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Abstract. MGS is an experimental programming language for the mod-
eling and the simulation of discrete dynamical systems. The modeling
approach is based on the explicit specification of the interaction struc-
ture between the system parts. This interaction structure is adequately
described by topological notions. The topological approach enables a
unified view on several computational mechanisms initially inspired by
biological or chemical processes (Gamma and cellular automata). The
expressivity of the language is illustrated by the modeling of a diffusion
limited aggregation process on a wide variety of spatial domain: from
cayley graphs to arbitrary quasi-manifolds.

1 Introduction

In this paper, we are interested in the modeling of discrete dynamical systems
with some internal structure that arises from their evolution function.

Consider the following discrete process: a particle q moves randomly on a
square lattice. So, if q is on node (x, y) at time t, then at time t + 1 it occupies
one of the node (x + εx, y + εy) where εx, εy are randomly chosen in {−1, 0, 1}
such that |εx|+ |εy| 6= 0. The building of a synchronous cellular automata (CA)
that simulates this process is not immediate because the update rules change
the state of only one node. It will be much more easy to allow rules that update
synchronously a entire subset of the nodes. If this kind of rule is allowed, then it
would be trivial to define this process as the simultaneous update of two neighbor
cells, one empty and the other containing a particle, by the exchange of their
state.

The problem of updating a subset of cells defined by some arbitrary con-
ditions is often solved using an asynchronous dynamics: this avoids that two
occupied cells decide at the same step to occupy the same empty neighbor. An-
other solution is the partitioning of the cells into a coarser graph (this is the
approach of lattice gas automata [TM87]).

We see here these two approaches mainly as tricks that do not account that
a system can be decomposed into subsystems defined by the requirement that
the elements into the subsystems interact together and are truly independent
from all other subsystems parallel evolution.



In this view, the decomposition of a system S into subsystems S1, S2, . . . , Sn

is functional : the state si(t + 1) of the subsystem Si depends solely of the pre-
vious state si(t). However, the decomposition of S into the Si can depend on
the time steps. So we write St

1, S
t
2, . . . , S

t
nt

for the decomposition of the system
S at time t and we have: si(t + 1) = ht

i(si(t)) where the ht
i are the “local”

evolution functions of the St
i . The “global” state s(t) of the system S can be

recovered from the “local” states of the subsystems: it exists a function ϕt such
that s(t) = ϕt(s1(t), . . . , snt

(t)) which induces a relation between the “global”
evolution function h and the local evolution functions: s(t + 1) = h(s(t)) =
ϕt(ht

1(s1(t)), . . . , ht
nt

(snt
(t))).

The successive decomposition St
1, S

t
2, . . . , S

t
nt

can be used to capture the el-
ementary parts and the interaction structure between these elementary parts
of S. Cf. Figure 1. Two subsystems S′ and S′′ of S interact if it exists some
St

j such that S′, S′′ ∈ St
j . Two subsystems S′ and S′′ are separable if it exists

some St
j such that S′ ∈ St

j and S′′ 6∈ St
j or vice-versa. This leads to consider the

set S, called the interaction structure of S, defined by the smaller set closed by
intersection that contains the St

j .
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Fig. 1. The interaction structure of a system S resulting from the subsystems of ele-
ments in interaction at a given time step.

The set S has a topological structure: S corresponds to an abstract simplicial
complex. An abstract simplicial complex [Mun84] is a collection S of finite non-
empty set such that if A is an element of S, so is every nonempty subset of
A. The element A of S is called a simplex of S; its dimension is one less that
the number of its element. The dimension of S is the largest dimension of one
of its simplices. Each nonempty subset of A is called a face and the vertex set
V (S), defined by the union of the one point elements of S, corresponds to the
elementary functional parts of the system S. The abstract simplicial complex
notion generalizes the idea of graph: a simplex of dimension 1 is an edge that
links two vertices, a simplex d of dimension 2 can be thought of as a surface
whose boundaries are the simplices of dimension 1 included in d, etc.

