
150 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VI

Modeling Developmental
Processes in MGS

Jean-Louis Giavitto
CNRS – University of Évry Val d’Essonne – Genopole, France

Olivier Michel
University of Évry Val d’Essonne – Genopole, France

ABSTRACT
Biology has long inspired unconventional models of computation to
computer scientists. This chapter focuses on a model inspired by biological
development both at the molecular and cellular levels. Such biological
processes are particularly interesting for computer science because the
dynamic organization emerges from many decentralized and local
interactions that occur concurrently at several time and space scales.
Thus, they provide a source of inspiration to solve various problems
related to mobility, distributed systems, open systems, etc. The fundamental
mechanisms of biological development are now understood as changes
within a complex dynamical system. This chapter advocates that these
fundamental mechanisms, although mainly developed in a continuous
framework, can be rephrased in a discrete setting relying on the notion of
rewriting in a topological setting. The discrete formulation is as formal as
the continuous one, enables the simulation, and opens a way to the

Modeling Developmental Processes in MGS 151

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

systematic study of the behavioral properties of the biological systems.
Directly inspired from these developmental processes, the chapter presents
an experimental programming language called MGS. MGS is dedicated to
the modeling and simulation of dynamical systems with dynamical
structures. The chapter illustrates the basic notions of MGS through
several algorithmic examples and by sketching various biological models.

INTRODUCTION
The membrane paradigm, DNA computing, molecular computing, and

aqueous computing are examples of unconventional models of computation
inspired by molecular biology. In this chapter, we focus on a model inspired by
biological development at both molecular and cellular levels. We are interested
not only in the interactions between the molecules, but also by the assembling
and the structural organization that is dynamically created.

Such biological processes are particularly interesting for a computer
scientist because the dynamic organization of the involved entities emerges from
many decentralized and local interactions that occur concurrently at several
time and space scales. The development of biological organisms has for a long
time inspired computer science (see, for instance, the notion of cellular
automata noted in von Neumann, 1966). More recently, the emerging domains
of amorphous computing (www.swiss.ai.mit.edu/projects/amorphous), self-
healing systems, or autonomic computing (Kephart & Chess, 2003; Parashar
& Hariri, 2003) are also directly inspired by developmental processes found
at both molecular and cellular levels. Inspired by the description of various
developmental processes as changes in a dynamical system, we propose a new
computational paradigm that extends the idea of rewriting systems to a broader
class of data structures. To investigate this model, we are developing an
experimental programming language called MGS.

However, the fertilization of computer science by biological notions
(Paton, 1994) is not a one-way process, and biology has imported many
concepts developed within computer science such as the notion of programs,
memory, information, control, and many others (Stengers, 1988; Keller,
1995). Obviously, new programming paradigms inspired by basic develop-
mental mechanisms will be also an ideal framework to support and help the
biologist in analysing and understanding these kinds of biological processes.
We illustrate this cross-fertilization by using MGS to simulate various processes
of pattern formation.

152 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Outline of the Chapter
In the next section, we will sketch the requirements needed to model

developmental processes at both molecular and cellular levels. Our approach
to modeling developmental processes is based on the notion of rewriting. This
is not really a novelty; although most of the models in this field rely on partial
differential equations, string rewriting through the notion of L systems
(Lindenmayer, 1968) is now routinely used to model the development of plants,
and multiset rewriting constitutes the theoretical foundation of artificial chem-
istries (http://ls11-www.cs.uni-dortmund.de/achem). The section “A Very
Short Introduction to Rewriting Systems” presents some fundamental notions
of rewriting with an emphasis on the use of rewriting rules to specify the
evolution function of a dynamical system.

The usual notion of term rewriting is too restrictive to be easily used to
model biological entities. This drawback motivates the development of MGS,
an experimental programming language devoted to the simulation of dynamical
systems with a dynamical structure. The section “A Quick Presentation of
MGS” sketches the basic principles of MGS and outlines how several rewriting
mechanisms are unified in the same framework using the notions of topological
collection and transformation. The presentation is restricted to the notions
required to understand the examples given in the next two sections.

The next section, entitled “Paradigms of Pattern Formation”, focuses on
biological system modeling and details some examples of fundamental pro-
cesses involved in pattern formation:

• Diffusion and beyond (Fick’s law and molecular diffusion).
• Boundary growth (the growth of a snowflake and diffusion limited

aggregation).
• Growth of a tumor (illustrating the coupling between mechanical forces

and cell division).

The examples provided show the ability of MGS to express, in a simple
and straightforward way, various patterns of development. They also validate
our approach for the modeling and the simulation of dynamical systems with a
dynamical structure. A comparison of our approach to related works and some
other models of computation concludes the chapter.

Modeling Developmental Processes in MGS 153

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

BACKGROUND: DEVELOPMENT AND
DYNAMICAL SYSTEMS

A Dynamical System with a Dynamical Structure
In the field of developmental biology, one current theoretical framework

views the developmental process as changes within a dynamical system (DS).
This point of view can be traced back at least to D’Arcy Thompson, Turing, von
Bertalanffy, and Waddington, and contrasts with pure genetically programmed
and pre-existing plans that await revelation during the developmental process.
In the past two decades or so, the concepts and models of nonlinear dynamical
systems have been coupled with models of genetic regulations to overcome the
genetic/epigenetic debate on the nature of the ontogenetic processes. These
models can be seen in the pioneering works of researchers such as Harper et
al. (1986), Kaufman (1995), Maynard-Smith (1999), Varela (1979), Wolpert
et al. (2002), and Meinhardt (1982).

A developmental process viewed as a dynamical system often presents the
distinctive feature of having a dynamic phase space (the phase space is the set
of all possible states of the system). Consider a “classical” dynamical system,
like a falling stone. This system is adequately described by a position and a
velocity. Even if the position and the velocity of the stone are constantly
changing in time, the state of this system is always given as a vector in R3×R3.
We see that the phase space is given a priori, and we say that the DS has a
static structure.

In contrast, consider the development of an embryo. Initially, the state of
the system is described solely by the chemical state c

0
 of the egg (no matter how

complex this chemical state). After several divisions, the state of the embryo
must describe the chemical states c

i
of the old and new cells and also their

spatial arrangement. The number of cells and their organization at a given time
cannot be given a priori. Moreover, there is a kind of “circular causality” in the
evolution of the chemical states and the evolution of the spatial arrangement of
the cells: molecules interfere with the placement of the cells (because some
molecules make the membranes sticky) and the position of the cells interferes
with the diffusion of the molecules (the cells are the medium of the diffusion and
create compartments that change the diffusion). Consequently, the exact phase
space of the system cannot be fixed before the evolution and development
models must state the evolution of the spatial structure jointly with the evolution
of the cells states. We say that this kind of DS exhibits a dynamical structure.

154 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the rest of this chapter we use the abbreviation (DS)2 to mean “dynamical
system with a dynamical structure” (Giavitto & Michel, 2003).

The importance of the dynamical structure of a biological system perceived
as a dynamical system has often been recognized under several names. Hyper-
cycle in autocatalytic networks (Eigen & Schuster, 1979), autopoeisis (Varela,
1979), variable structure systems in classical control systems (Itkis, 1976;
Hung et al., 1993), developmental grammar (Mjolsness et al., 1991), and
organization (Fontana & Buss, 1994) are notions that have been developed
to catch and formalize this idea of a changeable structure of a system.

As a matter of fact, the specification of the evolution of a (DS)2 can be very
difficult to achieve, and new programming concepts must be developed to help
modeling and simulation. Indeed, standard approaches in the formalization of
DS do not allow the specification of the phase space or its topology as an
observable of the system1. This observation has motivated the development of
the MGS project.

Towards a Discrete Conceptual Framework
As in many other complex systems in nature, (DS)2 can exhibit coherent

behaviors — the parts are coordinated locally and without a centralized control
to produce an emergent, organized, stable, and robust pattern. Here, by
pattern, we mean the forms or the shapes produced by the development
processes in space or in time (Stevens, 1974). For example, the periodic
occurrence of a predefined event, such as a chemical concentration repeatedly
reaching a given level before decreasing and increasing again, is also an
example of a pattern, but in time rather than in space.

