+Model
BIO-2627; No.ofPages8

Available online at www.sciencedirect.com

ScienceDirect

-
!

X
®

Sl Sysiams

ELSEVIER

BioSystems xxx (2006) XXX—XXX ——————————
www.elsevier.com/locate/biosystems

Declarative modeling of a neurulation-like process

Antoine Spicher®, Olivier Michel

IBISC, FRE 2873 CNRS, Université d’Evry, Génopole, France
Received 28 February 2005; received in revised form 8 July 2006; accepted 15 July 2006

Abstract

MGS is an experimental programming language dedicated to the modeling and the simulation of a special kind of discrete dy-
namical systems. Dynamical systems with a dynamical structure (or (DS)?) arise when the state space is not fixed a priori but is
jointly computed with the current state during the simulation. In this case the evolution function is often given through local rules
that drive the interaction between some system components. MGS offers a new kind of data structure, ropological collections, to
describe the state of a dynamical system, and a new kind of control structure, transformations, to express local and discrete evolution
laws. These two notions permit an easy specification of (DS)?.

We propose in this paper a presentation of the MGS language and its main contributions. We show that various topological
collections can be unified using concepts developed in combinatorial algebraic topology: cellular complexes and topological chains.
Then we apply the notions brought by MGS to model and simulate the first step towards the simulation of the neurulation process
in developmental biology where a sheet of cells evolves to a neural tube. It is a direct description of the modification of the topology

of an arbitrary structure expressed in terms of local discrete evolution laws.

© 2006 Elsevier Ireland Ltd. All rights reserved.

Keywords: Computational models for developmental biology; Dynamical systems with a dynamical structure; Combinatorial algebraic topology;

Topological collection; Transformation; Rewriting

1. Introduction

Developmental biology investigates highly organized
complex systems. One of the main difficulties raised
by the modeling of these systems is the handling
of their dynamical spatial organization: the spatial
organization of an organism that develops depends on
its own evolution and its evolution depends on its spatial
structure. We call such systems dynamical systems with
a dynamical structure, or (DS)2 (Giavitto et al., 2002).
As an example, let us consider the embryogenesis
phenomena: the process starts with a single cell. After
several mitoses, the system is composed of several
cells that exhibit some spatial organization due to cells

* Corresponding author.
E-mail addresses: aspicher @ibisc.univ-evry.fr (A. Spicher),
michel @ibisc.univ-evry.fr (O. Michel).

growth, cells migration, cells division and cells death.
These various processes, implying genetical, mechani-
cal and chemical mechanisms, modify the neighborhood
of each cell to develop a particular shape. At the same
time, the spatial organization of the embryo influences
the propagation of the mechanical stresses, the diffusion
of the various chemicals, etc. That is to say, during the
embryogenesis process, there is a feed-back between
the spatial organization of the embryo and its own
evolution which depends on this spatial organization.
From a computer engineering point of view, the phase
space of such systems cannot be defined a priori and has
to be jointly computed with the state of the system (the set
of states must be an observable of the system itself, see
the work of Giavitto (2003)). So, the modeling and the
simulation of these systems have to be supported by ded-
icated computational models that allow the specification
of both structural and functional properties of the system.

0303-2647/$ — see front matter © 2006 Elsevier Ireland Ltd. All rights reserved.

doi:10.1016/j.biosystems.2006.09.024

BioSystems (2006), doi:10.1016/j.biosystems.2006.09.024

Please cite this article in press as: Antoine Spicher and Olivier Michel, Declarative modeling of a neurulation-like process,

dx.doi.org/10.1016/j.biosystems.2006.09.024
mailto:aspicher@ibisc.univ-evry.fr
mailto:michel@ibisc.univ-evry.fr
dx.doi.org/10.1016/j.biosystems.2006.09.024

+Model
BIO-2627; No.ofPages8

2 A. Spicher, O. Michel / BioSystems xxx (2006) xxx—xxx

Several computational models were inspired by
biological processes and are, therefore, good candidates
as computational formalisms of the development.
As examples, we can cite: Lindenmayer systems
(Rozenberg and Salomaa, 1992) (L-systems) inspired
by plant growth, the CHAM formalism and Gamma
(Banatre et al., 2001) inspired by chemistry, and
Paun systems (Pdun, 2001) (P-systems) relying on
a biological cell membrane metaphor. Because of
their inspirations, these formalisms provide a possible
framework to model and simulate the (DS)? encountered
in developmental biology. One of the characteristics of
these models is they suit well with a discrete, local and
declarative specification of systems:

e Discrete: although the mainstream of the model-
ing approaches are developed in the framework of
continuous models (ODE and PDE), the continuous
formalism makes it difficult to express the discrete
nature of the biological entities. Moreover the discrete
approach leads to an algebraic point of view adapted
to the field of formal languages theory used in the
above computing models.

