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Abstract

During a discussion taking place at WMC’01, G. Paun asked the question of what can
be computed only by moving symbols between membranes. In this paper we provide some
elements of the answer, in a setting similar of tissue P systems, where the set of membranes is
organized as a Cayley graph and using a very simple propagation process characterizing ac-
cretive growth. Our main result is to characterize the final configuration as a least fixed point
and to establish two series of approximations that converge to it. All the notions introduced
(Cayley graph of membranes, accretive rule and iteration) have been implemented in the MGS

programming language and the two series can be computed in Pressburger arithmetics using
the omega calculator in the case of Abelian Cayley graphs.

1 Introduction

P systems are new distributed parallel computing models based on the notion of a membrane
structure [Pau99, Pau01]. A membrane structure is a nesting of cells represented, e.g., by a Venn
diagram without intersection and with a unique superset: the skin. Objects are placed in the
regions defined by the membranes and evolve following various transformations subject to some
conditions: an object can evolve into another object, can pass trough a membrane or dissolve its
enclosing membrane, etc. The computation is finished for instance when no object can further
evolve.

During a discussion taking place at WMC’01, Gheorghe Paun asked the question of what can
be computed only by moving objects between membranes. In its initial presentation, the P system
formalism describes the topology of the membranes as a set of nested regions. Thus, the objects
can be viewed as moving between the nodes of the membrane’s inclusion tree. Our question can
then be rephrased as: “Starting from a set S of symbols located in a tree, what are the nodes F of
the tree that are occupied by symbols after moving them following some rules R? ” In the process
of making this question more precise and amenable to some answers, we made some simplifying
assumptions and some generalizations.

1. In a first approach, we are only interested by the presence or the absence of a symbol in a
membrane. Then, we consider in this paper only one kind of symbol and we can simplify
the representation of the content of a membrane as a boolean: false means that there is no
symbol in the membrane and true that there is some.

2. Considering only the presence/absence of symbols on a finite tree is too restrictive: there is
only a finite set of observable states for the system. Several natural extensions of the initial
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formalism consider P systems working on graphs which are not trees [PSY01, MVPPRP01].
In this work, we follow the same path and we consider Cayley graphs. In this way, we can
have a finite presentation for unbounded graphs of various shapes. Cayley graphs include
rings, grids, regular tiling of the plane, etc. They include also n-ary trees (as the Cayley
graph of free groups with n generators), which covers the case of our initial question.

3. Starting from an arbitrary set S of nodes occupied by symbols in a Cayley graph G, there
are few chances to characterize the final set F of nodes occupied after the moves allowed by
a set of rules R. It is more interesting to characterize some canonical family of starting sets
Si and try to see if the resulting set Fi can be characterized in the same way. In this study,
we consider the family of cosets in G.

4. A rule r ∈ R specifies if a symbol in a membrane must move to another membrane. Accord-
ingly, to the assumption 1, we further simplify our problem by considering that the condition
of the activation of r must take into account only the presence or the absence of symbols in
the membrane and its neighbors. We name such rule: accretive rule.

Some justifications for this framework are given in the next section. We will show that it con-
stitutes a tractable simplification of a more general process easily programmable in the MGS lan-
guage [GM02]. Moreover, the problem in this form is closely linked with the problem of computing
the definition domain of a systolic function [KMW67, SQ93] or the problem of computing the ex-
tension of a data-field [LC94, Gia00].

The rest of this paper is organized as follows. The next section introduces the concepts of
Cayley graphs and group-based data fields in the context of the programming language MGS. Then
we give an example to clarify the notions. Section 4 defines the notions of accretive rules, a special
kind of transport rules, and explains the use of cosets to describe initial configurations. Section 5
gives a formal account of the problem and presents some results: we characterize the final set F as
a least fixed point and we construct two series of approximating sets (Dn)n∈N and (En)n∈N such
that Dn ⊆ F ⊆ En and limn→∞Dn = limn→∞ En = F . Finally, we show how the sets Dn and En

can be effectively computed using Pressburger arithmetics and the omega calculator in the case of
free Abelian Cayley graphs. Comparison with previous works and links with similar problem are
given in the conclusion.

