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ABSTRACT

Biology has long inspired unconventional models of computation to
computer scientists. Thischapter focusesonamodel inspired by biological
development both at the molecular and cellular levels. Such biological
processes are particularly interesting for computer science because the
dynamic organization emerges from many decentralized and local
interactions that occur concurrently at several time and space scales.
Thus, they provide a source of inspiration to solve various problems
relatedto mobility, distributed systems, open systems, etc. Thefundamental
mechanisms of biological development are now understood as changes
within a complex dynamical system. This chapter advocates that these
fundamental mechanisms, although mainly developed in a continuous
framework, can berephrased in a discrete setting relying on the notion of
rewritinginatopological setting. Thediscreteformulationisasformal as
the continuous one, enables the simulation, and opens a way to the
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systematic study of the behavioral properties of the biological systems.
Directlyinspiredfromthesedevel opmental processes, thechapter presents
anexperimental programminglanguagecalled MGS. MGSisdedicated to
the modeling and simulation of dynamical systems with dynamical
structures. The chapter illustrates the basic notions of MGS through
several algorithmic examplesand by sketching variousbiol ogical models.

INTRODUCTION

Themembrane paradigm, DNA computing, molecular computing, and
agueouscomputing areexampl esof unconventional model sof computation
inspired by molecular biology. Inthischapter, wefocusonamodel inspired by
biol ogical devel opment at both mol ecular and cellular levels. Weareinterested
not only intheinteractionsbetweenthemol ecul es, but al so by theassembling
andthestructural organizationthatisdynamically created.

Such biological processes are particularly interesting for acomputer
scienti st becausethedynami c organi zati on of theinvol ved entitiesemergesfrom
many decentralized andlocal interactionsthat occur concurrently at several
timeand spacescales. Thedevel opment of biological organismshasfor along
time inspired computer science (see, for instance, the notion of cellular
automatanotedinvonNeumann, 1966). M orerecently, theemergingdomains
of amor phouscomputing (Www.swi ss.ai.mit.edu/pr ojects/amor phous), self-
healing systems, or autonomic computing (Kephart & Chess, 2003; Parashar
& Hariri, 2003) arealsodirectly inspired by developmental processesfound
at both molecular and cellular levels. Inspired by the description of various
developmental processesaschangesinadynamical system, weproposeanew
computational paradigmthat extendstheideaof rewriting systemstoabroader
class of data structures. To investigate this model, we are developing an
experimental programminglanguagecalledMGS.

However, the fertilization of computer science by biological notions
(Paton, 1994) is not a one-way process, and biology has imported many
conceptsdevel oped within computer science such asthenotion of programs,
memory, information, control, and many others (Stengers, 1988; Keller,
1995). Obviously, new programming paradigmsinspired by basi c devel op-
mental mechanismswill bealsoanideal framework to support and helpthe
biologistinanalysing and understanding thesekindsof biological processes.
Weillustratethiscross-fertilization by us ngM GSto simul atevariousprocesses
of patternformation.
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Outline of the Chapter

In the next section, we will sketch the requirements needed to model
developmental processesat bothmolecular and cellular levels. Our approach
tomodeling devel opmental processesisbased onthenotionof rewriting. This
isnot really anovelty; although most of themodelsinthisfieldrely onpartial
differential equations, string rewriting through the notion of L systems
(Lindenmayer, 1968) isnow routinely usedto model thedevel opment of plants,
and multiset rewriting constitutesthetheoretical foundation of artificial chem-
istries(http://Is11-www.cs.uni-dortmund.de/achem). Thesection“A Very
Short Introductionto Rewriting Systems’ presentssomefundamental notions
of rewriting with an emphasis on the use of rewriting rules to specify the
evolutionfunction of adynamical system.

Theusual notion of termrewritingistoorestrictiveto beeasily used to
model biological entities. Thisdrawback motivatesthedevel opment of MGS,
anexperimental programminglanguagedevoted tothes mulation of dynamical
systemswith adynamical structure. Thesection“A Quick Presentation of
MGS’ sketchesthebasicprinciplesof MGSand outlineshow several rewriting
mechanismsareunifiedinthesameframework using thenotionsof topol ogical
collectionand transformation. Thepresentationisrestricted to thenotions
requiredto understand theexamplesgiveninthenext two sections.

Thenext section, entitled “ Paradigmsof Pattern Formation”, focuseson
biological system modeling and detailssomeexampl esof fundamental pro-
cessesinvolvedin patternformation:

»  Diffusonandbeyond (Fick’ slaw and molecular diffusion).

*  Boundary growth (the growth of a snowflake and diffusion limited
aggregation).

*  Growthof atumor (illustrating the coupling between mechanical forces
andcell division).

Theexamplesprovided show theability of MGStoexpress, inasimple
andstraightforward way, variouspatternsof devel opment. They asovalidate
our approachfor themodeling and thesi mulation of dynamical systemswitha
dynamical structure. A comparison of our approachtorelated worksand some
other model sof computation concludesthechapter.
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BACKGROUND: DEVELOPMENT AND
DYNAMICAL SYSTEMS

A Dynamical System with a Dynamical Structure

Inthefield of devel opmental biology, onecurrent theoretical framework
viewsthedevel opmental processaschangeswithinadynamical system(DS).
Thispoint of view canbetraced back atleasttoD’ Arcy Thompson, Turing, von
Bertalanffy, and Waddington, and contrastswith puregenetically programmed
and pre-existing plansthat await revel ation during thedevel opmental process.
Inthepast two decadesor so, theconceptsand model sof nonlinear dynamical
systemshavebeen coupl ed with model sof geneticregul ationsto overcomethe
genetic/epigenetic debate onthe nature of the ontogenetic processes. These
model scan be seeninthepioneering worksof researcherssuch asHarper et
a. (1986), Kaufman (1995), Maynard-Smith (1999), Varela(1979), Wol pert
etal. (2002), and Meinhardt (1982).

A devel opmental processviewed asadynamical system often presentsthe
distinctivefeatureof having adynamic phasespace (the phase spaceistheset
of all possiblestatesof thesystem). Consider a“ classical” dynamical system,
likeafalling stone. Thissystemisadequately described by apositionand a
velocity. Even if the position and the vel ocity of the stone are constantly
changingintime, thestateof thissystemisawaysgivenasavector in R®xR3.
We seethat the phase spaceisgivenapriori, and we say that the DShasa
staticstructure.

Incontrast, consider thedevel opment of anembryo. Initialy, thestate of
thesystemisdescribed solely by thechemical statec, of theegg (no matter how
complex thischemical state). After several divisions, thestate of theembryo
must describe the chemical statesc, of the old and new cellsand also their
gpatial arrangement. Thenumber of cellsandtheir organizationat agiventime
cannot begivenapriori. Moreover, thereisakind of “circular causality” inthe
evolution of thechemical statesandtheevol ution of thespatial arrangement of
thecells: molecul esinterferewith the placement of the cell s(because some
mol eculesmakethemembranessticky) and the position of thecellsinterferes
withthediffusionof themol ecul es(thecel | sarethemedium of thediffusionand
createcompartmentsthat changethediffusion). Consequently, theexact phase
space of the system cannot befixed before the evolution and devel opment
model smust statetheevol ution of thespatial structurejointly withtheevolution
of thecellsstates. Wesay that thiskind of DSexhibitsadynamical structure.
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Intherest of thischapter weusetheabbreviation (DS)?to mean“dynamical
systemwithadynamical structure” (Giavitto& Michel, 2003).

Theimportanceof thedynamical structureof abiol ogical system perceived
asadynamical system hasoften beenrecognized under several names. Hyper -
cycleinautocatalytic networks(Eigen& Schuster, 1979), autopoeisis(Varela,
1979), variablestructuresystemsin classical control systems(ltkis, 1976;
Hung et al., 1993), devel opmental grammar (Mjolsnesset al., 1991), and
organization (Fontana& Buss, 1994) arenotionsthat have been devel oped
tocatchandformalizethisideaof achangeablestructure of asystem.

Asamatter of fact, thespecification of theevolutionof a(DS)?canbevery
difficultto achieve, and new programming conceptsmust bedevel opedtohelp
modeling and simul ation. Indeed, standard approachesintheformalization of
DS do not allow the specification of the phase space or itstopology asan
observableof thesystem?. Thisobservation hasmotivated thedevel opment of
theM GSproject.

Towards a Discrete Conceptual Framework

Asinmany other complex systemsinnature, (DS)? can exhibit coherent
behaviors—thepartsarecoordinatedlocally and without acentralized control
to produce an emergent, organized, stable, and robust pattern. Here, by
pattern, we mean the forms or the shapes produced by the development
processes in space or in time (Stevens, 1974). For example, the periodic
occurrenceof apredefined event, suchasachemical concentrationrepeatedly
reaching agiven level before decreasing and increasing again, isalso an
exampleof apattern, butintimerather thanin space.

What conceptual framework could beusedto specify and analyzethese
developmental design patterns? A quick look at theworksinthisareashows
that although discreteformalizationsare present, themai nstream of thecontri-
butionsaredevel opedintheframework of continuousmodels. For example,
thefamousreaction-diffusion model introduced by A. Turing (1952) isde-
scribed by aset of partial differential equations(PDESs). However, weadvocate
that di scretemodel scan be used advantageously to model biological devel op-
ment for several significant reasons.