e Local: the description of (DS)? in biology is difficult
because of their very complex organization. However,
the description of the biological processes consists in
the specification of local physico-mechanical interac-
tions that can be specified by local laws. The global
evolution is the result of an emergent behavior due to
the local application of these laws.

e Declarative: this qualifier is used to contrast these for-
malisms with procedural approaches. In procedural
approaches, the modeler specifies how the changes
occur rather than what happens. A declarative style
allows the computational model to be close to a
mathematical formalism: it is expressive and brief,
theoretically well defined, and close to the subject
matter it is intended to describe. As a consequence,
formal techniques can be used to validate or to check
some properties of the biological model.

L-systems are paradigmatic of this approach. They
are grammars that declaratively handle sequences. They
are especially used in developmental biology, for the
simulation of the growth of tree-like structures: see
for example the simulation of Anabaena growth in
Lindenmayer and Jiirgensen (1992) and the modeling
of plants described in Prusinkiewicz et al. (1990).

The previous computational models (L-systems,
P-systems, abstract chemistry) can all be considered
as rewriting systems on different spatial structures
(Giavitto and Michel, 2002a): inclusion diagram for

P-systems, tree-like structure for L-systems and an ether
(complete graph) for chemistry. However, these spatial
structures correspond only to some specific kinds of
graphs. In other word, they are one-dimensional and
more complex and structured spatial organizations
required in developmental biology cannot be handled.
For instance, a tissue is a two-dimensional spatial
organization and an organ is a three-dimensional one.

Starting from this observation, the MGS project has
been developed to study how these models could be
unified and generalized to spatial structures of higher
dimensions. The contributions of MGS are two-fold. We
first propose a unification of the notion of data structure,
using the concept of topological collection: a collection
of elements organized following topological relation-
ships. In MGS, the spatial organization is represented by
a cellular complex (a notion developed in combinatorial
algebraic topology) and the various spatial processes are
represented as topological chains (a notion very similar
to a field in physics). To handle topological collections
in a declarative manner, we have introduced the notion
of transformations: functions defined by case using
rewriting rules generalized on cellular complexes.

This paper is organized as follows: Section 2 presents
the MGS project and its contributions in more details.
Section 3 shows through an example how topological
collections and transformations can be used to imple-
ment a model of a sheet of epithelial cells that locally
change their own shape to curve the sheet until the two
sides are close enough to glue each other. This example
is a premise to the simulation of the neurulation process
where the neural plate changes its shape and its topology
to form the neural tube. The main contribution of this
paper is how MGS notions can be used to model in a
declarative way the modifying topology of a developing
structure during the course of time.

2. A quick description of the MGS formalism

The MGS project aims at developing a framework
dedicated to the modeling and simulation of (DS)2. It is
inspired by the computational models described above.
MGS is a classical declarative language that has been
extended with two structures described below.

2.1. Topological collections

Topological collections are a unified view of the
notion of data structure (Giavitto and Michel, 2002a).
Here, the data structure is defined as an aggregate of
relative elements and the “structure of the space” is
used to specify the organization of the data structure. In

BioSystems (2006), doi:10.1016/j.biosystems.2006.09.024

Please cite this article in press as: Antoine Spicher and Olivier Michel, Declarative modeling of a neurulation-like process,

dx.doi.org/10.1016/j.biosystems.2006.09.024

+Model
BIO-2627; No.ofPages 8

A. Spicher, O. Michel / BioSystems xxx (2006) xxx—xxx 3

the MGS project, we advocate that notions developed
in the combinatorial algebraic topology theory provide
a well-suited framework for the description of the
structure of the space. This theory has already been
used in modeling physical laws in a discrete way. The
interested reader can look at the works of Tonti (1974)
and Palmer and Shapiro (1993) for an elaboration. Here
is a brief but not exhaustive description of the notions
required to understand the rest of the paper.

