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Abstract

The cell as a dynamical system presents the characteristics of having a dynamical structure. That is, the exact phase space of
the system cannot be fixed before the evolution and integrative cell models must state the evolution of the structure jointly with
the evolution of the cell state. This kind of dynamical systems is very challenging to model and simulate. New programming
concepts must be developed to ease their modeling and simulation. In this context, the goal of theMGS project is to develop
an experimental programming language dedicated to the simulation of this kind of systems.MGS proposes a unified view on
several computational mechanisms (CHAM, Lindenmayer systems, Paun systems, cellular automata) enabling the specification
of spatially localized computations on heterogeneous entities. The evolution of a dynamical structure is handled through the
concept of transformation which relies on the topological organization of the system components. An example based on the
modeling of spatially distributed biochemical networks is used to illustrate how these notions can be used to model the spatial
and temporal organization of intracellular processes.
© 2003 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

The computer simulation of a biological process im-
plies the definition of a model sufficiently rigorous to
lead to a program. Such models are thenformal but
depart from the more traditional mathematical models,
e.g. by the high number of heterogeneous components
implied in the system description, the complexity and
the size of the behaviors specification, the impossibil-
ity to “compress” the evolution of the system in an
analytic or closed formula, etc. Refer toHartwell et al.
(1999), Wolfram (2002), and Chaitin (2002)for an
elaboration on these differences. For example, in the
case of the human heart, some computer simulations
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imply 105 cells of about 10 different kinds, each mod-
eled by nonlinear equations capturing the behavior
of 50 different ion channels and organized in a re-
alistic geometry(Paniflov and Holden, 1997). Nev-
ertheless, a computer simulation makes possible the
systematic exploration of the system’s behavior and
sometimes to make predictions. This kind of approach
is part of the more general idea ofsimulated experi-
ments (also called in silico experiments by biologists
andnumerical experiments by physicists). These ex-
periments are required when in-vivo or in-vitro ex-
periments are out of reach for economical, practical
or ethical reasons. Note that the simulation of a com-
putational model (i.e. its run on a computer) is only
one of its possible uses: because it is formal, it is
possible to reason about it and for example to infer
some properties that can be checked against the nat-
ural phenomena (see, e.g.Chandy and Misra (1988)
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for examples of the properties that can be proved on a
program).

Besides their simulation, computational models can
have a pedagogical, normative, and constructive role
in biology. For instance, these models can be used to
share knowledge about a given system, as a reference
between scientists or to illustrate a set of complex rela-
tionships involved in a biological process. Another ex-
ample is their use as a blueprint in the design of a new
biological entity: Biology has reached the point where
in addition to the study of already existing natural en-
tities, it has to design new biological artifacts (drug
design, artificial metabolic pathways, genetically mod-
ified organisms,. . . ). At last but not least, one may
note that a number of notions developed in computer
science to investigate the notion of computations have
been imported in biology: for instance the notion of
programs, memory, information, control (cf.Stengers,
1988; Keller, 1995).

These examples acknowledge the emergence of a
new approach in biology, known asComputational
Biology, where biological entities are considered as
information processing systems with the final goal of a
better understanding of nature using computer science
notions.1 We make a distinction between this goal and
the goals ofbioinformatics aimed to the development
of software tools to support and help the biologists in
the analysis and comprehension of biological systems.
A good example of the latter is the development of data
bases supporting the genome project(Kanehisa, 2000).

The models developed in the framework of Compu-
tational Biology are largely centered around the notion
of dynamical systems (DS) andTyson et al. (2000)
pinpoints the theme:

gene expression→ system dynamics

→ cell physiology

It is becoming more and more important as we try to
integrate the exponential growth in knowledge of all
the cells components in a true understanding of the
cell. If this formalization from biology to dynamical

1 The transfer of concepts and tools between biology and com-
puter science is not a one-way process(Paton, 1994). Often, a
computing model inspired initially by a biological phenomena,
leads to a formalism used later in simulation of some (other) bi-
ological processes.

system and back to biology is new in molecular biol-
ogy, it has long been advocated in the domain of the
development(Maynard-Smith, 1999; Kaufman, 1995).

In this paper, we advocate that a special class of
DS plays a crucial role in the computational modeling
of biological processes: thedynamical systems with a
dynamical structure or (DS)2 in short. The specifica-
tion of such kind of systems can be very difficult to
achieve and new programming concepts must be de-
veloped to ease their modeling and simulation. These
observations have motivated the development of the
MGS project.

1.1. Outline

The rest of this paper is organized as follows. In
the next section, we present the notion of(DS)2. In
Section 3we sketch the use of term rewriting as a
possible paradigm for the computational modeling of
(DS)2 through an example borrowed from artificial
chemistry. Term rewriting suffers from severe short-
comings for the specification of biological processes.
To overcome these drawbacks, we extend the term
rewriting framework to handle more general structures
using the notions oftopological collection andtrans-
formation presented inSection 4. The exposition is
restricted to the notions necessary to understand the
examples inSection 5. We give four examples of bio-
logical processes modeled using theMGS experimen-
tal programming language: the Eden’s model of tumor
growth, the action of restriction enzymes, a spatially
distributed signaling network and a reaction-diffusion
process in an expanding media modeling the growth
of a bacteria. We conclude by a summary and a com-
parison with related approaches.

2. Dynamical systems with a dynamical structure

A dynamical system corresponds to a phenomenon
described by a state that evolves in time. The system
is characterized by “observables”, called thevariables
of the system, which are linked by some relations. The
value of the variables evolves in time. A variable can
take a scalar value (like a real number) or be of a more
complex type like the variation of a simpler value on
a spatial domain (for instance, the local concentration
of a molecule in each point of a lumen). The set of the
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values of the variables that describe the system consti-
tutes itsstate. The sequence of state changes is called
the trajectory of the system. Intuitively, a dynamical
system is a formal way to describe how a point (the
state of the system) moves in thephase space (the
space of all possible states of the system). It gives a
rule, theevolution function, telling us where the point
should go next from its current location. There exist
several formalisms used to describe a DS: ordinary
differential equations (ODE), partial differential equa-
tions (PDE), iterated equations (finite set of coupled
difference equations), cellular automata, etc., follow-
ing the discrete or continuous nature of the time, the
space and the value used in the modeling.

