
Integration and pattern-matching of
topological structures in a functional language

Antoine Spicher and Olivier Michel

LaMI, umr 8042 du CNRS, Université d’Évry – GENOPOLE
Tour Evry-2, 523 Place des Terrasses de l’Agora

91000 Évry, France

{aspicher,michel}@lami.univ-evry.fr

Abstract. MGS is an experimental programming language dedicated to
the manipulation of topological collections through rules of transforma-
tions. A topological collection is a set of elements organized by a neigh-
borhood relation. This topological approach enables the extension of the
case based definition of function to several non-algebraic data types.
In this paper, we show how sophisticated data structures used to build
geometric objects can be embedded smoothly in this framework. The
expressivity of the language is then illustrated by some examples like the
simulation of a diffusion limited aggregation process on complex geome-
tries and the computation of the maximal flow on a graph.

1 Introduction

The MGS project aims at developing a programming language dedicated to the
modelisation and the simulation of processes with a dynamical structure.

Dedicated languages provide programmer with abstractions and notations
suitable for a particular applications field. They often are declarative and based
on a little kernel. Their specialization makes them more attractive than a gen-
eral language and enables a better productivity by making programmation and
reusability easier.

The processes we are interested in are highly structured dynamical systems
with a hierarchical organization. Such a system can be often characterized by a
state specified by the association of some attributes (mass, temperature, charge,
etc.) to some spatial structure.

The basic idea of MGS is to allow the definition of such states as a new kind of
data field [Lis93] in a functional language. They are called topological collections
to outline the underlying topological concepts. The evolution function of dynam-
ical systems corresponds to a function that transforms a topological collection
into another one. The specification of such transformations is greatly simplified
using case-based definition through a powerful pattern-matching language. It
appears that the notions developed for the simulation of dynamical system with
a dynamical structure (also called (DS)2) enable a new programming style and
allow the very concise expression of various basic algorithms on set, sequence,
graph, etc.

In this paper, after a brief presentation of the MGS experimental programming
language, we extend a proposal made by J.-F. Dufourd and S. Luther [DL02]
to parameterize geometrical objects via the λ-calculus. This enables us to ex-
pressively build and compose geometrical objects as a new kind of topological
collections. Then, we illustrate through several examples the use of transforma-
tions to model several processes located on these complex objects.

2 A Brief Presentation of the MGS Language

MGS embeds a complete, impure, dynamically typed, strict, functional language.
We focus on the notions required to understand the rest of the paper and we
only describe here the major differences between the constructions available in
MGS with respect to standard functional languages like OCAML [Ler04].

2.1 Atomic values.

Atomic values (like integers, floats, booleans, strings, symbols...) with their
usual functions, are available. Since MGS is a functional language, it has func-
tions as first-class values. Functions are defined using the construction fun
like in fun max(x, y) = if (x > y) then x else y fi. Optional parame-
ters can be specified between brackets: fun succ[inc=1](x) = x + inc. In the
application of the function, these parameters can be omitted like in succ(0)
which returns 1 or explicitly set: succ[inc=3](0) returns 3.

2.2 Topological Collections.

The distinctive feature of the MGS language is its handling of entities structured
by abstract topologies using transformations [GM02]. A set of entities organized
by an abstract topology is called a topological collection. Topological means here
that each collection type defines a neighborhood relation (the topology depends
on the properties of that relation) inducing a notion of subcollection. A subcol-
lection S′ of a collection S is a subset of connected elements of S and inheriting
its organization from S.

Different predefined and user-defined collection types are available in MGS. In
this paper we won’t detail them. We will only introduce to the two collections
required by the examples given below. More details will be specified later:

– Monoidal collections: the neighborhood relation is defined through a monoid.
The main operation of the monoid is the insertion of an element and is de-
noted by a comma; if the comma is associative, sequences are built (each
element has two neighbors except the extremities); if the comma is associa-
tive and commutative, bags are built (each element is neighbor of all the
others); if the comma is idempotent, sets are built.

– Delaunay graphs: they are unoriented graphs. Values from an Euclidean
space Rn are associated to their vertices. The neighborhood is computed from
this embedding and the tessellation of Delaunay. This tessellation divides the
space into cells surrounding each element of the graph. For a cell of a given
vertex, the points of the cell are closer to the vertex than to the other vertices.
This collection enables the representation of a neighborhood corresponding
to the notion of “closer neighbor”.