* Inthediscreteapproach, thecomposition of thedesign patternscan be
studied from an algebraic point of view and, more precisely, from
combinatorial and generative points of view to analyze the space of
possiblepatterns. Thislast approach profitsfromall of theresultsand
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toolsdevel opedinthefield of formal languagetheory andisabletohandle
thechangesof phase spaceduringtheevolution.

*  Thediscrete approach isdefinitely more abstract — it focuses on the
fundamental functional and algorithmic propertiesof patternformation,
without theburden of the* physi co-chemical implementation”.

»  The discrete approach focuses on high-level properties and is well
adapted to our knowledge of the biological data. For example, actual
DNA chipmeasurementsusually distinguishonly betweenthreeand eight
relevant activationlevel sfor agene, metabolicfluxescannot generally be
measuredinvivofor only onecell, etc. Inaddition, itismorefruitful to
haveafunctional description(e.g., “thecell isinthisphase”’) thanaprecise
guantitativedescription (*theconcentration of thischemical hasreached
thislevel”). Infact, thefunctional descriptionisat |ast what wearelooking
for, andthelink betweenthetwokindsof descriptionsishighly dependent
ontheexperiment, theorganism, theenvironment, etc.

»  Developmentisoftendescribed asasuccession of discretemorphoge-
netic eventsthat represent adiscontinuity (acell dividesandwehaveto
handlethe change of onecell descriptiontotwo cell descriptions).

e  Findly,thecontinuousframework raisescripplingdifficulties:

»  Sincetheequationsinvolved oftenhavenonlinear terms, they canbe
solved only by numerical methods.

*  Thequestionof therobustnessof thesolutionsof PDESiscompl etely
open, mainly duetothelack of qualitative understanding of such
equations.

*  Thecontinuousformalismmakesit difficulttoexpressthediscrete
natureof thebiological entities.

From the modeling perspective, the discrete approach istoo abstract,
leaving unspecified theactual embodi ment of the patternformation. However,
despitetheincreasing amount of biological data, wearefar from obtainingthe
guantitativedataneeded by realistic continuousmodels.

So, at thispoint wearelooking for aformal discreteframework ableto
support thespecification of devel opmental design patterns. Atlast, thedevel-
opmental process consists of transformations of the system’s parts, if by
transformati on weunderstand the appearanceand thedi sappearance of matter
andthechangesinquality (size, differentiation) or inposition of thismatter.
Then, theglobal changesof thewhol esystem must bespecified asseveral local
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competingtransformationsoccurringinanorganized set of smpler entities. This
ideaof replacing somepartsof astructureby other partsspecified by local rules
recallsthenotion of rewriting.

A VERY SHORT INTRODUCTION TO

REWRITING SYSTEMS

Based onthenotionof rewriting systems(Dershowitz & Jouannaud, 1990;
Dershowitz, 1993), the emphasis of thissectionison the conceptsthat are
relevant in the context of applying rewriting systemsto the simulation of
dynamical systems(Giavitto 2003; Giavittoetal., 2004).

A Computational Device

Computer sciencehasappropriated and devel oped thenotion of rewriting
systems (RS) to build and relate different processes. The mechanics of
rewriting systemsarefamiliar toanyonewho hasdonehigh school mathematics:
aterm can be simplified by repeatedly replacing parts of the term (i.e.,
subterms) with other equival ent subterms. Termsrepresent expressionsby
trees— eachinternal nodeislabel ed by an operationandtheleavesarelabeled
by constants. A subtermreplacement isspecified asaruleo— 3 wherethel eft-
hand-side o specifies a subterm, and the right-hand-side 3 specifies its
replacement. A variablexinaisakind of wildcardthat specifiesanentireand
unknown subterm; avariablexin 3 denotesthe subterm matched by xino.

AnexampleinvolvingarithmeticexpressionsisillustratedinFigurel. An
arithmeticexpressionisadequately represented by atreeinwhichtheinternal
nodesarelabel ed by arithmetic operatorsand theleavesby integer numbers.
Anexpressionwithvariablesisafilter that matchesasubtree, thevariables
catchinganentiresubtree. A rewriteruleo— 3 specifesthat asubtreeof agiven
forma must bereplaced by atree3. Several occurrencesof asubtreemay need
to be replaced. In the top-left tree there are two occurrences of a subtree
matched by 0+x. Therewriting strategy indicateswhich occurrencemust be
replaced. Theresult of thethreepossi bl ereplacements(replacing oneoccur-
rence, theother, or thetwo) arefigured at theright side of theFigure 1.

Let Rbeagivenset of rules, and eaterm: wewritee—_ € todenotethat
ecanberewrittenin € using oneapplication of aruleof R. Weomittheindex
Rwhenthereisnoambiguity regarding theset of rulesused, andwewrite —*
todenotethereflexive-transitiveclosureof therelation—. A sequencee, —
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Figure 1. Rewriting an arithmetic expression

*

AN

+ +

0 2 0 / 2

(1+2)*(1+(3/4))

e, — ... — ¢ iscalledaderivation. Thefinal result of an unextendiblesequence

of ruleapplications(i.e., e cannot befurther rewritten) iscalled anormal form.

RS can be viewed as akind of directed equations used to compute by
repeatedly replacing subtermsof agivenformulawith equal termsuntil the
simplest possibleformisobtained. Thisdevicehasbeenprimarily used asa
decision procedureinequational theory: if wecan provethat thenormal form
computed by aRSisunique, thentwo termscan be proven to beequival ent
(modulotheequationscorrespondingtotherulesof theRS) if they sharethe
samenormal form. Asaformalism, RShasthefull power of Turing machines
and may bethought of asnondeterministic Markov algorithmsover terms,
rather thanstrings.

Rewriting and Simulation

Thepreviousdescription strongly suggeststhat aruleo— 3 canbeused
torepresent thelocal evolution of asubsystemocintoanew state3. Thatis, RS
canbeusedfor themodelingof aDS, provided that:

» Thestateof theDSisrepresented by atermand asubtermrepresentsthe
stateof asubsystem.
»  Theevolutionfunctionof theDScanbespecified astherulesof theDS.
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For instance, inthe context of thedevel opment of theembryo, arulec®
I = C' @i'canbeusedto specify that acell instatecthat receivesasignal i
evolvesinstatec' and sendsthesignal i'. A rulesuchasc — ¢’ @ c'" defines
acellular divisionand c— & (cgivesnothing) representsapoptosis. Theidea
isthat theleft-hand-sideof arewriting ruleselectsan entity inthebiol ogical
system and the messages that are addressed to it, and the right-hand-side
describesthenew stateof theentity and theeventual messagesthat areemitted.
Theoperator @ that appearsintheruledenotesthecomposition of theentities
together withthemessagesinto anentireglobal system. Theability toequally
expressthe changeof state and the appearance or disappearance of entities
makesRSsuitableto model (DS)2.

The Management of Time

Thenotion of timethat underliestheuseof RSfor themodelingof DSis
clearly based on adiscrete atomic event model: timeispassing when some
event occurssomewhereinthesystem, aruleapplication correspondstothe
occurrenceof such anevent, and durationisnot handled (but can beemulated
using astart and an end event).

A rewriting strategy is an algorithm for choosing in a term e the
occurrenceof thesubtermthat must berewritten. Several algorithmscanbe
consideredthat allow somecontrol over themanagement of time. For example,
intuitively, thelawsof natureareencodedintotherulesof anRSandtheselaws
must apply everywhere. Thisleadsto consideration of theso-called “ parall el
application strategy” . Instead of considering just one occurrenceof arule
applicationduring arewriting step, onemay chosetorewriteinthesamestep
amaximal nonintersecting set Sof matching subtermsine: two subtermsin Sdo
not haveasubtermincommon, each element in Smatchestheleft-hand-side
of arule, and Scannot befurther extended by asubterminewithout losingthe
two previousproperties. Ontheother hand, one may supposethat each event
occursat adifferent time. Thisasynchronousdynamicfitswell withthestandard
applicationof only oneruleat each rewriting step.

The Management of Space

Aruleofformc®i — c' @i' assumesthat signal i produced by somecell
reachesitstarget ¢, andthat signal i produced by thechangeof ctoc' reaches
itstarget located somewhere in the system. Thus, the operation @ used to
composethestateof thesubsystemsand theinteraction messagesmust beable
toexpressthespatial |ocalizationand thefunctional organization of thesystem.
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For instance, supposethat our cellsarebacteriainatest tube. Thesignals
produced by onecell arethenrel easedinasol ution. By thermal agitation, the
signals potentially reach any other cell in thetest tube. This can easily be
achieved by usinga(formal) operator @ that isassociativeand commutative.
Fromthispoint of view, theterm ¢, ®c,®c, representsatest tubewiththree
cells. Becauseweassumethat @ isassoci ativeand commutative, thistermcan
berewrittenintheequivaenttermc,®c, ®c,orc,®c, @ c,. Applyingtherule
c,—¢ @i tothistermgivesc @i®c,®c,. By associativity and commutativity,
signal i can be moved totheneighbor of ¢, or any other cell.

Termsbuilt withassoci ativeand commutativeoperatorsachieveamultiset
organization of theobjects. A multisetisasetinwhichanelementisallowed
tooccur multipletimes. A multiset buildsupa“chemical soup” of el ementsthat
arenot boundin atreebut can movearound and interact with oneanother.