We will call the structure of the space a cellular com-
plex (Munkres, 1984). A cellular complex is composed
of elements of various dimensions (vertices, edges,
faces, etc.) called topological cells of dimension n or
n-cells. These basic elements are organized following
the incidence relationship that relies on the notion of
boundary: let ¢; and ¢, be respectively an n1-cell and an
np-cell with n; < nj, c1 is incident to ¢; if c¢; belongs
to the border of ¢;. More precisely, if n; =ny — 1, ¢
is called a face of c¢;, and c; is a coface of c¢;. We can
also define the notion of p-neighborhood of two n-cells:
two n-cells, ¢; and c;, are p-neighbors if they are part
of the same p-cell (when p > n), or if they share a same
p-cell in their border (when p < n).

A cellular complex C is a set of cells closed for the
incidence relationships: if ¢ € C then the faces of ¢
belongs also to C. Now that we have defined the notion of
cellular complex to specify the organization of the data
structure, we need to associate data with the topological
cells. For example we can associate a concentration
with 3-cells, flux with 2-cells, etc. The association of
data with cells corresponds to the concept of topological
chain in algebraic topology (Henle, 1994). We would
not describe this notion further in the paper because we
will only rely on the fact that values are associated with
each cell.

To summarize, a topological collection is a cellular
complex where values are associated with each cell.
An example of such a cellular complex is given in Fig.
1. Topological collection will be used to represent the
states of a dynamical system.

v3) v2

2.2. Transformation

Transformations are functions defined by case
used to handle topological collections. Each case is a
rewriting rule o — B where pattern o matches some
sub-collection s of a collection S, where expression
computes a new sub-collection s and substitutes s by
s’ in S. Transformations are well suited for describing
the notion of local evolution law. Indeed, a local law
can be considered as a rewriting rule that matches some
interacting sub-systems, and that replaces these entities
by a combination of the interaction. There are two kinds
of transformations available in MGS.

<n,p>-transformations. The <n,p>-transformations
use the p-neighborhood on cells of dimension n. The
pattern « of each rule matches a sequence of n-cells.
Two contiguous 1n-cells in this sequence have to be
p-neighbors. This sequence of neighboring cells is
called a < n, p >-path or simply a path. The right-hand
side (r.h.s.) of a rule also computes a sequence of values.
Finally, the substitution is done element-wise: element
i in the matched path is replaced by the ith element in
the r.h.s. sequence. This point of view enables a very
concise writing of the rules. Nevertheless, it does not
allow a topological modification of the cellular complex
but only an updating of the associated values.

Patch transformations. A patch is a transformation
that allows modifications of the topological structure of a
collection. The pattern and the r.h.s. specify an arbitrary
sub-collection through a set of clauses. The example
described in Section 3 shows how transformations can
be defined and used in a concrete manner.

2.3. Unification of discrete computational models

The abstract approach of the data structure in
MGS and the notions developed on transformations,
enable an homogeneous and uniform handling of the
computational models quoted above. For example,
L-systems can be viewed as rewriting rules (defined by

0.4

[J L J
(=3,0) 6 (3.0)

Fig. 1. On the left is an example of a cellular complex: it is composed of three 0-cells (vy, v2, v3), three 1-cells (eq, ez, e3), and a 2-cell f. The
boundary of fis formed by its incident cells vy, va, v3, €1, e and e3. Especially, the three edges are the faces of f, and therefore, fis the coface of
e1, e2 and e3. On the right, data are associated with the topological cells: positions are associated with vertices, lengths with edges and area with f.

BioSystems (2006), doi:10.1016/j.biosystems.2006.09.024

Please cite this article in press as: Antoine Spicher and Olivier Michel, Declarative modeling of a neurulation-like process,

dx.doi.org/10.1016/j.biosystems.2006.09.024

+Model
BIO-2627; No.ofPages8

4 A. Spicher, O. Michel / BioSystems xxx (2006) xxx—xxx

Neurulation

Neural plate Neural fold

e

Notochord

Epidermis

Neural crest

N
© UCLA, pgﬁ @

Fig. 2. On the left is a diagrammatic description of the neurulation process (reproduced, with permission from the author, from a drawing by Patricia
Phelps at UCLA). Figure on the right shows three steps of our model. At the beginning, the system is a sheet of cells representing the neural plate.
Then it is curved by cells deformation. At the final step, the sheet is closed and becomes a true continuous topological cylinder.

the grammar) applied on sequences. As a matter of fact,
sequences are one dimensional: elements of a sequence
are O-cells, and two elements are contiguous in the
sequence if their associated cells are 1-neighbors. The
data stored in the sequence are values associated with
each 0O-cell in the corresponding topological collection.
More generally, by varying the underlying topology,
it is possible to emulate various computing models.
Reference (Giavitto and Michel, 2002b) shows how
Lindenmayer systems, Paun systems, abstract chemistry
and cellular automata can be rephrased uniformly as
transformations of topological collections.