What conceptual framework could be used to specify and analyze these
developmental design patterns? A quick look at the works in this area shows
that although discrete formalizations are present, the mainstream of the contri-
butions are developed in the framework of continuous models. For example,
the famous reaction-diffusion model introduced by A. Turing (1952) is de-
scribed by a set of partial differential equations (PDEs). However, we advocate
that discrete models can be used advantageously to model biological develop-
ment for several significant reasons:

• In the discrete approach, the composition of the design patterns can be
studied from an algebraic point of view and, more precisely, from
combinatorial and generative points of view to analyze the space of
possible patterns. This last approach profits from all of the results and

Modeling Developmental Processes in MGS 155

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tools developed in the field of formal language theory and is able to handle
the changes of phase space during the evolution.

• The discrete approach is definitely more abstract — it focuses on the
fundamental functional and algorithmic properties of pattern formation,
without the burden of the “physico-chemical implementation”.

• The discrete approach focuses on high-level properties and is well
adapted to our knowledge of the biological data. For example, actual
DNA chip measurements usually distinguish only between three and eight
relevant activation levels for a gene, metabolic fluxes cannot generally be
measured in vivo for only one cell, etc. In addition, it is more fruitful to
have a functional description (e.g., “the cell is in this phase”) than a precise
quantitative description (“the concentration of this chemical has reached
this level”). In fact, the functional description is at last what we are looking
for, and the link between the two kinds of descriptions is highly dependent
on the experiment, the organism, the environment, etc.

• Development is often described as a succession of discrete morphoge-
netic events that represent a discontinuity (a cell divides and we have to
handle the change of one cell description to two cell descriptions).

• Finally, the continuous framework raises crippling difficulties:

• Since the equations involved often have nonlinear terms, they can be
solved only by numerical methods.

• The question of the robustness of the solutions of PDEs is completely
open, mainly due to the lack of qualitative understanding of such
equations.

• The continuous formalism makes it difficult to express the discrete
nature of the biological entities.

From the modeling perspective, the discrete approach is too abstract,
leaving unspecified the actual embodiment of the pattern formation. However,
despite the increasing amount of biological data, we are far from obtaining the
quantitative data needed by realistic continuous models.

So, at this point we are looking for a formal discrete framework able to
support the specification of developmental design patterns. At last, the devel-
opmental process consists of transformations of the system’s parts, if by
transformation we understand the appearance and the disappearance of matter
and the changes in quality (size, differentiation) or in position of this matter.
Then, the global changes of the whole system must be specified as several local

156 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

competing transformations occurring in an organized set of simpler entities. This
idea of replacing some parts of a structure by other parts specified by local rules
recalls the notion of rewriting.

A VERY SHORT INTRODUCTION TO
REWRITING SYSTEMS

Based on the notion of rewriting systems (Dershowitz & Jouannaud, 1990;
Dershowitz, 1993), the emphasis of this section is on the concepts that are
relevant in the context of applying rewriting systems to the simulation of
dynamical systems (Giavitto 2003; Giavitto et al., 2004).

A Computational Device
Computer science has appropriated and developed the notion of rewriting

systems (RS) to build and relate different processes. The mechanics of
rewriting systems are familiar to anyone who has done high school mathematics:
a term can be simplified by repeatedly replacing parts of the term (i.e.,
subterms) with other equivalent subterms. Terms represent expressions by
trees — each internal node is labeled by an operation and the leaves are labeled
by constants. A subterm replacement is specified as a rule α→β where the left-
hand-side α specifies a subterm, and the right-hand-side β specifies its
replacement. A variable x in α is a kind of wildcard that specifies an entire and
unknown subterm; a variable x in β denotes the subterm matched by x in α.

An example involving arithmetic expressions is illustrated in Figure 1. An
arithmetic expression is adequately represented by a tree in which the internal
nodes are labeled by arithmetic operators and the leaves by integer numbers.
An expression with variables is a filter that matches a subtree, the variables
catching an entire subtree. A rewrite rule α→β specifes that a subtree of a given
form α must be replaced by a tree β. Several occurrences of a subtree may need
to be replaced. In the top-left tree there are two occurrences of a subtree
matched by 0+x. The rewriting strategy indicates which occurrence must be
replaced. The result of the three possible replacements (replacing one occur-
rence, the other, or the two) are figured at the right side of the Figure 1.

Let R be a given set of rules, and e a term: we write e→
R
 e' to denote that

e can be rewritten in e' using one application of a rule of R. We omit the index
R when there is no ambiguity regarding the set of rules used, and we write →*
to denote the reflexive-transitive closure of the relation →. A sequence e

1
→

Modeling Developmental Processes in MGS 157

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

e
2
 → ... → e

n
 is called a derivation. The final result of an unextendible sequence

of rule applications (i.e., e
n
 cannot be further rewritten) is called a normal form.

RS can be viewed as a kind of directed equations used to compute by
repeatedly replacing subterms of a given formula with equal terms until the
simplest possible form is obtained. This device has been primarily used as a
decision procedure in equational theory: if we can prove that the normal form
computed by a RS is unique, then two terms can be proven to be equivalent
(modulo the equations corresponding to the rules of the RS) if they share the
same normal form. As a formalism, RS has the full power of Turing machines
and may be thought of as nondeterministic Markov algorithms over terms,
rather than strings.

Rewriting and Simulation
The previous description strongly suggests that a rule α→β can be used

to represent the local evolution of a subsystem α into a new state β. That is, RS
can be used for the modeling of a DS, provided that:

• The state of the DS is represented by a term and a subterm represents the
state of a subsystem.

• The evolution function of the DS can be specified as the rules of the DS.

Figure 1. Rewriting an arithmetic expression

158 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For instance, in the context of the development of the embryo, a rule c ⊕
i → c' ⊕ i' can be used to specify that a cell in state c that receives a signal i
evolves in state c' and sends the signal i'. A rule such as c → c' ⊕ c'' defines
a cellular division and c → ∅ (c gives nothing) represents apoptosis. The idea
is that the left-hand-side of a rewriting rule selects an entity in the biological
system and the messages that are addressed to it, and the right-hand-side
describes the new state of the entity and the eventual messages that are emitted.
The operator ⊕ that appears in the rule denotes the composition of the entities
together with the messages into an entire global system. The ability to equally
express the change of state and the appearance or disappearance of entities
makes RS suitable to model (DS)2.

The Management of Time
The notion of time that underlies the use of RS for the modeling of DS is

clearly based on a discrete atomic event model: time is passing when some
event occurs somewhere in the system, a rule application corresponds to the
occurrence of such an event, and duration is not handled (but can be emulated
using a start and an end event).

A rewriting strategy is an algorithm for choosing in a term e the
occurrence of the subterm that must be rewritten. Several algorithms can be
considered that allow some control over the management of time. For example,
intuitively, the laws of nature are encoded into the rules of an RS and these laws
must apply everywhere. This leads to consideration of the so-called “parallel
application strategy”. Instead of considering just one occurrence of a rule
application during a rewriting step, one may chose to rewrite in the same step
a maximal nonintersecting set S of matching subterms in e: two subterms in S do
not have a subterm in common, each element in S matches the left-hand-side
of a rule, and S cannot be further extended by a subterm in e without losing the
two previous properties. On the other hand, one may suppose that each event
occurs at a different time. This asynchronous dynamic fits well with the standard
application of only one rule at each rewriting step.

The Management of Space
A rule of form c ⊕ i → c' ⊕ i' assumes that signal i produced by some cell

reaches its target c, and that signal i' produced by the change of c to c' reaches
its target located somewhere in the system. Thus, the operation ⊕ used to
compose the state of the subsystems and the interaction messages must be able
to express the spatial localization and the functional organization of the system.

Modeling Developmental Processes in MGS 159

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For instance, suppose that our cells are bacteria in a test tube. The signals
produced by one cell are then released in a solution. By thermal agitation, the
signals potentially reach any other cell in the test tube. This can easily be
achieved by using a (formal) operator ⊕ that is associative and commutative.
From this point of view, the term c

1
⊕c

2
⊕c

3
 represents a test tube with three

cells. Because we assume that ⊕ is associative and commutative, this term can
be rewritten in the equivalent term c

2
⊕ c

1
⊕ c

3
 or c

3
⊕ c

1
⊕ c

2
. Applying the rule

c
1
→c

1
⊕i to this term gives c

1
⊕i⊕c

2
⊕c

3
. By associativity and commutativity,

signal i can be moved to the neighbor of c
3
 or any other cell.

Terms built with associative and commutative operators achieve a multiset
organization of the objects. A multiset is a set in which an element is allowed
to occur multiple times. A multiset builds up a “chemical soup” of elements that
are not bound in a tree but can move around and interact with one another.