By imposingonly associativity, theterm structurereducesto asequence
of elements. So, by giving somepropertiestotheoperationsintheterm, wecan
represent several kindsof organization. Thisfact haslong beenrecognized, and
multiset rewritingand string rewriting havebeen successfully usedinthefiel d of
biological modeling. Therest of thissection givessomereferencesof these
approaches.

However, multisets, sequences, andtreesof elementsarefar frombeing
sufficient to characterizethe sophisticated organi zation neededtorepresent the
variety of biological structuresfrommolecul esto societies, through compart-
ments, cells, tissues, organs, andindividual s. Thissevere shortcoming moti-
vates(among othersreasons) theextension of thenotionsof rewritingtomore
general structures. Inthenext sectionwe present such an extension based on
topological notions.

Multiset Rewriting

Multiset rewritingisthecoreof theGammalanguage. Gamma(Banétre&
Le Metayer,1986; Banétre et al., 1987) is based on the chemical reaction
metaphor; the data are considered as a multiset M of molecules and the
computationisasuccess onof chemical reactionsaccordingtoaparticular rule.
Arule(R, A),whereRisapredicateand Aafunction, indicateswhichkind of
moleculescanreact together (asubset mof M that satisfiespredicatesR) and
theproduct of thereaction (theresult obtai ned by applying function Atom).
Several reactionsmay happeninthesametime. Noassumptionismadeonthe
orderinwhichthereactionsoccur. Theonly constraintisthat if thereaction
condition Rholdsfor at |east one subset of elements, at |east onereaction
occurs(computation stopsoncethereaction condition doesnot holdfor any
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subset of themultiset). The CHemical Abstract Machine(CHAM) extends
theseideaswith afocusonthe semanticsof nondeterministic processes(Berry
& Boudol, 1992).

Theapplication of thisabstract chemistry-based approachisnow recog-
nizedasanemergingfieldcalledartificial chemistries(Dittrichetal., 2001,
http: //Is11-www.cs.uni-dortmund.de/achem). V ariousmotivationspresides
thegrowing body of research doneinthisfield, ranging fromthestudy of the
automated generation of combustionreactions(Bournez et al ., 2003) tothe
study of complex dynamical systemsand self-organizationinbiological evolu-
tion (Fontana& Buss, 1994).

Animportant applicationisthemodeling and thestudy of thebehavior of
signaling pathways. Fisher et al. (2000) proposed theuseof rewriting systems
tomodel cascadesof proteininteractionsinsignaling pathways. L ater work
(Eker et al., 2002; Lincoln, 2003) has produced some very sophisticated
model sof these pathways; however, theearlier work drawsattentiontothe
subtlerolethat so-called scaffold proteinsplay infacilitating cascadesand
preventing cross-talk between pathways. The RS approach provides ex-
tremely efficient representati onsof theinformation processing natureof signal -
ing pathways. Despitetheobvioususeof RSfor simulating variousbehaviours,
thesymbolictool setsproduced (e.g., model checking) canthenbeappliedto
generateand check novel hypothesesandto devel op analgebraand alogic of
signalingpathways.

String Rewriting

If theoperator involvedinthetermtoberewrittenisonly associative (and
not commutative), thentheterm simply correspondsto asequenceof elements.
Such sequencesarealso called strings(especially if theuniverseof possible
elementsisfinite). Stringrewritingisaformal framework heavily investigated,
for example, informal languagetheory.

String rewriting hasshownitsuseful nessand maturity in plant devel opment
modeling. Introduced by Lindenmayer (1968), theL systemformalismcanbe
roughly described asstringrewritingrulesappliedin parallel tostringsrepre-
sentingalinear or abranchingstructure. Theoriginal L systemformalismhas
been extended inmany ways, and comprehensivereviewshavebeen produced
(Prusinkiewicz & Lindenmayer, 1990; Prusinkiewicz 1998, 1999). Itisworth
givingaflavor of thisformalismthroughavery simpleexample.
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The two rules, a— ab and b— a can be viewed as a model of the
devel opment of afilamentousorganismusingthesymbolsaandb. Thefirstrule
statesthat acell of lengthadividesintotwo adjacent cellsof lengthaandb. The
other rulestatesthat acell b changesitslengthtoa (theserulesarerelatedto
the development of the bacterium Anabaena where we have ignored the
polarity that would determineif acell of lengthadividesintoabor ba). The
sequenceof thecellsissimply denoted by thejuxtaposition of their symbols.
Startingfromauniquecell of length a, weobtain successively:

a— ab— aba— abaab— abaababa— abaababaabaab— ...

by applying the two rulesin parallel. Each word represents a state of the
development of thefilament.

A good example of an L system that takes into account the cellular
interaction in the development is the modeling of growth and heterocyst
differentiationin Anabaena (Wilcox etal., 1973; Hammel & Prusinkiewicz,
1996). Thisexampleisremarkablefor at | east tworeasons: it showstheability
of thiskind of discrete model to accommodate or to easily emul ate features
usualy handledincontinuousformalisms(e.g., themodeling of thediffusion) and
alsobecauseittacklesafundamental biol ogical mechanism—amorphogenesis
driven by areaction-diffusion processtaking placeinagrowing medium.

By combining and structuring multiset and string rewriting, wecanextend
theapplicability of theseformalisms. Applicationsof such extensionsat the
geneticlevel include DNA computing (Adleman, 1994) and splicing systems,
alanguage-theoreticmodel of DNA recombinationthat allowsthestudy of the
generativepower of general recombinationand of setsof enzymaticactivities
(Head, 1987, 1992).

A QUICK PRESENTATION OF MGS

Wepresent thefundamental notionsthat underlietheM GSprogramming
language. M GSstandsfor “encoreunModél e Général deSimulation” (or, “ yet
another general model for simulation”). Thenotion of topol ogical collection
devel opedin M GSenabl estheunification of variousformsof rewritingandits
extensiontomoregeneral datastructuresthantrees.

Topological Collection and Their Transformations
M GSisaimed at therepresentati on and mani pul ation of local transforma-
tionsof entitiesstructured by abstract topologies(Giavitto& Michel, 2001,
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2002). A set of entitiesorganized by an abstract topol ogy iscalled atopol ogi-
cal collection. “Topological” heremeansthat each collectiontypedefinesa
neighborhood rel ation specifying both thenotion of locality and thenotion of
subcollection. A subcollection B of acollection Aisasubset of elementsof A
defined by some path and inheriting its organization from A. A pathisa
sequence-adjacent element, the adjacency relation being specified by the
neighborhood rel ationshi p between theelementsof thedatastructure.

Abstractly, atopol ogical collectioncanbeformalized asapartia function
C that associates a val ue to the points of adiscrete topological space. The
points of this space are called the positions of the collection. The values
associated withthese positions, or theimage of thepartial function C, arethe
elementsof thecollection. Thetopol ogical structureassociated with the set of
positionsgivesthenei ghborhood rel ationship betweenthecol lectionelements.
For example, a2-D array filled withinteger elementscan beseenasapartial
functionfromZ?toN with afinitedefinitiondomain. Here, thetopol ogy of Z?
isinherited fromthemodul estructureof Z2(Munkres, 1993) and aposition (X,
y) is the neighbor of a position (X',y’) only if X’ =x+1 and y’'=y+1. This
representation of an array isonly an abstract view — an array isnot really
implemented asafunctionwithinthecomputer but asaset of valuesindexed
by positionstakeninZ?2.

Theglobal transformation of atopological collection C consistsof the
parallel application of aset of local transformations. A local transformationis
specified by arewritingruler that specifiesthechangeof asubcollection. The
application of arewriteruler = o—f(o) toacollection A:

»  Selectsasubcollection B of Awhoseel ementsmatch the path pattern .
*  Computesanew collection Casafunctionf of Banditsneighbors.
»  Specifiestheinsertionof Cinplaceof Binto A.

In other words, MGS extends the idea of the term by the idea of
topological collectionand generalizesthenotion of therewritingruletothe
notion of transformation. For the sake of theexpressivity, MGSembedsthe
ideaof topological collectionsandtheir transformationsinto theframework of
asimpledynamically typedfunctional language. Collectionsarejust new kinds
of values, andtransformationsarefunctionsacting on coll ectionsand defined
by aspecific syntax using rules. Functionsand transformationsarefirst-class
values and can be passed as arguments or returned as the result of an
application. M GSisanapplicativeprogramming language: operatorsactingon
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valuescombinevaluestogivenew values, they donot act by side-effect. Inour
context, dynamically typed meansthat thereisno stati c type checking and that
typeerrorsaredetected at run-timeduring evaluation. Although dynamically
typed, theset of valueshasarichtypestructureusedinthedefinition of pattern-
matching, rules, andtransformations.

Collection Types

Thereareseveral predefined collectiontypesin MGS, and al so several
meansof constructing new collectiontypes. Thecollectiontypescanrangein
MGSfromtotally unstructured with setsand multi setsto morestructured with
sequences and GBFs (GBFsgeneralize the notion of regular array and are
presentedinthesectionentitled” Group-Based DataField”). Other topol ogies
are currently under development and include general graphs and abstract
simplicial complexes. Abstract simplicial complexesgeneralizethenotion of
graphsand enabletherepresentation of arbitrary topology (Munkres, 1993).
However, in this chapter we are mainly concerned with three families of
collectiontypes: monoidal collections, GBFs, and graphs.