2 Cayley Shaped Membranes in MGS

In this section, we present the notions needed to understand the MGS coding of the previous
computation process. MGS is a declarative programming language aimed at the representation and
manipulation of local transformations of entities structured by abstract topologies [GM01c, GM02].
A set of entities organized by an abstract topology is called a topological collection. Topological
means here that each collection type defines a neighborhood relation specifying both the notion of
locality, path and sub-collection. A path is a finite sequence of elements ei where ei+1 is a neighbor
of ei. A sub-collection B of a collection A is a subset of elements of A defined by some path and
inheriting its organization from A. The global transformation of a topological collection C consists
in the parallel application of a set of local transformations. A local transformation is specified by
a rewriting rule r that specifies the change of a sub-collection. The application of a rewrite rule
r = β ⇒ f(β, ...) to a collection A:

1. selects a sub-collection B of A whose elements match the path pattern β,

2. computes a new collection C as a function f of B and its neighbors,

3. and specifies the insertion of C in place of B into A.

The collection types can range in MGS from totally unstructured with sets and multisets to
more structured with sequences and “group-based data fields”. The ability to handle in the same
framework the rewriting of multisets and sequences (i.e. strings), makes MGS particularly suitable
to implement directly several variations of P systems [GM01b].
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Group-Based Data Field

Group-based data fields (GBF in short) are used to define organizations with uniform neighbor-
hood. A GBF is an extension of the notion of array, where the elements are indexed by the
elements of a group, called the shape of the GBF [GMS96, GM01a]. The elements of the group
are called the positions of the GBF. For example:

gbf Grid2 = 〈 north, east 〉
defines a GBF collection type called Grid2 , corresponding to the Von Neuman neighborhood in a
classical array (a cell above, below, left or right – not diagonal). The two names north and east
refer to the directions that can be followed to reach the neighbors of an element. These directions
are the generators of the underlying group structure. The right hand side (r.h.s.) of the GBF
definition gives a finite presentation of the group structure.

The list of the generators can be completed by giving equations that constraint the displace-
ments in the shape:

gbf Hexagon = 〈 east, north, northeast ; east + north = northeast 〉
defines an hexagonal lattice that tiles the plane, see figure 3. Each cell has six neighbors (following
the three generators and their inverses). The equation east+north = northeast specifies that a
move following northeast is the same as a move following the east direction followed by a move
following the north direction.

For convenience, we identify the shape G of a GBF with its topological collection type (which
is a presentation of the group G). A GBF g of type G can be formalized as a partial function,
denoted also g, from G to some set of values: g associates a value to some positions (group elements
acting as indices). An empty GBF is then the everywhere undefined function. The topology of the
collections of type G is easily visualized as the Cayley graph G of G: each vertex in the Cayley
graph is an element of the group G and vertex x and y are linked if there is a generator u in the
presentation of G such that x + u = y. See figure 1.
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Figure 1: Graphical representation of the relationships between Cayley graphs and group theory.
A vertex is a group element. An edge labeled a is a generator a of the group. A word (a product
of generators) is a path. Path composition corresponds to group addition. A closed path (a cycle)
is a word equal to e (the identity of the multiplication). An equation v = w can be rewritten
v−w = e and then corresponds to a cycle in the graph. There are two kinds of cycles in the graph:
the cycles that are present in all Cayley graphs and corresponding to group laws (intuitively: a
backtracking path like b + a − a − b) and closed paths specific to the own group equations (e.g.:
a− b− a + b). The graph connectivity (there is always a path going from P to Q) is equivalent to
say that there is always a solution x to equation P + x = Q.
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A presentation starting with 〈 and ending with 〉 introduces an Abelian organization: they are
implicitly completed with the equations specifying the commutation of the generators u + u′ =
u′ + u. Currently only free and Abelian groups are allowed in MGS: free groups with n generators
correspond to n-ary trees and Abelian GBF corresponds to twisted and circular grids (the free
Abelian group with n generators generalizes n-dimensional arrays). Some Abelian and non-Abelian
shape are pictured in figure 2. However, all the results given here can be extended to any GBF
with a shape corresponding to a group with a solvable word problem.
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Figure 2: Left. Four Abelian group presentations (in multiplicative notation) and their associ-
ated graph. Right. Three examples of a 3-neighborhood shape (multiplicative notation). These
triangular neighborhood are described by non Abelian groups.