By imposing only associativity, the term structure reduces to a sequence
of elements. So, by giving some properties to the operations in the term, we can
represent several kinds of organization. This fact has long been recognized, and
multiset rewriting and string rewriting have been successfully used in the field of
biological modeling. The rest of this section gives some references of these
approaches.

However, multisets, sequences, and trees of elements are far from being
sufficient to characterize the sophisticated organization needed to represent the
variety of biological structures from molecules to societies, through compart-
ments, cells, tissues, organs, and individuals. This severe shortcoming moti-
vates (among others reasons) the extension of the notions of rewriting to more
general structures. In the next section we present such an extension based on
topological notions.

Multiset Rewriting
Multiset rewriting is the core of the Gamma language. Gamma (Banâtre &

Le Metayer,1986; Banâtre et al., 1987) is based on the chemical reaction
metaphor; the data are considered as a multiset M of molecules and the
computation is a succession of chemical reactions according to a particular rule.
A rule (R, A), where R is a predicate and A a function, indicates which kind of
molecules can react together (a subset m of M that satisfies predicates R) and
the product of the reaction (the result obtained by applying function A to m).
Several reactions may happen in the same time. No assumption is made on the
order in which the reactions occur. The only constraint is that if the reaction
condition R holds for at least one subset of elements, at least one reaction
occurs (computation stops once the reaction condition does not hold for any

160 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

subset of the multiset). The CHemical Abstract Machine (CHAM) extends
these ideas with a focus on the semantics of nondeterministic processes (Berry
& Boudol, 1992).

The application of this abstract chemistry-based approach is now recog-
nized as an emerging field called artificial chemistries (Dittrich et al., 2001;
http://ls11-www.cs.uni-dortmund.de/achem). Various motivations presides
the growing body of research done in this field, ranging from the study of the
automated generation of combustion reactions (Bournez et al., 2003) to the
study of complex dynamical systems and self-organization in biological evolu-
tion (Fontana & Buss, 1994).

An important application is the modeling and the study of the behavior of
signaling pathways. Fisher et al. (2000) proposed the use of rewriting systems
to model cascades of protein interactions in signaling pathways. Later work
(Eker et al., 2002; Lincoln, 2003) has produced some very sophisticated
models of these pathways; however, the earlier work draws attention to the
subtle role that so-called scaffold proteins play in facilitating cascades and
preventing cross-talk between pathways. The RS approach provides ex-
tremely efficient representations of the information processing nature of signal-
ing pathways. Despite the obvious use of RS for simulating various behaviours,
the symbolic tool sets produced (e.g., model checking) can then be applied to
generate and check novel hypotheses and to develop an algebra and a logic of
signaling pathways.

String Rewriting
If the operator involved in the term to be rewritten is only associative (and

not commutative), then the term simply corresponds to a sequence of elements.
Such sequences are also called strings (especially if the universe of possible
elements is finite). String rewriting is a formal framework heavily investigated,
for example, in formal language theory.

String rewriting has shown its usefulness and maturity in plant development
modeling. Introduced by Lindenmayer (1968), the L system formalism can be
roughly described as string rewriting rules applied in parallel to strings repre-
senting a linear or a branching structure. The original L system formalism has
been extended in many ways, and comprehensive reviews have been produced
(Prusinkiewicz & Lindenmayer, 1990; Prusinkiewicz 1998, 1999). It is worth
giving a flavor of this formalism through a very simple example.

Modeling Developmental Processes in MGS 161

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The two rules, a→ ab and b→ a can be viewed as a model of the
development of a filamentous organism using the symbols a and b. The first rule
states that a cell of length a divides into two adjacent cells of length a and b. The
other rule states that a cell b changes its length to a (these rules are related to
the development of the bacterium Anabaena where we have ignored the
polarity that would determine if a cell of length a divides into ab or ba). The
sequence of the cells is simply denoted by the juxtaposition of their symbols.
Starting from a unique cell of length a, we obtain successively:

a→ ab→ aba→ abaab→ abaababa→ abaababaabaab→ ...

by applying the two rules in parallel. Each word represents a state of the
development of the filament.

A good example of an L system that takes into account the cellular
interaction in the development is the modeling of growth and heterocyst
differentiation in Anabaena (Wilcox et al., 1973; Hammel & Prusinkiewicz,
1996). This example is remarkable for at least two reasons: it shows the ability
of this kind of discrete model to accommodate or to easily emulate features
usually handled in continuous formalisms (e.g., the modeling of the diffusion) and
also because it tackles a fundamental biological mechanism — a morphogenesis
driven by a reaction-diffusion process taking place in a growing medium.

By combining and structuring multiset and string rewriting, we can extend
the applicability of these formalisms. Applications of such extensions at the
genetic level include DNA computing (Adleman, 1994) and splicing systems,
a language-theoretic model of DNA recombination that allows the study of the
generative power of general recombination and of sets of enzymatic activities
(Head, 1987, 1992).

A QUICK PRESENTATION OF MGS
We present the fundamental notions that underlie the MGS programming

language. MGS stands for “encore un Modèle Général de Simulation” (or, “yet
another general model for simulation”). The notion of topological collection
developed in MGS enables the unification of various forms of rewriting and its
extension to more general data structures than trees.

Topological Collection and Their Transformations
MGS is aimed at the representation and manipulation of local transforma-

tions of entities structured by abstract topologies (Giavitto & Michel, 2001,

162 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2002). A set of entities organized by an abstract topology is called a topologi-
cal collection. “Topological” here means that each collection type defines a
neighborhood relation specifying both the notion of locality and the notion of
subcollection. A subcollection B of a collection A is a subset of elements of A
defined by some path and inheriting its organization from A. A path is a
sequence-adjacent element, the adjacency relation being specified by the
neighborhood relationship between the elements of the data structure.

Abstractly, a topological collection can be formalized as a partial function
C that associates a value to the points of a discrete topological space. The
points of this space are called the positions of the collection. The values
associated with these positions, or the image of the partial function C, are the
elements of the collection. The topological structure associated with the set of
positions gives the neighborhood relationship between the collection elements.
For example, a 2-D array filled with integer elements can be seen as a partial
function from Z2 to N with a finite definition domain. Here, the topology of Z2

is inherited from the module structure of Z2 (Munkres, 1993) and a position (x,
y) is the neighbor of a position (x’,y’) only if x’=x±1 and y’=y±1. This
representation of an array is only an abstract view — an array is not really
implemented as a function within the computer but as a set of values indexed
by positions taken in Z2.

The global transformation of a topological collection C consists of the
parallel application of a set of local transformations. A local transformation is
specified by a rewriting rule r that specifies the change of a subcollection. The
application of a rewrite rule r = α→f(α) to a collection A:

• Selects a subcollection B of A whose elements match the path pattern α.
• Computes a new collection C as a function f of B and its neighbors.
• Specifies the insertion of C in place of B into A.

In other words, MGS extends the idea of the term by the idea of
topological collection and generalizes the notion of the rewriting rule to the
notion of transformation. For the sake of the expressivity, MGS embeds the
idea of topological collections and their transformations into the framework of
a simple dynamically typed functional language. Collections are just new kinds
of values, and transformations are functions acting on collections and defined
by a specific syntax using rules. Functions and transformations are first-class
values and can be passed as arguments or returned as the result of an
application. MGS is an applicative programming language: operators acting on

Modeling Developmental Processes in MGS 163

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

values combine values to give new values, they do not act by side-effect. In our
context, dynamically typed means that there is no static type checking and that
type errors are detected at run-time during evaluation. Although dynamically
typed, the set of values has a rich type structure used in the definition of pattern-
matching, rules, and transformations.

Collection Types
There are several predefined collection types in MGS, and also several

means of constructing new collection types. The collection types can range in
MGS from totally unstructured with sets and multisets to more structured with
sequences and GBFs (GBFs generalize the notion of regular array and are
presented in the section entitled “Group-Based Data Field”). Other topologies
are currently under development and include general graphs and abstract
simplicial complexes. Abstract simplicial complexes generalize the notion of
graphs and enable the representation of arbitrary topology (Munkres, 1993).
However, in this chapter we are mainly concerned with three families of
collection types: monoidal collections, GBFs, and graphs.

For any collection type T, the corresponding empty collection is written
():T. The name of a type is also a predicate used to test if a value v has this type:
T(v) holds only if v is of type T. Each collection type can be subtyped:

collection U = T

introduces a new collection type U, which is a subtype of T. These two types
share the same topology but a value of type U can be distinguished from a value
of type T by the predicate U. Elements in a collection T can be of any type,
including collections, and thus achieving complex objects in the sense of
Buneman et al. (1995).