For any collectiontypeT, thecorresponding empty collectioniswritten
():T. Thenameof atypeisalsoapredicateusedtotestif avaluev hasthistype:
T(v) holdsonly if visof typeT. Each collectiontype can be subtyped:

collectonU=T

introducesanew collectiontypeU, whichisasubtypeof T. Thesetwotypes
sharethesametopol ogy but aval ueof typeU can bedistinguishedfromavalue
of typeT by the predicate U. Elementsin acollection T can be of any type,
including collections, and thus achieving complex objectsin the sense of
Bunemanetal. (1995).

Monoidal Collections

Sets, multisets, and sequencesare membersof themonoidal collection
family. Infact, asequence (amultiset, aset) of valuestakenfromV canbeseen
asanelement of thefreemonoid V* (thecommutativemonoid, theidempotent,
and commutativemonoid, respectively). Thejoinoperationin V* iswrittenby
acommaoperator “,” andinducestheneighborhood of each element: let E be
amonoidal collection, thentheelement yin Eistheneighbor of theelement x
iff E=u, %, y, vfor someuandv. Thisdefinitioninducesthefollowingtopol ogy:
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*  For sets(type set), each element in the set isaneighbor of any other
element (because of thecommutativity, theterm describing aset canbe
reordered following any order and they are all distinct because of the
idempotent property).

»  Formultisets(typebag), each elementisal soaneighbor of any other one
(however, theelementsarenot requiredto bedistinct asin aset).

»  Forsequences(typeseq), thetopol ogy istheexpected one— anelement
not at oneend hasaneighbor at itsright.

Thecommaoperator isoverloadedin M GSand can beused to build any
monoidal collection (thetypeof theargumentsdisambiguatesthecollection
built). So, theexpression1,1+1,2+1,():set buildstheset with thethreeelements
1,2and 3, whileexpression1,1+1,2+1,():seq makesasequenceswiththesame
threeelements. Thecommaoperator isoverloaded suchthat if xandy arenot
monoidal collections, then x,y builds a sequence of two elements. So, the
expression1,1+1,2+1 evaluatesto thesequencesaswell.

Group-Based Data Field

Group-based datafields(GBFfor short) areused to defineorgani zations
with uniformneighborhood. A GBF isan extension of the notion of array,
wheretheelementsareindexed by theelementsof anabeliangroup, calledthe
shape of the GBF (Giavitto et a., 1995; Michel 1996; Giavitto 2001). For
example:

gbf Grid2 = < north, east >

definesaGBF collectiontypecalled Grid2, corresponding tothevon Neumann
neighborhoodinaclassical array (acell above, below, |eft, or right, but not
diagonal). Thetwo namesnorth and east refer to the directionsthat can be
followed to reach the neighbors of an element. These directions are the
generatorsof theunderlying group structure. Theinverseof thegeneratorscan
alsobefollowedtoreachaneighbor. Theright-hand side(r.h.s.) of the GBF
definition givesafinite presentation of the group structure. Thelist of the
generatorscan becompl eted by giving equationsthat constraint thedi splace-
mentsintheshape:

gbf Hex = <east, north, northeast; east+north = northeast>

definesahexagonal | atticethat tilestheplane, asshowninFigure2.
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Inthisdiagram, anhexagonal cell representsagroup element and neigh-
bors elementsshareacommonedge. Eachcell hassix neighbors(followingthe
three generators and their inverses). The equation east+north = northeast
specifiesthat amovefollowingnortheastisthesameasamovefollowingthe
eastdirectionfollowed by amovefollowingthenorth direction. Thisrepresen-
tation can beeasily generalized tovisualizethetopol ogy of any GBF of typeT
by agraph. Theresultisthe Cayley graph of the presentation of T: eachvertex
inthe Cayley graphisanelement of thegroup, and verticesx andy arelinked
if thereisagenerator ginthepresentationsuchthat x + g =y. Thisrepresentation
enablesadictionary between graph theoretic notionsand group concepts.

A word (aformal sum of the group generators) isapathin the Cayley
graph. Path composition correspondsto group addition, and equationP+v=0Q,
whereP and Q aregiven, awayshasasol ution: twocellsinthegraphareaways
connected. Eachcell ¢ canbenamed by thewordsthat represent apath starting
fromthecell 0andendinginc. All of thesewordsrepresent the samegroup
element. A closed path (acycle) isaword equal to O (theidentity of thegroup
operation). There aretwo kinds of cyclesinthe graph. Thecyclesthat are
presentinall groupsand correspondingtogrouplaws(intuitively, abacktrack-
ing pathsuchash +a—a-b wherea andb aregenerators). The other closed
pathsarespecifictothegroup equations. Anequationv=w canberewritten
v-w =0 and, thus, correspondsto aclosed path. In thediagram, the closed
triangular pathonthetopleft correspondsto theequation of the GBF, andthe
closed path onthetopright correspondsto thecommutation of thegenerators
eastandnorth. SeeFigure2for anillustration.

Figure 2. Shapes of a GBF <north, east, northeast; east+north = northeast>

east+north=northeast east+north=north+east
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A GBFvalueof typeTisapartial functionthat associatesaval ueto some
group elements(thegroup elementsarethepositionsof thecollectionandthe
empty GBFistheeverywhereundefinedfunction). A GBFvalueissimply a
labeling of afiniteset of positionsby somevalues. Thepositionsthat haveno
values are said to be undefined.

Matching a Path

Path patterns are used in the left-hand side (I.h.s) of aruleto match a
subcollectiontobesubstituted. Wegiveonly afragment of thegrammar of the
patterns:

Pat ::=x | <undef> | p,p’ | p1g>p | p+ | p/exp | p as x

where p, p' are patterns, g is a GBF generator, x ranges over the pattern
variables, andexp isanexpression evaluatingtoaBooleanvalue. Informally,
apath pattern can beflattenedinto asequenceof basicfiltersandrepetition
specifyingasequenceof positionswiththeir associated values. Theorder of the
matched elements can be forgotten to see the result of the matching as a
subcollection.

A pattern variable x matches exactly one element somewhere in the
collectionthat hasawell-defined value. Theidentifier x canbeusedintherest
of theruleto denotetheval ue of the matched element. Moregenerally, the
naming of thevaluesof asubpathisachieved usingtheconstructionas. The
constant <undef>isused to match an element withanundefinedvalue(i.e., a
positioninatopological collectionwithnovalue). Thepatternp,p' standsfor
apathbeginninglikep andendinglikep' (i.e., thelast elementinpath p must
be aneighbor of thefirst element in path p'). For example, the pattern a,b
matchestwo connected elementsreferred to hereafter asaandb (i.e., b must
beaneighbor of a).

The neighborhood relationship depends on the collection kind and is
decomposedinseveral subrelationsinthecaseof aGBF. Thecommaoperator
isthenrefinedintheconstructionp|g>p': thefirst element of p'istheg-neighbor
of thelast elementin pathp. Thepatternp+ matchesarepetitionp, ..., p of path
p.Finally, p/exp matchesthepathp only if exp holds.

Hereisamorecontrived example:

(e/seq(e))+ as S / size(S)<5
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selectsasubcollection S of lessthanfive elements, each element e of Sbeing
asequence. If thispatternisused against aset, Sisasubset; if thispatternis
used against asequence, S isasubsequence (that is, aninterval of contiguous
elements), etc.

Path Substitution and Transformations

Thereareseveral featuresto control theapplication of arule. Rulesmay
haveprioritiesor probabilitiesof application, they may beguarded and depend
onthevalueof local variables, they can* consume” their arguments, etc. We
present only thebasic application strategy; seeGiavittoandMichel (2001) for
moredetails.

Substitutions of Subcollections

A rule oo—f3 can be seen as arule for substituting either a path or a
subcollection; apath can be seen asasubcollection by simply forgetting the
order of theelementsinthepath. For example, therule:

(x/x<3)+ as S — 3,4,5,():set

applied to the set 1,2,3,4,5,6,():set returns the set 3,4,5,6,():set because S
matchesthe subset 1,2,():set and isreplaced by the set 3,4,5,():set. Thefinal
resultiscomputedas(3,4,5,():set)u(3,4,5,6,():set).

Substitutions of Paths

Becausethematched subcollectionisalsoapath—that is, asequenceof
elements—theseq typehasaspecial rolewhenappearinginther.h.s. of arule.
If ther.h.s. evaluatesto asequence, and if thissequence hasthesamelength
asthematched path, thenthefirst element of the sequenceisusedtoreplace
thefirst element of thematched path, and soon, withthelast elementinthepath
replaced by thelast element inthe sequence. Thisconventioniscoherent with
the subcollection substitution point of view and simplifiesenormously the
building of ther.h.s.

For example, supposethat inaGBF wewant to model therandomwalk
of aparticlex. Then, two neighboring elements, one being x and the other
undefined, must exchangetheir values. Thisisachievedwithonly onesimple
rule

X,<undef>—<undef> x
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Figure 3. Random walk of a particle on the GBF <north, east>
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without the need to mention the preci se neighborhood rel ationshipsbetween
thetwo elements. Figure 3illustratesthisprocessonthe GBF <north, east>.
Thisfreeabelian GBF describestheusual rectangular lattice. Eachcell ¢ has
four neighbors. Each application of the previoustransformation movesthe
valuein acell to an empty neighbor cell. The path to the right of Figure 3
represents 3,000 random movesonthislattice.