Cayley P systems

As a matter of fact, a GBF g with a shape G represents the state of a P system on a graph [PSY01]
provided that the underlying graph is the Cayley graph of some group. In this case, element of g
are valuated by a multiset. Similarly, a GBF g with a shape G represents the state of a tissue P
system [MVPPRP01] provided that the synapses constitute the Cayley graph G of the group G.
The values of an element of g is then a couple (neuron’s state, multiset).

Therefor, in this paper, a Cayley P system P is simply a set of membranes organized as a
Cayley graph G together with a transformation: P = (g, f) where g is a GBF with shape G and f
a transformation. The membranes can be identified with the elements of G. Two membranes are
neighbors if the are linked by an edge in G. A symbol in a membrane can stay in the membrane
or can move to a neighbor. Following the remarks in the introduction, we further simplify the
state of a membrane as a boolean in the context of this work.
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3 An example of Cayley P system : The Eden Model

Before formalizing the properties of Cayley P systems, let us examine an example, in order to
clarify the notions and to illustrate the way of working of our systems.

We start with a simple model of growth sometimes called the Eden model (specifically, a type
B Eden model [YPQ58]). The model has been used since the 1960’s as a model for such things as
tumor growth and growth of cities. In this model, a 2D space is partitioned in empty or occupied
cells (we use the value true for an occupied cell and left undefined the unoccupied cells). We start
with only one occupied cell. At each step, occupied cells with an empty neighbor are selected, and
the corresponding empty cell is made occupied.
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Figure 3: Eden’s model on a grid and on an hexagonal mesh (initial state, and states after the
3 and the 7 time steps). Exactly the same transformation is used for both cases. These shapes
correspond to a Cayley graph of Grid2 and Hexagon with the following conventions: a vertex is
represented as a face and two neighbors in the Cayley graphs share an edge in this representation.
An empty cell has an undefined value. Only a part of the infinite domain is figured.

The Eden’s aggregation process is simply described as the following MGS global transformation:

trans Eden = { x, <undef> ⇒ x, true ; }
This global transformation is composed of only one local rule p ⇒ sexp. The expression p is a
path pattern that matches a sequence of elements. The expression sexp computes a sequence of
elements that replace pointwise the elements matched by p. To understand the path pattern, one
must know that:

• The path pattern x, y means “select an x and an y, with well defined values such that x
and y are neighbors”. The comma operator denotes the neighborhood relationship in the
left hand side (l.h.s.) of the rule and denotes the construction of a sequence in the r.h.s. An
occurrence of the variable x anywhere in the rest of the rule denotes the value hold by the
membrane matched by x. The expression pos(x) denotes the membrane and is an element
of the shape G of the GBF on which the transformation is applied.

5



• We assume that the boolean value true is used to represent an occupied cell, other cells are
simply left undefined. The special symbol <undef> is used to match an undefined value.

Then the previous rule can be read: an occupied element x and an undefined neighbor are trans-
formed into two occupied elements. The transformation Eden defines a function that can then be
applied to compute the evolution of some initial state.

When applied to a collection f , the rules of a transformation T are applied synchronously, in
maximal manner and to non-intersecting paths to make one evolution step. More precisely, if no
rule applies, it means that there is no path matching the l.h.s. of one rule of T and then T is the
identity function.

One of the advantages of the MGS approach, is that this transformation can apply indifferently
on grid or hexagonal lattices, or any other collection kind. A difference with the manner in which
a P systems is usually presented is that evolution rules in MGS are given globally and not attached
to a membrane (however guards on rule can be used to dispatch the rules on specific membranes).