Monoidal Collections
Sets, multisets, and sequences are members of the monoidal collection

family. In fact, a sequence (a multiset, a set) of values taken from V can be seen
as an element of the free monoid V* (the commutative monoid, the idempotent,
and commutative monoid, respectively). The join operation in V* is written by
a comma operator “,” and induces the neighborhood of each element: let E be
a monoidal collection, then the element y in E is the neighbor of the element x
iff E=u, x, y, v for some u and v. This definition induces the following topology:

164 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• For sets (type set), each element in the set is a neighbor of any other
element (because of the commutativity, the term describing a set can be
reordered following any order and they are all distinct because of the
idempotent property).

• For multisets (type bag), each element is also a neighbor of any other one
(however, the elements are not required to be distinct as in a set).

• For sequences (type seq), the topology is the expected one — an element
not at one end has a neighbor at its right.

The comma operator is overloaded in MGS and can be used to build any
monoidal collection (the type of the arguments disambiguates the collection
built). So, the expression 1,1+1, 2+1,():set builds the set with the three elements
1, 2 and 3, while expression 1,1+1,2+1,():seq makes a sequence s with the same
three elements. The comma operator is overloaded such that if x and y are not
monoidal collections, then x,y builds a sequence of two elements. So, the
expression 1,1+1,2+1 evaluates to the sequence s as well.

Group-Based Data Field
Group-based data fields (GBF for short) are used to define organizations

with uniform neighborhood. A GBF is an extension of the notion of array,
where the elements are indexed by the elements of an abelian group, called the
shape of the GBF (Giavitto et al., 1995; Michel 1996; Giavitto 2001). For
example:

gbf Grid2 = < north, east >

defines a GBF collection type called Grid2, corresponding to the von Neumann
neighborhood in a classical array (a cell above, below, left, or right, but not
diagonal). The two names north and east refer to the directions that can be
followed to reach the neighbors of an element. These directions are the
generators of the underlying group structure. The inverse of the generators can
also be followed to reach a neighbor. The right-hand side (r.h.s.) of the GBF
definition gives a finite presentation of the group structure. The list of the
generators can be completed by giving equations that constraint the displace-
ments in the shape:

gbf Hex = <east, north, northeast; east+north = northeast>

defines a hexagonal lattice that tiles the plane, as shown in Figure 2.

Modeling Developmental Processes in MGS 165

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In this diagram, an hexagonal cell represents a group element and neigh-
bors’ elements share a common edge. Each cell has six neighbors (following the
three generators and their inverses). The equation east+north = northeast
specifies that a move following northeast is the same as a move following the
east direction followed by a move following the north direction. This represen-
tation can be easily generalized to visualize the topology of any GBF of type T
by a graph. The result is the Cayley graph of the presentation of T: each vertex
in the Cayley graph is an element of the group, and vertices x and y are linked
if there is a generator g in the presentation such that x + g = y. This representation
enables a dictionary between graph theoretic notions and group concepts.

A word (a formal sum of the group generators) is a path in the Cayley
graph. Path composition corresponds to group addition, and equation P+v = Q,
where P and Q are given, always has a solution: two cells in the graph are always
connected. Each cell c can be named by the words that represent a path starting
from the cell 0 and ending in c. All of these words represent the same group
element. A closed path (a cycle) is a word equal to 0 (the identity of the group
operation). There are two kinds of cycles in the graph. The cycles that are
present in all groups and corresponding to group laws (intuitively, a backtrack-
ing path such as b + a – a – b where a and b are generators). The other closed
paths are specific to the group equations. An equation v = w can be rewritten
v – w = 0 and, thus, corresponds to a closed path. In the diagram, the closed
triangular path on the top left corresponds to the equation of the GBF, and the
closed path on the top right corresponds to the commutation of the generators
east and north. See Figure 2 for an illustration.

Figure 2. Shapes of a GBF <north, east, northeast; east+north = northeast>

166 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A GBF value of type T is a partial function that associates a value to some
group elements (the group elements are the positions of the collection and the
empty GBF is the everywhere undefined function). A GBF value is simply a
labeling of a finite set of positions by some values. The positions that have no
values are said to be undefined.

Matching a Path
Path patterns are used in the left-hand side (l.h.s) of a rule to match a

subcollection to be substituted. We give only a fragment of the grammar of the
patterns:

Pat ::= x | <undef> | p,p’ | p |g> p | p+ | p/exp | p as x

where p, p' are patterns, g is a GBF generator, x ranges over the pattern
variables, and exp is an expression evaluating to a Boolean value. Informally,
a path pattern can be flattened into a sequence of basic filters and repetition
specifying a sequence of positions with their associated values. The order of the
matched elements can be forgotten to see the result of the matching as a
subcollection.

A pattern variable x matches exactly one element somewhere in the
collection that has a well-defined value. The identifier x can be used in the rest
of the rule to denote the value of the matched element. More generally, the
naming of the values of a subpath is achieved using the construction as. The
constant <undef> is used to match an element with an undefined value (i.e., a
position in a topological collection with no value). The pattern p,p' stands for
a path beginning like p and ending like p' (i.e., the last element in path p must
be a neighbor of the first element in path p'). For example, the pattern a,b
matches two connected elements referred to hereafter as a and b (i.e., b must
be a neighbor of a).

The neighborhood relationship depends on the collection kind and is
decomposed in several subrelations in the case of a GBF. The comma operator
is then refined in the construction p |g> p': the first element of p' is the g-neighbor
of the last element in path p. The pattern p+ matches a repetition p, ..., p of path
p. Finally, p/exp matches the path p only if exp holds.

Here is a more contrived example:

(e/seq(e))+ as S / size(S)<5

Modeling Developmental Processes in MGS 167

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

selects a subcollection S of less than five elements, each element e of S being
a sequence. If this pattern is used against a set, S is a subset; if this pattern is
used against a sequence, S is a subsequence (that is, an interval of contiguous
elements), etc.

Path Substitution and Transformations
There are several features to control the application of a rule. Rules may

have priorities or probabilities of application, they may be guarded and depend
on the value of local variables, they can “consume” their arguments, etc. We
present only the basic application strategy; see Giavitto and Michel (2001) for
more details.

Substitutions of Subcollections
A rule α→β can be seen as a rule for substituting either a path or a

subcollection; a path can be seen as a subcollection by simply forgetting the
order of the elements in the path. For example, the rule:

(x/x<3)+ as S → 3,4,5,():set

applied to the set 1,2,3,4,5,6,():set returns the set 3,4,5,6,():set because S
matches the subset 1,2,():set and is replaced by the set 3,4,5,():set. The final
result is computed as (3,4,5,():set)∪(3,4,5,6,():set).

Substitutions of Paths
Because the matched subcollection is also a path — that is, a sequence of

elements — the seq type has a special role when appearing in the r.h.s. of a rule.
If the r.h.s. evaluates to a sequence, and if this sequence has the same length
as the matched path, then the first element of the sequence is used to replace
the first element of the matched path, and so on, with the last element in the path
replaced by the last element in the sequence. This convention is coherent with
the subcollection substitution point of view and simplifies enormously the
building of the r.h.s.

For example, suppose that in a GBF we want to model the random walk
of a particle x. Then, two neighboring elements, one being x and the other
undefined, must exchange their values. This is achieved with only one simple
rule:

x,<undef>→<undef>,x

168 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

without the need to mention the precise neighborhood relationships between
the two elements. Figure 3 illustrates this process on the GBF <north, east>.
This free abelian GBF describes the usual rectangular lattice. Each cell c has
four neighbors. Each application of the previous transformation moves the
value in a cell to an empty neighbor cell. The path to the right of Figure 3
represents 3,000 random moves on this lattice.

We have mentioned above that the result of replacing a subset by a set is
computed using set union. More generally, the insertion of a collection C in
place of a subcollection B depends on the “borders” and on the topology of the
involved collections. For example, in a sequence, the subcollection B defines
in general two borders that are used to glue the ends of collection C. The gluing
strategy may admit several variations. The programmer can select the appro-
priate behavior using the rule’s attributes.

Transformations
A transformation R is a set of rules:

trans R = { ...; rule; ... }

For example, transformation

trans M = { x→x+1; }

Figure 3. Random walk of a particle on the GBF <north, east>

Modeling Developmental Processes in MGS 169

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

defines a function M. The expression M(c) denotes the application of one
transformation step to the collection c. A transformation step consists of the
parallel application of the rules (modulo the rule application’s features). So,
M(c) computes a new collection c' where each element of c is incremented by
one.