3. Modeling the shape transformation of an
epithelial sheet

In this section, we use the concepts of topological
collections and transformations for multi-dimensional
structures presented above, to specify a model of the
shape transformation of an epithelial sheet. This model
represents a first step towards the declarative modeling
of neurulation.

3.1. Description of the model

The neurulation process consists in a topological
modification of the back region of the embryo (see left
of Fig. 2)': the neural plate is folding and forms the
neural fold. Then, this folding curves the neural plate
until the two borders touch each other and make the plate
becomes a neural tube. A last step consists in a separa-
tion between the neural tube and the epidermis located

! Image taken from http://www.physci.ucla.edu/research/phelps/
index.php and http://biology.kenyon.edu/courses/bioll14/Chap14/
Chapter-14.html.

at the neural crest. The global deformation of the neural
plate comes from the local change of the individual cell
shapes, cell division and cell migration. The change of
the shape geometry is followed by a topological modifi-
cation that corresponds to the transformation of a plate
into a tube. This modification is not trivial to model.

In our example, we have simplified the systems into
a sheet of epithelial cells that is folded only by local cell
deformation (see right of Fig. 2). After the migration,
cells that were on the opposite sides at the beginning
become very close to each other. Once they are closed
enough, they collapse to make the original sheet of cells
becomes a cylinder.

Our mechanical model is inspired from the works
of Odell et al. (1981) on the modeling of epithelial
cells. In their model, an epithelial cell is described
in two dimensions by a masses and springs system.
Fig. 3 sketches this representation. A cell is a square
composed of four vertices and six edges or fibers (four
for the sides and two others for the diagonals). The sides
of the square correspond to the membrane of the cell,
and the diagonals are used to model its inner fibers, and
prevent an implosion. Moreover, the cell has a polarity:
the fiber at the top is apical, the bottom one is basal.
By contracting the springs of the basal and/or the apical
sides, the cell changes its shape.

Each edge corresponds to a spring with a stiffness
constant k and a rest length L in parallel with a friction
with a damping constant . Let L be the length of the
spring, the mechanical forces are given by Newton’s
second law of motion in the equation:

d’L dL

a =k(Lo—L)—ME ey
Each vertex is linked to several springs and its accel-
eration vector can be computed by summing the forces

BioSystems (2006), doi:10.1016/j.biosystems.2006.09.024

Please cite this article in press as: Antoine Spicher and Olivier Michel, Declarative modeling of a neurulation-like process,

dx.doi.org/10.1016/j.biosystems.2006.09.024
http://www.physci.ucla.edu/research/phelps/index.php
http://www.physci.ucla.edu/research/phelps/index.php
http://biology.kenyon.edu/courses/biol114/Chap14/Chapter_14.html
http://biology.kenyon.edu/courses/biol114/Chap14/Chapter_14.html

+Model
BIO-2627; No.ofPages8

A. Spicher, O. Michel / BioSystems xxx (2006) xxx—xxx 5
apical vi
)
o——©
k,LO
Ly
mu
o (I
basal vi

Fig. 3. On the left, Odell’s model for the simulation of epithelial cells. On the right, extension of Odell’s model to three dimensions.

Fig. 4. Application of Odell’s model on a ring of cells in MGS. From the left to the right, some screen-shots at different steps of the simulation.

applied by the springs. Let p; be the position vector of
vertex i, we have:

2 2
md Di _ d Lij
dr . Z Lode

jeneighbors(i)

Pj— Di
lpj— pill

@

where L;; is the length of the spring between i and j,
and is given by Eq. (1). Fig. 4 presents the application
of this model on a ring of cells in MGS.