The current prototype of MGS provides, among other, topological collections like
arbitrary graphs, Cayley’s graphs (especially partition of plane and n dimen-
sional grids, circular or not) and quasi-manifolds as we will see.

For any collection type T, the corresponding empty collection is written ():T.
The join of two collections C1 and C2 (written by a comma: C1,C2) is the main
operation on collections. The comma operator is overloaded in MGS and can be
used to build any collection (the type of the arguments disambiguates the col-
lection built). So, expression 1, 1+1, 2+1, ():set builds the set with the three
elements 1, 2 and 3, while expression 1, 1+1, 2+1, ():bag computes a bag with
the same three elements. A set or a bag is provided with the following topol-
ogy: any two elements of the collection are neighbors. To spare the notations,
the empty sequence can be omitted in the definition of a sequence: 1, 2, 3 is
equivalent to 1, 2, 3,():seq.

2.3 Transformations

Transformations are used to specify the evolution function of a (DS)2. The global
transformation of a topological collection s consists in the parallel application
of a set of local transformations. A local transformation is specified by a rule r
that defines the replacement of a subcollection by another one. The application
of a rewriting rule σ ⇒ f(σ, ...) to a collection s:

1. selects a subcollection si of s whose elements match the pattern σ,
2. computes a new collection s′i as a function f of si and its neighbors,
3. and specifies the insertion of s′i in place of si into s.

One should pay attention to the fact that, due to the parallel application
strategy of rules, all distinct instances si of the subcollections matched by the σ
pattern are “simultaneously replaced” by the collections f(si).

The MGS experimental programming language implements the idea of trans-
formations of topological collections into the framework of a functional language:
collections are just new kind of values and transformations are functions acting
on collections and defined by a specific syntax using rules. Transformations (like
usual functions) are first-class values and can be passed as arguments or returned
as the result of an application.

Path Pattern. A pattern σ in the left hand side of a rule specifies a subcol-
lection where an interaction occurs. A subcollection of interacting elements can
have an arbitrary shape, making it very difficult to specify. Thus, it is more

convenient (and not so restrictive) to enumerate sequentially the elements of the
subcollection. Such enumeration will be called a path.

A path pattern Pat is a sequence or a repetition Rep of basic filters. A basic
filter BF matches one element. The following (fragment of the) grammar of path
patterns reflects this decomposition:

Pat ::= Rep | Rep , Pat Rep ::= BF | BF /exp BF ::= cte | id | <undef>

where cte is a literal value, id ranges over the pattern variables and exp is a
boolean expression. The following explanations give a systematic interpretation
for these patterns:

literal: a literal value cte matches an element with the same value. For example,
123 matches an element with value 123.

empty element symbol <undef> matches an element with an undefined value,
that is, an element whose position does not have an associated value.

variable: a pattern variable a matches exactly one element with a well defined
value. Variable a can then occur elsewhere in the rest of the rule and denotes
the value of the matched element.

neighbor: b, p is a pattern that matches a path which begins by an element
matched by b and continues by a path matched by p, the first element of p
being a neighbor of b.

guard: p/exp matches a path matched by p if boolean expression exp evaluates
to true. For instance, x, y / y > x matches two neighbor elements x and
y such that the value associated to y is greater than the value associated
to x.

iteration: p∗ matches a subcollection composed of the repetition of subcollec-
tions matched by p.

alias: p as x allows to refer to the path matched by p through the name x. The
elements filtered by the atomic patterns of a rule are different. Thus a path
cannot have self-intersection.

Elements matched by basic filters in a rule are distinct. So a matched path is
without self-intersection. The identifier of a pattern variable can be used only
once as a basic filter. That is, the path pattern x,x is forbidden. However, this
pattern can be rewritten for instance as: x,y/y == x.

Right Hand Side of a Rule. The right hand side of a rule specifies a collection
that replaces the subcollection matched by the pattern in the left hand side.
There is an alternative point of view: because the pattern defines a sequence of
elements, the right hand side may be an expression that evaluates to a sequence of
elements. Then, the substitution is done element-wise: element i in the matched
path is replaced by the ith element in the r.h.s. This point of view enables a
very concise writing of the rules.