Many biological systems are structured, which
means that they can be decomposed into parts corre-
sponding to some variablesoi ∈ Oi (for convenience
we useoi to denote a part of the whole system and its
corresponding state). Then,sometimes, the complete
states of the system is simply the product of these
variables:s = (o1, . . . , on) ∈ O = O1 × · · · × On.
The evolution of the state of the whole system is
then viewed as the result of the changes of the state
of its parts. In this case, the evolution functionhi of
an observableoi depends only on a limited subset of
the state variables of the whole system:oi(t + δt) =
hi(oi1, . . . , oini ), whereδt denotes an infinitesimal or
a discrete increase in time following the continuous or
discrete nature of the considered evolution andhi de-
notes the evolution function of theith component. In
this case, we say that the DS exhibits astatic structure:

(1) the state of the system is statically described as a
fixed set of variables (this set does not change in
time);

(2) the relationships between variables, specified as
the functionshi betweenoi and the argumentsoij ,
are also fixed and do not change in time.

Moreover, we say that theoij are thelogical neigh-
bors of oi (because very often, two parts of a system
interact when they are physical neighbors). This situ-
ation is simple and arises often in elementary physics.
For example, a falling stone is statically described by
a position and a velocity and this set of variables does
not change (even if the value of the position and the
value of the velocity change in the course of time).

As pointed out byGiavitto et al. (2002), many bio-
logical systems can be viewed as a dynamical system

in which not only the values of state variables, but also
theset of state variablesand/or the evolution function,
change over time. We call these systemsdynamical
systems with a dynamic structure following Giavitto
and Michel (2001b), or (DS)2 in short. An obvious
example is given by the development of an embryo.
Initially, the state of the system is described solely by
the chemical stateo0 of the egg (no matter how com-
plex can be this chemical state). After several divi-
sions, the state of the embryo is given not only by the
chemical stateoi of the cells, but also by their spatial
arrangement.2 The number of cells, their spatial orga-
nization and their interactions evolve constantly in the
course of the development and is not handled by one
fixed structureO. On the contrary, the phase space
O(t) used to characterize the structure of the state of
the system at timet must be computed jointly with the
running state of the system. In this kind of situation,
the dynamic of the whole system is often specified as
several local competing transformations occurring in
an organized set of simpler entities. The organization
of this set is subject to possible drastic changes in the
course of time and is a plain part of the state of the DS.

3. Multiset rewriting and the modeling
of biological DS

In view of this last description of a(DS)2, it is
tempting to define the evolution of the system as a
set of rules specifying the interactions of a partoi
with another partoj of the system. This schema is
reminiscent of the description of a chemical reaction.

Consider, for example, a simple chemical system of
two molecule typesA andB. The reactions between
these two molecule types are given by three rules:3

A + A → A + A + B, A + B → A + B + B,

B + B → B + B + A

2 The neighborhood of each cell is of paramount importance to
evolution of the system because of the interplay between the shape
of the system and the state of the cells. The shape of the system
has an impact on the diffusion of the chemical signals and hence
on the cells state. Reciprocally, the state of each cell determines
the evolution of the shape of the whole system.

3 These reaction rules correspond to deterministic second-order
catalytic reactions: a collision of two molecules will catalyze
the formation of a specific third molecule and the two colliding
molecules are regarded as catalysts.
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The “+” sign that appears in the left- and right-hand
sides of the rules means that the linked molecules
are present together in the chemical reactor. Thus, the
left-hand side (LHS)A + B of second rule can also
be equivalently writtenB + A. From a mathemati-
cal point of view, it is very convenient to consider
+ as a formal commutative–associative operator used
to constructmultisets: unlike a set, an element can oc-
cur several times in a multiset and a multiset with the
six elementsA,C,A,D,B,C is simply a formal sum
o = A + C + A + D + B + C (in this example, the
elementsA andC occur twice, and elementsB andD
occur only one time in the multiseto). The associativ-
ity and the commutativity properties of the+ operator
are simply the expression that the elements of this sum
can be rearranged in any order. To simulate the chem-
ical reaction, we simply interpret each rule as a trans-
formation of the multiset. For instance, the first rule
specifies that two moleculesA taken from the multiset
have to be replaced by the three molecules:A, A and
B. If this reaction occurs ino at a given time stept0,
theno is transformed inA+C+A+D+B+C+B

(one additionalB is produced at stept1). Because sev-
eral reactions involving different elements occurring
in the same time step are possible, the strategy is to
apply in parallel as many transformations as possible
to the multiset. Such transformations are iterated to
model the evolution of the state of the reactor.

In this approach, the chemical reaction rules are in-
terpreted as rules for rewriting the formal sum. Ab-
stractly, we can say that a chemical reaction can be
modeled as amultiset rewriting system. This com-
putational model focuses on the chemical system at
the level of single molecules and is sometimes called
individual-based modeling: every molecule is explic-
itly stored and every single collision is explicitly per-
formed. At this level of details, the chemical system
is a (DS)2 because the components of the systems
are molecules and their number varies in time (there
is one variable for each molecule, to record the pres-
ence of this molecule in the reactor). Obviously, an-
other formalization is possible: at the coarser level of
the chemical concentrations, the chemical system can
be described as a DS with a static structure (with one
variable for the concentration of each molecule type).
This last approach is certainly computationally less
expensive, but does not give access to the same level
of details as the former.

This modeling paradigm, based on term rewriting,
can be extended from this chemical example to other
situations and its biological relevance is advocated
in several recent papers(Fisher et al., 2000; Manca,
2001; Eker et al., 2002a,b). To paraphrase4 Fisher
et al. (2000): “A biological system is represented as
a term of the formo1 + o2 + · · · + on where each
term oi represents either an entity of the system or
a message addressed to other entities, i.e. signal,
command, information, action, etc. The simulation of
the physical evolution of the biosystem is achieved
through term rewriting, where the LHS of a rule typ-
ically matches an entity and a message addressed to
it, and where the right-hand side (RHS) specifies the
entity’s updated state, and possibly other messages
addressed to other entities. The operator+ that joins
entities and messages is associative and commutative,
achieving an ‘associative commutative soup’, where
entities swim around looking for messages addressed
to them.”