Wehavementioned abovethat theresult of replacing asubset by asetis
computed using set union. Moregenerally, theinsertion of acollectionCin
placeof asubcollection B dependsonthe*borders’ and onthetopol ogy of the
involved collections. For exampl e, inasequence, thesubcol | ection B defines
ingeneral two bordersthat areusedto gluetheendsof collection C. Thegluing
strategy may admit several variations. Theprogrammer can select theappro-
priatebehavior usingtherul € sattributes.

Transfor mations
A transformation Risaset of rules:

trans R={...; rule; ... }
For example, transformation

trans M = { x—x+1; }
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defines afunction M. The expression M(c) denotes the application of one
transformation steptothecollectionc. A transformation step consistsof the
parallel application of therules(modulotheruleapplication’ sfeatures). So,
M(c) computesanew collectionc' whereeach element of ¢ isincremented by
one.

A transformation step canbeeasily iterated:

Mliter=n](c)
denotestheapplication of n transformation steps, and
M[iter=fixpoint](c)

denotestheapplicationof M until afixed pointisreached; thatis, theresultc'
satisfiestheequation: ¢'=M(c').

PARADIGMS OF PATTERN FORMATION

I nthissection, weintroduce several fundamental paradigmsof pattern
formationthrough someexamplesandtheirimplementationinM GS. These
examplesareall fundamental model sthat have been proposed and discussed
inthefield of developmental biology. The purpose of thissectionisnot to
devel op new devel opmental mechanisms, but to show that these paradigmatic
examplescanall beeasily expressedintheunified framework of topological
collectionrewriting.

Diffusion and Beyond

Diffusion in a Continuous Setting

Just asthermal gradientscauseheat toflow fromawarmer areato acol der
area, chemical gradientsdueto variationsin chemical concentration cause
mol ecul esto movefrom high concentrationtolow concentration. Thisprocess,
duesolely toaconcentrationgradient, isreferredto asdiffusion. Therateof
changein concentrationwithtimeand spaceisdefined by Fick’ slaw:

9C _»0°C
TR
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whereCistheconcentration of thechemical (mass/volume), D issomediffusion
constant, and zisthespatial variable(to keep theexamplesimple, wesuppose
that thediffusionoccursinaline).

A forwarddifferencediscretizationgives

C(i,t+At) = (1-2h)C(i 1) + h(C(i-L,t) +C(i+L,t))

whereC(i, t) representsthe concentration at timet of theelement of lengthi.
Parameter h dependson thechemical and onthediffusion constant and must
belessthan 0.5. For theboundary conditions, weassumeasourceof constant
concentration C(0, t) = C, at one end and a sink that ensures a constant
concentration C(n, t) = O at the other end.

Thisvery simplemodel canbeprogrammedinM GSinthefollowingway.
Wefirst havetodefineasequenceof el ementsrepresentingaconcentrationin
aline. Thisissimply aGBFwith only onegenerator:

gbf Line = <right, left; right+left = 0>

Thegenerator leftissmply analiasfor theinverseof right. Thesenamescan
beusedinatransformationto accesstheleft andright neighborsof an element
matched by apatternvariableinaline. Theposition (agroup element) of the
element matched by apatternvariablexissimply denoted by pos(x). Beware
that pos, left andright are not functionsbut special formsthat haveameaning
only withinatransformation. Theseformsaccept asargument only apattern
variablereferring tooneelementinthecollection. Thetransformation that
makestheconcentrationto evolvecanbesimply written as:

trans diffuse[h, CO, n] = {

x / pos(x) == (0*|right>) — CO;

x [ pos(x) == ((n-1)*|right>) — 0;

X — (1-2*h)*x + h*(right(x) + left(x))
}

h, C0 andn areadditional parametersof thetransformation. Thefirsttworules
deal with theboundary conditions. We assumethat thefirst element of the
discretizedlineisput at the0*|right> position (thisdenotestheidentity element
inthegroup of positions). Then, thelast elementisat position(n-1)*|right>. By
default, therulesareapplied with apriority correspondingto their order of
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Figure 4. Result of the diffusion with parameter h=0.156, n=10,C0=30 and
two different boundary conditions

declaration: thefirst ruleisappliedwhenever it can, thenthesecondrule, and
thethirdispossibly applied ontheremaining subcollection. Thetwofirstrules
specifyingthebehavior ontheboundary take precedencetothelast rulethat
governsthedefault behavior of theinterior points.

Thelast stepistoset theinitial stateS0 of theline. Theoperator |right>can
beusedtobuildthisinitial collection:

S0:=CQ0 |right> 0 |right> ... |right> 0
Theevolutionfrom 100 stepsisthen evaluated by theexpression
diffuse[h, CO, n, iter=100](S0)

Theresultsarevisualizedin Figure 4. Thediagram at theleftillustratesthe
diffusion processwith parameter h=0.156, n=10,C0=30,and for 90 time step.
Thesameprocessbut withadifferentinitial stateand boundary conditions(no
sourceor sinc) isillustrated ontheright.

Diffusion at the Molecular Level

Thepreviousexampleisvery simplebut still showstheability of MGSto
handleacontinuousmodel. Itiseasy to extend thisprocessto asurfaceor a
volumeinstead of aline.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



172 Giavitto & Michel

Wenow want to takethe samesystem but focusonthelevel of molecules.
Thelineisstill discretized asasequence of small boxes, indexed by anatural
integer, and each containing zero or many molecules. At eachtime step, a
mol ecul ecan chooseto stay inthe samebox or tojump to aneighboring box
withthesameprobability (seeFigure 5). Thestate of amoleculeistheindex
of theboxinwhichitresides. Theentirestateof thesystemisthenrepresented
asamultiset of indices. Theevolution of thesystem canthenbespecifiedasa
transformationwiththreerules:

trans diffuseM = {
n—n-1
n—n
n—n+l

Thefirst rulespecifiesthebehavior of aparticlethat jumpstothebox at
theleft, thesecondrulecorrespondsto aparticlethat staysinthesamebox, and
thelast rule definesaparticlejumpingto theright. Figure5illustratesthis
approach and plotstheresult of thediscretediffusionof 1,500 particlesona

Figure 5. Right diagram: principle of the particle diffusion model. Left
diagram: result of a simulation

{0,0,1,1,1,1,1,2,3,4,4,4,6,6,7}
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sequence of 60 binsduring 160 time steps. The diffusionislimited on the
boundary (noflow, whichisachieved by adding two additional rulestohandle
thebehavior at theboundaries). Intheinitial states, al particlesarerandomly
distributedinthemiddlethird of thelinear media(comparewiththeright side
of Figure4).

Thisexampleshowsthat evenif amultiset hasvery littleorganization, it can
be used totake geometricinformationinto account. Thismodel canalso be
extendedtodiffusioninasurfaceor avolume, andfor arbitrary geometry. The
ideaistodiscretizethemediuminaset of binsandtorepresent thestateof the
systemasamultiset of bins.

Boundary Growth
In this subsection, we focus on variations of cellular automata (von
Neumann, 1966) used to model several growth processes.

The Growth of a Snowflake

Thiscellular automatonidealizestheformation of asnowflake (Wolfram,
2002). Black cellsrepresent regions of solidice, and white cell srepresent
regionsof liquid or gas. Themoleculesinasnowflakelieonasimplehexagonal
grid. Whenever apieceof iceisadded tothesnowflake, alittleheat isrel eased,
whichthentendstoinhibit theaddition of further piecesof icenearby. The
correspondingevolutionruleisvery simple: acell becomesblack whenever
exactly oneof itsneighborswasblack inthepreviousstep.

Trans Snowflake = {
0 as x / neighborsfold(+, 0, x)==1 —» 1

}
A black cell hasthevaluel and awhitecell hasthevalue0. A O isturnedinto
alonlyif thesumof itsneighborsisone. Thesum of theneighborsiscomputed
usingtheneighborsfold operator that iteratesan accumul ating function over the
neighbors:

neighborsfold(f, zero, x)
computes

f(x,, f(x,, ..., f(x, zero)...)
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Figure 6. The growth of a snowflake

wherethex aretheneighborsof theelement x. Thisoperator canbeusedonly
within atransformation, and its last argument must be a pattern variable
introduced in the left-hand side of therule. Four steps of the evolution are
picturedinFigure6 (intheinitial state, two black cellsrepresent theice).

Diffusion-Limited Aggregation

Diffusion-Limited Aggregation,or DLA, isasimpleprocessof cluster
formation by particlesdiffusing through amediumthat jostlestheparticlesas
they move. When particleshavethepossibility to attract each other and stick
together, they may form aggregates. Theaggregatesmay grow aslongasthere
areparticlesmovingaround. Duringthediffusionof aparticleitismorelikely
that it attachestotheouter regionsthantotheinner onesof thecluster. Thus,
afractal shapeoccurslikethat of coralsor trees.

Inthefollowingimplementation, avalue0 meansadiffusingparticle, while
avaluen greater than 1 meansaparticlefixedtoastatic cluster for ntimesteps.
Then, thecorrespondingtransformationisstraightforward:
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Figure 7. A DLA growing process on an hexagonal grid

trans DLA = {
aggregation = 0,n/n>0 — 1,n
diffusion = 0,<undef> — <undef>,0
timecount= n/n>0—n+l

}

Theruleaggregation specifiesthat amoving particlethat comesnear toa
cluster will becomepart of thiscluster. Therulediffusion definestherandom
moveof aparticle: theparticleoccupiesafreeneighboring cell and emptiesits
current occupied cell. Thelast ruleupdatestheage of aparticlestuck intoa
cluster. Theresultisillustratedin Figure7. Inthissimulation, particlesare
constantly created ontheright, andtheinitial staticparticleiscompletely onthe
left. Particlesareconstrained to moveonabounded rhomboidal domain. This
explainstheasymmetriesof thefigure.