For some collection types it is possible to replace a subcollection by a col-
lection with a different shape. Such collections are termed as leibnizian and are
opposed to newtonian collections. Examples of leibnizian collections include sets,

bags, sequences, Delaunay’s graphs... A two-dimensional grid is an example of
a newtonian collection: one cannot replace an arbitrary subset of a grid by a
subset with another shape without destroying the 2D grid neighborhood.

2.4 Short Examples.

We give three examples that imply the transformation of a sequence of elements.

Bubble Sort in MGS. The bubble sort consists in

1. comparing two neighbors elements in a sequence and swapping them if they
are not in order,

2. repeating the first step until a fixed point is reached.

This specification is immediate in MGS and can be written:

trans bubble sort = { x, y / (x > y) => y, x }
The keyword trans introduces the definition of a transformation by a set of rules.
Here there is only one rule. This transformation can be applied to a sequence s :=
4, 2, 3, 1 until a fixed point is reached: bubble sort[’iter=’fixpoint](s).
The value of the predefined optional parameter ’iter indicates that the applica-
tion of the function bubble sort must be iterated until a fixed point is reached.
The results is 1, 2, 3, 4 as expected.

Hamiltonian Path. A graph is an MGS topological collection. It is very easy
to find an Hamiltonian path in a graph using the following transformation:

exception Not Found, Found;;
trans H = {

x* / size(x) = size(self) => raise Found(x)
};;
fun hamilton(g) = try

H(g); raise Not Found
with Found path -> path;;

Transformation H uses an iterated pattern x* that matches a path (a sequence
of elements that are neighbors two by two). Keyword self refers to the collection
which the transformation is applied onto, that is, the entire graph. The size of a
graph returns the number of its vertices. So, if the length of path x is the same as
the number of vertices in the graph, then path x is an Hamiltonian path because
matched paths are simple (no repetition of an element). The right hand side
raises an exception which is trapped in function hamilton. The normal return
of H is followed by the raising of the Not found exception in hamilton. Note in
this example the complete integration between functions and transformations: a
transformation is a first-citizen value.

School of fish. In this example, we will simulate the gathering and the dis-
placement of a school of fish. This model is inspired by a simulation of flocking
birds proposed by U. Wilensky and by the development of steering behaviors of
boids (generic simulated flocking creatures) invented by C. Reynolds [Rey87].
The algorithm we use here is very closed to the algorithm they use.

Each fish seems to follow the same direction. Nevertheless they are not led
by any special leader. In fact each fish follows the same set of rules to choose
the direction of its movement. The more simplistic model consists in three rules
for a fish: (1) not to collide with neighbors, (2) to join the group when it is too
far and (3) finally to head for the same global direction as its neighbors. They
will be detailed later, we will begin by the description of a fish.

Representation of fishes and of the school. A fish is represented by two values:
its position and its direction in space. To simplify the example, we only consider
a two dimensional representation, knowing that the three dimensional represen-
tation is trivial. So, we use a record (a data structure equivalent to a C struct)
composed by three fields: two for the position (x and y), and one for the direction
as an angle based on the x-axis (theta). We will suppose that all fishes move
with the same speed that is increased if the fish is too far from the group.

record Position = {x, y, theta}
The definition of type T specifies a predicate with the same name allowing the
programmer to check if its argument is of type T (here, Position is a predicate
that holds iff its argument has at least three fields with names x, y, theta).

One of the ways to generate a natural neighborhood between fishes is to use a
Delaunay tessellation. This topological collection is used to represent the school
of fishes. It is generated from a sequence of fishes and a function that returns the
fish position in space. So, we define the new type D2 that is a Delaunay graph
of dimension 2 whose elements are values of type Position:

delaunay(2) D2 =
\e.if Position(e)
then (e.x, e.y)
else error("bad element type for D2 delaunay type")
fi

Fish Behavior. The basic flocking model consists in three simple steering behav-
iors which describe how an individual fish maneuvers based upon the positions
and velocities of its nearby flockmates:

1. Separation : when a fish is too close to one of its neighbors, it changes its
direction.

2. Cohesion : when a fish is too far from one of its neighbors, it tries to get
closer by increasing its speed.

3. Alignment : when a fish is neither too close nor too far of its neighbors, it
chooses a direction which is the average of the direction of its neighbors.