Our proposal is to specify a discrete dynamical system starting from its
interaction structure. Our idea is to define directly the set S with its topological
structure and to specify the evolution function h by specifying the set St

i and the
functions ht

i. The result is an experimental programming language called MGS. In



MGS, the interaction structure S is defined as a new kind of data structures called
topological collections and a set of functions ht

i together with the specification
of the St

i for a given t are called transformation. A transformation is a function
defined by the cases St

i .
This abstract approach has two main advantages. The first one is that it

enables the easy specification of dynamical systems with a dynamical structure
(DS)2. In such systems, the phase space cannot be defined a priori and must be
computed jointly with the state of the system (in other word, the set of states
must be an observable of the system itself, see [Gia03]). The second advantage
is that this abstract approach enables an homogeneous and uniform handling
of several computational models including CA, lattice gas automata, abstract
chemistry, Lindenmayer systems and several other abstract reduction systems.

The rest of the paper is organized as follows. We begin with a short intro-
duction to the MGS experimental programming language, through the notions of
topological collection and transformation. Then, section 3 illustrates the appli-
cation of these notions on a simple CA. The same diffusion-aggregation process
is considered on two increasingly more complex topologies. Finally, we review
some related works and the perspectives opened by this research.

2 A Brief Presentation of the MGS Language

MGS embeds a complete, impure, dynamically typed, strict, functional language.
We focus on the notions required to understand the rest of the paper and we
only describe here the major differences between the constructions available in
MGS with respect to functional languages like OCAML [Ler96].

2.1 Topological Collections

The distinctive feature of the MGS language is its handling of entities structured
by abstract topologies using transformations [GM02]. A set of entities organized
by an abstract topology is called a topological collection. Topological means here
that each collection type defines a neighborhood relation inducing a notion of
subcollection. A subcollection S′ of a collection S is a subset of connected ele-
ments of S and inheriting its organization from S.

Topological Collection and the Representation of a (DS)2 State. A topological
collection is used to represent the complex states s of a dynamical system S at
a given time t. The elements of the topological collection are the elements S′

of V (S) and each element has a value given by s′. In the context of topological
collections, the elements of V (S) are called positions and we say that s′ is the
value associated to the position S′. Often there is no need to distinguish between
the positions and their associated value. In this case, we use the term “element
of the collection”.



Collection Types. Different predefined and user-defined collection types are avail-
able in MGS, including sets, bags (or multisets), sequences, several grids and ar-
bitrary topologies. We introduce the collection types along with the examples.

For any collection type T, the corresponding empty collection is written ():T.
The join of two collections C1 and C2 (written by a comma: C1,C2) is the
main operation on collections. The comma operator is overloaded in MGS and
can be used to build any collection by joining its two arguments. To spare the
notations, the empty sequence can be omitted in the definition of a sequence:
1, 2, 3 is equivalent to 1, 2, 3,():seq.

2.2 Transformations

Transformation are used to specify the evolution function of a (DS)2. The global
transformation of a topological collection s consists in the parallel application of
a set of local transformations. A local transformation is specified by a rule r that
specifies the replacement of a subcollection by another one. The application of
a rewriting rule σ ⇒ f(σ, ...) to a collection s:

1. selects a subcollection si of s whose elements match the pattern σ,
2. computes a new collection s′i as a function f of si and its neighbors,
3. and specifies the insertion of s′i in place of si into s.

One should pay attention to the fact that, due to the parallel application
strategy of rules, all distinct instances si of the subcollections matched by the σ
pattern are “simultaneously replaced” by the f(si).

The MGS experimental programming language implements the idea of trans-
formations of topological collections into the framework of a functional language:
collections are just new kind of values and transformations are functions acting
on collections and defined by a specific syntax using rules. Transformations (like
functions) are first-class values and can be passed as arguments or returned as
the result of an application.