Cayley P Systems and Cellular Automata

It is interesting to compare transformations on GBFs with the genuine cellular automata (CA)
formalism. There are several differences. The notion of GBF extends the usual square grid of CA
to more general Cayley graphs. The value of a cell can be arbitrary complex (e.g. a multiset or
even another GBF) and is not restricted to take a value in a finite set (however, we consider in
this paper only boolean valued membranes). More importantly, the path pattern in a rule may
match an arbitrary domain and not only one cell as it is usually the case for CA. For example the
transformation:

trans Turn = {
a |east> b |north - east> c |-east - north> d |east - north> e

⇒ a, e, b, c, d ;
}

specify the 90◦-turn of a cross in GBF GG (see illustration 4). Indeed, the path pattern x |u> y,
where u is a group element, specifies that y is an u-neighbor of x: pos(x) + u = pos(y). Thus, the
pattern fragment b |north - east> c specifies that c is at the north-west of element b.

Such behavior cannot be directly expressed in a cellular automata where a rule specifies the
evolution of a single cell. Obviously such rule can be coded, but intermediate states and inter-
mediate steps must be introduced in order for each cell to recognize the neighborhood and to
synchronously trigger the rotation.
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Figure 4: First and second iteration of transformation Turn on the GBF to the left (only defined
values are pictured). In contrast with cellular automata, the evolution of a multi-cell domain can
be easily specified by a single rule.
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4 Accretive Rules and the Specification of a Configuration

Now, we concentrate our attention to rules f of the following form:

f = x1 |u1> x2 |u2> . . . xk |uk> <undef > ⇒ x1, x2, . . . , xk, true (1)

Such rules is used in the Eden’s example and is representative of accretive growth [GGMP02]
where the growing process takes place on the boundaries (this is to oppose to “intercalary growth”
where the growing process is from the inside). Accretive growth is a special kind of transport rule:
starting from a defined pattern x1 |u1> . . . |uk−1> xk of already existing objects, a new object
is created in an empty place. The quantity of objects hold by the membranes increases and this
accounts for the growth.

This specific kind of transport rule is very important in morphogenesis and has been studied
for a long time under various formalisms (Lindenmayer systems for instance or Eden’s model in
CA, etc.). They can be also used to model the anisotropic diffusion of a substance in a tissue. The
Eden’s rule is an isotropic diffusion because there is no difference made between the neighbors of
the unoccupied membrane. A rule like:

x |X> <undef> ⇒ x, true (2)

is an anisotropic diffusion in GG because the growth propagates only following the X direction.
Anisotropic diffusion arises in biological tissue because some chemical gradient can make the
process asymmetric, so as specific channel anchored in the cell membranes or when considering
the effect of the extra-cellular matrix.

The l.h.s of rule f (eq. 1) specifies a set of membranes with a well-defined value and one empty
membrane. We denote by Rf the set of dependencies of f :

Rf = −{
|u1> + |u2> + · · ·+ |uk> , |u2> + · · ·+ |uk> , |u3> + · · ·+ |uk> , . . . , |uk>

}

The expression −A where A is a set denotes the inverses of the elements in A. The elements of Rf

are the displacements from the position of an unocuppied membrane to the occupied ones involved
by the rule f . The diameter of f is the number of elements in Rf .

Description of an Initial Configuration

We want to apply iteratively the transformation made of one rule f to some initial configuration
g. The problem is to describe this initial configuration, even in the case of an unbounded initial
domain.

A state of the Cayley P system is a GBF g and recall that a GBF is a partial function. In
our case, this partial function associates to some membrane the value true. Thus, specifying
g is equivalent to the specification of its definition domain. We want to take into account the
group structure of g and then it is natural to use subgroups of G to specify the definition domain.
however this is somewhat too restrictive and we will use cosets.

A coset u⊕H = {u+h, h ∈ H} is the “translation” by u of the subgroup H. In a non-Abelian
group, we distinguish the right coset u⊕H and the left coset H⊕u. To specify a coset we give the
element u and the subgroup H. The notation 〈a1, a2, . . . , ap〉 : G defines a subgroup of G generated
by {a1, a2, . . . , ap} where the ai are arbitrary elements of G. There is no specific equation linking
the generators of the subgroup but they are subject to the equations of the enclosing group, if
applicable.