A severe shortcoming of this view is thetotal lack
of (spatial) organization. For example, the cell can-
not be thought as a chemical reactor where the chem-
icals are homogeneously diluted. On the contrary, the
cell exhibit a highly organized spatial structure, with
vesicles, cargos, membranes, nucleus, hyperstructures
(Amar et al., 2003), etc. And the notion of organi-
zation (both spatial organization or more generally
the functional organization) is also fundamental at the
lower level of pathways and at the higher level of tis-
sues, organs and individuals. The need to represent
more structured organizations than multiset of entities
and messages is stressed and motivates several exten-
sions of rewriting; see for one example amongst oth-
ers(Brown and Heyworth, 2000). However, a general
drawback with these approaches is that they work with
a fixed organization of entities, and it is not obvious
at all how to extend this to systems where the organi-
zation and number of entities and their relationships
are constantly changing.

This is precisely one of the main motivation of the
MGS research project. One of our goal is to validate
the contribution of atopological approach to the spec-
ification and simulation of the dynamical organization
of biosystems. By superseding the rewriting of terms

4 We have adapted the terminology.
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by the more general notion of transformation of topo-
logical collections, we hope to go beyond the limita-
tions of the preceding formalisms.

4. Topological collections and their
transformations

TheMGS project is aimed at the representation and
manipulation of transformations of entities structured
by abstract topologies (Giavitto and Michel, 2002).
A set of entities organized by an abstract topology
is called atopological collection. Topological means
here that each collection type defines a neighbor-
hood relation inducing a notion ofsub-collection. A
sub-collectionB of a collectionA is a subset of con-
nected elements ofA and inheriting its organization
from A. The global transformation of a topological
collection C consists in the parallel application of
a set oflocal transformations, seeFigs. 1 and 2. A
local transformation is specified by a rewriting rule
r that specifies the replacement of a sub-collection
by another one. The application of a rewriting rule
β ⇒ f(β, . . . ) to a collectionA:

(1) selects a sub-collectionB of A whose elements
match thepattern β,

(2) computes a new collectionC as a functionf of
B and its neighbors,

(3) and specifies the insertion ofC in place ofB into
A.

Fig. 1. A local transformation of a topological collection. CollectionA is of some kind (set, sequence, array, cyclic grid, tree, term, etc.).
A rule T specifies that a sub-collectionB of A has to be substituted by a collectionC computed fromB. The RHS of the rule is computed
from the sub-collection matched by the LHSx and its possible neighborsx′ in the collectionA.

Fig. 2. Transformation and iteration of a transformation. A global transformationT is a set of local transformations applied in parallel and
synchronously to make one evolution step. The local transformations do not interact together. A transformation is then iterated to build
the successive states of the DS.

This framework embeds the rewriting of multisets
in the following way. In a multiset, an element is
susceptible to interact with any other element, so the
abstract topology of a multiset is the topology of a
complete connected graph: the neighbors of an ele-
ment are all the other elements in the multiset. Then,
a patternβ can select an arbitrary sub-multiset and a
multiset rewriting rule is simply a local transformation
in this topology.

TheMGS experimental programming language im-
plements the idea of topological collections and their
transformations into the framework of a simple dy-
namically typed functional language. Collections are
just new kinds of values and transformations are func-
tions acting on collections and defined by a specific
syntax using rules. Functions and transformations are
first-class values and can be passed as arguments or
returned as the result of an application.

4.1. Collection types

There are several predefined collection types in
MGS, and also several means to construct new col-
lection types. The collection types can range inMGS
from totally unstructured with sets and multisets to
more structured with records, sequences and GBFs
(cf. Giavitto and Michel, 2001a, 2002). Other topolo-
gies are currently under development and include
Delaunay graphs and abstract simplicial complexes
for the representation of arbitraryd-dimensional
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neighborhoods. This paper focuses on two families of
collection types:monoidal collection andGBF.

For any collection typeT, the corresponding empty
collection is written ( ):T. The name of a collection
type is also a predicate used to test if a value has
this type:T(v) returns true only ifv has typeT. Each
collection type can be subtyped. The type declara-
tion collection U = T introduces a new collec-
tion typeU which is a subtype ofT. The new typeU
shares the same topology asT. However, a value of
type U can be distinguished from a value of typeT
using the predicateU (i.e. the subtyping relation im-
plies thatU(u) ⇒ T(u), for any valueu, but not the
reverse). Elements in a collection can be of any type,
including collections, thus achievingcomplex objects
in the sense ofBuneman et al. (1995).

4.2. Monoidal collections

Set, multiset (or bag) and sequences are members
of the monoidal collection family. As a matter of fact,
a sequence (respectively a multiset) (respectively a
set) of values taken inV can be seen as an element
of the free monoidV ∗ (respectively the commutative
monoid) (respectively the idempotent and commuta-
tive monoid). The join operation inV ∗ is written by a
comma “,” and induces the neighborhood of each el-
ement: letE be a monoidal collection, then elements
x andy in E are neighbors ifE = u, x, y, v for some
u andv. This definition induces the following topolo-
gies. For sets (typeset), each element in the set is
neighbor of any other element (because the commu-
tativity, the term describing a set can be reordered ar-
bitrarily). For multiset (typebag), each element is
also neighbor of any other (however, the elements are
not required to be distinct as in a set). For sequence
(type seq), the topology is the expected one: an el-
ement which is not at the end, has one neighbor on
the right.

The comma operator is overloaded inMGS and can
be used to build any monoidal collection (the type
of the arguments disambiguates the collection built).
So, the expression1,1+1,2+1, ( ):set builds the
set with the three elements 1, 2 and 3, while the ex-
pression1,1+1,2+1, ( ):seq makes a sequences
with the same three elements. The comma operator is
overloaded such that ifx andy are not monoidal col-
lections, thenx, y builds a sequence of two elements.

