
Declarative simulation of dynamicals systems:
the 8½ programming language and its application to the

simulation of genetic networks

Jean-Louis Giavitto *, Olivier Michel, Franck Delaplace

LaMI u.m.r. 8042 du CNRS, Université d’Evry Val d’Essone, 91025 Evry Cedex, France

Abstract

A major part of biological processes can be modeled as dynamical systems (DS), that is, as a time-varying state. In

this article, we advocate a declarative approach for prototyping the simulation of DS. We introduce the concepts of

collection, stream and fabric. A fabric is a multi-dimensional object that represents the successive values of a structured

set of variables. A declarative programming language, called 8½ has been developed to support the concept of fabrics.

Several examples of working 8½ programs are given to illustrate the relevance of the fabric data structure for simulation

applications and to show how recursive fabric definitions can be easily used to model various biological phenomena in a

natural way (a resolution of PDE, a simulation in artificial life, the Turing diffusion-reaction process and various

examples of genetic networks). In the conclusion, we recapitulate several lessons we have learned from the 8½ project.
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1. Introduction

1.1. The simulation of dynamical systems

Dynamical systems (DS) are an abstract frame-
work used to model phenomena that occur in

space and time. The system is characterized by

‘observable’, called the variables of the system,

which are linked by some relations. The value of

the variables evolves with the time. A variable can

take a scalar value (like a real) or be of a more

complex type like the variation of a simpler value

on a spatial domain. An example of such a

complex type is the temperature on each point of

a room or the velocity of a fluid in a pipe. This last

kind of variable is called a field. The set of the

values of the variables that describe the system

constitutes its state. The state of a system is its

observation at a given instant. The sequence of

state changes is called the trajectory of the system.

Intuitively, a DS is a formal way to describe how

a point (the state of the system) moves in the phase

space (the space of all possible states of the

system). It gives a rule telling us where the point

should go next from its current location (the

evolution function).
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There exists several formalisms used to describe

a DS: ordinary differential equations (ODE),

partial differential equations (PDE), iterated equa-

tions (finite set of coupled difference equations),

cellular automata, etc. In the Table 1, the discrete

or continuous nature of the time, the space and the

value, is used to classify some DS specification

formalisms.
The study of these kinds of models can be found

in all scientific domains and make often use of

digital simulations. As a matter of fact, it is

sometimes too difficult, too expensive or simply

impossible to make real experiments (e.g. for

ethical reasons). The US ‘Grand Challenge’ in-

itiative to develop the hardware and software

architectures needed to reach the tera-ops, outlines

that numerical experiments, now mandatory in all

scientific domains, is possible only if all the

computing resources are easily available, see

NSF (1991).

From this point of view, the expressiveness of a

simulation language is at least as important as its

efficiency. Nowadays the data structures and the

algorithms used are indeed more and more so-

phisticated. The lack of expressive power becomes

then an obstacle to the development of new

simulation programs. If an imperative language

like FORTRAN-77 is used to develop a DS simula-

tion, most of the time dedicated to programming

will be spent in the burden of representation of the

objects of the simulation, memory management,

management of the logical time, management of

the scheduling of the activities of the objects of the

simulation, . . . A high-level DS simulation lan-

guage must then offer well fitted dedicated con-

cepts and resources to relieve the programmer

from making many low-level implementation de-

cisions and to concentrate the complexity of the

algorithms in dedicated data and control struc-

tures. Certainly, this implies some loss of run-time

performance but in return for programming con-

venience. How much loss we can tolerate and what

do we get in exchange must be carefully evaluated.

1.2. The 8½ language for DS simulations

These considerations have driven the 8½ pro-

ject. The goal of this long time effort is to design a

high-level parallel language for the simulation of

DS, cf. Michel et al. (1994) and Michel and

Giavitto (1998b). For instance, the various form-

alisms1 cited in Table 1 are naturally expressed in

8½ In this paper, we focus on a general presenta-

tion of 8½ towards the simulation of some
biological DS. Issues like parallelism or implemen-

tation are eluded (the reader may refer to Michel et

al., 1994; Michel and Giavitto, 1994; Mahiout and

Giavitto, 1994; De Vito and Michel, 1996).

We have naturally chosen a declarative style

close to the mathematical formalism used in DS

specifications, see Michel et al. (1994) and Michel

and Giavitto (1998b). We have designed in this
declarative framework a new data structure: the

fabric2. A fabric represents the trajectory of a DS.

It is a temporal sequence (a stream) of collections

(a collection is a set of data simultaneously

accessible and managed as a whole).

Table 1

Some formalisms used to specify a DS following the discrete or continuous nature of space, time and value

C: continue, D: discrete PDE ODE Iterated equations Cellular automata

Space C D D D

Time C C D D

State C C C D

PDE, partial differential equation; ODE, ordinary differential equation.