Path Pattern. A pattern σ in the left hand side of a rule specifies a subcol-
lection where an interaction occurs. A subcollection of interacting elements can
have an arbitrary shape, making it very difficult to specify. Thus, it is more
convenient (and not so restrictive) to enumerate sequentially the elements of the
subcollection. Such enumeration will be called a path.

A path pattern Pat is a sequence or a repetition Rep of basic filters. A basic
filter BF matches one element. The following (fragment of the) grammar of path
patterns reflects this decomposition:

Pat ::= Rep | Rep , Pat Rep ::= BF | BF /exp BF ::= cte | id | <undef>

where cte is a literal value, id ranges over the pattern variables and exp is a
boolean expression. The following explanations give a systematic interpretation
for these patterns:



literal: a literal value cte matches an element with the same value. For example,
123 matches an element with value 123.

empty element the symbol <undef> matches an element with an undefined
value, that is, an element whose position does not have an associated value.

variable: a pattern variable a matches exactly one element with a well defined
value. The variable a can then occur elsewhere in the rest of the rule and
denotes the value of the matched element.

neighbor: b, p is a pattern that matches a path which begins by an element
matched by b and continues by a path matched by p, the first element of p
being a neighbor of b.

guard: p/exp matches a path matched by p if boolean expression exp evaluates
to true.

Elements matched by basic filters in a rule are distinct. So a matched path is
without self-intersection.

Right Hand Side of a Rule. The right hand side of a rule specifies a collection
that replaces the subcollection matched by the pattern in the left hand side.
There is an alternative point of view: because the pattern defines a sequence of
elements, the right hand side may be an expression that evaluates to a sequence of
elements. Then, the substitution is done element-wise: element i in the matched
path is replaced by the ith element in the r.h.s. This point of view enables a
very concise writing of the rules.

2.3 Short Example

We give an example that imply the transformation of a sequence of elements.

Bubble Sort in MGS. The bubble sort consists in (1) comparing two neighbors
elements in a sequence and swapping them if they are not in order; (2) repeating
the first step until a fixed point is reached. This specification is immediate in
MGS and can be written:

trans bubble sort = { x, y / (x > y) => y, x }
The keyword trans introduces the definition of a transformation by a set of rules.
Here there is only one rule. This transformation can be applied to a sequence s :=
4, 2, 3, 1 until a fixed point is reached: bubble sort[’iter=’fixpoint](s).
The value of the predefined optional parameter ’iter indicates that the applica-
tion of the function bubble sort must be iterated until a fixed point is reached.
The results is 1, 2, 3, 4 as expected.

3 (DS)2 on Complex Topologies

In this section we present the use of MGS to model and simulate more complex
systems. Our running example will be a diffusion limited aggregation process on



different spatial domains. Diffusion Limited Aggregation, or DLA, is a fractal
growth model studied by two physicists, T.A. Witten and L.M. Sander, in the
80’s. The principle of the model is simple: a set of particles diffuse randomly on
a given spatial domain. Initially one particle, the seed, is fixed. When a mobile
particle collides a fixed one, they stick together and stay fixed. For the sake
of simplicity, we suppose that they stick together forever and that there is no
aggregate formation between two mobile particles.

This process leads to a simple CA with an asynchronous update function or
a lattice gas automata with a slightly more elaborate rule set. The purpose of
this section is twofold. Firstly, we want to show that the MGS approach enables
the specification of a simple generic transformation that can act on arbitrary
complex topologies. Secondly, we show how to specify MGS topological collections
that correspond to standard CAs.