So, the expression1,1+1,2+1 evaluates to the se-
quences too.

4.3. GBFs

The acronym GBF stands for “group-based data
fields”. A GBF is an extension of the notion of ar-
ray, where the elements are indexed by the elements
of a group, called theshape of the GBF (seeGiavitto
and Michel, 2001a). A GBF value associates values to
some indices of a shape. This kind of collection can be
used to describe uniform and regular topologies like:
n-ary trees,n-dimensional grids, circular and screwed
grids, archimedian tiling of the plane, etc. For exam-
ple, the following type declaration:

gbfGrid2 =< north,east >

introduces a new two-dimensional shape calledGrid2,
corresponding to the Von Neuman neighborhood in a
classical 2D mesh (a cell above, below, left or right—
not diagonal). The two namesnorth andeast re-
fer to the directions that can be followed to reach the
neighbors of an element. These directions are thegen-
erators of the underlying group structure. The list of
the generators can be completed by giving equations
that constraint the displacement in the shape. For in-
stance:

gbfHexagon =< east,north,northeast;
east+ north = northeast >

defines an hexagonal lattice that tiles the plane, see
Fig. 3. Each cell has six neighbors (following the three
generators and their inverses). The equationeast +
north = northeast specifies that a move follow-
ing northeast is the same as a move toeast fol-
lowed by a move tonorth.

Formally, a GBF value is a partial function from the
shape (a group specified by a finite presentation) to a
set of values. Even if the underlying shape is infinite,
the domain of a GBF value is finite. The topology
of the GBF is the topology of the underlying Cayley
graph(Magnus et al., 1976).

4.4. Sub-collection patterns

A patternβ that appears in the LHS of a rule is
an expression used to select a sub-collection to be
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Fig. 3. Eden’s model on a grid and on an hexagonal mesh (initial state, and states after the 3 and the 7 time steps). Exactly the same
MGS transformation is used for both cases. These shapes correspond to a Cayley graph ofGrid2 and Hexagon with the following
conventions: a vertex is represented as a face and two neighbors in the Cayley graph share an edge in this representation. An empty cell
has an undefined value. Only a part of the infinite domain is figured.

replaced. Several operators are available; we will re-
view here only few constructs.

• literal: a literal value matches an element with the
same value. For example, 123 matches an element
in a GBF with value 123.

• variable: a pattern variablea matches exactly one
element with a well defined value. The variablea
can then occur elsewhere in the rest of the rule and
denotes the value of the matched element. The iden-
tifier of a pattern variable can be used only once in
a pattern.

• record pattern: the brackets{. . . } are used to match
one element whose value is a record (MGS record
are similar to Pascal’s record orC’s structure). The
content of the brackets can be used to match records
with or without a specific field (eventually con-
strained to a given field type or field value). For in-
stance,{a, b : string, c = 3,∼ d} is a pattern that
matches a record with fieldsa, b andc but no field
d. In addition, the type of fieldb must bestring
and the value of the fieldc must be the integer 3.

• empty element: the symbol<undef> matches an
element with an undefined value, that is, an element
whose position does not belong to the support of
the GBF. The use of this basic filter is subject to

some restriction: it can occur only as the neighbor
of a defined element.

• neighbor: the patternb, p matches a sub-collection
composed of an element matched byb neighbor of
a sub-collection matched byp.

• guard: p/exp matches a sub-collection matched by
p if boolean expressionexp evaluates to true. For
instance,x, y/y > xmatches two neighbor elements
x andy such thaty is greater thanx.

• repetition: p+ matches a sub-collection made of a
non-empty repetition of sub-collections matched by
p. If p is a pattern variable, then its value refers
the sequence of matched elements and not to one
of the individual values. For example,3+ matches
a non-empty sub-collection made only of3’s.

5. Examples

The purpose of this section is to show the capacity
of MGS to specify in a concise way several well-known
examples corresponding to several biological situa-
tions and various computational models.Section 5.1
relies on cellular automata to model a growth process.
The two next examples (Sections 5.2 and 5.3) use the
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P systems approach to model biochemical reactions.
Section 5.3introduces nested multisets to handle the
spatial organization of the compartments within the
cell. The last example inSection 5.4was initially pro-
posed to model the growth of a bacteria,Anabaena
catenula, based on a reaction–diffusion taking place
in an expanding media and using the formalism of L
systems. We hope that these examples taken in sev-
eral fields, will convince the reader of the effectivity
of theMGS approach for biological modeling (see also
Section 6.2).

5.1. The Eden model

We start with a simple model of growth sometimes
called the Eden model (specifically, a type B Eden
model;Eden, 1958). The model has been used since
the 1960s as a model for such things as tumor growth
and growth of cities. In this model, a 2D space is par-
titioned in empty or occupied cells. We start with only
one occupied cell. At each step, occupied cells with
an empty neighbor are selected, and the corresponding
empty cell is made occupied.

The Eden’s aggregation process is simply described
as the following transformationEden with only one
rule R:

transEden = {R = x, < undef >⇒ x,x; }
We assume that some arbitrary value is used to repre-
sent an occupied cell, other cells are simply left unde-
fined (i.e. without associated value). Then the ruleR
can be read: an occupied elementx and an undefined
neighbor are transformed into two occupied elements.
The transformation Eden defines a function that can
then be applied to compute the evolution of some ini-
tial state. One of the advantages of theMGS approach,
is that this transformation can apply indifferently on
grid or hexagonal lattices, orany other collection type
(seeFig. 3).

5.2. Restriction enzymes

This example shows the ability to nest different
topologies to achieve the modeling of a biological
structure. We want to represent the action of a set of
restriction enzymes on the DNA. The DNA structure
is simplified as a sequence of lettersA,C,T andG.
The DNA strings are collected in a multiset. Thus we

have to manipulate a multiset of sequences. The fol-
lowing declarations:

collection DNA = seq; ;
collection TUBE = bag; ;

introduce a subtype calledDNA of seq and a subtype
of multisets calledTUBE.