1 Obviously, PDE and ODE are discretised before their

numerical resolution but the numerical schema is directly

written as a 8½ program, see for example Section 3.1.
2 This data structure has been initially called web because

the interleaving between the weft and the warp in threads

woven gives an accurate image of the interplay of streams and

collections in the recursive definition of a fabric. However, the

ambiguity raised by the development of the Internet has

motivated the change of name. Both names can be found in

our papers.
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It is only recently that biological DS have been
considered as an application area for the 8½

language. One of our main interest is the systema-

tic development of the simulation of biochemical

networks. The examples worked in this paper

show that the formalism is very well-fitted for

DS whose structure is static. Examples of this kind

of system are: genetic networks, predator�/prey

systems, etc.
However, we share the conclusion drawn by

Fontana and Buss (1996) that the modeling of

several fundamental biological processes require

the capacity of computing the state space jointly

with the running state of the process. These

applications represented nowadays a new frontier

in the modeling of DS and has motivated the

beginning of a new project.

1.3. Organization of the paper

The rest of this paper is organized as follow: the

next section present the concept of collection,

stream and the coupling of the two structure in a

fabric. Section 3 gives the example of the resolu-

tion of a PDE, and the simulation of an artificial

creature whose behavior is triggered by the inter-

nal level of some variables. We finish by the

classical example of Turing’s model of morpho-
genesis. Section 4 continues the presentation of 8½

through several example of genetic networks

simulation models. The objective is to show how

the variation of models are handled by slight

changes in the 8½ programs. Section 5 gives

some examples of DS with a dynamical structure.

In conclusion, we quickly review some of the

lessons learned on the 8½ project.

2. Recursive definition of stream, collection and

fabrics

Programming language 8½ has a single data

structure called a fabric. A fabric is the combina-

tion of the concepts of stream and collection. This

section describes these three notions.

2.1. The concept of collection in 8/
1
2
/

A collection is a data structure that represents a

set of elements as a whole, like in Blelloch and

Sabot (1990). Several kinds of aggregation struc-

tures exist in programming languages: set in SETL,

see Schwartz et al. (1986) and Jayaraman (1992),

list in LISP, tuple in SQL, pvar in LISP, cf. TMC

(1986) or even finite discrete space in Cellular
Automata, see Tofooli (1987). Data-parallelism is

naturally expressed in terms of collections intro-

duced in Sipelstein and Blelloch (1991). From the

point of view of the parallel implementation, the

elements of a collection are distributed over the

processing elements (PEs).

Here, we consider collections that are ordered

sets of elements3. An element of a collection, also
called a point in 8½ is accessed through an index.

The expression T �/n where T is a collection and n

an integer, is a collection with one point; the value

of this point is the value of the nth point of T

(point numbering begins with 0). If necessary, we

implicitly coerce a collection with one point into a

scalar and vice-versa through a type inference

system described in Giavitto (1992).
Geometric operators change the geometry of a

collection, i.e. its shape or structure. The geometry

of a collection of scalars is reduced to its cardinal

(the number of its points). A collection can also be

nested: the value of a point is a collection. The

geometry of the collection is the hierarchical

structure of point values.

The first geometric operation consists in pack-
ing some fabrics together:

T �fa; bg
In the previous definition, a and b are collec-

tions resulting in a nested collection T . Elements

of a collection may also be named and the result is

then a system. Assuming:

car�fvelocity�5; consumption�10g
the points of this collection can be reached

3 More generally, 8½ collections are multidimensional

arrays, fields (functional partial arrays introduced in Lisper

(1993)) or GBF (partial arrays whose elements are indexed by

an element in a group, investigated in Giavitto et al. (1995)).
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uniformly through the dot construct using their
label, e.g. car.velocity, or their index: car.0.

The composition operator # concatenates the

values and merges the systems:

A�fa; bg; B�fc; dg;

A#B[fa; b; c; dg

ferrari�car#fcolor�redg
[fvelocity�5; consumption�10; color

�redg

The last geometric operator we will present here

is the selection: it allows the selection of some

point values to build another collection. For

example:

Source�/{a , b , c , d , e}

target�/{1, 3, {0, 4}}

Source(target)[/{b , d , {a , e}}

The notation Source(target) has to be under-
stood in the following way: a collection can be

viewed as a function from [0. . .n ] to some co-

domain. Therefore, the dot operation corresponds

to function application. If the co-domain is the set

of natural numbers, collections can be composed

and the following property holds: Source(target). i

�/Source(target.i ), mimicking the function com-

position definition.
Four kinds of function applications can be

defined (Table 2).

X means both scalar or collection; p is the arity

of the functional parameter f . The first operator is

the standard function application. The second type

of function applications produces a collection

whose elements are the ‘pointwise’ applications

of the function to the elements of the arguments.
Then, using a scalar addition, we obtain an

addition between collections. Extension is implicit

for the basic operators (�/, *, etc.) but is explicit

for user-defined functions to avoid ambiguities

between application and extension (consider the

application of the reverse function to a nested

collection).