3.1 The DLA Evolution Function in MGS

The transformation describing the DLA behavior is really simple. We use two
symbolic values ‘mobile and ‘fixed to represent respectively a mobile and a
fixed particle. There are two rules in the transformation: (1) if a diffusing particle
is the neighbor of a fixed seed, then it becomes fixed; (2) if a mobile particle is
neighbor of an empty place, then it may leave its current position to occupy the
empty neighbor. Note that the order of the rules is important because the first
has priority over the second one. Thus, we have :

trans dla = {
‘mobile, ‘fixed => ‘fixed, ‘fixed
‘mobile, <undef> => <undef>, ‘mobile

}

3.2 DLA on Uniform Topologies : GBF

Group-based data fields (GBF in short) are topological collections used to define
topologies with a uniform neighborhood: a position cannot be distinguished only
by looking at its neighbors. This implies for example that each position has the
same number of neighbors.

A GBF is an extension of the notion of array where the elements are indexed
by the elements of a group called the shape of the GBF [GMS95,GM01]. For
example:

gbf Grid2 = < north, east >

defines a GBF collection type called Grid2 , corresponding to the Von Neumann
neighborhood in a classical array (a cell above, below, left or right – not diagonal).
The two names north and east refer to the directions that can be followed
to reach the neighbors of an element. These directions are the generators of
the underlying group structure. The r.h.s. of the GBF definition gives a finite
presentation of the group structure [Sha90]. The list of the generators can be
completed by giving equations that constraint the displacements in the shape:



gbf Torus2 = < north, east; 12*east = 0, 40*north = 0 >

defines a 40 × 12 torus: if one starts from a position and follows 12 times the
east direction, one finds oneself at the same position. Another example is the
definition of an hexagonal lattice that tiles the plane:

gbf Hexa2 = < east, north, northeast; east + north = northeast >

Each cell has six neighbors (following the three generators and their inverses).
The equation east + north = northeast specifies that a northeast move is equiv-
alent to a move following the east direction followed by a move following the
north direction.

A GBF value of type T is a partial function that associates a value to some
group elements (the group elements are the positions of the collection and the
the empty GBF is the everywhere undefined function). The topology of T is
easily visualized as the Cayley graph of the presentation of T: each vertex in the
Cayley graph is an element of the group and vertices x and y are linked by an
edge labeled g if there is a generator g in the presentation such that x + g = y.

Figure 2 represents the final state of a DLA process, where each initially
mobile particle has been fixed. The plot at the left is the application, until a
fixed point has been reached, of the transformation dla to a Torus2. The plot
at the right is the fixed point reached by the same transformation dla to a
Hexa2. In this last simulation, particles are initially packed on the right and the
initial static particle was on the left part of the lattice. Particles are constrained
to move on a rhombus. This explains the asymmetries of the figure.

Fig. 2. Example of DLA on two different topologies: a torus (left) and an hexagonal
meshes (right)

3.3 Arbitrary topology : DLA on Cellular Complexes

Beyond Graphs. The interaction structure of the previous examples can be ade-
quately described by a graph: two positions are connected by an edge if they are
neighbors. Sequences correspond to linear graphs and GBFs provide Cayley’s
graphs with regular connectivity. This last family of topologies is convenient to
represent regular spaces where all elementary parts have the same spatial prop-
erties, but they cannot be used for instance to model a sphere (there is no regular
graph on a sphere that corresponds to the Cayley graph of some group).



This shortcoming motivates the development of more powerful (arbitrary)
topologies. First we would like to represent irregular meshes. However, we also
want to represent heterogeneous spaces. As an example, let consider the electro-
static laws. They depend on the geometry of the system and some values must
be associated to a dimension: the distribution of electric charges corresponds
to a volumic density while the electric flux through a surface is associated to a
surface. Note that balance equations often link these values, such as the Gauss
theorem for our electrostatic example. See also the work of E. Tonti [Ton74] for
an elaboration.

As a consequence, the interaction structure that describes a system S may
contains simplices with dimension greater than one. In general, any component
of any dimension and their interactions should appear in the description of the
system, and we should be allowed to associate some values to them.

Arbitrary Topological Collection as Cellular Complex. The right framework to
develop a topological collection type that allows the representation of arbitrary
topologies is the combinatorial algebraic topology theory.

