, the bacteria is seearakomegeneous chemical solution
where the reactions described above are taking place.

5.5 Translation in MGS

The translation into amMGS program is straightforward. Each equation is translated &
rewriting rule (or two if the equation corresponds to a reide reaction) and the value of the
C constants, corresponding to the valugsand C}, are determined by biological experiments



(see [KNO5]). The set of constants is given below:

Ik = K/, = 0.005
ko = K, = 0.01
kior = k), = 0.25
k= ko = ky = K, = K, = k, = 9.768
ki =k o=150

k_y = 2022.38
K, =k ,=245.371
K 4= 29.77

ke =k =05

The MGS program below is the straightforward translation of thechimical reactions, where
the various molecular complexes are abstractly repreddayteymbols.

trans Phage = {
\\Rules for C

c ={ C = 0.005 }=> undef ;

#2  Cl ={ C=0.01 1=> a2 ;

‘a2 ={ C=0.25 1=> #2 ‘C

‘Do, ‘C2 ={ C=9.768 }=>'D1 ;

‘D1 ={ C=15.0 }=>'D0, ‘A2 ;
‘DL, ‘Cl2 ={ C=9.768 }=>'D2;

‘D2 ={ C=15.0 }=>'D1, ‘A2 ;
‘D2, ‘2 ={ C=9.768 }=> ‘D3 ;

‘D3 ={ C=2022.38 }=> ‘D2, ‘Cl2;
‘D2, ‘P = C=0.5 }=> D2, ‘P, ‘C ;
\\Rul es for CRO

‘ CRO ={ C = 0.005 }=> undef ;

#2 ‘' CRO ={ C=0.01 }=> ‘CR® ;

‘ CRO2 ={ C=0.25 }=> #2 ‘CRO ;
‘DO, ‘CRX2 ={ C=9.768 }=> ‘D3 ;

‘D3 ={ C=29.77 }=> ‘D0, ‘CRX ;
D 3, ‘CR®2 ={ C=9.768 }=>*'D2;

D2 ={ C=245.371 }=> 'D 3, ‘CRX® ;
D 2, ‘CRXR2 ={ C=9.768 }=>*'D1;

D1 ={ C=245.371 }=> ‘D 2, ‘CR® ;
Do, ‘P ={ C=0.5 }=> D0, ‘P, ‘CRO;
D3, ‘P ={ C=0.5 }=>‘D3, ‘P, ‘CRO};;

The bacterium, seen as a chemical solution where the meleané uniformly distributed follow-
ing a brownian motion, is represented byMGS multi-set. The initial state consists of a molecule
of DNA with some RNA polymerase. As it has been noticed in thaddgical reality, the proba-
bility for CI to gain over CRO is low. In order to have the simutatevolve in favor of CI, we put
some additional CI proteins to the initial state:

Bact := ‘D :: #10 ‘P :: #15 'Cl :: bag:();;

Figure 4 gives the results of eight executions ofM®S program above (the instructions required
for the Ghupl ot output have not been included). The three first pictures shewsystem in a
state that has not yet evolved into a lytic or lysogenic phimethree following pictures show the
system after a switch has occurred in a lytic phase (only cutds of CRO remain); the last two
pictures show the system in the lysogenic phase (only mi@de@iCl remain).

6 Conclusion

We have shown in this paper the additional expressivity @iouoy the introduction of a new
transformation application strategy on topological adilens. A first version if astandardrule

application strategy that allows to implement a large clafsalgorithms: therandomized algo-
rithms. A second version which implements Gillespie’s SSA alldASS to take into account, in



Figure 4: Results of the simulation, plotted wimnupl ot of the switch of thdambda phage.
The three first show a state of the system where no decisiowd@sred; the three following
pictures show the system in a lytic phase; the two last pstwhow the system in a lysogeny
phase. All these simulations are of 2000 iterations on dralrgtate of a multi-set consisting of
(# 3 'Cl, ‘DO, #10'P). The diversity of results perfectly shows the stochastitimaof
the switch phenomenon.

a very straightforward manner, the modeling and simuladifostochastic bio-chemical processes.
It therefore shows the adequation of rewriting to the maedeind simulation of dynamical sys-
tems. The reader should keep in mind that we do not preterdtbeompete with special purpose
tools (like E- Cel | [Tak], Cel | war e [DMS*04] or SBW[FBS"02]) but only to show that it is
possible to quickly develop iMGS realistic models, like the one of the lambda phage, and to
make short simulations.

This work has opened many perspectives. The first one contleennecessary study of the
matching and reconstruction algorithmsMEGS. Indeed, if simulations on longer time-span and
on larger samples (that is on multi-sets of many milliongreets) are required, it becomes
mandatory to specialize the algorithms (which are genertttae same foall topological col-
lectionsof MGS). A first work in that direction has already been made (irdégn of the syn-
tactic form#n * x to express the matching afoccurrences of thex constant) but it has to be
pursued. Furthermore, it should be necessary to integnd#3S a more optimized version of
SSA [GIl00, Gil0o1, GBOO, PK04].

A second path, more speculative, is about the extensioneolvtrk initiated by Gillespie on
multi-sets. Indeed, what does it mean to drop the hypothddmaving a spatial homogeneous
soup and to apply SSA on topologies that are not completehgr@p We'd like to study, for
example, bio-chemical reactions on non-homogeneouststaed and compartmented spaces (see
for example [TATO5, section 2.5][LDVS05]).
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