An initial configuration is a finite union D0 of cosets C1, . . . , Cp. The Ci are called the base
cosets of the Cayley P system. It is easy to have specifically one element at position v in an initial
configuration: it is enough to have one of the base cosets equals to v ⊕ 〈0〉 : G where 0 denotes
the neutral element. Therefore, it is possible to describe with D0 any finite set of membranes.
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5 Formalization and Results

Let P = (g, f) be a Cayley P system such that g of shape G is defined by the finite union of p
cosets D0 = C1, . . . Cp and the dependency set of f is Rf = {r1, . . . , rq}. For the sake of simplicity,
we assume that G is an Abelian group. In the following, we reserve the index j to enumerate the
cosets Cj and the index i to enumerate the dependences ri.

The trajectory of P is the sequence gn, n ∈ N, where g0 = g and gn+1 = f(gn). Let Dn be
the definition domain of gn. As previously noted, it is equivalent to compute gn or Dn. We are
looking for a description of the state of the Cayley P systems after t evolution steps, that is, we
are looking for a closed form of Dt. We are also interested in a closed form of the limit domain

D = lim
n→∞

Dn

An example. Our problem can be sketched on an example. Figure 5 illustrates the first three
iterations of rule

h = x1 |east - north> x2 |east> x3 |north> <undef> ⇒ x1, x2, x3, true (3)

starting from the initial configuration of shape GG :

D0 = C1 ∪ C2 with C1 = 〈east〉 : GG and C2 = 〈north〉 : GG

The integer that appears in a membrane in the right hand side of figure 5 corresponds to the
maximal length of a dependency path starting from the membrane and reaching a base coset.
This integer can be thought of as the time step where the membrane value is produced (assuming
a maximal rule application strategy). In this example, only one value can be produced at each
time step. The membranes that have a well-defined value after 3 time steps are drawn as plain
square cell. The infinite path that starts from the dotted membrane shows the beginning of an
infinite dependency path: this path “jumps” over the cosets and goes to infinity, that is, this
membrane will never have a defined value.

It should be obvious that

Dn = Dn−1 ∪ (2n. |east> + |north> )⊕ 〈0〉 : GG
D = D0 ∪ |north> ⊕ 〈2. |east> 〉 : GG

In the previous expressions, the multiplication n.x of a group element x by a positive integer n
denotes the n fold sum x + . . . x; if n is negative, then n.x the inverse of (−n).x.
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Figure 5: This schema figures a Cayley P system based on an free Abelian shape GG = 〈X, north〉.
The diagram in the left hand side illustrates the path pattern of rule h (eq. 3). The right hand side
illustrates the initial configuration of the Cayley P system and the first three iteration of the rule.
The initial configuration is defined the cosets 〈east〉 : GG and 〈north〉 : GG. The dependency set
Rh = {-2.east, -north, -east - north}. See the text for more explanation.
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5.1 Definition of the lower approxiation Dn

Starting from the definition of Dn we have immediately:

D0 ⊆ D1 ⊆ ... ⊆ Dn ⊆ ... ⊆ D∞ = D (4)

Therefore, the sequence Dn gives a lower approximation of D. Furthermore, remark that an
element u of Dn+1 which is not an element of Dk, k ≤ n, is such that (u + ri) ∈ Dn for all the
dependencies ri. In other word, u belongs to

⋂
i(Dn ª ri) where Aª u = {a− u, a ∈ A}. We can

summarize this result:

D0 =
⋃

j

Cj (5)

Dn+1 = Dn ∪
⋂

i

Dn ª ri (6)

5.2 Characterization of D as a least fixed point

Let u be in Dn such that u 6∈ D0, then u + ri ∈ Dn−1 for 1 ≤ i ≤ q. Taking the limit in n, we
have: if u ∈ D, u 6∈ D0, then u + ri ∈ D. In other word, the set D satisfies the equation