A restriction enzyme is represented as a rule that
splits the DNA strings; for instance a rule like:

EcoRI = X+, (‘‘G",‘‘A",‘‘A",‘‘T",‘‘T",‘‘C"),

Y+ ⇒ (X,‘‘G" ) :: (‘‘A",‘‘A",

‘‘T",‘‘T",‘‘C",Y) :: ( ) : TUBE;

stands for theEcoRI restriction enzyme with recog-
nition sequenceG∧AATTC (the point of cleavage is
marked with∧). TheX+ pattern filters the part of the
DNA string before the recognition sequence. Identi-
cally, Y names the part of the string after the recogni-
tion sequence. The RHS of the rule constructs aTUBE
containing the two resultingDNA subsequences (the ::
operator indicates the “consing” of an element at the
head of a collection).

We need an additional ruleVoid for specifying
that aDNA string without a recognition sequence must
be inserted wrapped in aTUBE. The two rules are
collected into one transformation:

transRestriction = {
EcoRI = . . . ;
Void = X+ ⇒ X :: ( ) : TUBE;

}

The rule specification order in a transformation is
taken into account, and so, the ruleVoid is used only
if rule EcoRI cannot be applied. In this way, the re-
sult of applying the transformationRestriction on a
DNA string is systematically a sequence with only one
element which is aTUBE.

The transformationRestriction can then be applied
to theDNA strings floating in aTUBE using the simple
transformation:

transReact = {dna ⇒ hd(Restriction(dna))}

The operatorhd gives the head of the result of the
transformationRestriction, i.e. aTUBE containing one
or two DNA strings. These elements are then merged
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with the content of the enclosingTUBE. The transfor-
mation can be iterated until a fixpoint is reached:

React[fixpoint]((
(‘‘C",‘‘C",‘‘C",‘‘G",‘‘A",
‘‘A",‘‘T",‘‘T",‘‘C",‘‘A",
‘‘A",( ) : DNA),

(‘‘T",‘‘T",‘‘G",‘‘A",‘‘A",
‘‘T",‘‘T",‘‘C",‘‘G",‘‘G",
‘‘G",( ) : DNA),
( ) : TUBE));;

returns a tube with four DNA strings:

(‘‘T",‘‘T",‘‘G" , ( ) : DNA),
(‘‘C",‘‘C",‘‘C",‘‘G" , ( ) : DNA),
(‘‘A",‘‘A",‘‘T",‘‘T",‘‘C" ,

‘‘A",‘‘A" , ( ) : DNA),
(‘‘A",‘‘A",‘‘T",‘‘T",‘‘C" ,

‘‘G",‘‘G",‘‘G" , ( ) : DNA),
( ) : TUBE

5.3. A localized signaling network

We want to sketch the specification inMGS of a spa-
tially distributed biochemical network model proposed
by Bugrim (2000). The example focuses on a small

Fig. 4. cAMP and calcium signaling pathways. This schema is reprinted fromBugrim (2000)and the description of the involved pathways
is largely inspired by this reference. The different components of the two pathways are localized at various places within the cell. The
first steps of the cAMP pathway occur at the plasma membrane, starting with the activation of adrenergic receptors. Then, the cAMP
molecules bind to a regulatory sub-unit of the protein kinase A, with the effect of dissociating a catalytic sub-unit C. The localization of
PKA depends on a family of anchoring proteins AKAPs that target this kinase to different compartments. In this example, two localizations
are considered: the plasma membrane and an internal compartment (e.g. nucleus or endoplasmic reticulum). The calcium pathway starts
by the activation of a channel in the plasma membrane. The fraction of PhK associated to the internal compartment is the target of both
pathways. A possible inhibitor I of PKA is also considered.

signaling network that consists of cAMP and calcium
signaling. SeeFig. 4 for a more complete description.

The corresponding topological structure mimics the
spatial organization of the cell using nested multisets,
seeFig. 5. TheMGS declarations:

collectionVolume = bag;
collectionMembrane = bag;
collectionEnvironment = Volume;
collectionPlasma = Membrane;
collectionCytosol = Volume;
collectionEndoRetic = Membrane;

are used to introduce some new kinds of multi-
sets (thebag keyword). These kinds are used here
mainly to describe the hierarchy of localization and
compartments and are used to discriminate between
multisets.

The main part of the correspondingMGS program
consists in defining the ontology of this application do-
main: there exist several molecules, each has a name;
some exists in two states: active or inactive; some are
characterized as receptors; etc. Such ontology is de-
scribed inMGS using subtyping. These subtypes are
then used in pattern-matching to select entities with
or without some properties. For example, a molecule
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Fig. 5. The spatial organization of the pathway specified as a nest of multisets. The reaction, diffusion and transport processes described
in Fig. 4 are modeled as multiset transformations taking place in a nest of multisets. This is reminiscent of the P system paradigm(Paun
et al., 2001). This figure is automatically generated by theMGS simulation program. Each box corresponds to a multiset: the external one
represents the universe and contains three elements: the agonist molecule pictured as a thin cone, the calcium (the thick cone) and the plasma
membrane which is represented as a multiset and figured by a translucid box. The various molecules anchored in the plasma membrane
are elements of the corresponding multiset and are figured as various solid volumes. The ellipsoidal container represents the cytosol and
the solid sphere in the middle of it, the nucleus. Such figure can be generated at each simulation step to visualize the trajectory of the DS.

is described as a record having or not some fields.
Record type may specify the presence or the absence
of a field, or the value of a specific field (like in record
pattern). For instance:

recordMolecule = {name};
recordActivity = {activation};
recordActivated = {activation = true};
record Inactivated = {activation = false};
recordATP = Molecule+ {name = ‘‘atp" };
define five record types. The record type declaration
is introduced by the keywordrecord. Molecule is
the type of any record having at least a field named
name. Activated is the type of a record having at least
a field namedactivation and with valuetrue.
This type is a subtype ofActivity which only requires
the presence of the fieldactivation. The type ATP
corresponds to a molecule named‘‘atp".