The third type of function applications is the
reduction. Reduction of a collection using the

binary scalar addition, results in the summation

of all the elements of the collection. Any associa-

tive binary operation can be used, e.g. a reduction

with the min function gives the minimal element of

a collection. The scan application mode is similar

to the reduction but returns the collection of all

partial results. For instance: �/\\{1, 1, 1}[/{1, 2,
3}. See Blelloch (1989) for a complete algorithmic

based on scan.

2.2. The concept of stream in 8½

2.2.1. Dealing with infinite sequence of values

LUCID, cf. Wadge and Ashcroft (1976), is one of

the first programming languages defining equa-

tions between infinite sequences of values.

Although 8½ streams are also defined through

equations between infinite sequences of values, 8½

streams are very different from those of LUCID.

They are tightly linked with the idea of observing a

remanent state along time.
A metaphor to explain 8½ streams is the

sequence of values of a measuring apparatus. If

you observe a measuring apparatus during an

experiment run, you can record the successive

measure operations on this apparatus, together

with their dates. The timed sequence of data is a

8½ stream. At the very beginning, before the start

Table 2

Operator Signature Syntax

Application (collectionp 0/X )�/collectionp 0/X f (c1, . . ., cp )

Extension (scalarp 0/scalar)�/collectionp 0/collection f (c1, . . ., cp )

Reduction (scalar20/scalar)�/collection0/scalar f \c

Scan (scalar20/scalar)�/collection0/collection f \\c
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of the experiment, the initial value of any ob-
servable is an undefined value. Then we record the

initial value (at time 0 for some observables, later

for some others). This value can be read and used

to compute other values recorded elsewhere, as

long as another observation has not been made.

The time used to label the observation is not the

computer physical time, it is the logical time linked

to the semantics of the program. The situation is
exactly the same between the logical time of a

discrete-events simulation and the physical time of

the computer that runs the simulation. Therefore,

the time to which we refer is a countable set of

‘events’. An event is something meaningful for the

simulation, like a change in a value.

2.2.2. The pace of a stream: ticks, tocks and clocks

The programming language 8½ is a declarative

language, which operates by making descriptive
statements about data and relationships between

data, rather than by describing how to produce

them.

For instance, the definition C�/A�/B means the

value recorded by stream C is always equal to the

sum of the values recorded by stream A and B . We

assume that the changes of the values are propa-

gated instantaneously. When A (or B ) changes, so
do C at the same logical instant. Note that C is

uninitialized as long as A or B are uninitialized.

Table 3 gives some examples of 8½ streams

operations. The first line gives the instants of the

logical clock, which counts the events in the

program. The instants of this clock are called a

tick (a tick is a column in the table). The dates of

the recording of a new observation for a particular
observable are called the tock of this stream

(because a large clock is supposed to make ‘tick�/

tock’). Tocks represent the set of events mean-

ingful for that stream. A tock is a non-empty cell

in the table.

You can always observe your measuring appa-

ratus, which gives the result of the last measure-

ment, until a new measure is made. Consequently,

at a tick t , the value of a stream is: the last value

recorded at tock t ?5/t if t ? exists, or the undefined
value otherwise. For example, the value of $C at

tick 0 is undefined whilst its value at tick 4 is 3.

2.2.3. Stream operations

A scalar constant stream is a stream with only

one ‘measurement’ operation, at the beginning of

time, to compute the constant value of the stream.

A constant n in a 8½ program, really denotes a

scalar constant stream.

Constructs like Clock n denote another kind of
constant streams: they are predefined sequences of

true values with an infinite number of tocks. The

set of tocks depends of the parameter n . They

really represent some clocks used to give the beat

of some other observations.

Scalar operations are extended to denote ele-

ment wise application of the operation on the

values of the streams.
The delay operator, $, shifts the entire stream to

give access, at the current time, to the previous

stream’s value. This operator is the only operator

that does not act in a point-wise fashion. The tocks

of the delayed stream are the tocks of the

arguments at the exception of the first one.

The last kind of stream operators are the

sampling operators. The most general one is the
trigger. It corresponds to the temporal version of

Table 3

Examples of constant streams and stream expressions

0 1 2 3 4 5 6 7 8 . . .

1 I1 . . .

1�/2 3 . . .

Clock 2 True True true true true . . .
Assuming A 1 2 3 4 5 6 . . .

Assuming B 1 2 1 1 . . .

C�/A�/B 2 3 5 6 6 7 7 . . .

$C 2 3 5 6 6 7 . . .
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the conditional. The values of ‘T when B ’ are

those of T sampled at the tocks where B takes a

true value (see Table 4). A tick t is a tock of ‘A

when B ’ if A and B are both defined and t is a

tock of B and the current value of B is true.

8½ streams present several advantages:

. 8½ streams are manipulated as a whole, using

filters, transducers. . . cf. Arvind and Brock

(1983).

. A stream is the ideal implementation for the

trajectory of a DS: a temporal sequence of

values is represented by a temporal succession

of computation and, therefore, can be infinite.

. The tocks of a stream really represent the

logical instants where some computation must

occur to maintain the relationships stated in the

program.