D = D0 ∪
⋂

i

(D/D0)⊕ ri (7)

where D/D0 = {x such that x ∈ D ∧ x 6∈ D0}. Equation 7 can be rephrased as a fixed point
equation D = ϕ(D) with the function ϕ defined by:

ϕ = λA.D0 ∪
⋂

i

(A/D0)⊕ ri

The fixpoint equation admits a least solution for the inclusion order (see any standard textbook
on domain theory) that can be reached as the limit of ϕn(∅). We write this solution fix ϕ. It is
immediate to check that Dn+1 ⊆ ϕ(Dn), and then we have

D = fix(λA.D0 ∪
⋂

i

(A/D0)⊕ ri)

5.3 The Greater Approximation En

A Geometric Interpretation. To obtain a greater approximation of D, we first interpret
geometrically the property of belonging to the definition domain of gn. To each position u ∈ G
we associate a set Pu of directed paths corresponding to the positions reachable from w using a
sequence of dependencies. An element p of Pu is a word of the monoid Rf generated by Rf :

Rf = { αi1 .ri1 + ... + αik
.rik

, with ril
∈ Rf and αil

∈ N }
The membrane u cannot be in D if there exists a p ∈ Pu with an infinite length.

Computing a Greater Approximation E0. If u ∈ D is defined, then all the paths p ∈ Pu

starting from u must end on a coset Cj . Amongst all these paths, there are some paths made only
with ri displacements. Let:

Ri = { −n.ri, n ∈ N } (8)

E0 = D0 ∪
⋂

i

D0 ⊕ Ri

The set Ri is the monoid generated by −ri (warning: we take the inverse of the dependency). The
expression A ⊕ B denotes the set {a + b, a ∈ A, b ∈ B}. The set E0 is made of the points u ∈ G
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that either belong to D0 or are such that there exists a path made only from ri starting from u
and reaching D0. This last property is simply expressed as: ∀i,∃ni, u−n.ri ∈ D0. This property
holds for all u ∈ D and then:

D ⊆ E0

Refining the Approximation E0. The greater approximation E0 is a little rude. We can refine
them on the basis of the following remark. If u ∈ D, then we have either u ∈ D0 or u + ri ∈ D.
We can deduce that:

D ⊆ E1 = D0 ∪ (E0 ∩
⋂

i

E0 ⊕ ri)

Obviously E1 ⊆ E0. Moreover, this construction starting from E0 can be iterated, which introduces
the sequence

E0 = D0 ∪
⋂

i

D0 ⊕ Ri (9)

En+1 = D0 ∪ (En ∩
⋂

i

En ⊕ ri) (10)

We always have D ⊆ En+1 ⊆ En.
Let E∞ be the limit of En. For each u ∈ E∞, we have either u ∈ D0 or U +ri ∈ E∞. Therefore,

E∞ is a solution of the equation (7). It should be checked that it is the least solution which we
admit (intuitively, the element of G are equivalence classes of finite words of generators and then,
if x ∈ E∞ it can be checked by induction on the number of occurrences of ri in x that x ∈ D).

5.4 Summary and a Conjecture

We can summarize the previous results by the formula:

D0 ⊆ ... ⊆ Dn ⊆ ... ⊆ D∞ = D = E∞ ⊆ ... ⊆ En ⊆ ... ⊆ E0 (11)

These results can be generalized without difficulty by considering more general base case domains.
That is, we may replace the coset Ci by an arbitrary set Si in equation (5) relations (11) remain
true.

A monoid M generated by element u1, ..., up of a group G is the set of elements that can be
written as a positive linear combination of the ui’s. We call comonoid the translation of a monoid,
that is, a set x⊕M = {x.m,m ∈ M} where M is a monoid. For all the examples we have worked
out on free Abelian groups (that is, for membranes organized as a d-dimensional grid and indexed
by Zd), we have checked that the limit domain D is a finite union of comonoids. We conjecture
that this is always true. Figure 6 at the end of the paper gives six examples in Z2.