Fig. 1. Trajectory of a school of 50 fishes (the MGS program implementing the model
is around 100 lines of code). Left plot: the initial state where each fish has a randomly
chosen direction. Middle plot: the configuration after 300 iterations. Right plot: after
900 iterations of the evolution function behavior.

Only the rule that deals with the alignment of the fishes is presented here. The
others have the same form. Thus the following transformation implements the
behavior of the fishes:

trans behavior = {
separation = ... => ... ;
cohesion = ... => ... ;
alignment =

a => begin
let phi = neighborsfold(add theta, 0, a)
and nb = neighborsfold(nb neighbors, 0, a) in
let dir = phi / nb in

a + {x = a.x + speed*cos(dir) + random(noise),
y = a.y + speed*sin(dir) + random(noise),
theta = dir}

end
}

For the rule alignment, first the sum of the directions of the neighbor fishes
are computed to get the average direction dir. The function neighborsfold is
applied on the sequence of the neighbors of fish a. Then, the number of neighbors
is computed by the same way. The record a is updated: the fish moves and it
now follows the new direction dir. Note that we introduce some noise to make
the simulation more realistic. Figure 1 illustrates three steps of this process.

3 Building cellular complexes with functional operations

3.1 Beyond Graphs: Cellular Complex

The interaction structure of the two previous examples can be adequately de-
scribed by a graph: two positions are connected by an edge if they are neighbors.
Sequences correspond to linear graphs. Nevertheless graphs are too limited. As
an example, let us consider the electrostatic laws. They depend on the geometry
of the system and some values must be associated to a dimension: the distribu-
tion of electric charges corresponds to a volumic density while the electric flux
through a surface is associated to a surface. Note that balance equations often
link these values, such as the Gauss theorem for our electrostatic example. See
also the work of E. Tonti [Ton74] for an elaboration.

In general, any component of any dimension and their interactions should
appear in the description of the system, and we should be allowed to associate
some values to them.

Arbitrary Topological Collection as Cellular Complex. The right framework to
develop a topological collection type that allows the representation of arbitrary
topologies is the combinatorial algebraic topology theory.

In this framework, the position and the neighborhood relationship of an ar-
bitrary topological collection is a cellular complex. A cellular complex is a set
of objects of various dimension called k-cell, where k is the dimension. To be
more practical, 0-cells are vertices, 1-cells are edges, 2-cells are faces, 3-cells are
volumes, etc. To build some arbitrary complex domain, the domain is divided
into a cellular partition. Each cell represents a simple part of the domain and
the cells are glued together: a k-cell c1 is incident to a (k− 1)-cell c2 if c2 ⊂ ∂c1,
where ∂c1 denotes the border of c1. This boundary relation ∂ can be used to
specify the neighborhood relationships in a topological collection: two k-cells are
neighbors if they share an incident (k − 1)-cell or if they are incident to a same
(k+1)-cell. A topological collection is then a function that associates some value
to each cell of a cellular complex. This definition of a topological collection is
consistent with the previous one.

3.2 G-Maps

There are several specializations of the notion of cellular complex. For instance
abstract simplicials are special cases of cellular complexes where each cell is a
simplex. A simplex of dimension n is the convex hull of n+1 vertices. A triangle is
a simplex of dimension 2. In MGS one can use generalized map (or G-map) [Lie91]
to build a cellular complex. The topological objects that can be described by
G-maps are quasi-manifolds.

Here is a short description of G-maps. Consider the incidence graph of cells,
i.e., the graph whose vertices are cells and where two vertices a and b are linked
with an oriented edge if a is incident to b. Let N denote the dimension of the
domain, i.e., the highest dimension that a cell can have. We will call a cell-tuple

the sequence (cN , cN−1, . . . , c1, c0) denoting a path in the incidence graph where
ci is a cell of dimension i. Finally two cell-tuples are i-adjacent if they share the
same cells except for the dimension i where the cells can differ.