. The 8½ stream algebra verifies the causality

assumption; the value of a stream at any tick t

may only depend upon values computed for

previous tick t ?B/t . This is definitively not the

case for LUCID (LUCID includes the inverse of $,

an ‘uncausal’ operator).

. The 8½ stream algebra verifies the finite

memory assumption: there exists a finite bound

such that the number of past values that are

necessary to produce the current values remains

smaller than the bound.

Note that the implementation of 8½ streams

enables a static execution model: the successive

values making a stream are the successive values of

a single memory location and we do not have to

rely on a garbage collector to free the unreachable

past values (as in Haskell lazy lists, see for instance

Hudak et al., 1996). In addition, we do not have to

compute the value of a stream at each tick, but

only at the tocks.

2.3. Combining streams and collections into fabrics

A fabric is a stream of collections or a collection

of streams. In fact, we distinguish between two

kinds of fabrics: static and dynamic. A static fabric

is a collection of streams where every element has

the same clock (the clock of a stream is the set of

its tocks). In an equivalent manner, a static fabric

is a stream of collections where every collection
has the same geometry. Fabrics that are not static

are called dynamic. The compiler is able to detect

the kind of the fabric and compiles only the static

ones. Programs involving dynamic fabrics are

interpreted.

Collection operations and stream operations are

easily extended to operate on static fabrics con-

sidering that the fabric is a collection (of streams)
or a stream (of collections).

8½ is a declarative language: a program is a

system representing a set of fabric definitions. A

fabric definition takes a form similar to:

T �A�B (1)

Eq. (1) is a 8½ expression that defines the fabric

T from the fabric A and B (A and B are the

parameters or the inputs of T ). This expression

can be read as a definition (the naming of the
expression A�/B by the identifier T ) as well as a

relationship, satisfied at each moment and for each

collection element of T , A and B . Fig. 1 gives a

three-dimensional representation of the concept of

fabric.

Running a 8½ program consists in solving fabric

equations. Solving a fabric equation means ‘enu-

merating the values constituting the fabric’. This
set of values is structured by the stream and

collection aspects of the fabric: let a fabric be a

stream of collections; in accordance to the time

interpretation of stream, the values constituting

the fabric are enumerated in the stream’s ascend-

Table 4

Example of a sampling expression

A 1 2 3 4 5 6 7 8 9

B False False False True False True True False True

A when B 4 6 7 9
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ing order. So, running an 8½ program means

enumerating, in sequential order, the values of the

collections making the stream. The enumeration of

the collection values is not subject to some

predefined order and may be done in parallel.

2.4. Recursive definitions

A definition is recursive when the identifier on

the left hand side appears also directly or indirectly

on the right hand side. Two kinds of recursive

definitions are possible.

2.4.1. Temporal recursion

Temporal recursion allows the definition of the

current value of a fabric using its past values. For

example, the definition:

T@0�1 T �$T�1 when Clock 1

specifies a counter, which starts at 1 and counts at

the speed of the tocks of clock 1. The @0 is a

temporal guard that quantifies the first equation

and means ‘for the first tock only’. In fact, T

counts the tocks of Clock 1.

The order of equations in the previous program

does not matter: the unquantified equation applies

only when no quantified equation applies. The
language for expressing guards is restricted to @n

with the meaning ‘valid for the nth tock only’.

2.4.2. Spatial recursion

Spatial recursion is used to define the current

value of a point using current values of other

points of the same fabric (see Fig. 2). For example:

iota�0#(1� iota:[2]) (2)

is a fabric with three elements such that iota.i is

equal to i . The operator: [n ] truncates a collection

to n elements so we can infer from the definition
that iota has three elements (0 is implicitly coerced

into a one-point collection). Let {iota1, iota2,

iota3} be the value of the collection iota. The

definition states that:

fiota1; iota2; iota3g
�f0g#(f1; 1g�fiota1; iota2g)

which can be rewritten as:

iota1�0

iota2�1� iota1

iota3�1� iota2

8<
:

which proves our previous assertion.

We have developed the notions that are neces-

sary to check if a recursive collection definition has

a well-defined solution. The solution can always be

defined as the least solution of some fixpoint
equation. However, an equation like ‘x�/{x}’

does not define a well formed array (the number

of dimensions is not finite). We insist that all

elements of the array solution must be defined as

in Giavitto (2000).

Fig. 1. A fabric specified by a 8/
1
2

equation is an object in the

(time, space, value) reference axis. A stream is a value varying in

time. A collection is a value varying in space. The variation of

space in time determines the dynamical structure (cf. Section 5).

Fig. 2. Sequential computation of iota.
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3. Examples of 8½ programs for DS with a static
structure

All the examples in this section have been

processed by the 8½ environment presented in

Giavitto (1999) and the illustrations have been

produced by the 8½�/gnuplot interface.