6 Computing the Dn and En in the Abelian case

Equations (5, 6, 8, 9, 10) enable the explicit construction of Dn and En if it is known how to
compute intersection, union and product of comonoid.

Indeed, a coset is a special kind of comonoid and the intersection of a comonoid is either empty
or a comonoid. If the sum D⊕M of a comonoid D by a monoid M is also a monoid (which is the
case for Abelian shape or if the ri commutes with all group elements), then all arguments of the
intersections and unions in the previous equations are comonoids. We may then express Dn and
En for a given n has a finite union of comonoids. It is then clear that the definition domain of g
is an union of comonoids. The conjecture only says that this union is finite.

We have used the omega calculator, a software package [KMP+96] that enables the com-
putation of various operations on convex polyhedra to make linear algebra in Zn and represent
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comonoids. Linear algebra is not enough to compute Dn and En because we have to compute
the Ri. Fortunately, the omega calculator is able to determine in some cases1 the transitive
closure of a relation [KPRS94] which enables the computation of Ri as the transitive closure of
the relation [x, x+ri]. We use here the syntax of the omega calculator and an expression such
[f(x)], where x is a free variable, denotes the set {f(x), x ∈ Z} and an expression [x, f(x)],
defines a relation linking x to f(x). Please refer to [KMP+96] for the omega calculator concepts
and syntax.

Here is in example, based on the Cayley P system illustrated in figure 5. We first define the
base cosets in Z2

C1 := { [n, 0] };
C2 := { [0, n] };

then three relations that correspond to the dependencies:

r1 := { [x, y] -> [x, y-1] };
r2 := { [x, y] -> [x-2, y] };
r3 := { [x, y] -> [x-1, y-1] };

and we need also the inverse of the dependencies:

ar1 := { [x, y] -> [x, y+1] };
ar2 := { [x, y] -> [x+2, y] };
ar3 := { [x, y] -> [x+1, y+1] };

We may now defines the Di:

D0 := C1 union C2;

H1 := ar1(D0) intersection ar2(D0) intersection ar3(D0);
D1 := D0 union H1;

H2 := ar1(D1) intersection ar2(D1) intersection ar3(D1);
D2 := D1 union H2;

H3 := ar1(D2) intersection ar2(D2) intersection ar3(D2);
D3 := D2 union H3;

We can ask omega to compute a representation of D3. The query D3 returns:

{[x,0]} union {[0,y]} union {[4,1]} union {[6,1]} union {[2,1]}
which is what it is expected. For the approximation Ei we need to represent the monoids Ri which
is done through a transitive closure:

AR1 := ar1*;
AR2 := ar2*;
AR3 := ar3*;

The definition of E0 raises the computation of

E0 := AR1(D0) intersection AR2(D0) intersection AR3(D0);

(we have omitted the union with D0 to avoid too complicated terms in the result). The evaluation
of this definition returns

{[x,y]: Exists (alpha : 0 = x+2alpha && 1 <= y && 2 <= x)}
union {[x,0]} union {[0,y]}

This approximation is too large, we may refine it by computing E1:
1We plan to develop a dedicated library under Mathematica to compute these approximations systematically.
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E1:= ar1(r1(E0) intersection E0) intersection
ar2(r2(E0) intersection E0) intersection
ar3(r3(E0) intersection E0);

The evaluation of E1 gives:

{[x,1]: Exists ( alpha : 0 = x+2alpha
&& 4 <= x)} union {[2,1]}

which is also D minus D0.

7 Conclusions

In this work, we have considered a specific transport process, called accretive growth, on a set of
membranes organized as a Cayley graph. We have defined formally the trajectory of the resulting
Cayley P system and characterized the final configuration. We conjecture that this configuration
can be described as a finite union of so-called comonoid but we were unable to proove this assertion.

The idea to use a group structure to specify the graph underlying a tissue P system has many
links with the concepts of GBF developed in the framework of the MGS language and the reader
may refer to the references cited in the paper. To complete this conclusion, we review two related
domain: cellular automata on Cayley graphs and systolic programming.