A transformation step can be easily iterated:

M[iter=n](c)

denotes the application of n transformation steps, and

M[iter=fixpoint](c)

denotes the application of M until a fixed point is reached; that is, the result c'
satisfies the equation: c'=M(c').

PARADIGMS OF PATTERN FORMATION
In this section, we introduce several fundamental paradigms of pattern

formation through some examples and their implementation in MGS. These
examples are all fundamental models that have been proposed and discussed
in the field of developmental biology. The purpose of this section is not to
develop new developmental mechanisms, but to show that these paradigmatic
examples can all be easily expressed in the unified framework of topological
collection rewriting.

Diffusion and Beyond

Diffusion in a Continuous Setting
Just as thermal gradients cause heat to flow from a warmer area to a colder

area, chemical gradients due to variations in chemical concentration cause
molecules to move from high concentration to low concentration. This process,
due solely to a concentration gradient, is referred to as diffusion. The rate of
change in concentration with time and space is defined by Fick’s law:

z

C
D

t
C

2

2

∂
∂=∂

∂

170 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

where C is the concentration of the chemical (mass/volume), D is some diffusion
constant, and z is the spatial variable (to keep the example simple, we suppose
that the diffusion occurs in a line).

A forward difference discretization gives

()),1(),1(),()21(),(tiCtiChtiChttiC ++−+−=∆+

where C(i, t) represents the concentration at time t of the element of length i.
Parameter h depends on the chemical and on the diffusion constant and must
be less than 0.5. For the boundary conditions, we assume a source of constant
concentration C(0, t) = C

0
 at one end and a sink that ensures a constant

concentration C(n, t) = 0 at the other end.
This very simple model can be programmed in MGS in the following way.

We first have to define a sequence of elements representing a concentration in
a line. This is simply a GBF with only one generator:

gbf Line = <right, left; right+left = 0>

The generator left is simply an alias for the inverse of right. These names can
be used in a transformation to access the left and right neighbors of an element
matched by a pattern variable in a Line. The position (a group element) of the
element matched by a pattern variable x is simply denoted by pos(x). Beware
that pos, left and right are not functions but special forms that have a meaning
only within a transformation. These forms accept as argument only a pattern
variable referring to one element in the collection. The transformation that
makes the concentration to evolve can be simply written as:

trans diffuse[h, C0, n] = {
x / pos(x) == (0*|right>) → C0;
x / pos(x) == ((n-1)*|right>) → 0;
x → (1-2*h)*x + h*(right(x) + left(x))

}

h, C0 and n are additional parameters of the transformation. The first two rules
deal with the boundary conditions. We assume that the first element of the
discretized line is put at the 0*|right> position (this denotes the identity element
in the group of positions). Then, the last element is at position (n-1)*|right>. By
default, the rules are applied with a priority corresponding to their order of

Modeling Developmental Processes in MGS 171

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

declaration: the first rule is applied whenever it can, then the second rule, and
the third is possibly applied on the remaining subcollection. The two first rules
specifying the behavior on the boundary take precedence to the last rule that
governs the default behavior of the interior points.

The last step is to set the initial state S0 of the line. The operator |right> can
be used to build this initial collection:

S0:=C0 |right> 0 |right> ... |right> 0

The evolution from 100 steps is then evaluated by the expression

diffuse[h, C0, n, iter=100](S0)

The results are visualized in Figure 4. The diagram at the left illustrates the
diffusion process with parameter h=0.156, n=10,C0=30,and for 90 time step.
The same process but with a different initial state and boundary conditions (no
source or sinc) is illustrated on the right.

Diffusion at the Molecular Level
The previous example is very simple but still shows the ability of MGS to

handle a continuous model. It is easy to extend this process to a surface or a
volume instead of a line.

Figure 4. Result of the diffusion with parameter h=0.156, n=10,C0=30 and
two different boundary conditions

172 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We now want to take the same system but focus on the level of molecules.
The line is still discretized as a sequence of small boxes, indexed by a natural
integer, and each containing zero or many molecules. At each time step, a
molecule can choose to stay in the same box or to jump to a neighboring box
with the same probability (see Figure 5). The state of a molecule is the index
of the box in which it resides. The entire state of the system is then represented
as a multiset of indices. The evolution of the system can then be specified as a
transformation with three rules:

trans diffuseM = {
n → n-1
n → n
n → n+1

}

The first rule specifies the behavior of a particle that jumps to the box at
the left, the second rule corresponds to a particle that stays in the same box, and
the last rule defines a particle jumping to the right. Figure 5 illustrates this
approach and plots the result of the discrete diffusion of 1,500 particles on a

Figure 5. Right diagram: principle of the particle diffusion model. Left
diagram: result of a simulation

Modeling Developmental Processes in MGS 173

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

sequence of 60 bins during 160 time steps. The diffusion is limited on the
boundary (no flow, which is achieved by adding two additional rules to handle
the behavior at the boundaries). In the initial states, all particles are randomly
distributed in the middle third of the linear media (compare with the right side
of Figure 4).

This example shows that even if a multiset has very little organization, it can
be used to take geometric information into account. This model can also be
extended to diffusion in a surface or a volume, and for arbitrary geometry. The
idea is to discretize the medium in a set of bins and to represent the state of the
system as a multiset of bins.

Boundary Growth
In this subsection, we focus on variations of cellular automata (von

Neumann, 1966) used to model several growth processes.

The Growth of a Snowflake
This cellular automaton idealizes the formation of a snowflake (Wolfram,

2002). Black cells represent regions of solid ice, and white cells represent
regions of liquid or gas. The molecules in a snowflake lie on a simple hexagonal
grid. Whenever a piece of ice is added to the snowflake, a little heat is released,
which then tends to inhibit the addition of further pieces of ice nearby. The
corresponding evolution rule is very simple: a cell becomes black whenever
exactly one of its neighbors was black in the previous step.

Trans Snowflake = {
0 as x / neighborsfold(+, 0, x)==1 → 1

}

A black cell has the value 1 and a white cell has the value 0. A 0 is turned into
a 1 only if the sum of its neighbors is one. The sum of the neighbors is computed
using the neighborsfold operator that iterates an accumulating function over the
neighbors:

neighborsfold(f, zero, x)

computes

f(x1, f(x2, ... , f(xn, zero)...)

174 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

where the x
i
 are the neighbors of the element x. This operator can be used only

within a transformation, and its last argument must be a pattern variable
introduced in the left-hand side of the rule. Four steps of the evolution are
pictured in Figure 6 (in the initial state, two black cells represent the ice).

Diffusion-Limited Aggregation
Diffusion-Limited Aggregation, or DLA, is a simple process of cluster

formation by particles diffusing through a medium that jostles the particles as
they move. When particles have the possibility to attract each other and stick
together, they may form aggregates. The aggregates may grow as long as there
are particles moving around. During the diffusion of a particle it is more likely
that it attaches to the outer regions than to the inner ones of the cluster. Thus,
a fractal shape occurs like that of corals or trees.

In the following implementation, a value 0 means a diffusing particle, while
a value n greater than 1 means a particle fixed to a static cluster for n time steps.
Then, the corresponding transformation is straightforward:

Figure 6. The growth of a snowflake

Modeling Developmental Processes in MGS 175

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

trans DLA = {
aggregation = 0,n/n>0 → 1,n
diffusion = 0,<undef> → <undef>,0
timecount = n / n > 0 → n+1

}

The rule aggregation specifies that a moving particle that comes near to a
cluster will become part of this cluster. The rule diffusion defines the random
move of a particle: the particle occupies a free neighboring cell and empties its
current occupied cell. The last rule updates the age of a particle stuck into a
cluster. The result is illustrated in Figure 7. In this simulation, particles are
constantly created on the right, and the initial static particle is completely on the
left. Particles are constrained to move on a bounded rhomboidal domain. This
explains the asymmetries of the figure.

Phenomenological Sketch of the Growth of a Tumor
This model illustrates the growth of a tumor. It is inspired from a model

initially proposed in Wilensky (1998). We start by modeling a set of cells and
the mechanical forces between them. Then we add a growing process by giving
two different behaviors to the cells. This model gives a formal example of an
interacting set of entities localized in a 3-D space, such that the interactions both
depend on the position of the entities and make these positions evolve.