3.1. Numerical resolution of a parabolic partial

differential equation

This example is paradigmatic of a diffusion

process. We want to simulate the diffusion of

heat in a thin uniform rod. Both extremities of the

rod are held at 0 8C. The solution of the parabolic

equation:

@U

@t
�

@2U

@x2
(3)

gives the temperature U (x , t) at a distance x from

one end of the rod after time t . An explicit method

of solution uses finite-difference approximation of
Eq. (3) on a mesh (Xi �/ih , Tj �/jk ) which

discretizes the space of variables, cf. Smith (1985).

One finite-difference approximation to Eq. (3)

is:

Ui;t�1 � Ui;t

k
�

Ui�1;t � 2Ui;t � Ui�1;t

h2

which can be rewritten as:

Ui;j�1�rUi�1;j�(1�2r)Ui;j�rUi�1;j (4)

where r�/k /h2. It gives a formula for the unknown
temperature U1,j�1 at the (i , j�/1)th mesh point in

term of known temperatures along the jth time-

row. Hence we can calculate the unknown pivotal

values of U along the first time-row T�/k , in

terms of known boundary and initial values along

T�/0, then the unknown pivotal values along the

second time-row in terms of the first calculated

values, and so on (see Fig. 3 on the left).
The corresponding 8½ program is very easy to

derive and describes simply the initial values,

boundary conditions and the specification of the

relation (Eq. (4)). The stream aspect of a fabric

corresponds to the time axis while the collection

aspect represents the rod discretization. The sec-

ond argument of the when operator is Clock which
represents the time discretization (cf. Fig. 3). The

expression ?n generates a vector of n elements

where the i th element has value i .

start�/some initial temperature distribution;

Begin�/0;

End�/0;

U@0�/start;

U�/Begin#inside#End;

Float inside�/0.4*pU (left)�/0.2*pU (middle)�/

0.48pU (right);
pU�/$U when Clock:

left�/?6;

right�/left�/2;

middle�/left�/1.

3.2. The simulation of a reactive system in artificial

life

Here is an example of an hybrid DS, a ‘wlumf’,

which is a ‘creature’ whose behavior (eating) is

triggered by the level of some internal state (see

Maes, 1991 for such model in ethological simula-

tion).

More precisely, a wlumf is hungry when its

glycaemia is under 3. It can eat when there is some

food in its environment. Its metabolism is such
that when it eats, the glycaemia goes up to 10 and

then decreases to 0 at a rate of one unit per time

step. All these variables are scalar. Essentially, the

wlumf is made of counters and flip�/flop triggered

and reseted at different rates,

boolean Food In Neighbourhood�/Ran-

dom(bool);

System wlumf�/

{

Hungry@0�/false;

Hungry�/(GlycaemiaB/3);
Glycaemia@0�/6;

Glycaemia�/if Eating then 10 else max (0, $

Glycaemia�/1) when Clock fi;

Eating�/$Hungry && Food In Neighbor-

hood;

}
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The result of an execution is given in Fig. 4.

3.3. An example of iterated equations: Turing’s

model of morphogenesis

A. Turing proposed a model of chemical reac-

tion coupled with a diffusion processes in cells to

explain patterns formation. The system of differ-

ential equations, from Bard and Lauder (1974), is:

dxr

dt
�

1

16
(16�xryr)�(xr�1�2xr�xr�1)

dyr

dt
�

1

16
(16�yr�b)�(yr�1�2yr�yr�1)

where x and y are two chemical reactives that

diffuse on a discrete torus of cells indexed by r .

This model mixes a continuous phenomena (the

chemical reaction in time) and a discrete diffusion

process. Note that in the heat diffusion example,

we consider a continuous process, which is then

discretized for the purpose of numerical resolution

while here the diffusion is initially in the discrete

space of cells.

In 8½ we retrieve exactly the same equations dx

and dy . The other equations correspond to the

computation of intermediate values like xdiff . . . to

the computation of an initial value beta or the

access to the neighborhood through a gather

operation. Note that the corresponding C program

is more than 60 lines long.

nbcell�/60

iota�/?nbcell; (* generates the vector {0, 1, . . .,
59}*)

right�/if (iota�/�/0) then (nbcell�/1) else

(iota�/1) fi
left�/if (iota�/�/ (nbcell�/1)) then 0 else

(iota�/1) fi

rsp�/1.0/16.0

diff1�/0.25

diff2�/0.0625

x@0�/4.0

Fig. 3. Diffusion of heat in a thin uniform rod. The picture on the right is the result of the 8½ program run visualized by the 8½�/

gnuplot interface.

Fig. 4. Behavior of a hybrid DS.
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x�/$x�/$dx when Clock
y@0�/4.0

y�/max(0.0, $y�/$dy ) when Clock

beta�/12.0�/rand(0.05*2.0)�/0.05

xdiff�/x (right)�/x (left)�/2.0*x

ydiff�/y (right)�/y(left)�/2.0*y

dx�/rsp*(16.0�/x*y)�/xdiff*diff1

dy�/rsp*(x*y�/y�/beta)�/ydiff*diff2

In Fig. 5, we have presented the results after 100

time steps (starting with a random distribution of

the reactive) and after 1000 time steps when the
solution has reached its equilibrium.