A G-map of dimension N is a couple whose first data is a set of darts and
the second one is a set of N + 1 involutions denoted by αi (0 ≤ i ≤ N). In
fact a dart is an abstract view of a cell-tuple, and for any pair (d, d′) of given
darts, d′ = αi(d) if both cell-tuples are i-adjacent (Cf. figure 2). Finally, the last
equation must be verified for G-map to be correct :

∀i, j, 0 ≤ i < i + 2 ≤ j ≤ N, αi ◦ αj is an involution.

dart

α2

α1

α0

Fig. 2. Cellular complex in terms of darts and involutions.

3.3 G-maps and λ-terms

The integration of G-maps in MGS is somehow similar to the geometrical param-
eterization of objects via the λ-calculus suggested in [DL02]. J.-F. Dufourd and
S. Luther use typed λ-calculus to describe and compose geometric objects and
G-maps as using functional expressions. Using λ-calculus formalism is interest-
ing because it allows a wide parameterization in the construction of topological
objects. Indeed, they first propose a basic first-order description of G-maps, and
build on this basis more complex operations for the construction and the ma-
nipulation of G-maps. Their prototype also provides an impure side that allows
sharing, cloning and reusing of already defined objects.

The high expressivity of these functional expressions allows an easy spec-
ification of complex operations on G-maps by composing functions and using
recursivity. Here is an example of a functional program that builds a line of n
squares (viewed as 2-cells with 4 edges).

let add square = function ->

let rec line = function 0 ->

| n -> add square(line(n-1))

Function add square extends its argument by gluing a square on a distinguished
edge (the empty and the gray circle denote the boundary of the distinguished
edge). In the returned result, an edge is also distinguished. So, function line
can be used recursively to build a sequence of squares by adding square from an
original distinguished edge.

3.4 Using G-maps to implement cellular complexes.

To handle cellular complexes in MGS, we have extended the language to integrate
the idea of G-maps in the same way as Dufourd et al. Then, we have implemented
the notion of cells which is implicit in G-maps. Finally, we have adapted the
pattern matching in the transformations to handle this new kind of topological
collection.

The new data structure is called QMF referring to the term Quasi-Manifold.
These collections are represented by a triplet (G,N, h) where G is a G-map, N
is the dimension of G and h is a function that associates a value to each cell of
G (in the current version of MGS, h is implemented as a hash-table). A QMF is
a new type of topological collection parameterized by a G-map. A cell with no
value will be associated to the special value <undef>.

MGS provides several operations to build G-maps: products, extrusion, con-
traction, fusion of two cells, etc. More generally all the operations available in
the kernel of the MOKA1 tool, an interactive CAD program, are also provided in
MGS. MGS allows the loading and the saving of G-maps edited by MOKA. One may
note the direct use of the G-maps manipulation library of MOKA in MGS.

The representation of topological cells from darts and involutions of the G-
map is not trivial. Indeed a cell c is the set of darts corresponding to the tuples
containing c. Nevertheless it is possible to enumerate the darts in this set as
the orbit of a set of involutions denoted by < αi1 , αi2 , ...αik

>. By applying any
composition of these k involutions on a dart d of the G-map, we get the orbit.
If d is a dart of a cell c of dimension i, the set of darts belonging to c can be
computed as the orbit of < α1, ..., α(i−1), α(i+1), .., αN > (that is, all involutions
are present except the αi). In fact involution αi would make us change of cell
during the enumeration. Thus to represent a cell, we just have to know one of
its darts and its dimension. This couple can’t be used directly in MGS to identify
a cell in the G-map. Indeed this representation is not unique: there are as much
representations of a cell as there are darts to compose it. It is a problem for
managing the hash table of the QMF that requests unique keys. So we chose
to use a special normalized dart representing the whole cell. This dart is the
one whose memory address is the smallest in the set of darts of the cell. As a
1 The MOKA home-page is available at:http://www.sic.sp2mi.univ-poitiers.fr/
moka/

consequence we had to adapt our use of the G-map library of MOKA to deal with
the normalization of a cell representation.

The last step of the G-map integration is the interfacing between the top-
level system MGS written in OCAML, and the G-map library written in C++. We
chose to use an abstract type [Ler04, pp234] to represent the darts and the
G-maps in the OCAML side. These abstract types are blocks of the OCAML heap
and these blocks are customized by ad-hoc functions of comparison, finalization
and hashing. Thus one can use most of the basic functions on these values, and
efficiently deal with the issues due to the garbage collector of OCAML.