Cellular Automata on Cayley Graphs

Moving symbols between a set of cells is reminiscent of some process described in the cellular
automata literature. We have pointed in section 3 the main differences. However, it is worth
mentioning the work of Z. Róka on the extension of the cellular automata (CA) formalism to
handle more general cell space. She considers Cayley graphs in [Rók94, Rók95b, Rók95a] to model
both the cell space and the communication links between the cells (the use of Cayley graphs as
intersection networks have been extensively studied, see e.g. [Hey97]). These research focus the
conditions for the simulation of a CA on a given Cayley graph by another CA on another Cayley
graph and to the algorithmic problem of the global synchronization of a set of cells.

There exists strong links between Cayley P system and such extension of cellular automata:
in the two cases we have to study the propagation of computations in a space described by a
Cayley graph. However, the mentioned work focuses on synchronization problems and establishes
complexity results for various simulation. For instance, the characterization of the domain is out
of the CA scope.

Systolic Programming

We recall here the terminology concerning recurrence equations. Uniform recurrence equations
(URE) have been introduced by Karp, Miller and Winograd [KMW67]. Their model have been
broadened to affine recurrence equations ARE. An ARE takes the following form:

∀z ∈ D, U(z) = f(U(I(z)), V (I ′(z)), ...) (12)

where D is a convex polyhedron of Zn called the domain of the equation; z is a point of Zn; U, V
are variable names indexed by z (the dimension of the index of a given variable is constant). The
functions I, I ′, . . . are affine mappings from Zn to Z. The variable U(I(z)) is an argument and
U(z) is a result of the equation. The function f is strict. If all mappings I are translations then
the system is said to be an URE. This formalism has been largely used. Indeed, there is a large
corpus of mathematical results in linear algebra that can help to solve the problems encountered.
One of the main problem is to characterize the definition domain of the function specified by
equation (12).

This problem is very similar to the characterization of the limit domain D. Indeed, because
the function f is strict, the equations defining the definition domain of U have the same formal
expression that the equations defining D (assuming Z as the underlying group), see [Gia99].
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Definition Domain of an ARE. We can review some results in this domain. Karp, Miller
and Winograd [KMW67], have shown the decidability for URE on a bounded domain, without
explicitly constructing the dependency graph.

However, B. Joinnault [Joi87] has shown the indecidability when the domain of the equations is
not bounded. The proof relies on the coding of a Turing machine by an URE. The functions used
in the specification of an URE are strict, that is, we do not have a conditional; the conditional is
simulated by an adequate specification of the domain of the equations.

This result cannot be adapted in the case of Cayley P systems because the specification of the
definition domain of an URE (which plays for the URE the same role as the base cosets) relies
on the specification of convex polyhedra in Zn and a convex polyhedron is not generally a coset
in Zn neither a finite union of cosets or the complementary of a finite union of cosets. In [SQ93],
the indecidability result is extended to the case of parametric bounded domain (i.e. the domain is
described by an union of finite convex polyhedron parameterized by a parameter p ∈ Zm) (for a
given value of p, the domain is finite).

Dependencies beyond the affine dependences can be found in exact or approximate data flow
analysis [Fea91, LC94]. More specifically for recursive structure, J.-F. Collard and A. Cohen
[Coh96] have used the group structure to specify and analyze recursive computations on trees.
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[Rók94] Zsuzsanna Róka. One-way cellular automata on Cayley graphs. Theoretical Computer
Science, 132(1–2):259–290, 26 September 1994.
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Figure 6: Six examples of GBF domains in Z2.
The elements of the shape 〈x, y〉 are figured by a square cell. We have presented only a part of the
shape, where the left bottom square corresponds to the neutral element. We use for convenience
a multiplicative notation instead of the additive notation used for the group operation in the text.
The cells in gray belong to the definition domain of the GBF g. The default equation is figured
but not the quantified equations. The cells of base cosets are in dark gray and without label. It is
easy to recover their equations. For example, let X = 〈x〉 and Y = 〈y〉. Then, the cosets C1 and
C2 involved in (a) are y.X and y7.X The cosets involved in (c) are X and Y . Etc.
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