In Nagpal (2001), this model has been extended in
three dimensions. We will use this extension in our
model. Instead of representing a cell by a square, we use
cubes as shown on the right of Fig. 3: a cell is composed
of 8 vertices, 24 edges, 6 faces (the faces of the cube)
and 1 volume. Note the inner fibers are not represented,
and instead of corresponding to inner fibers in the 2D
model, the diagonals represent fibers in the membrane
in three dimensions.

3.2. Implementation in MGS

3.2.1. Representation of the system
First of all, we start by defining the type of the values
associated with each cell.

record Vertex = { px:float, py:float, pz:float,
vx:float, vy:float, vz:float,
ax:float, ay:float, az:float,
m:float } ;;

record Edge = { k:float, LO:float, mu:float, vL:float,
vi:cell, vj:cell } ;;

We define two types of MGS records (a data structure
equivalenttoaC struct) for cells of dimension 0 and
1. The type Ver tex contains 10 fields used for the New-
tonian mechanics: px, py and pz represent the position
vector, vx, vy and vz the velocity vector, ax, ay and az
the acceleration vector, and m the mass. The type Edge
pulls together the different constants associated with the
spring model k, mu and L0. The velocity of the elonga-
tion is stored in the field vL. Moreover, two fields, vi
and vj refer to boundaries of the edge; they are used to
generate an arbitrary orientation of the edges. Note that
r.x denotes the value associated with the field x of a
record r.

Faces and volumes are not used in this example.
However, it is easy to imagine that the volumes contain
a kind of “genetic script” and the faces correspond to
the place where cells exchange some chemical entities
(ion channel, port, etc.). Therefore, these cells would
be useful for the simulation of reaction—diffusion
processes superimposed with the regulation of a genetic
network.

In a second step, we have to initialize the chain
representing the filament of cells. MGS can load
cellular complexes from external files. So we consider
that the structure of filament has been built with a CAD
program and imported into MGS. Let ¢ be a chain
where the position {px=..., py=..., pz=...}
is associated with each vertex, and where the other
cells have no value. The initialization is done by four
transformations for each dimension. As an example, we
will describe here the initialization of the vertices:

BioSystems (2006), doi:10.1016/j.biosystems.2006.09.024

Please cite this article in press as: Antoine Spicher and Olivier Michel, Declarative modeling of a neurulation-like process,

dx.doi.org/10.1016/j.biosystems.2006.09.024

+Model
BIO-2627; No.ofPages8

6 A. Spicher, O. Michel / BioSystems xxx (2006) xxx—xxx

trans <0> init 0 =
v =>v + m=1.0, vx=0.0, vy=0.0, vz=0.0, ax=0.0,
y

ay=0.0, az=0.0 } };;

The keyword trans <0> means the transformation
is dedicated to the elements of dimension 0. For each
matched element, the variable v contains the position
of the vertex. The initialization consists in adding the
velocity and the acceleration (null at the beginning) to
the record v. The addition between two records r+r '
computes the asymmetric fusion: the result is a record
that contains all the fields of r and r’ with a priority for
r ' when a collision occurs. Asymmetric fusion enables
to update some fields in a record without knowing all
the remaining fields, a feature largely used in MGS
programs.

3.2.2. Mechanical model

The mechanical model is described by two equations.
So we will write two transformations to compute the
force applied on each edge, and then the displacement
of each vertex.

trans <1> update_spring = {
e:Edge =>

let vi = self.(e.vi) and vj = self.(e.vj) in

let L = dist(vi,vj) in

let f = (e.k*(e.LO-L) + e.mu*e.vL) in

let eijx = (vj.px - vi.px) / L and eij.y = ... and eijz = ... in
e+ { vL = vL, fx = fxeijx, fy = fxeij_y, fz = freijz }

This transformation (dedicated to the edges of type
Edge) is the straightforward translation of Eq. (1). The
amplitude of the elastic force is associated with the vari-
able £. The orientation of the edges is taken into account:

the vector &;; = Hﬁ ’:ﬁ i j is computed and the force
j i

is distributed along the three directions. The variable
self denotes the collection that update_spring is
applied on and self. (x) returns the value associated
with cell x of the collection self. The function dist

v13

v24

Fig. 5. Scheme of a rewriting rule for the topological transformation
from the sheet of cells into a cylinder. To simplify the figure, diago-
nals are not drawn. The dotted edges represent the rest of the cellular
complex.