4 Examples

In this section we present two examples of MGS programs using QMF and showing
how transformations allow us to animate this new type of collection.

4.1 Modeling of the DLA process

We model in MGS the diffusion limited aggregation process, or DLA [WS81]. The
principle is simple: a set of particles diffuse randomly on a given spatial domain.
Initially one particle, the seed, is fixed. When a mobile particle collides a fixed
one, they stick together and stay fixed. For the sake of simplicity, we suppose
that they stick together forever and that there is no aggregate formation between
two mobile particles.

This process leads to a simple cellular automata with an asynchronous update
function or a lattice gas automata with a slightly more elaborate rule set [TM87].
It could be easily done in MGS [Gia03] using a QMF collection to model arbitrary
spatial domains.

The DLA Evolution Function in MGS. The transformation describing the DLA
behavior is really simple. We use two symbolic values ‘mobile and ‘fixed to
represent respectively a mobile and a fixed particle. There are two rules in the
transformation:

1. the first rule specifies that if a diffusing particle is the neighbor of a fixed
seed, then it becomes fixed (at the current position);

2. the second one specifies the random diffusion process: if a mobile particle is
neighbor of an empty place (position), then it may leave its current position
to occupy the empty neighbor (and its current position is made empty).

Note that the order of the rules is important because the first one has priority
over the second one. Thus, we have :

trans dla = {
‘mobile, ‘fixed => ‘fixed, ‘fixed
‘mobile, <undef> => <undef>, ‘mobile

}

Initial state of the system. The most elegant way to associate values to the cells
of a G-map is to define, when it is possible, a transformation that builds the
initial state. For this transformation, we must consider that there is no value
associated to the cells yet. So, we have to create the first fixed seed and then to
randomly distribute mobile particles anywhere else on the domain:

trans init[flag = true] = {
<undef> / flag => (flag := false ; ‘fixed) ;
<undef> / (random(4)==0) => ‘mobile

}
The first rule is applied only one time because as the first occurrence is found
the guard flag becomes false. The second rule is applied with a probability of
0.25.

Application on different topologies. Figure 3 shows applications of the DLA
transformation on different kinds of objects built with G-maps. As a matter of
fact, the change of topological collection doesn’t affect the transformation and
we still apply the same dla transformation. In these examples, the topological
collections have dimension 2 and the values are associated only to 2-cells. The
2-cells are neighbors if they share a common edge on their boundary. At the top
of the figure, only the 1-cells are figured, and at the bottom, only the 2-cells
that hold a value, after that a fixed point is reached, are represented. Note that
some cells have 4 neighbors whereas others have 3 (for instance at the poles of
the sphere).

Fig. 3. DLA on complex objects. At the top, different objects are presented: from left
to right, a sphere with 18 parallels and 24 meridians, a chess pawn and a Klein’s bottle.
The bottom line presents the final state of a DLA process on these objects.

4.2 Maximum flow problem

A graph is a cellular complex of dimension 1 where vertices are 0-cells and edges
are 1-cells. We will take advantage of this property to handle graphs through
the use of the QMF collection in MGS. This section aims at illustrating the high
expressivity of transformations within the framework of a complex algorithm.

The algorithm of maximum flow problem requires to valuate the 0-cells and
the 1-cells. It can be written is MGS as two transformations acting on cells of
different dimensions.

Ford-Fulkerson algorithm. We want to represent communication network be-
tween different sites. The link between two sites are channels whose flow is lim-
ited by a maximal capacity. Let source and target be two sites of the network
such as source is a source (no flow goes inside it) and target is a target (no flow
goes outside it). The problem is the following: what is the maximal flow that
source can release in the network and target can accept, without saturating the
channels of the network?

The network is naturally represented by a graph whose vertices are the sites
and whose oriented edges are channels between the sites. The Ford-Fulkerson
algorithm [FF56] returns one of the solutions from a feasible initial state of the
network. A flow is feasible if:

– for any site i (except source and target), the incoming flow of i is equal to
the out-coming flow of i,

– for any channel c between two sites, the flow is positive and lower than the
capacity of c.