4. Simulation of genetic networks in 8½

Gene expression investigation by in silico meth-
ods represents one of the challenging problem of

the bioinformatic. Several models have been

proposed to cover different aspects of gene ex-

pression. Qualitative models appeared to encom-

pass the main features of the regulation or decision

networks. Models for gene network expressions

are based on several theoretical tools: boolean

networks (Thieffry and Rom.éro, 1999), multi-
valued logic networks (Thieffry and Thomas,

1998), circuit simulation (McAdams and Shapiro,

1995), weighted matrices (Weaver et al., 1999),

Petri nets (Matsuno et al., 1999), differential

equations (Chen et al., 1999), etc. Genetics net-

works with tens to hundreds of genes are difficult

to specify with currently available programming

languages and require extensive programming. In
addition, several hypothesis must be tested and the

resulting models have to integrate several features
that do not fit into a single framework. In this

context, the expressive power of the underlying

simulation language is of great importance for

prototyping all the variations of the models and to

reduce the development time of the simulation.

In this section, we illustrate the versatility and

the simplicity of the 8½ approach for the simula-

tion of a paradigmatic example of a genetic
network. For the sake of simplicity of the exposi-

tion, the models are simplifications considered in

the literature of the complex interacting genetic

circuit that operates in bacteriophage lambda to

decide between lytic or lysogenic growth, to

maintain the prophage in a lysogen, and to throw

the switch during induction (a complete descrip-

tion is available in McAdams and Shapiro, 1995).

4.1. Boolean systems and some other discrete

models

4.1.1. Boolean systems

Fig. 6 gives a simplified view of the interplay

between gene cI and protein CRO in bacterioph-
age lambda. As usual, an arrow 0/ represents a

positive feedback while a stopped link �/ represents

a negative one.

Fig. 5. Diffusion/reaction in a Torus.

Fig. 6. Very simplified form of interaction between gene cI and

protein CRO.
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A first approach models the expression of the
genes and the level of the protein by a boolean.

Table 5 gives an evolution of cI and CRO which is

compatible with the qualitative constraints given

by Fig. 6. Variable X represents the boolean value

associated with product X and $X represents the

value of product X at the previous time step. Two

transitions for CRO are compatible with the given

constraint when the system is in state (cI , CRO)�/

(1, 1). The two possibilities are labeled a and b.

The corresponding 8½ program is straightfor-

ward.

CRO@0�/. . . (* some initial value *); CRO, not

($CRO) when Clock 1; cI@0, . . .; cIa�/$cI or not

($CRO); cIb�/$cI .

Note that CRO is stated equal to ‘‘not $CRO’’

and then can be used in place of this expression
(this property is termed as ‘transparential refer-

ency’ in dataflow languages). In consequence, the

equation for cIa can be rewritten cIa�/CRO which

shows that the expression of cI depends ‘instanta-

neously’ from the level of CRO. The rate of change

is fixed by Clock 1 and imposed to CRO using a

trigger operator. This clock is also the clock for cI

because of the dependency between cI and CRO.
However, it is very easy to give another rate of

evolution by using a trigger in the rule for cI . By

using different clocks, we can easily model differ-

ent rates of change.

4.1.2. Discrete state systems

The previous model is too rough: we cannot

express that CRO represses itself only when its

level is high enough. We have to adopt a finer

representation for the levels of CRO see Thieffry

and Thomas (1998). Table 6 gives a possible

transition table for cI and CRO when cI is

represented as a boolean and CRO takes a level

value in {0, 1, 2}. Here too, the corresponding 8/
1
2

is

straightforward. If the coding of a transition table

into a function is a burden, the transition table can

be specified as such by a 8/
1
2

collection, and a

selection operator is simply used to compute the

transition by looking in this table.

CRO@0, . . .; CI@0, . . .; cI , if ($CRO�/ �/0)

then 1 else 0 fi; when Clock 1; CRO�/if $cI�/ �/1

then 0; else if ($CRO5/1) then 2 else 0 or 1 fi fi;

when Clock 1.

4.1.3. Asynchronous systems diffusion, continuous

models, etc

It is very unlucky that two products change their

state synchronously. We then have to render the

fact that only one variable changes its state at a

time. We suppose that the probability for CRO to
change its state is pCRO and probability for cI is pcI

(it is not mandatory that pCRO�/pcI�/1).

Asynchronous iteration are also handled very

simply in 8½ because it is possible to produce a

clock with a probabilistic tock rate of p with the

‘Rclock p ’ construct. To take into account the

asynchronous change, just replace the clocks

appearing in the previous program by ‘Rclock
pcI’ and accordingly.

Another problem is to take into account the

diffusion of the products. For instance, there is a

delay between the beginning of the production of

cI and the repression for CRO by cI . This can be

modeled using additional delay operator ‘$’. One

Table 5

Possible evolution functions for cI and CRO

Value 0 and 1 represents boolean false and true, respectively

Table 6

A possible transition table for cI and CRO when cI �/{0, 1} and

CRO �/{0, 1, 2} and the associated 8/
1
2

program
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‘$’ refers to the previous time step, two ‘$’ refer to
the event (or time step) proceeding the previous

one, etc.