Figure 7. A DLA growing process on an hexagonal grid

176 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Mechanical Model of the Cells
Each cell exerts a spring-like force to its neighbors. The resulting forces

induce cell movements. To keep the model simple, we assume an Aristotelian
mechanical physics; that is, the velocity of the cell is proportional to the force
exercised. Although this is not compatible with Newtonian physics (the
acceleration is actually proportional to the force), the final state (the position of
the cells at the equilibrium) is the same and avoids the handling of the
acceleration variables.

We represent each cell as a point in R3 (e.g., assimilated to its mass center)
and with some velocity:

record Point = {x, y, z}
record Cell = Point + {vx, vy, vz, l, age}

These two statements define two new record types named Point and Cell. A
Point is a record with the fields x, y, and z (for recording the position of a cell).
The Cell type is a subtype of Point having, in addition, the fields vx, vy, and vz
(for recording the velocity of a cell) and the fields l and age that record the
radius and the age of the cell.

The interaction force between two cells is computed by the function
interaction:

fun interaction(ref, src) =
 let X = ref.x – src.x
 and Y = ref.y – src.y
 and Z = ref.z – src.z
 and L = ref.l + src.l
 in let dist = sqrt(X*X + Y*Y + Z*Z)
 in let force = (L - dist)/dist
 in {fx=X*force, fy=Y*force, fz=Z*force}

The result is a record with fields fx, fy, and fz, which represents the
coordinates of the force vector exercised on the cell ref by the cell src. This
force goes to infinity when the two interacting cells become closer, it vanishes
when the cells are separated by their natural diameter, and becomes asymptoti-
cally proportional to the distance between the cells when this distance in-
creases.

A transformation is used to iterate over the cell and to compute the
resulting forces:

Modeling Developmental Processes in MGS 177

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

trans Meca = {
e:Cell →
let tf = neighborsfold(sum(e), {fx=0,fy=0,fz=0}, e)
in e + { x = e.x + epsilon*e.vx,

y = e.y + epsilon*e.vy,
z = e.z + epsilon*e.vz,
vx = tf.fx,
vy = tf.fy,
vz = tf.fz }

}

The pattern e:Cell is equivalent to e/Cell(e) and selects one element of type Cell.
The operator + that appears in the body of the let is overloaded. In addition to
the standard numeric addition, it denotes the asymmetric merge of two records.
If r and s are two records, then the record r+s contains all of the fields present
in r and s. The value of the field f of the record r+s is the value of s.f if f exists
in s and else r.f. The net effect of the expression in the body of the let is a record
similar to e where the position and the velocity have been updated.

The operator neighborsfold iterates a binary function over the neighbors
of an element to compute the total force tf exercised on the cell matched by e.
Function sum(e) computes the interaction between e and a neighbor cell and
accumulates the result:

fun sum(e,s,acc) = addv(acc, interaction(e, s))
fun addv(u,v) = {fx=u.fx+v.fx, fy=u.fy+v.fy, fz=u.fz+v.fz}

Note that the function sum is curryed and partially applied in the application of
neighborsfold. The operator neighborsfold is similar to the fold in functional
languages (where it iterates over lists or other algebraic data types) and the use
of a curryfied function as the functional argument of the fold is a well-known and
heavily used programming pattern (Sheard et al., 1993).

The neighborhood of a cell is computed dynamically using a Delaunay
graph built from the cell positions: for a set S of points in the Rd, the Delaunay
graph is the unique triangulation of S such that no point in S is inside the
circumcircle of any triangle. At each time step, this neighborhood can change
due to the cell movements. In MGS, the Delaunay collection type is a type of
constructor corresponding to the building of a collection with a neighborhood
computed from the position of the elements in a d-dimensional space. A

178 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Delaunay collection type is specified by giving the function that extracts the
sequence of coordinates from an element of the collection:

delaunay(3) D3 =
\p.if Point(p) then p.x, p.y, p.z
 else error(«Bad element type for a D3») fi

The parameter 3 after the keyword delaunay indicates that the elements of this
collection type correspond to points in R3. The notation \x.e is the syntax used
for the lambda-expression λx.e.

Figure 7 illustrates the trajectory of seven cells computed by iterating
the transformation Meca over a collection D3.

The Behavioral Model of the Cells
A tumor consists of stem and transitory cells:

• A transitory cell moves, subject to the forces exercised by other cells.
• A transitory cell may divide at age tc_d with a probability tc_p.
• A transitory cell with an age greater than tc_a eventually dies with a

probability tc_d.

Figure 7. A trajectory of seven cells attracted by a spring-like force by the
neighbors

Modeling Developmental Processes in MGS 179

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• A stem cell is fixed (e.g. anchored in the extra-cellular matrix).
• A stem cell can divide either asymmetrically or symmetrically at some age

sc_d. In either case, one of the two daughter cells remains a stem cell,
replacing its parent. In asymmetric mitosis, the other daughter is a
transitory cell. In symmetric mitosis, the other daughter is a stem cell that
is allowed to move for sc_w time before anchoring and being static. The
probability of an asymmetric mitosis is sc_p.

These behaviors are specified by the transformation Grow. To select the
appropriate cell in the left-hand side of a rule, we introduce the types StemCell
and TransitoryCell that are distinguished only by the presence (or the absence)
of the field stem.

record StemCell = Cell + {stem=true}
record TransitoryCell = Cell + {~stem}

We represent a young stem cell allowed to move as a transitory cell with
a negative age. When such kind of cells reaches the age -1, then they transform
themselves into static stem cells. Then the definition of Grow can be:

trans Grow = {
c:TransitoryCell / c.age == -1
→ c+{stem=true, age=0};
c:TransitoryCell / (c.age > tc_a) & (rand() < tc_d)
→ <undef>;
c:TransitoryCell / (c.age == tc_d) & (rand() < tc_p)
→ r, r+{x=noise(c.x), y=noise(c.y), z=noise(c.z),

 age=0};
c:StemCell / c.age == sc_d
→ c, { x=noise(c.x), y=noise(c.y), z=noise(c.z),

 vx=0, vy=0, vz=0, l=c.l,
age = if rand()<sc_p then -sc_w else 0 fi

 }
c:Cell
→ c+{age=c.age+1};

}

The pseudo-function rand returns a random number between 0 and 1. The
function noise perturbs its argument: fun noise(x) = x + rand(). So when a cell

180 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

divides, one of the two daughter cells inherits the position of the mother cell and
the other is a little away. The mechanical interaction then moves the cell away.
To restrict the mechanical effects to the transitory cells, it is enough to match

Figure 8. Growth of a tumor (See “Phenomenological Sketch of the
Growth of a Tumor” for further explanations)

Modeling Developmental Processes in MGS 181

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

TransitoryCell instead of Cell in the transformation Meca: the left-hand side of
the rule becomes e:TransitoryCell.

Figure 8 illustrates some states in the tumor progression. The first four
images are drawings of the tumor at different time moments (cells have divided
and rearranged to satisfy the mechanical constraints). The last image (at the
bottom side) corresponds to the trajectory of the mass center of each cell,
before the first mitosis of a stem cell. The division of a transitory cell (visible as
forks in the trajectories) induces a change in the mechanical constraints and a
corresponding change in the trajectory.

This kind of simulation is phenomenological because the behavior of each
cell is roughly modeled, without taking into account the chemical and genetic
processes. However, this kind of simulation can be used to estimate the
propagation of the tumor, to evaluate the ratio between transitory and stem
cells, and to evaluate the impact of various therapeutic strategies, such as cell
division or mobility inhibitors. Most of the chemotherapy drugs known as M-
and S-poisons inhibit cell division and impact mainly the transitory cells. The
problem is that the stem cells (also known as clonogenic cells) maintain the
tumor and propagate its metastases. Other possible approaches try to lower
the cell mobility to reduce the tumor propagation.

DISCUSSION AND CONCLUSIONS

Summary
The MGS programming language is largely inspired by the dynamical

system perspective on biological development. From this point of view,
biological development exhibits a dynamical structure, or a variable phase
space, that must be computed jointly with the current state of the system. While
it makes the classical modeling and the simulation of such systems very difficult,
their description is still usually easily achieved by a set of local evolution rules
specifying the transformation of a subsystem. However, the partition of the
system into subsystems evolves in the course of time and the conditions of a
transformation application can be complex. These considerations lead to the
development of a rule-based programming paradigm. This programming
paradigm is characterized by the repeated, localized transformations of a
shared data object. The transformations are described by rules that separate
the description of the subobject to be replaced (the pattern) from the
calculation of the replacement.