A trivial feasible flow is the null flow: no data is circulating in the network. The
algorithm is made of two steps:

1. Marking: we assume that we slightly increase the out-coming flow of source.
It will be denoted by the ‘plus mark associated to vertex source. Then we
will try to spread this increase as following: let c be an edge linking sites i
to j. If i is marked, j is unmarked and c isn’t saturated: we can mark j by
‘plus. On the opposite, if j is marked, i is not marked and j the flow of c
isn’t null: we mark i by ‘minus. We iterate this marking until a fixpoint is
reached.

2. Increasing the flow: if target is marked, we can find a path between source
and target whose edges flow can be changed, creating an increase of the total
flow of the network. This path is a flow augmenting path. We first compute
this increase, we update the network and the process is iterated. If target
isn’t marked, the flow is maximal.

Note that the first step changes the vertex values, whereas the second one only
acts on the edges.

Types definition. We will type values associated with cells. A site has a name
and it can either be marked or unmarked. We will use a record MGS to represent
them:

record site = {name : string}
record marked = site + {mark}
record unmarked = site + {~mark}

A record marked contains all the fields of a record of type site plus a field mark.
A record unmarked contains all the fields of a site record and should not contain
any mark field. The field mark will take its values in the set of symbols {‘plus,
‘minus}.

The values of edges will also be records with two fields (for the flow and the
capacity):

record channel = {flow : int, capacity : int}

Marking step. It is programmed by a first transformation which initializes the
marking, and a second one which applies the previously described rules:

trans init = {
x / source(x) => x + {mark = ‘plus} ;
x => x + {~mark}

}

trans marking = {
i:marked, j:unmarked / (edge(i,j).flow < edge(i,j).capacity)
=> i, j+{mark = ‘plus} ;

i:unmarked, j:marked / (edge(i,j).flow > 0)
=> i+{mark = ‘moins}, j

}
Function source is a predicate checking that its argument is source (we will
also use the predicate target for target). Function edge takes two vertices as
parameters and returns the value of the edge which links them. One also has
to add an orientation test of the edge. We haven’t introduced it to simplify
the code. The filtered elements have type site. So the displacements are made
by following cells of dimension 1. The addition between two records r + r’
computes the asymmetric fusion: the result is a record that contains all the
fields of r and r’ with a priority for r’ when a collision occurs.

Increasing the flow. The increasing string can be easily found by an iteration:

trans increasing string = {
(c:channel)* as C / source(vertex i(hd(C)))

&& cible(vertex j(last(C)))
=> increase(C)

}

The functions vertex i and vertex j return the vertices of an edge. Function
increase takes the edges path as an argument and increases the flow as much as
possible on these edges. So the total flow is updated. If any path can be filtered
by the rule, the flow is maximal. As a matter of fact applying the algorithm on
a graph g is done by:

fun ff(x) = increasing string(marking[‘iter=‘fixpoint](init(x)))
ff[‘iter=‘fixpoint](g)

5 Conclusion and Perspectives

This paper only focuses on a part of the features available in MGS that can be
used to develop computer models of complex discrete dynamical systems that are
concise and mathematically well-founded. The approach has been successfully
applied to several biological processes (the growth of a tumor, colonies of ants
foraging for food, the heterocysts differentiation during Anabaena growth, etc.)
as well as more algorithmic problems (prime number generation, various sorting
algorithms, Hamiltonian path, etc.). These examples, as well as the sources of the
current MGS implementation, are available at http://mgs.lami.univ-evry.fr.

The modeling of (DS)2 through their interaction structure is part of a long
term research effort [Gia03]. The topological approach presented here provides
a unified description of several computational models. Obviously, Lindenmayer
systems [Lin68] correspond to transformations on sequences, the CHAM, Gamma
and basic Paun systems [BB90,BFM01,Pau01] can be emulated using transfor-
mations on bags, and usual cellular automata [TM87] can be implemented on
regular topologies with the GBF collection.