Numerous others formalisms have been used for

genetic networks, ranging from Petri Nets, e.g.

Hofest.ädt (1994) and Matsuno et al. (1999) to

hybrid systems mixing differential equations and

boolean states, e.g. McAdams and Shapiro (1995).

We have already show in the previous section the
ability of 8½ to express this last kind of model. In

particular, we are confident that a language like

8½ is very well-fitted to express the circuit

diagrams used in McAdams and Shapiro (1995)

because declarative language have already been

successful in the domain of electric circuit simula-

tion.

5. Examples of dynamical systems with a dynamical

structure

Fabrics with a static structure cannot describe

phenomena that grow in space, like plants. To

describe those structures, we need dynamically

structured fabrics. The rest of this section gives
some examples of the kind of dynamics fabrics we

can achieve in 8½ Note that we do not need to

introduce new operators, the current definitions of

fabrics already enable the construction of dyna-

mically shaped fabrics. However, some examples

are not easily stated in the current 8½ version. This

will be discussed in the last section.

5.1. Pascal’s triangle

This somewhat artificial example is a pretext to

introduce growing collections. The numbers in

Pascal’s triangle give the binomial coefficients.

The value of the point (row, col) in the triangle

is the sum of the values of the point (row�/1, col)

and the point (row�/1, col�/1). We decide to map

the rows in time, thus the fabric representation of
Pascal’s triangle is a stream of growing collections.

This fabric is dynamic because the number of

elements in the collection varies in time.

We can identify that the row l (l �/0) is the sum

of row (l�/1) concatenated with 0 and 0 concate-

nated with row (l�/1). The 8½ program is

straightforward:

t� ($t#0)�(0#$t) when Clock;

t@0�1

The five first values of Pascal’s triangle are:

Tock: 0:{1}: int[1]

Tock: 1:{1, 1}: int [2]
Tock: 2:{1, 2, 1}: int[3]

Tock: 3: {1, 3, 3, 1}: int[4]

Tock: 4: {1, 4, 6, 4, 1}: int[5]

5.2. Eratosthenes’s sieve

We present a modified version of the famous

Eratosthenes’s sieve to compute prime numbers.

This example is adapted from a paradigmatic
example in artificial chemistry, cf. Dittrich (2001)

(originally it relies on a multiset of numbers and

we use here a vector of numbers).

The Eratosthenes’s sieve consists of a generator

producing increasing integers and a list of known

primes numbers (starting with the single element

2). Each time we generate a new number, we try to

divide it by all currently known prime numbers. A
number that is not divided by a prime number is a

prime number itself and is added to the list of

prime numbers.

Generator is a fabric that produces a new

integer at each tock. Extend is the number

generated with the same size as the fabric of

already known prime numbers. Modulo is the

fabric where each element is the modulo of the
produced number and the prime number in the

same column. Zero is the fabric containing boo-

lean values that are true every time that the

number generated is divided by a prime number.

Finally, reduced is a reduction with an or opera-

tion, that is, the result is true if one of the prime

numbers divides the generated number. The x :jy j
operator shrinks the fabric x to the rank specified
by y . The rank of a collection is a vector where the

ith element represents the number of elements of x

in the ith dimension.

Generator@0�/2:

Generator�/$ generator�/1 when Clock;

Extend�/generator: j$criblej;
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Modulo�/extend%$crible;
Zero�/(modulo�/ �/(0: jmoduloj));
Reduced�/or\zero;

crible�/$crible#generator when (not reduced);

crible@0�/generator;

The five first steps of the execution give for crible:

Tock: 0:{2}: int[1]
Tock: 1:{2, 3}: int[2]

Tock: 2:{2, 3}: int[2]

Tock: 4:{2, 3, 5}: int[3]

5.3. Coding D0L-systems

An L system is a parallel rewriting system (every

production rule that might be used at each

derivation state are used simultaneously) devel-
oped by Lindenmayer in the 1960s, cf. Linden-

mayer (1968). It has since become a formalism

used in a wide range of applications from the

description of cellular interactions to a model of

parallel computation, e.g. Prusinkiewicz and Ha-

nan (1992).

The parallel derivation process used in the L

systems is useful to describe processes evolving
simultaneously in time and space (growth pro-

cesses, descriptions and codings of plants and

plants development, etc.). To describe a wide range

of phenomena, L systems of many different types

have been designed. We will restrict ourselves to

the simplest form of L systems: D0L systems.

Formally, a D0L system is a triple G�/(a, h , v )

where a is an alphabet, h is a finite substitution on
a (into the set of subsets of a*) and v , referred to

as the axiom, is an element of a�.