Phenomenological Sketch of the Growth of a Tumor

Thismodel illustratesthegrowth of atumor. Itisinspired fromamodel
initially proposedin Wilensky (1998). Westart by modeling aset of cellsand
themechani cal forcesbetweenthem. Thenweadd agrowing processby giving
twodifferent behaviorstothecells. Thismodel givesaformal exampleof an
interacting set of entitieslocalizedina3-D space, suchthat theinteractionsboth
depend ontheposition of theentitiesand makethesepositionsevolve.
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The Mechanical Model of the Cells

Eachcell exertsaspring-likeforcetoitsneighbors. Theresulting forces
inducecell movements. Tokeepthemodel simple, weassumean Aristotelian
mechanical physics; thatis, thevelocity of thecell isproportional totheforce
exercised. Although thisis not compatible with Newtonian physics (the
accelerationisactually proportional totheforce), thefinal state(theposition of
the cells at the equilibrium) is the same and avoids the handling of the
accelerationvariables.

Werepresent each cell asapointinR3(e.g., assimilated toitsmasscenter)
andwithsomevel ocity:

record Point = {x, y, z}
record Cell = Point + {vx, vy, vz, |, age}

Thesetwo statements define two new record types named Point and Cell. A
Pointisarecordwiththefieldsx,y, andz (for recording theposition of acell).
TheCelltypeisasubtypeof Point having, inaddition, thefieldsvx, vy, and vz
(for recording the velocity of acell) and thefields| and age that record the
radiusand theageof thecell.

The interaction force between two cells is computed by the function
interaction:

fun interaction(ref, src) =
let X = ref.x — src.x
and Y = ref.y - src.y
and Z =ref.z - src.z
and L =ref.l + src.l
in let dist = sqrt(X*X + Y*Y + Z*Z)
in let force = (L - dist)/dist
in {fx=X*force, fy=Y*force, fz=Z*force}

The result is arecord with fields fx, fy, and fz, which represents the
coordinatesof theforce vector exercised onthecell ref by thecell src. This
forcegoestoinfinity whenthetwointeracting cellsbecomecloser, it vanishes
whenthecellsareseparated by their natural diameter, and becomesasymptoti-
cally proportional to the distance between the cellswhen thisdistancein-
Ccreases.

A transformation is used to iterate over the cell and to compute the
resultingforces:
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trans Meca = {
e:Cell —
let tf = neighborsfold(sum(e), {fx=0,fy=0,fz=0}, €)
ine+{x = ex + epsilon*e.vx,
y = ey + epsilon*e.vy,
z = e.z + epsilon*e.vz,
vx = tf.fx,
vy = tf.fy,
vz = tf.fz }
}

Thepatterne:Cellisequivaenttoe/Cell(e) and sel ectsoneelement of typeCell.
Theoperator + that appearsinthebody of theletisoverloaded. Inadditionto
thestandard numericaddition, it denotestheasymmetric mergeof tworecords.
If rands aretworecords, thentherecordr+s containsall of thefieldspresent
inrands. Thevalueof thefieldf of therecordr+sisthevalueof s.fif fexists
insandelser.f. Thenet effect of theexpressioninthebody of theletisarecord
similar toe wherethepositionandthevel ocity have been updated.

Theoperator neighborsfold iteratesabinary function over theneighbors
of anelement to computethetotal forcetf exercised onthecell matched by e.
Function sum(e) computestheinteraction between e and aneighbor cell and
accumulatestheresult:

fun sum(e,s,acc) = addv(acc, interaction(e, s))
fun addv(u,v) = {fx=u.fx+v.fx, fy=u.fy+v.fy, fz=u.fz+v.fz}

Notethat thefunctionsumiscurryed and partially appliedintheapplication of
neighborsfold. The operator neighborsfold issimilar to thefold in functional
languages(whereititeratesover listsor other algebraic datatypes) andtheuse
of acurryfiedfunctionasthefunctional argument of thefoldisawell-knownand
heavily used programming pattern (Sheard etal., 1993).

Theneighborhood of acell iscomputed dynamically using aDelaunay
graphbuiltfromthecell positions: for aset Sof pointsintheRY, theDelaunay
graph isthe unique triangulation of Ssuch that no point in Sisinside the
circumcircleof any triangle. At eachtimestep, thisneighborhood can change
duetothecell movements. InMGS, the Del aunay collectiontypeisatype of
constructor corresponding tothebuilding of acollectionwith aneighborhood
computed from the position of the elements in a d-dimensional space. A
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Delaunay collectiontypeisspecified by giving thefunctionthat extractsthe
sequenceof coordinatesfroman element of thecollection:

delaunay(3) D3 =
\p.if Point(p) then p.x, p.y, p.z
else error(«Bad element type for a D3») fi

Theparameter 3 after thekeyworddelaunay indicatesthat theelementsof this
collectiontypecorrespondto pointsin R3. Thenotation\x.e isthesyntax used
forthelambda-expressionAx.e.

Figure7illustratesthetrajectory of seven cellscomputed by iterating
thetransformationMeca over acollection D3.

The Behavioral Model of the Cells
A tumor consistsof stemandtransitory cells:

* Atransitory cell moves, subject totheforcesexercised by other cells.

* Atransitory cell may divideat agetc_dwithaprobability tc_p.

* Atransitory cell with an age greater than tc_a eventually dieswith a
probabilitytc_d.

Figure 7. Atrajectory of seven cellsattracted by a spring-likeforce by the
neighbors
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 Astemcellisfixed(e.g.anchoredintheextra-cellular matrix).

* Astemcdl candivideeither asymmetrically or symmetrically at someage
sc_d. Ineither case, one of thetwo daughter cellsremainsastem cell,
replacing its parent. In asymmetric mitosis, the other daughter is a
transitory cell. Insymmetricmitosis, theother daughter isastem cell that
isallowedtomoveforsc_wtimebeforeanchoringand being static. The
probability of anasymmetric mitosisissc_p.

Thesebehaviorsarespecified by thetransformation Grow. To select the
appropriatecell intheleft-hand sideof arule, weintroducethetypesStemCell
and TransitoryCell that aredistinguished only by the presence (or theabsence)
of thefieldstem.

record StemCell = Cell + {stem=true}
record TransitoryCell = Cell + {~stem}

Werepresent ayoung stemcell allowedto moveasatransitory cell with
anegativeage. When such kind of cellsreachestheage-1, thenthey transform
themselvesinto static stem cells. Thenthedefinition of Grow can be:

trans Grow = {
c:TransitoryCell / c.age == -
- c+{stem=true, age=0},
c:TransitoryCell / (c.age > tc_a) & (rand() < tc_d)
- <undef>;
c:TransitoryCell / (c.age == tc_d) & (rand() < tc_p)
- r, r+{x=noise(c.x), y=noise(c.y), z=noise(c.z),
age=0};
c:StemCell / c.age == sc d
- ¢, { x=noise(c.x), y=noise(c.y), z=noise(c.z),
vx=0, vy=0, vz=0, I=c.l,
age = if rand()<sc_p then -sc_w else O fi
}
c.Cell
- c+{age=c.age+1};

}

Thepseudo-functionrand returnsarandom number betweenOand 1. The
function noise perturbsitsargument: fun noise(x) =x +rand(). Sowhen acell

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



180 Giavitto & Michel

divides, oneof thetwodaughter cellsinheritsthe position of themother cell and
theotherisalittleaway. Themechanical interactionthen movesthecell away.
Torestrict themechanical effectstothetransitory cells, itisenoughtomatch

Figure 8. Growth of a tumor (See “ Phenomenological Sketch of the
Growth of a Tumor” for further explanations)

O
i
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TransitoryCell instead of Cell inthetransformationMeca: theleft-hand side of
therulebecomese:TransitoryCell.

Figure8illustratessomestatesin thetumor progression. Thefirst four
imagesaredrawingsof thetumor at different timemoments(cellshavedivided
andrearranged to satisfy themechanical constraints). Thelastimage (at the
bottom side) correspondsto the trgjectory of the mass center of each cell,
beforethefirst mitosisof astemcell. Thedivisionof atransitory cell (visibleas
forksinthetrajectories) inducesachangeinthemechanical constraintsanda
corresponding changeinthetrajectory.

Thiskind of simulationisphenomenol ogical becausethebehavior of each
cell isroughly model ed, without taking into account thechemical and genetic
processes. However, this kind of simulation can be used to estimate the
propagation of thetumor, to eval uatetheratio between transitory and stem
cells, andto evaluatetheimpact of varioustherapeutic strategies, suchascell
divisionor mobility inhibitors. M ost of thechemotherapy drugsknownasM-
and S-poisonsinhibit cell divisionandimpact mainly thetransitory cells. The
problemisthat the stem cells(al so known asclonogenic cells) maintainthe
tumor and propagateits metastases. Other possi bleapproachestry tolower
thecell mobility to reducethetumor propagation.