In this framework, a topological collection is a cellular complex : a collection
of objects of various dimension called k-cell, where k is the dimension. To be
more practical, 0-cells are vertices, 1-cells are edges, 2-cells are faces, 3-cells are
volumes, etc. To build some arbitrary complex domain, the domain is divided
into a cellular partition. Each cell represents a simple part of the domain and
the cells are glued together: a k-cell c1 is incident to a (k− 1)-cell c2 if c2 ⊂ ∂c1,
where ∂c1 denotes the border of c1. This boundary relation ∂ can be used to
specify the neighborhood relationships in a topological collection: two k-cells
are neighbors if they share an incident (k − 1)-cell or if they are incident to a
same (k + 1)-cell. This definition of a topological collection is consistent with
the previous one.

G-map in MGS. There are several specializations of the notion of cellular complex.
For instance abstract simplical complex evoked in the introduction are special
cases of cellular complexes. In MGS one can use generalized map or (Gmap) [Lie91]
to build arbitrary topologies. The topological objects that can be described by
Gmaps are quasi-manifolds.

There are several ways to specify and build Gmaps in MGS. A Gmap can be
build as the result of construction operations like various products, extrusion,
suspension, pasting, gluing, etc. A perhaps simpler way is to edit manually the
Gmap in an interactive CAD tool like MOKA1 and to import the result in MGS.

The figure 3 shows applications of the DLA transformation on different kinds
of objects built with Gmaps. As a matter of fact, the change of topological
collection doesn’t affect the transformation and we still apply the same dla
transformation. In these examples, the topological collections have dimension 2
and the values are associated only to 2-cells. The 2-cells are neighbors if they
have a common edge on their boundary. In the top of the figure, only the 1-cells
are figured, and in the bottom, only the 2-cells that hold a value are represented.
1 http://www.sic.sp2mi.univ-poitiers.fr/moka/



Fig. 3. DLA on complex objects (topology and final state). On the left: a sphere with
18 parallels and 24 meridians. On the right: a Klein’s bottle.

4 Conclusion and Perspectives

This paper only focuses on a part of the features available in MGS that can be
used to develop computer models of complex discrete dynamical systems that
are concise and mathematically well-founded. The approach has been applied
successfully to several biological processes (the growth of a tumor, the flocking
of birds, colonies of ants foraging for food, the heterocysts differentiation during
Anabaena growth, etc.) as well as more algorithmic problems (flow on graphs,
various sorting algorithms, Hamiltonian path, prime number generation, etc.).

The modeling of (DS)2 through their interaction structure is part of a long
term research effort [Gia03]. The topological approach presented here provides
a unified description of several computational models. Obviously, Lindenmayer
systems [Lin68] correspond to transformations on sequences. Chemical compu-
tation, as in Gamma [BFM01], can be emulated using transformations on bags.

There exists strong links between GBF and cellular automata, especially
considering the work of Z. Róka [Rók94] which has studied CA on Cayley graphs.
However, our own works focus on the construction of Cayley graphs as the
shape of a data structure and we develop an operator algebra and rewriting
notions on this new data type. This is not in the line of Z. Róka who focuses on
synchronization problems and establishes complexity results in the framework
of CA.

The perspectives opened by this work are numerous. From the applications
point of view, we are targeted by the simulation of developmental processes
in biology [GM03,GMM04]. At the language level, the study of the topological
collections concepts must continue with a finer study of transformation kinds.
Several kinds of restrictions can be put on the transformations, leading to various
kind of pattern languages and rules. The complexity of matching such patterns
has to be investigated. The efficient compilation of a MGS program is a long-term
research. We have considered in this paper only one-dimensional paths, but a
general n-dimensional notion of path exists and can be used to generalize the
substitution mechanisms of MGS.

The sources of the current MGS implementation, as well as several examples
and technical reports, are freely available at http://mgs.lami.univ-evry.fr.
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