182 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Optionally, rules can have further conditions that restrict their applicability
and the transformations are controlled by explicit or implicit strategies. When
the data object is a term, we retrieve the notion of rewrite systems. MGS
extends this approach by considering objects structured by neighborhood
relationships. The topological approach unifies several models of computa-
tions, at least to provide a single syntax that can be consistently used to allow
the merging of these formalisms for programming purposes. A unifying theoreti-
cal framework can be developed (Giavitto & Michel, 2001; Giavitto & Michel,
2002), based on the notion of chain complex developed in algebraic combi-
natorial topology.

The resulting programming style is an effective framework for the modeling
and the simulation of various developmental processes, as shown in the
previous section. All of the examples in this chapter have been processed using
the MGS interpreter. Theoretical articles, documentations, and various MGS
software products are freely available at: http://mgs.lami.univ-evry.fr.

Related Works
Transformation on multisets is reminiscent of multiset rewriting (or rewrit-

ing of terms). This is the main computational device of Gamma (Banâtre & Le
Metayer, 1986; Banâtre et al., 1987, 2001). The CHemical Abstract Machine
(CHAM) extends these ideas with a focus on the semantics of nondeterministic
processes (Berry & Boudol, 1992). The CHAM introduces a mechanism to
isolate some parts of the chemical solution. This idea has been seriously taken
into account in the context of P systems. P systems (P� un, 2001) are a new
distributed parallel computing model based on the notion of a membrane
structure. A membrane structure is a nesting of cells represented by a Venn
diagram without intersection and with a unique superset: the skin. Objects are
placed in the regions defined by the membranes and evolve following various
transformations: an object can evolve into another object, can pass through a
membrane, or dissolve its enclosing membrane. As for Gamma, the computa-
tion is finished when no object can further evolve. By using nested multisets,
MGS is able to emulate more or less the notion of P systems. In addition,
patterns like the iteration + go beyond what is possible to specify in the l.h.s.
of a Gamma rule.

Lindenmayer systems (Lindenmayer, 1968) have long been used in the
modeling of (DS)2 (especially in the modeling of plant growth). They loosely
correspond to transformations on sequences or string rewriting (they also
correspond to tree rewriting because some standard features make arbitrary

Modeling Developmental Processes in MGS 183

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

trees that are particularly simple to code). Obviously, L systems are dedicated
to the handling of linear and tree-like structures.

Strong links exist between GBF and cellular automata (CA), especially
considering the work of Z. Róka, which has studied CA on Cayley graphs
(1994). However, our own work focuses on the construction of Cayley graphs
as the shape of a data structure, and we have developed an operator algebra
and rewriting notions on this new data type. This is not in the line of Z. Róka,
which focuses on synchronization problems and establishes complexity results
in the framework of CA.

In the domain of biological process modeling, an increasing research effort
is devoted to the design of a simulation platform at the cellular level. The current
projects are mainly based on the modeling of the metabolic activities through
differential equations (ODEs) or partial differential equations (PDEs). They act
then as ODE or PDE solvers dedicated to biological processes. For instance,
BioDrive (Kyoda et al., 2000) handles signal transduction. E-Cell is dedicated
to the design of a minimal set of genes coding basic metabolic functions and
includes an evaluation of the corresponding cell functioning through an ener-
getic cost (Tomita et al., 1999; www.e-cell.org). V-Cell is one of the most
advanced simulation platforms — it handles PDEs and enables the specification
of complex geometry (Schaff & Loew, 1999; www.nrcam.uchc.edu). These
simulators rely on the hypothesis that the chemical activities that occur in the
cells are adequately described only by their kinetic equations (as it is the case
in a test tube). Consequently, they are unable to model and ignore the dynamic
organizations that modify profoundly the reactions, such as compartimentalization,
the creation of hyperstructures (Amar et al., 2002), or the channeling in the case
of metabolon by the so-called “solid-state metabolism” effect.

Other modeling approaches rely on the multi-agent paradigm to model the
various entities and activities that appear in biological processes. The resulting
software architecture support fits very well into the description of the domain’s
ontology (the specification of an ontology of biological entities and activities is
a problem in itself considering the vast number of different entities and activities
to describe). However, this approach does not bring a solution by itself to the
problem of describing the interaction between an arbitrary collection of agents
and the spatial organization of the agents. To overcome this problem, some
current projects extend the multi-agent paradigm with other approaches, such
as cellular automata.

The MGS programming style corresponds to the rule-based programming
paradigm. Rule-based programming is currently experiencing a renewed

184 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

period of growth with the emergence of new concepts and systems that allow
a better understanding and better usability. However, the vast majority of rule-
based languages (such as expert systems) are funded on a logical approach
(computation is a logical deduction), which is not adequate to describe various
biochemical processes. Yet the algorithmic and biological examples given in the
two previous sections demonstrate the ability of MGS to express both discrete
and (the numerical solution of) continuous models.

Perspectives
The perspectives opened by this preliminary work are numerous. We want

to develop several complementary approaches to define new topological
collection types. One approach to extend GBF applicability is to consider
monoids instead of groups, especially automatic monoids, which exhibit good
algorithmic properties. Another direction is to handle general combinatorial
spatial structures such as simplicial complexes. At the language level, the study
of the topological collections concepts must continue with a finer study of
transformation types. Several kinds of restrictions can be considered with
regard to these transformations, leading to various kinds of pattern languages
and rules. The complexity of matching such patterns has to be investigated. The
efficient compilation of an MGS program is a long-term research plan. We have
considered in this chapter only one-dimensional paths, but a general n-
dimensional notion of paths exists and can be used to generalize the substitution
mechanisms of MGS. From the applications point of view, we are looking for
simulations of more complex developmental processes.

ACKNOWLEDGMENTS
The authors would like to thank M. Gheorghe at the University of

Sheffield, R. Paton and G. Malcolm at the University of Liverpool, F. Delaplace
at the University of Evry, C. Godin and P. Barbier de Reuille at CIRAD-
Montpellier, the members of the epigenomic group at GENOPOLE-Evry, P.
Prusinkiewicz at the University of Calgary, and the organizers of the friendly
“workshop on membrane computing” series for helpful discussions, biological
motivations, fruitful examples, and challenging questions. Further acknowledg-
ments are also due to J. Cohen, A. Spicher, B. Calvez, F. Thonnerieux, C.
Kodrnja, and F. Letierce who have contributed in various ways to the MGS
software. This research is supported in part by the French National Center for

Modeling Developmental Processes in MGS 185

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Scientific Research (CNRS), GENOPOLE-Evry, the national working group
GDR ALP and IMPG, and the University of Evry Val d’Essonne.

REFERENCES
Amar, P., Giavitto, J.-L., Michel, O., Norris, V., & 36 other co-authors

(2002). Hyperstructures, genome analysis and I-cells. Acta Biotheoretica,
50(4), 357-373.

Banâtre, J.-P. & Le Metayer, D. (1986). A new computational model and its
discipline of programming. Technical Report RR-0566, Inria.

Banâtre, J.-P., Coutant, A., & Le Metayer, D. (1987). Parallel machines for
multiset transformation and their programming style. Technical Report
RR-0759, Inria.

Banâtre, J.-P., Fradet, P., & Le Metayer, D. (2001). Gamma and the chemical
reaction model: Fifteen years after. In Calude, C.S., P� un, Gh., Rozenberg,
G., & Salomaa, A. eds. Multiset processing: Mathematical, computer
science, and molecular computing points of view. Lecture notes in
Computer Science, 2235, Berlin: Springer, 17-31.

Berry, G. & Boudol, G. (1992). The chemical abstract machine. Theoretical
Computer Science, 96: 217-248.

Bournez, O., Kirchner, H., Côme, G.-M., Conraud, V., & Ibanescu, L.
(2003). A rule-based approach for automated generation of kinetic
chemical mechanisms. In R. Nieuwenhuis, ed. 14th Int. Conf. on
Rewriting Techniques and Applications. Lecture notes in Computer
Science, 2706, Berlin: Springer, 30-45.

Buneman, P., Naqvi, S., Val Tannen, B., & Wong, L. (1995). Principles of
programming with complex objects and collection types. Theoretical
Computer Science, 149 (1), 3-48.

Dershowitz, N. & Jouannaud, J.-P. (1990). Rewrite systems. Handbook of
Theoretical Computer Science, Vol. B. 244-320.