DISCUSSION AND CONCLUSIONS

Summary

TheMGS programming languageislargely inspired by thedynamical
system perspective on biological development. From this point of view,
biol ogical development exhibitsadynamical structure, or avariablephase
space, that must becomputedjointly withthecurrent stateof thesystem. While
itmakestheclass ca modelingand thes mulation of such systemsvery difficult,
their descriptionisstill usually easily achieved by aset of local evolutionrules
specifyingthetransformation of asubsystem. However, the partition of the
systeminto subsystemsevolvesinthe courseof timeandtheconditionsof a
transformation application can becomplex. Theseconsiderationsleadtothe
development of arule-based programming paradigm. This programming
paradigm is characterized by the repeated, ocalized transformations of a
shared dataobject. Thetransformationsaredescribed by rulesthat separate
the description of the subobject to be replaced (the pattern) from the
calculation of thereplacement.
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Optionally, rulescan havefurther conditionsthat restrict their applicability
andthetransformationsarecontrolled by explicit or implicit strategies. When
the data object is aterm, we retrieve the notion of rewrite systems. MGS
extendsthis approach by considering objects structured by neighborhood
relationships. Thetopol ogical approach unifiesseveral model sof computa-
tions, at |east to provideasinglesyntax that can be consi stently usedto allow
themerging of theseformalismsfor programming purposes. A unifyingtheoreti-
cal framework canbedevel oped (Giavitto& Michel, 2001; Giavitto& Michel,
2002), based onthenotion of chain complexdevel opedin algebraic combi-
natorial topology.

Theresultingprogramming styleisaneffectiveframework for themodeling
and the simulation of various developmental processes, as shown in the
previoussection. All of theexampl esinthischapter havebeen processed using
theM GSinterpreter. Theoretical articles, documentations, and variousM GS
softwareproductsarefreely availableat: http://mgs.lami.univ-evry.fr.

Related Works

Transformationonmultisetsisreminiscent of multisetrewriting (or rewrit-
ing of terms). Thisisthemaincomputational deviceof Gamma(Banétre& Le
Metayer, 1986; Banatreetal ., 1987,2001). TheCHemical Abstract Machine
(CHAM) extendstheseideaswithafocusonthesemanticsof nondeterministic
processes(Berry & Boudol, 1992). The CHAM introducesamechanismto
isolate somepartsof thechemical solution. Thisideahasbeen seriously taken
into account inthe context of P systems. P systems (Paun, 2001) areanew
distributed parallel computing model based on the notion of amembrane
structure. A membranestructureisanesting of cellsrepresented by aVenn
diagramwithout i ntersectionand withauniquesuperset: theskin. Objectsare
placedintheregionsdefined by themembranesand evol vefollowing various
transformations: an object can evol veinto another object, can passthrougha
membrane, or dissolveitsenclosingmembrane. Asfor Gamma, thecomputa-
tionisfinished whenno object canfurther evolve. By using nested multisets,
MGS isableto emulate more or less the notion of P systems. In addition,
patternsliketheiteration + gobeyond what ispossibleto specify inthel.h.s.
of aGammarule.

Lindenmayer systems(Lindenmayer, 1968) havelong beenusedinthe
modeling of (DS)? (especially inthemodeling of plant growth). They loosely
correspond to transformations on sequences or string rewriting (they also
correspondtotreerewriting because somestandard featuresmakearbitrary
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treesthat areparticularly simpletocode). Obviously, L systemsarededicated
tothehandling of linear andtree-likestructures.

Strong linksexist between GBF and cellular automata(CA), especially
considering thework of Z. Roka, which has studied CA on Cayley graphs
(1994). However, our ownwork focusesontheconstruction of Cayley graphs
astheshape of adatastructure, and we have devel oped an operator algebra
andrewriting notionsonthisnew datatype. Thisisnotinthelineof Z. Roka,
whichfocuseson synchronization problemsand establishescomplexity results
intheframework of CA.

Inthedomainof biological processmodeling, anincreasingresearcheffort
isdevotedtothedesignof asimulationplatformat thecellular level. Thecurrent
projectsaremainly based onthemodeling of themetabolic activitiesthrough
differential equations(ODES) or partia differential equations(PDES). They act
then asODE or PDE solversdedicated to biol ogical processes. For instance,
BioDrive(Kyodaetal., 2000) handlessignal transduction. E-Cell isdedicated
tothedesignof aminimal set of genescoding basic metabolicfunctionsand
includesan eval uation of thecorresponding cell functioning throughan ener-
getic cost (Tomitaet al., 1999; www.e-cell.org). V-Cell isone of the most
advanced simulation platforms—it handlesPDEsand enabl esthespecification
of complex geometry (Schaff & Loew, 1999; www.nrcam.uchc.edu). These
simulatorsrely onthehypothesisthat thechemical activitiesthat occurinthe
cellsareadequately described only by their kinetic equations(asitisthecase
inatest tube). Consequently, they areunableto model andignorethedynamic
organi zationsthat modify profoundly thereactions, suchascompartimentalization,
thecreationof hyperstructures(Amar etal ., 2002), or thechannelinginthecase
of metabol on by theso-called“ solid-statemetabolism” effect.

Other modeling approachesrely onthemulti-agent paradigmtomodel the
variousentitiesand activitiesthat appear inbiological processes. Theresulting
softwarearchitecturesupport fitsvery well intothedescription of thedomain's
ontol ogy (thespecification of anontol ogy of biological entitiesand activitiesis
aprobleminitself consideringthevast number of different entitiesandactivities
todescribe). However, thisapproach doesnot bring asol ution by itself tothe
problem of describingtheinteraction betweenanarbitrary collection of agents
andthe spatial organization of theagents. To overcomethisproblem, some
current projectsextend themulti-agent paradigm with other approaches, such
ascellular automata.

TheMGSprogramming stylecorrespondstotherul e-based programming
paradigm. Rule-based programming is currently experiencing arenewed

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



184 Giavitto & Michel

period of growthwith theemergenceof new conceptsand systemsthat allow
abetter understanding and better usability. However, thevast majority of rule-
based |anguages (such asexpert systems) arefunded on alogical approach
(computationisalogical deduction), whichisnot adequateto describevarious
biochemical processes. Y et thealgorithmicandbiol ogical examplesgiveninthe
two previoussectionsdemonstratetheability of MGSto expressboth discrete
and (thenumerical solutionof) continuousmodels.

Per spectives

Theperspectivesopened by thispreliminary work arenumerous. Wewant
to develop several complementary approaches to define new topological
collection types. One approach to extend GBF applicability isto consider
monoidsinstead of groups, especially automatic monoids, whichexhibit good
algorithmic properties. Another directionisto handlegeneral combinatorial
spatial structuressuchassimplicial complexes. Atthelanguagelevel, thestudy
of thetopological collections concepts must continuewith afiner study of
transformation types. Several kinds of restrictions can be considered with
regardtothesetransformations, |eading to variouskindsof patternlanguages
andrules. Thecomplexity of matching such patternshastobeinvestigated. The
efficient compilationof anM GSprogramisalong-termresearch plan. Wehave
considered in this chapter only one-dimensional paths, but a general n-
dimensional notion of pathsexistsand canbeusedtogeneralizethesubstitution
mechanismsof MGS. Fromtheapplicationspoint of view, wearelooking for
simulationsof morecomplex devel opmental processes.

ACKNOWLEDGMENTS

The authors would like to thank M. Gheorghe at the University of
Sheffield, R. Patonand G. Malcolmat theUniversity of Liverpool, F. Delaplace
at the University of Evry, C. Godin and P. Barbier de Reuille at CIRAD-
Montpellier, themembersof theepigenomicgroup at GENOPOLE-Evry, P.
Prusinkiewicz at theUniversity of Calgary, andtheorganizersof thefriendly
“workshop onmembranecomputing” seriesfor hel pful discussions, biological
motivations, fruitful examples, and challenging questions. Further acknowledg-
mentsare also dueto J. Cohen, A. Spicher, B. Calvez, F. Thonnerieux, C.
Kodrnja, and F. Letiercewho have contributed invariouswaystotheMGS
software. Thisresearchissupportedin part by the French National Center for

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Modeling Developmental Processes in MGS 185

ScientificResearch (CNRS), GENOPOL E-Evry, thenational workinggroup
GDRALPandIMPG, andtheUniversity of Evry Val d’ Essonne.

REFERENCES

Amar, P., Giavitto, J.-L., Michel, O., Norris, V., & 36 other co-authors
(2002). Hyperstructures, genomeanalysisand I -cell s. Acta Biotheor etica,
50(4), 357-373.

Banétre, J.-P. & LeMetayer, D. (1986). A new computational model andits
disciplineof programming. Technical Report RR-0566, Inria.

Banatre, J.-P., Coutant, A., & LeMetayer, D. (1987). Parallel machinesfor
multiset transformationandtheir programming style. Technical Report
RR-0759, Inria.

Banétre, J.-P., Fradet, P., & LeMetayer, D. (2001). Gammaandthechemical
reactionmodel: Fifteenyearsafter. InCaude, C.S., Paun, Gh., Rozenberg,
G., & Salomaa, A. eds. Multiset processing: Mathematical, computer
science, and molecular computing points of view. Lecture notes in
Computer Science, 2235, Berlin: Springer, 17-31.

Berry, G. & Boudol, G. (1992). Thechemical abstract machine. Theoretical
Computer Science, 96: 217-248.

Bournez, O., Kirchner, H., Come, G.-M., Conraud, V., & Ibanescu, L.
(2003). A rule-based approach for automated generation of kinetic
chemical mechanisms. In R. Nieuwenhuis, ed. 14th Int. Conf. on
Rewriting Techniques and Applications. Lecture notes in Computer
Science, 2706, Berlin: Springer, 30-45.