computes the distance between its two arguments of type
Vertex.

trans <0> integration [deltat = 0.01] = {
vi:Vertex =>

let forces = cofacesfold (
(fun e acc —>

let ve = self.(e) in
if (vi == ve.vi) then

{ fx = acc.fx+ve.fx, fy = fz = }
else

{ £fx = acc.fx-ve.fx, fy = , fz = ...}
fi),

{ £x=0.0, £y=0.0, £z=0.0 },
vi
) in
vi + { ax
A28
px

forces.fx / vi.m, ay = ...,
vi.vx + deltat * vi.ax, vy
vi.px + delta_t * vi.vx, py ..., PZ

o

z e
, vz

The transformation integration computes the
new positions of vertices by using Eq. (2) (to obtain the
updates acceleration) and a classical Euler integration
approximation given by

U(t + At) = () + Ata(t) and p(t + At)
= p(t) + Ari(r) 3)

Value At corresponds to a discretization of time, and
is given as an optional argument, here delta_t,
whose default value is 0.01. In the right-hand side of
the rule, the function cofacesfold corresponds
to a basic fold on the sequence of the cofaces of vi.
These cofaces are the edges whose vi is one of their
boundaries. The function given in argument sums up
the force applied by each edge on vi. Remark that a
conditional test is used to take account of the orientation
of the edge; as a consequence, the force is added or
subtracted.

3.2.3. Topological surgery

The previous transformations allow the sheet to be
folded. Nevertheless, no intersection between cells is
checked. The following patch transformation merges
two very close faces where one face is opposite to
another. This transformation is ad hoc and the initial
rest lengths have been appropriately chosen to make the
curvature realistic.

Fig. 5 shows a diagrammatic view of the rewriting
rule we want to specify in MGS. Cells are gathered
two by two and are merged. Moreover, the rest of the
cellular complex (represented by the dotted edges) has
to be considered for the reconstruction. As an example,
the unmatched cofaces of the vertices vy and vy
must be cofaces of vj. The patch transformation is the
following:

BioSystems (2006), doi:10.1016/j.biosystems.2006.09.024

Please cite this article in press as: Antoine Spicher and Olivier Michel, Declarative modeling of a neurulation-like process,

dx.doi.org/10.1016/j.biosystems.2006.09.024

+Model
BIO-2627; No.ofPages8

A. Spicher, O. Michel / BioSystems xxx (2006) xxx—xxx 7

Fig. 6. Simulation of a neurulation-like process in MGS: from the left to the right, a sheet of epithelial cells is curving until the hems sew together

to form a tube.

patch surgery = {
f1:[dim=2, (ell,el2,e13,e14) in faces]
vil < ell > v12 < el2 > v13 < el3 > v14 < eld > vi1l

£2: [dim=2, (e21,e22,e23,e24) in faces]
v21l < e21 > v22 < e22 > v23 < e23 > v24 < e24 > v21

[P(v11,v12,v3,v14,v21,v22,v23,v24)]
=>
‘v1:[dim=0,faces=(),
cofaces=(‘el, ‘e4)@unmatched_cofaces(vil,vi2),
average 0(v11,v21)]

‘el:[dim=1,faces=(‘v1, ‘v2),
cofaces=(‘f)@unmatched_cofaces(f1,f2),
average_1(ell,e21)]

‘f:[dim=2,faces=(‘el, ‘e2, ‘e3, ‘e4),
cofaces=cofaces(f1,f2),
average 2(f1,£2)]

JE

The pattern of a patch rewriting rule is
composed of clauses. As an example, -clause
f:[dim=2, (el,e2,e3) in faces] specifies
a cell £ of dimension 2, that has at least three faces
called el, e2 and e3. The : [...] part of the clause
is optional. Moreover, we can use the operators <
and > between two clauses: a<b means that the cell
matched by the clause a is a face of the cell matched
by b. To simplify the program, the diagonals are
not specified in the surgery patch. A predicate P
is also used to check some additional geometrical
properties of the vertices (both squares have to be very
close).

The right-hand side specifies, within a syntax close
to the patch pattern one, the elements that are built to
replace the matched one. As an example, we create
a new cell ‘v1 of dimension O, that has two new
elements (*el and ‘e4), and the old cofaces of v11
and v12 that have not been matched (they are given
by the function unmatched _cofaces) as cofaces.
The value associated with ‘v1 is computed by the
function average_0(v1l,v21). The @ operator
denotes the sequence concatenation. Fig. 6 shows four
steps of the animation generated by MGS on a sheet of
20 x 2 cells.