Three kinds of transformations are used to define the
processes of the Bugrim’s model. The first class corre-
sponds to some ancillary transformations. For example

transActivateReceptor

= {r : Receptor → r+ {activation = true}}
is a rule that updates totrue the fieldactivation
of an entityr of typeReceptor. This kind of transfor-

mations is triggered by a rule of the sole transforma-
tion of the second class. This transformation summa-
rizes all the rules corresponding to the description of
the biochemistry (there are about 10 reactions in this
pathway):

transBiochemistry = {
R1 = a : ActiveAgonist, p : Plasma

⇒ a + {activation = false},
ActivateReceptor(p);

. . .

}

For example, ruleR1 specifies that an active agonist
and a plasma membrane interact to inactivate the ag-
onist and to transform the plasma with transforma-
tion ActivateReceptor (this transformation turns on all
the activation fields of the receptors anchored in the
plasma membrane).

There is also only one transformation in the last
class of transformations. It is used to thread the bio-
chemistry rules amongst the nested multisets:

funRun(x) = Thread(Biochemistry (x));
transThread = {

p : Membrane ⇒ Run(p);
c : Volume ⇒ Run(c);

}
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The transformationThread applies the functionRun
to each entity of typeMembrane or Volume found in
the collection argument. The functionRun consists
in running the biochemistry transformation and then
iterating the threading.

The completeMGS program is approximatively 150
lines long, including the building of the initial system
state. It describes 40 states of molecules and uses 5
auxiliary transformations to define 10 chemical inter-
actions. Several transformations are also used to pro-
duce the description of the DS state (the description is
generated in a 3D scene description language which is
then visualized by an ad-hoc front-end). The complete
code can be found from theMGS web page.

5.4. A model of growth for Anabaena catenula

The cyanobacteriumAnabaena grows in filaments
of 100 cells or more. When starved for nitrogen,

Fig. 6. The MGS program corresponding to the heterocyst differentiation inAnabaena. SeeSection 5.4for further explanations.

specialized cells called heterocysts differentiate from
the photosynthetic vegetative cells at regular intervals
along each filament. Heterocysts are anaerobic fac-
tories for nitrogen fixation; in them, the nitrogenase
enzyme complex is synthesized and the components
of the oxygen-evolving photosystem II are turned off.
Plant signals exert both positive and negative regu-
latory control on heterocyst differentiation.Wilcox
et al. (1973) have proposed an activator–inhibitor
model of heterocyst differentiation where the (high)
concentration of the activator triggers the heterocysts
differentiation. The production of the activator is an
autocatalytic reaction and also catalyzes the produc-
tion of the inhibitor. The inhibitor is an antagonist sub-
stance that repress the activity of the activator when its
concentration is high enough. The diffusion of the in-
hibitor to the neighboring cells prevents neighbors to
become also heterocysts and explains why heterocysts
appear in a regular spaced pattern in the filament.
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A computer simulation of this process(Hammel and
Prusinkiewicz, 1996)was originally developed in the
field of L system and shows the use ofparametric
L systems (Prusinkiewicz and Hanan, 1990; Hanan,
1992)for the modeling of a fundamental mechanism: a
morphogenesis driven by a reaction–diffusion process
taking place in a growing media. The corresponding
parametric L systems is easily translated into aMGS
program where each rule corresponds to a production
of the L system given inGiavitto and Michel (2002).
There is nothing new in this translation and the exam-
ple is given mainly to show the ability ofMGS to ex-
press sophisticated L systems. The program is listed in
Fig. 6. The output of the program is plotted inFig. 7.

Fig. 7. Heterocysts differentiation inAnabaena filament. In the
upper graphic, the time goes from upper-left to lower-right corner.
Each slice (lower graphic) corresponds to the state of a grow-
ing filament and represent a sequence of cells. The height of a
cell represent the activator concentration. Cells are pictured in red
when the activator is greater than a given level triggering differen-
tiation. Gray cells are vegetative ones. This type of visualization,
called “space-time extrusion” has been developped inHammel and
Prusinkiewicz (1996).

In the previous code, the state of a cell is implemented
as a record with fielda for the concentration of the ac-
tivator,h is the concentration of the inhibitor,p is the
cell polarity,x is the length of the cells andtype in-
dicates if the cell is an heterocystis (C) or a vegetative
(D) cell. The guard in rulep1 selects right-polarized
cells with a length greater than some levellm. Note
in rule p3 the way the neighboring elements are ac-
cessed using theleft andright displacement op-
erators. Rulep1 andp2 specify a cell division (two
cells are substituted to one). For a more detailed ex-
planation of the biological processes involved, please
refer toHammel and Prusinkiewicz (1996).

6. Summary and related work

6.1. Summary

In this paper we advocate the development of new
programming languages dedicated to the modeling and
simulation of dynamical systems with a dynamic struc-
ture, a class of systems at the core of the computa-
tional biology applications.

One of the main difficulties raised by this kind of
systems, is the specification of the dynamic organiza-
tion and interaction of the system components. To face
this problem, we propose an approach founded on the
notion of rewriting. However, to handle the complex-
ity of the spatial and functional organization of biolog-
ical systems, we extend this approach from the usual
multiset rewriting formalism (widely used in artificial
chemistry, seeDittrich, 2000) to the more general no-
tion of transformation of topological collections.

The proposed approach is exemplified with four
examples of biological processes, at three different
levels: biomolecules (with the example of restriction
enzymes), biological pathways (with a spatially dis-
tributed biochemical network) and tissues (with an
Eden’s model and the growth ofAnabaena catenula).
All examples run on an experimental platform that
can be downloaded from theMGS home page at URL:
http://mgs.lami.univ-evry.fr.

6.2. Comparison with existing formalisms

It is interesting to compare transformations on topo-
logical collections with some existing formalisms:

http://mgs.lami.univ-evry.fr
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GAMMA and the CHAM, P systems, L systems and
cellular automata.