Dershowitz, N. (1993). A taste of rewrite systems. Lecture notes in Computer
Science, 693, Berlin: Springer, 199-228.

Dittrich, P., Ziegler, J., & Banzhaf, W. (2001). Artificial chemistries – a review.
Artificial Life, 7 (3), 225-275.

Eigen, M. & Schuster, P. (1979). The Hypercycle: A Principle of Natural
Self-Organization. Berlin: Springer.

Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., & Kemal
Sönmez, M. (2002). Pathway logic: Symbolic analysis of biological

186 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

signaling. In Pacific Symposium on Biocomputing PSB 2002, 400-412.
Fontana, W. & Buss, L. (1994). “The arrival of the fittest”: Toward a theory

of biological organization. Bulletin of Mathematical Biology. 56, 1-64.
Fisher, M., Malcolm, G., & Paton, R. (2000). Spatio-logical processes in

intracellular signalling. BioSystems, 55, 83-92.
Giavitto, J.-L. (2001). Declarative definition of group indexed data structures

and approximation of their domains. In ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming PPDP01. ACM
Press, 150-161.

Giavitto, J.-L. (2003). Topological collections, transformations and their
application to the modeling and the simulation of dynamical systems. In
Nieuwenhuis, R. ed. 14th International Conference on Rewriting
Techniques and Applications RTA’03. Lecture notes in Computer
Science, 2706, Berlin: Springer, 208-233.

Giavitto, J.-L. & Michel, O. (2001). MGS: A programming language for the
transformations of topological collections. LaMI Technical Report 61-
2001. University of Évry Val d’Essonne, France.

Giavitto, J.-L. & Michel, O. (2002). The topological structures of membrane
computing. Fundamenta Informaticae, 49 (1-3), 107-129.

Giavitto, J.-L. & Michel, O. (2003). Modeling the topological organization of
cellular processes. BioSystems, 70(2), 149-163.

Giavitto, J.-L., Malcolm, G., & Michel, O. (2004). Rewriting systems and the
modelling of biological systems. Comparative and Functional Genomics,
5(1), 95-99.

Giavitto, J.-L., Michel, O., & Sansonnet, J.-P. (1995). Group based fields. In
Parallel Symbolic Languages and Systems PSLS95. Lecture notes in
Computer Science, 1068, Berlin: Springer, 209-215.

Hammel, M. & Prusinkiewicz, P. (1996). Visualization of developmental
processes by extrusion in space-time. Proceedings of Graphics Inter-
face ‘96, 246-258.

Harper, J.L., Rosen, B.R., & White, J. (1986). The Growth and Form of
Modular Organism. London: The Royal Society.

Head, T. (1987). Formal language theory and DNA: An analysis of the
generative capacity of specific recombinant behaviors. Bulletin of Math-
ematical Biology, 49 (6), 737-759.

Head, T. (1992). Splicing schemes and DNA. In Lindenmayer Systems:
Impacts on Theoretical Computer Science, Computer Graphics, and
Developmental Biology. Berlin: Springer, 371-383. Also appears in
(1992). Nanobiology, 1, 335-342.

Modeling Developmental Processes in MGS 187

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Hung, J.Y., Gao, W., & Hung, J.C. (1993). Variable structure control: A
survey. IEEE Transactions on Industrial Electronics, 40 (1), 2-22.

Itkis, Y. (1976). Control Systems of Variable Structure. New York: Wiley.
Kaufman, S. (1995). The Origins of Order: Self-Organization and Selec-

tion in Evolution. Oxford: Oxford University Press.
Keller, E.F. (1995). Refiguring Life: Metaphors of Twentieth-Century

Biology. New York: Columbia University Press.
Kephart, J. & Chess., D. (2003). The vision of autonomic computing. IEEE

Computer Magazine, 36(1) 41-50.
Kyoda, K.M., Muraki, M., & Kitano, H. (2000). Construction of a general-

ized simulator for multi-cellular organisms and its application to Smad
signal transduction. In Fifth Pacific Symposium on Biocomputing PSB
2000, 314-325.

Lincoln, P. (2003). Symbolic systems biology. In Nieuwenhuis, R. ed. 14th
International Conference on Rewriting Techniques and Applications
RTA’03. Lecture notes in Computer Science, 2706, Berlin: Springer, 1.

Lindenmayer, A. (1968). Mathematical models for cellular interaction in
development, parts I and II. Journal of Theoretical Biology, 18, 280-
299 and 300-315.

Maynard-Smith, J. (1999). Shaping Life: Genes, Embryos and Evolution.
New Haven, CT: Yale University Press.

Meinhardt, H. (1982). Models of Biological Pattern Formation. New York:
Academic Press.

Michel, O. (1996). Design and implementation of 81/2, a declarative data-
parallel language. Computer Language, 22(2/3), 165-179.

Mjolsness, E., Sharp, D.H., & Reinitz, J. (1991). A connectionist model of
development. Journal of Theoretical Biology, 152 (4), 429-454.

Munkres, J.R. (1993). Elements of Algebraic Topology. Addison-Wesley.
Parashar, M. & Hariri, S., eds. (2003). Autonomic applications workshop. Taj

Krishna, Hyderabad, India. Special issue of Cluster Computing, The
Journal of Networks, Software Tools and Applications (2004).

Paton, R. ed. (1994). Computing with Biological Metaphors. London, New
York: Chapman & Hall.

P� un, Gh. (2001). From cells to computers: Computing with membranes (P
systems). BioSystems, 59(3), 139-58.

Prusinkiewicz, P. (1998). Modeling of spatial structure and development of
plants: A review. Scientia Horticulturae, 74, 113-149.

Prusinkiewicz, P. (1999). A look at the visual modeling of plants using L-
systems. Agronomie, 19, 211-224.

188 Giavitto & Michel

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Prusinkiewicz, P. & Lindenmayer, A. (1990). The Algorithmic Beauty of
Plants. Berlin: Springer.

Róka, Z. (1994). One-way cellular automata on Cayley graphs. Theoretical
Computer Science, 132 (1–2), 259-290.

Schaff, J. & Loew, L.M. (1999). The virtual cell. In Fourth Pacific Sympo-
sium on Biocomputing PSB 1999, 4, 228-239.

Sheard, T. & Fegaras, L. (1993). A fold for all seasons. Proceedings of the
6th ACM SIGPLAN/SIGARCH International Conference on Func-
tional Programming Languages and Computer Architecture
FPCA’93, ACM Press, 233-242.

Stengers, I. (1988). D’une science à l’autre. Les Concepts Nomades. Paris:
Le Seuil.

Stevens, P.S. (1974). Patterns in Nature. Boston: Little, Brown and Co.
Thompson, D’Arcy W. (1942). On Growth and Form. Cambridge: Univer-

sity Press.
Tomita, M., Hashimoto, M., Takahashi, M., Shimizu, T.-S., Matsuzaki, Y.,

Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J.-C., & Hutchison,
C.-A., (1999). E-CELL: Software environment for whole cell simulation.
Bioinformatics, 15 (1),72-84.

Turing, A.M. (1952). The chemical basis of morphogenesis. Philosophical
Transactions. Royal Society of London, Series B: Biological Sciences,
(237), 37-72.

Varela, F.J. (1979). Principle of Biological Autonomy. New York: McGraw-
Hill/Appleton and Lange.

von Neumann, J. (1966). Theory of Self-Reproducing Automata. Urbana,
IL: University of Illinois Press.

Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram
Media, Inc.

Wolpert, L., Beddington, R., Lawrence, P., Meyerowitz, E., Smith, J., &
Jessell, T.M. (2002). Principles of Development (2nd ed.). Oxford:
Oxford University Press.

Wilcox, M., Mitchison, G.J., & Smith, R.J. (1973). Pattern formation in the
blue-green alga, Anabaena. I. Basic mechanisms. Journal of Cell
Science, 12, 707-723.

Wilensky, U. (1998). NetLogo tumor model. Contributed by Gershom Zajicek
M.D., Prof. of Experimental Medicine and Cancer Research at The
Hebrew University-Hadassah Medical School, Jerusalem. http://
ccl.northwestern.edu/netlogo/models/Tumor. Center for Connected

Modeling Developmental Processes in MGS 189

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Learning and Computer-Based Modeling, Northwestern University,
Evanston, IL.

ENDNOTE
1 As stated by d’Arcy W. Thompson (1942): “We might call the form of an

organism an event in space-time, and not merely a configuration in space.”