3.2.4. A moving token in the ring of cells

To show that the cylinder is really closed after the
topological surgery step, we put a token in the volumes.
We want it to move along the sheet from one side
to another. After the cylinder formation, this token
should move along the ring without being blocked.?
The following transformation can also be viewed as a
substance transport between biological cells.

To simulate the token movement we associate values
with the volumes (3-cells). At the beginning, each cube
holds the value ‘cell: this is a symbol, i.e. a constant
built from a name (here “cell”’). However, we associate
the value * token with a cell, and ‘back, with one of
its neighbors. This second symbol is used to force the
token to go along one direction.

trans <3,2> token = {
‘back, ‘token, ‘cell => ‘cell, ‘back, ‘token ;
‘back, ‘token => ‘token, ‘back

b

This transformation is applied on the element of
dimension 3, and we consider the two-neighborhood
relationship between them. Therefore, the pattern
‘back, ‘token, ‘cell means that we want to find a
path of three cubes whose values correspond to *back,
‘token and ‘cell in this order. We rewrite ‘cell,
‘back, ‘token that makes the token move forward.
The second rule corresponds to the case when the token
is at an extremity. It cannot go forward and goes in the
opposite direction.

4. Conclusion

In this paper we have presented a new approach
for the declarative modeling of (DS)?. Such kind of
dynamical systems are very common in developmental
biology. Our approach relies on the representation of
the state of the (DS)2 as a topological collection (a
data structure based on notions developed in algebraic
topology). The evolution laws of the (DS)? are specified

2 The movie of this simulation is available at http://www.ibisc.univ-
evry.fr/~mgs/ImageGallery/EXEMPLES/Neurulation/neurulation.avi.

BioSystems (2006), doi:10.1016/j.biosystems.2006.09.024

Please cite this article in press as: Antoine Spicher and Olivier Michel, Declarative modeling of a neurulation-like process,

dx.doi.org/10.1016/j.biosystems.2006.09.024
http://www.ibisc.univ-evry.fr/~mgs/ImageGallery/EXEMPLES/Neurulation/neurulation.avi

+Model
BIO-2627; No.ofPages8

8 A. Spicher, O. Michel / BioSystems xxx (2006) xxx—xxx

using transformations, which are rewriting rules acting
on topological collections. This unifying point of view
enables a clear and concise description of models of
(DS)>. We have shown that the notions brought by MGS
allow to take into account systems that have a multi-
dimensional structure by giving a straight description in
MGS terms of a model of simulation of the neurulation
process.

The MGS programming style corresponds to the
rule-based programming paradigm. Rule-based pro-
gramming is currently experiencing a renewed period of
growth with the emergence of new concepts and systems
that allow a better understanding and a better usability.
However, the vast majority of rule-based languages (like
expert-systems) are funded on a logical approach (com-
putation is a logical deduction and a deduction step is
specified by a rule) which is not adequate to describe var-
ious spatiotemporal processes. We hope that the previous
section has demonstrated the ability of MGS to express
easily and concisely the building of sophisticated spatial
structures, like the ones needed to model developmental
processes.

The perspectives opened by this work are numerous.
The notions developed here must be further validated
through the development of large scale examples. The
MGS language is currently used to model several bio-
logical processes (see (Barbier de Reuille et al., 2006)
for a sophisticated use of MGS in plant development).

In this paper, we have not discussed the problem
raised by the rule application strategy in a transforma-
tion. By changing the rule application strategy, that is
the way to select the sub-collections to be replaced, we
can change the model of time used in the simulation.
In this paper, we use a maximal parallel strategy, which
corresponds to the rule application strategy used in L-
and P-systems. This strategy suits well a macroscopic
approach. However, the right handling of chemical
reactions at a microscopic scale requires a sequential
rewriting strategy. The mixing of several strategies is a
domain of future work.

At last but not least, we have to mention that the
current MGS prototype relies on naive data structures
and algorithms to implement cells of any dimension
and their transformations. The efficient evaluation of
patch patterns is a subject of future work, as well as the
compilation of MGS programs.