Considering multisets, topological transformations
of multisets mimic multiset rewriting introduced
by the GAMMA parallel programming language
(Banatre and Metayer, 1986)and later formalized by
the CHAM formalism(Berry and Boudol, 1990). As
mentioned above, a multiset is a too weak structure
to cope with the complex organization of biological
systems.

P systems, introduced byPaun (2001), stress the no-
tion of membrane structure and are a possible answer
to the previous drawback. Some entities are placed in
the regions defined by the membranes and evolve fol-
lowing various transformations: an entity can evolve
into another entity, can pass trough a membrane or
dissolve its enclosing membrane. P systems, in their
basic definition, are able to represent the containment
relationships of biological entities; however, seePaun
et al. (2001)for an extension handling more sophisti-
cated relationships. In contrast with the P system ap-
proach, the transformation inMGS are not implicitly
linked to a multiset but must be threaded from the
top-level structure (see the transformationThread in
Section 5.3). We are working on incorporating such
feature inMGS, leading to a more agent-based pro-
gramming style.

Transformation of sequences corresponds to the
L system formalism. This formalism was introduced
by Lindenmayer (1968)for simulating the develop-
ment of multicellular organisms. Related to abstract
automata and formal languages, this formalism has
been widely used for the modeling of plants. An L
system can be roughly described as a grammar where
the productions are applied in parallel, in a nondeter-
ministic manner. It can be also viewed from a string
rewriting perspective and then topological transfor-
mations on sequences correspond to the case of para-
metric context-sensitive L systems(Giavitto et al.,
2002).

At last, transformations on GBFs have to be com-
pared with the cellular automata formalism. There
are several differences. The notion of GBF extends
the usual square grid of CA to more general Cayley
graphs. The value of a cell can be arbitrarily com-
plex (even another GBF) and is not restricted to take
a value in a finite set. Moreover, the pattern in a rule
may match an arbitrary domain and not only one cell

as it is usually the case for CA. For example, the Eden
model ofSection 5.1cannot be coded by only one rule
in a cellular automata if one wants to avoid that two
distinct occupied cells preempt the same unoccupied
cell.

To summarize,MGS proposes actually a unified view
on these computational mechanisms initially inspired
by biological processes (CHAM, P systems, L systems
and cellular automata). However, we do not claim that
we have achieved a useful theoretical framework en-
compassing these formalisms. We advocate that few
notions and a single syntax can be consistently used to
allow the merging of these formalisms for simulation
purposes. The key notions involved are:

• a unified view on data structures using an abstract
neighborhood relationship: thetopological collec-
tions;

• a general device to compute new topological col-
lections from a given topological collection, based
on an abstract rewriting mechanism: thetransfor-
mation of a topological collection;

• the representation of the state of a biosystem by a
topological collection and the specification of the
evolution function as a transformation.

The use of a rewriting mechanism as a foundation
for biosystems modeling has already been defended in
Fisher et al. (2000). In MGS, the use of a general ab-
stract neighborhood operator (the commas that appear
in the LHS of the rules of a transformation), makes the
specification of a transformation largely independent
of the precise neighborhood relationship involved by
the collection. This feature allows for instanceexactly
the same handling for multisets, sequences and grids,
when the evolution rules areisotropic (i.e. when there
is no need to distinguish between neighbors solely by
their spatial position, see the examples inSection 5.1).
Relying on a general abstract neighborhood operator
also implies that the evolution rules of the biosystem
are local, which is often the case considering the na-
ture of the physical laws involved (cf.Tonti, 1974for
the algebraic-topological structure underlying physi-
cal theories). In addition, the neighborhood operator
avoid the need for a global coordinate system: a point
which has been stressed as essential for the easy mod-
eling of developmental processes in the works of P.
Prusinkiewicz (see, e.g.Prusinkiewicz, 1999; Fisher
et al., 2000).



162 J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163

Acknowledgements

The authors would like to thank P. Prusinkiewicz at
University of Calgary where some insights have found
their right formulation. They are also grateful to F. De-
laplace, J. Cohen and the members of the “Simulation
and Epigenesis” group at GENOPOLE-Evry for fruit-
ful discussions, biological motivations and challeng-
ing questions. C. Boin and N. Thibault have developed
parts of the Bugrim model inMGS. The friendly at-
mosphere of the workshops IPCAT’01 and WMC’01
has also raised many stimulating questions that have
suggested many developments and rethinking. Finally,
the comments of the referees have greatly improved
the presentation of the paper. This research is sup-
ported in part by the CNRS, the GDR ALP, IMPG,
GENOPOLE and the University of Evry.

References

Amar, P., Ballet, P., Barlovatz-Meimon, G., Benecke, A., Bernot,
G., Bouligand, Y., Bourguine, P., Delaplace, F., Delosme, J.-M.,
Demarty, M., Fishov, I., Fourmentin-Guilbert, J., Fralick, J.,
Giavitto, J.-L., Gleyse, B., Godin, C., Incitti, R., Képès, F.,
Lange, C., Sceller, L.L., Loutellier, C., Michel, O., Molina,
F., Monnier, C., Natowicz, R., Norris, V., Orange, N., Pollard,
H., Raine, D., Ripoll, C., Rouviere-Yaniv, J., Saier, M.,
Soler, P., Tambourin, P., Thellier, M., Tracqui, P., Ussery, D.,
Vincent, J.-C., Vannier, J.-P., Wiggins, P., Zemirline, A., 2003.
Hyperstructures, genome analysis and I-cell. Acta Biotheoretica
(in press).

Banatre, J.P., Metayer, D.L., 1986. A new computational model
and its discipline of programming. Technical Report RR-0566,
INRIA.

Berry, G., Boudol, G., 1990. The chemical abstract machine.
In: Conference Record 17th ACM Symposium on Principles
of Programmming Languages, POPL’90, San Francisco, CA,
USA, 17–19 January, 1990. ACM Press, New York, pp. 81–94.

Brown, R., Heyworth, A., 2000. Using rewriting systems to
compute left Kan extensions and induced actions of categories.
J. Symbolic Comput. 29 (1), 5–31.