From a formal point of view, the concept of topological collection is con-
nected with the concept of topological chain and the concept of transformation
corresponds to some cochains, notions developed in homological algebra [GM02].
The integration of G-maps in MGS is very similar to the geometrical parameteri-
zation of objects via the λ-calculus suggested in [DL02]. However, a topological
collection decorates each cell by a value handled through the concept of trans-
formation. From the point of view of functional languages, a transformation
extends the concept of rewriting of terms or function defined by case (filtering)
in non-algebraic data structures.

The perspectives opened by this work are numerous. From the applications
point of view, we are targeted to the simulation of developmental processes in
biology [GM03,GMM04]. At the language level, the study of the topological
collections concepts must continue with a finer study of transformation kinds.
Several kinds of restrictions can be put on the transformations, leading to various
kinds of pattern languages and rules. The complexity of matching such patterns
has to be investigated. The efficient compilation of an MGS program is a long-term
research.

Acknowledgments. The authors would like to thank the MOKA team at the Univ.
of Poitier, J.-L. Giavitto and J. Cohen at LaMI, F. Jacquemard at INRIA/LSV-Cachan

and the members of the “Simulation and epigenesis” group at Genopole for technical
support, stimulating discussions and biological motivations. This research is supported
in part by the CNRS, GDR ALP, IMPG, University of Évry and Genopole/Évry.

References

[BB90] G. Berry and G. Boudol. The chemical abstract machine. In Conf. Record
17th ACM Symp. on Principles of Programmming Languages, POPL’90, San
Francisco, CA, USA, 17–19 Jan. 1990, pages 81–94. ACM Press, New York,
1990.

[BFM01] Jean-Pierre Banâtre, Pascal Fradet, and Daniel Le Métayer. Gamma and
the chemical reaction model: Fifteen years after. Lecture Notes in Computer
Science, 2235:17–44, 2001.

[DL02] Jean-Franois Dufourd and Sven Luther. Parametrizing geometric objects
using λ-calculus. In Proceedings of the 18th spring conference on Computer
graphics, pages 185–194. ACM Press, 2002.

[FF56] Lester R. Ford, Jr. and D. R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956.

[Gia03] J.-L. Giavitto. Invited talk: Topological collections, transformations and
their application to the modeling and the simulation of dynamical systems.
In Rewriting Technics and Applications (RTA’03), volume LNCS 2706 of
LNCS, pages 208 – 233, Valencia, June 2003. Springer.

[GM02] Jean-Louis Giavitto and Olivier Michel. The topological structures of mem-
brane computing. Fundamenta Informaticae, 49:107–129, 2002.

[GM03] J.-L. Giavitto and O. Michel. Modeling the topological organization of cel-
lular processes. BioSystems, 70(2):149–163, 2003.

[GMM04] J.-L. Giavitto, G. Malcolm, and O. Michel. Rewriting systems and the mod-
elling of biological systems. Comparative and Functional Genomics, 5:95–99,
February 2004.

[Ler04] X. Leroy. The Objective Caml system, revision 3.07, 2004. Software and
documentation available on the web at http://pauillac.inria.fr/ocaml/.

[Lie91] P. Lienhardt. Topological models for boundary representation : a comparison
with n-dimensional generalized maps. Computer-Aided Design, 23(1):59–82,
1991.

[Lin68] A. Lindenmayer. Mathematical models for cellular interaction in develop-
ment, Parts I and II. Journal of Theoretical Biology, 18:280–315, 1968.

[Lis93] B. Lisper. On the relation between functional and data-parallel programming
languages. In Proc. of the 6th. Int. Conf. on Functional Languages and
Computer Architectures. ACM, ACM Press, June 1993.

[Pau01] G. Paun. From cells to computers: Computing with membranes (P systems).
Biosystems, 59(3):139–158, March 2001.

[Rey87] Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral
model, July 1987.

[TM87] T. Toffoli and N. Margolus. Cellular automata machines: a new environment
for modeling. MIT Press, Cambridge, 1987.

[Ton74] Enzo Tonti. The algebraic-topological structure of physical theories. In P. G.
Glockner and M. C. sing, editors, Symmetry, similarity and group theoretic
methods in mechanics, pages 441–467, Calgary, Canada, August 1974.

[WS81] T. A. Witten and L. M. Sander. Diffusion-limited aggregation, a kinetic
critical phenomenon. Phys. Rev. Lett., 47:1400–1403, 1981.