Acknowledgments

The authors would like to thank J.-L. Giavitto at
IBISC, the MOKA team at the University of Poitier
and the members of the “Simulation and Epigenesis”

group at Genopole for technical support, stimulating
discussions and biological motivations. This research
is supported in part by the CNRS, GDR ALP, IMPG,
University of Evry and Genopole/Evry.

References

Banatre, J.-P., Fradet, P, Le Métayer, D., 2001. Gamma and the chem-
ical reaction model: 15 years after. Lecture Notes Comput. Sci.
2235, 17-44.

Barbier de Reuille, P., Bohn-Courseau, I., Ljung, K., Morin, H., Car-
raro, N., Godin, C., Traas, J., 2006. Computer simulations reveal
properties of the cell—cell signaling network at the shoot apex in
Arabidopsis. PNAS 103 (5), 1627-1632.

Giavitto, J.-L., 2003. Invited talk: topological collections, transfor-
mations and their application to the modeling and the simulation
of dynamical systems. In: Rewriting Technics and Applications
(RTA’03), vol. LNCS 2706 of LNCS, Valencia. Springer, pp. 208—
233.

Giavitto, J.-L., Godin, C., Michel, O., Prusinkiewicz, P., 2002. Mod-
elling and simulation of biological processes in the context of
genomics, “Computational Models for Integrative and Develop-
mental Biology”. Hermes. Also republished as an high-level course
in the proceedings of the Dieppe spring school on “Modelling and
simumation of biological processes in the context of genomics”,
May 12-17, 2003, Dieppes, France.

Giavitto, J.-L., Michel, O., 2002a. Data structure as topological spaces.
In: Proceedings of the third International Conference on Unconven-
tional Models of Computation UMCO02, vol. 2509, Himeji, Japan.
Lecture Notes in Computer Science, pp. 137-150.

Giavitto, J.-L., Michel, O., 2002. The topological structures of mem-
brane computing. Fundamenta Informaticae 49, 107-129.

Henle, M., 1994. A Combinatorial Introduction to Topology. Dover
Publications, New York.

Lindenmayer, A., Jiirgensen, H., 1992. Grammars of development:
discrete-state models for growth, differentiation, and gene expres-
sion in modular organisms. In: Ronzenberg, G., Salomaa, A. (Eds.),
Lindenmayer Systems, Impacts on Theoretical Computer Science,
Computer Graphics and Developmental Biology. Springer Verlag,
pp. 3-21.

Munkres, J., 1984. Elements of Algebraic Topology. Addison-Wesley.

Nagpal, R., 2001. Programmable self-assembly: constructing global
shape using biologically-inspired local interactions and origami
mathematics. PhD Thesis, Massachusetts Institute of Technology.

Odell, G.-M., Oster, G., Alberch, P., Burnside, B., 1981. The mechan-
ical basis of morphogenesis. I. Epithelial folding and invagination.
Dev. Biol. 85 (2), 446-462.

Palmer, R.S., Shapiro, V., 1993. Chain models of physical behavior
for engineering analysis and design. Res. Eng. Des. 5, 161-184
(Springer International).

Paun, G., 2001. From cells to computers: computing with membranes
(P systems). Biosystems 59 (3), 139-158.

Prusinkiewicz, P., Lindenmayer, A., Hanan, J.S., et al. 1990. The Algo-
rithmic Beauty of Plants. Springer-Verlag.

Rozenberg, G., Salomaa, A., 1992. Lindenmayer Systems. Springer,
Berlin.

Tonti, E., 1974. The algebraic-topological structure of physical theo-
ries. In: Glockner, P.G., Sing, M.C. (Eds.), Symmetry, Similarity
and Group Theoretic Methods in Mechanics. Calgary, Canada, pp.
441-467.

BioSystems (2006), doi:10.1016/j.biosystems.2006.09.024

Please cite this article in press as: Antoine Spicher and Olivier Michel, Declarative modeling of a neurulation-like process,

dx.doi.org/10.1016/j.biosystems.2006.09.024

	Declarative modeling of a neurulation-like process
	Introduction
	A quick description of the MGS formalism
	Topological collections
	Transformation
	Unification of discrete computational models

	Modeling the shape transformation of an epithelial sheet
	Description of the model
	Implementation in MGS
	Representation of the system
	Mechanical model
	Topological surgery
	A moving token in the ring of cells

	Conclusion
	Acknowledgments
	References