Bugrim, A.E., 2000. A logic-based approach for computational
analysis of spatially distributed biochemical networks. In:
ISMB, San Diego, CA, 2000.

Buneman, P., Naqvi, S., Tannen, V., Wong, L., 1995. Principles of
programming with complex objects and collection types. Theor.
Comput. Sci. 149 (1), 3–48.

Chaitin, G.J., 2002. Meta-mathematics and the foundations of
mathematics. Bull. Eur. Assoc. Theor. Comput. Sci. 77, 167–
179.

Chandy, K.M., Misra, J., 1988. Parallel Program Design: A
Foundation. Addison-Wesley, Reading, MA.

Dittrich, P., Ziegle, P., Banzhaf, W., 2001. Artificial chemistry—a
review. Artificial Life 7, 225–275.

Eden, M., 1958. In: Yockey, H.P. (Ed.), Symposium on Information
Theory in Biology. Pergamon Press, New York, p. 359.

Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C., 2002a.
Pathway logic: executable models of biological networks.
In: Proceedings of the Fourth International Workshop on
Rewriting Logic and Its Applications (WRLA’2002). Vol. 71
of Electronic Notes in Theoretical Computer Science. Elsevier,
Amsterdam.

Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J.,
Sonmez, J., January 2002b. Pathway logic: symbolic analysis of
biological signaling. In: Proceedings of the Pacific Symposium
on Biocomputing, pp. 400–412.

Fisher, M., Malcolm, G., Paton, R., 2000. Spatio-logical processes
in intracellular signalling. BioSystems 55, 83–92.

Giavitto, J.-L., Michel, O., 2001a. Declarative definition of
group indexed data structures and approximation of their
domains. In: Proceedings of the 3rd International ACM
SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP-01). ACM Press, New York.

Giavitto, J.-L., Michel, O., 2001b.MGS: a rule-based programming
language for complex objects and collections. In: van den
Brand, M., Verma, R. (Eds.), Electronic Notes in Theoretical
Computer Science, vol. 59. Elsevier, Amsterdam.

Giavitto, J.-L., Michel, O., 2002. The topological structures
of membrane computing. Fundamenta Informaticae 49, 107–
129.

Giavitto, J.-L., Godin, C., Michel, O., Prusinkiewicz, P., 2002.
Modelling and simulation of biological processes in the context
of genomics. Genopole Evry, Ch. “Computational Models for
Integrative and Developmental Biology” (final proceedings and
tutorials).

Hammel, M., Prusinkiewicz, P., 1996. Visualization of develop-
mental processes by extrusion in space-time. In: Proceedings
of Graphics Interface ’96, pp. 246–258.

Hanan, J.S., 1992. Parametric L-systems and their application to the
modelling and visualization of plants. Ph.D. thesis, University
of Regina.

Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W., 1999.
From molecular to molecular cell biology. Nature 402, 47–52.

Kanehisa, M., 2000. Post-Genome Informatics. Oxford University
Press, Oxford.

Kaufman, S., 1995. The Origins of Order: Self-Organization and
Selection in Evolution. Oxford University Press, Oxford.

Keller, E.F., 1995. Refiguring Life: Metaphors of Twentieth-
Century Biology. Columbia University Press, New York.

Lindenmayer, A., 1968. Mathematical models for cellular
interaction in development, Parts I and II. J. Theor. Biol. 18,
280–315.

Magnus, W., Karrass, A., Solitar, D., 1976. Combinatorial Group
Theory: Presentations in Terms of Generators and Relations.
Dover, New York.

Manca, V., 2001. Logical string rewriting. Theor. Comput. Sci.
264, 25–51.

Maynard-Smith, J., 1999. Shaping Life: Genes, Embryos and
Evolution. Yale University Press, New Haven, CT.



J.-L. Giavitto, O. Michel / BioSystems 70 (2003) 149–163 163

Paniflov, A.V., Holden, A.V. (Eds.), 1997. Computational Biology
of the Heart. Wiley, Chichester.

Paton, R. (Ed.), 1994. Computing with Biological Metaphors.
Chapman & Hall, London.

Paun, G., 2001. From cells to computers: computing with
membranes (P systems). BioSystems 59 (3), 139–158.

Paun, G., Sakakibara, Y., Yokomori, T., 2001. P systems on graphs
of restricted forms. Publ. Math. Debrecen.

Prusinkiewicz, P., 1999. Modeling of spatial structure and
development of plants: a review. Sci. Horti. 74, 113–149.

Prusinkiewicz, P., Hanan, J., 1990. Visualization of botanical
structures and processes using parametric L-systems. In:
Thalmann, D. (Ed.), Scientific Visualization and Graphics
Simulation. Wiley, Chichester, pp. 183–201.

Stengers, I., 1988. D’une Science à L’autre. Les Concepts
Nomades. Le Seuil, Paris, France.

Tonti, E., 1974. The algebraic-topological structure of physical
theories. In: Glockner, P.G., Sing, M.C. (Eds.), Symmetry,
Similarity and Group Theoretic Methods in Mechanics. Calgary,
Canada, pp. 441–467.

Tyson, J., Borisuk, M., Chen, K., Novak, B., 2000. Computational
Modeling of Genetic and Biochemical Networks. Analysis
of Complex Dynamics in Cell Cycle Regulation. MIT Press,
Cambridge, MA, pp. 287–306.

Wilcox, M., Mitchison, G.J., Smith, R.J., 1973. Pattern formation
in the blue-green alga,Anabaena. I. Basic mechanisms. J. Cell
Sci. 12, 707–723.

Wolfram, S., 2002. A new kind of science. Wolfram Media.


	Modeling the topological organization of cellular processes
	Introduction
	Outline

	Dynamical systems with a dynamical structure
	Multiset rewriting and the modeling of biological DS
	Topological collections and their transformations
	Collection types
	Monoidal collections
	GBFs
	Sub-collection patterns

	Examples
	The Eden model
	Restriction enzymes
	A localized signaling network
	A model of growth for Anabaena catenula

	Summary and related work
	Summary
	Comparison with existing formalisms

	Acknowledgements
	References