The D letter stands for deterministic, which

means there exists at most a single production rule

for each element of a. Therefore, the derivation

sequence is unique while in nondeterministic L

systems (since there can be more than one

production rule applied at each derivation state),
there exists more than one derivation sequence.

The numerical argument of the L system gives the

number of interactions in the rewriting process;

therefore, a 0L system is a context free L system

(whereas an nL system is context sensitive with n

interactions).

An example of L system: the development of a

one-dimensional organism . We consider the devel-

opment states of a one-dimensional organism (a

filamentous organism). It will be described

through the definition of a 0L system. Each

derivation step will represent a state of develop-

ment of the organism. The production rules allow

each cell to remain in the same state, to change its

state, to divide into several cells or to disappear.

Consider an organism where each cell can be in

one of two states a and b . The a state consists of

dividing itself whereas the b state is a waiting state

of one division step.

The production rules and the five first deriva-

tion steps are:

v :br; t0:br

p1:ar0/albr; t1:ar

p2:al0/blar; t2:albr

p3:br0/ar; t3:blarar

p4:bl0/al;t4:alalbralbr

The cell polarity, which is a part of the cell state

is given with the l and r indice. A derivation tree of

the process is detailed in the Fig. 7 (partly taken

from Lindenmayer and J.ürgensen, 1992). The

polarity changing rules of this example are very

close to those found in the blue�/green bacterium

Anabaena catenula described in Mitchinson and

Wilcox (1972) and Koster and Lindenmayer

(1987). Nevertheless, the timing of the cell division

is not the same.

The implementation of the production rules in

8½ is straightforward. Through a direct transla-

Fig. 7. The first derivations of the A. catenula (the cell polarity

is indicated with an upper arrow).
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tion of the rules, we have the following 8½
program:

w�/ar;
ar�/$al #$br when Clock; ar@0�/{‘ar’};

al�/$bl #$ar when Clock; al@0�/{‘al’};

br�/$ar when Clock; br@0�/{‘br’};

bt�/$al when Clock; bl@0�/{‘bl’};

The five first steps of the execution are:

Tock: 0: {br}: char[1]

Tock: 1: {ar}: char[1]

Tock: 2: {ai , br}: char[2]

Tock: 3: {bl , ar , ar}: char[3]

Tock: 4: {al , al , br , al , br}: char[5]

More generally, it is possible to describe the
whole class of D0L systems in 8½ even the non

propagating D0L systems, see Michel (1996).

6. Conclusions and perspectives

The 8½ is a long term effort to validate the

effectiveness of declarative language in the simula-

tion of DS. The original motivation was the

simulation of some large DSs found in physics.

We can summarize the lessons of the 8½ project by

the following points:

1) The declarative style is effective in providing a

framework close to the usual (mathematical)

models used by an end-user, if the data and

constructs offered by the language correspond
to the ground concepts used in the application

domain.

2) Smart interpreters and compilers are good!

They relieve the programmer from many

burden and ensure many consistency checks.

For instance, in 8½ several non-standard type-

inference systems are used to derive the shape

of the specified collections, to use a static and
more efficient simulation algorithm or a

dynamic one, and to check causality between

the variables in the equations.

3) The declarative language does not imply an

unacceptable loss of efficiency. For instance,

we have developed some compilation techni-

ques that reduce the loss of efficiency to 30%

in the example of the heat diffusion compared

with a hand-coded C program.

4) The declarative style does not constrain the

parallelization. For instance, 8½ collections

are well fitted for the expression of the data-

parallelism, see De Vito and Michel (1996)

and Giavitto et al. (1998). More generally,

declarative languages are well-fitted for the

minimal expression of sequencing in a pro-

gram, leading to a maximal amount of (im-

plicit) parallelism. However, the exploitation

of this parallelism can be as hard as in the

imperative case.

It is only recently that DSs model of biological

processes have drawn our attention. The examples

sketched in this paper show that the 8½ approach

can be relevant for this kind of systems too.

However, except in Section 5, all the examples

used exhibit a static structure.

By a static structure, we mean that the phase

space of the DS can be known statically before the

simulation. It is precisely the shape-inference

phase of a 8½ program that determines this phase

space. The case of the examples in Section 5 is

more difficult: a precise phase space cannot be

inferred before the simulation run, but the general

form with some parameters is known at compile-

time and the parameters are derived at run-time

(e.g. when it is sufficient to work with unbounded

lists instead of fixed-size vectors).
There is, however, a kind of DS that is very

uneasy to model in 8½: systems that have an

intrinsic dynamical structure. Examples of this

kind are P systems with active membrane de-

scribed in Paun (2000) or multi-agent systems with

dynamic creations and mobility. The restriction of

collections to the array structure is also proble-

matic and there is an urgent need for more

sophisticated aggregation structures. To face these

problems, new concepts have to be introduced.

Some extensions have been proposed in Michel

and Giavitto (1998a), but the result is too much

targeted to a family of application (those whose

topology is built as a bottom-up tree). This

motivates the beginning of a new project consider-
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ing more sophisticated topology and dynamic
constructs.
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