Buneman, P., Nagvi, S., Val Tannen, B., & Wong, L. (1995). Principlesof
programming with complex objectsand collectiontypes. Theoretical
Computer Science, 149 (1), 3-48.

Dershowitz, N. & Jouannaud, J.-P. (1990). Rewrite systems. Handbook of
Theoretical Computer Science, Vol. B. 244-320.

Dershowitz, N. (1993). A tasteof rewritesystems. L ecturenotesin Computer
Science, 693, Berlin: Springer, 199-228.

Dittrich, P., Ziegler, J.,& Banzhaf, W. (2001). Artificial chemistries—areview.
Artificial Life, 7 (3), 225-275.

Eigen, M. & Schuster, P. (1979). The Hypercycle: A Principle of Natural
Self-Organization. Berlin: Springer.

Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., & Kemal
Sénmez, M. (2002). Pathway logic: Symbolic analysis of biological

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



186 Giavitto & Michel

signaling. In Pacific Symposiumon Biocomputing PSB 2002, 400-412.
Fontana, W. & Buss, L. (1994).“Thearrival of thefittest”: Toward atheory
of biological organization. Bulletin of Mathematical Biology. 56, 1-64.
Fisher, M., Malcolm, G., & Paton, R. (2000). Spatio-logical processesin
intracellular signalling. BioSystems, 55, 83-92.

Giavitto, J.-L. (2001). Declarativedefinition of groupindexed datastructures
and approximation of their domains. In ACM S IGPLAN Conferenceon
Principlesand Practiceof Declarative Programming PPDP01. ACM
Press, 150-161.

Giavitto, J.-L. (2003). Topological collections, transformations and their
applicationtothemodeling and thesimulation of dynamical systems. In
Nieuwenhuis, R. ed. 14th International Conference on Rewriting
Techniques and Applications RTA’03. Lecture notes in Computer
Science, 2706, Berlin: Springer, 208-233.

Giavitto, J.-L. & Michel, O. (2001). MGS: A programming languagefor the
transformationsof topol ogical collections. LaMI Technical Report 61-
2001. University of Evry Val d’ Essonne, France.

Giavitto, J.-L. & Michel, O. (2002). Thetopol ogical structuresof membrane
computing. Fundamenta Informaticae, 49 (1-3), 107-129.

Giavitto, J.-L. & Michel, O. (2003). M odeling thetopol ogi cal organization of
cellular processes. BioSystems, 70(2), 149-163.

Giavitto, J.-L.,Malcolm, G., & Michel, O. (2004). Rewriting systemsandthe
modelling of biological systems. Compar ativeand Functional Genomics,
5(1), 95-99.

Giavitto, J.-L., Michel, O., & Sansonnet, J.-P. (1995). Group basedfields. In
Parallel Symbolic Languages and Systems PSLS95. L ecture notesin
Computer Science, 1068, Berlin: Springer, 209-215.

Hammel, M. & Prusinkiewicz, P. (1996). Visualization of developmental
processesby extrusionin space-time. Proceedingsof GraphicsInter-
face ‘96, 246-258.

Harper, J.L., Rosen, B.R., & White, J. (1986). The Growth and Form of
Modular Organism. London: TheRoyal Society.

Head, T. (1987). Formal language theory and DNA: An analysis of the
generativecapacity of specificrecombinant behaviors. Bulletinof Math-
ematical Biology, 49 (6), 737-759.

Head, T. (1992). Splicing schemes and DNA. In Lindenmayer Systems:
I mpacts on Theoretical Computer Science, Computer Graphics, and
Developmental Biology. Berlin: Springer, 371-383. Also appearsin
(1992). Nanobiology, 1, 335-342.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Modeling Developmental Processes in MGS 187

Hung, J.Y ., Gao, W., & Hung, J.C. (1993). Variable structure control: A
survey. |EEE Transactions on Industrial Electronics, 40 (1), 2-22.

Itkis, Y. (1976). Control Systemsof Variable Structure. New Y ork: Wiley.

Kaufman, S. (1995). The Origins of Order: Self-Organization and Selec-
tionin Evolution. Oxford: Oxford University Press.

Keller, E.F. (1995). Refiguring Life: Metaphors of Twentieth-Century
Biology. New Y ork: ColumbiaUniversity Press.

Kephart, J. & Chess., D. (2003). Thevision of autonomic computing. | EEE
Computer Magazine, 36(1) 41-50.

Kyoda, K.M., Muraki, M., & Kitano, H. (2000). Construction of ageneral-
ized simulator for multi-cellular organismsanditsapplicationto Smad
signal transduction. In Fifth Pacific Symposiumon Biocomputing PSB
2000, 314-325.

Lincoln, P. (2003). Symbolic systemsbiology. In Nieuwenhuis, R. ed. 14th
I nter national Conferenceon Rewriting Techniquesand Applications
RTA’ 03. Lecturenotesin Computer Science, 2706, Berlin: Springer, 1.

Lindenmayer, A. (1968). Mathematical modelsfor cellular interactionin
development, parts| and I1. Journal of Theoretical Biology, 18, 280-
299 and 300-315.

Maynard-Smith, J. (1999). Shaping Life: Genes, Embryos and Evolution.
New Haven, CT: YaeUniversity Press.

Meinhardt, H. (1982). Model sof Biological Pattern Formation. New Y ork:
AcademicPress.

Michel, O. (1996). Design and implementation of 81/2, adeclarativedata-
parallel language. Computer Language, 22(2/3), 165-179.

Mjolsness, E., Sharp, D.H., & Reinitz, J. (1991). A connectionist model of
development. Journal of Theoretical Biology, 152 (4), 429-454.

Munkres, J.R. (1993). Elementsof Algebraic Topology. Addison-Wesley.

Parashar, M. & Hariri, S., eds. (2003). Autonomic applicationsworkshop. Taj
Krishna, Hyderabad, India. Special issue of Cluster Computing, The
Journal of Networks, Software Tools and Applications (2004).

Paton, R. ed. (1994). Computing with Biological Metaphors. London, New
Y ork: Chapman & Hall.

Paun, Gh. (2001). From cellsto computers: Computing with membranes (P
systems). BioSystems, 59(3), 139-58.

Prusinkiewicz, P. (1998). Modeling of spatial structureand devel opment of
plants: A review. Scientia Horticulturae, 74, 113-149.

Prusinkiewicz, P. (1999). A look at the visual modeling of plantsusing L -
systems. Agronomie, 19, 211-224.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



188 Giavitto & Michel

Prusinkiewicz, P. & Lindenmayer, A. (1990). The Algorithmic Beauty of
Plants. Berlin: Springer.

Roka, Z. (1994). One-way cellular automataon Cayley graphs. Theoretical
Computer Science, 132 (1-2), 259-290.

Schaff, J. & Loew, L.M. (1999). Thevirtual cell. In Fourth Pacific Sympo-
sium on Biocomputing PSB 1999, 4, 228-239.

Sheard, T. & Fegaras, L. (1993). A fold for all seasons. Proceedingsof the
6th ACM SIGPLAN/SIGARCH International Conference on Func-
tional Programming Languages and Computer Architecture
FPCA'93, ACM Press, 233-242.

Stengers, 1. (1988). D’ unescienceal’ autre. LesConceptsNomades. Paris:
LeSeuil.

Stevens, P.S. (1974). Patternsin Nature. Boston: Little, Brown and Co.

Thompson, D’ Arcy W. (1942). On Growth and Form. Cambridge: Univer-
Sity Press.

Tomita, M., Hashimoto, M., Takahashi, M., Shimizu, T.-S., Matsuzaki, Y .,
Miyoshi, F., Saito,K., Tanida, S., Yugi, K., Venter, J.-C., & Hutchison,
C.-A.,(1999). E-CELL: Softwareenvironment for wholecell simulation.
Bioinformatics, 15 (1),72-84.

Turing, A.M. (1952). Thechemical basisof morphogenesis. Philosophical
Transactions. Royal Society of London, SeriesB: Biological Sciences,
(237), 37-72.

Varela, F.J.(1979). Principleof Biol ogical Autonomy. New Y ork: McGraw-
Hill/Appletonand Lange.

von Neumann, J. (1966). Theory of Self-Reproducing Automata. Urbana,
IL: University of lllinoisPress.

Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram
Media, Inc.

Wolpert, L., Beddington, R., Lawrence, P., Meyerowitz, E., Smith, J., &
Jessell, T.M. (2002). Principles of Development (2nd ed.). Oxford:
OxfordUniversity Press.

Wilcox, M., Mitchison, G.J., & Smith, R.J. (1973). Patternformationinthe
blue-green alga, Anabaena. |I. Basic mechanisms. Journal of Cell
Science, 12, 707-723.

Wilensky, U. (1998). NetL ogotumor model . Contributed by Gershom Zajicek
M.D., Prof. of Experimental Medicine and Cancer Research at The
Hebrew University-Hadassah Medical School, Jerusalem. http://
ccl.northwester n.edu/netl ogo/model s/Tumor. Center for Connected

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Modeling Developmental Processes in MGS 189

L earning and Computer-Based Modeling, Northwestern University,
Evanston, IL.

ENDNOTE
1 Asstatedby d’ Arcy W. Thompson (1942): “Wemight call theformof an
organismaneventinspace-time, and not merely aconfigurationinspace.”
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