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Abstract

In this paper, we present a new framework for the definition of
various data structures (including trees and arrays) together with
a generic language of filters enabling a rule-based programming
style of functions. This framework is implemented in an experi-
mental language called MGS. The underlying notions funding our
framework have a topological nature and make possible to extend
the case-based definition of functions found in modern functional
languages beyond algebraic data structures.
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D.3.3 [Programming Languages]: Language Constructs and Fea-
tures; E.1 [Data Structures]; F.1.1 [Theory of Computation]:
Models of Computations; F.4.2 [Formal Languages]: Grammar
and Other Rewriting Systems
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1 Introduction

One of the achievement and success of current functional lan-
guages is the ability to define functions by case using filters and
pattern-matching. However, this possibility is restricted to pattern-
matching of algebraic data types, which is now well understood.
An example of a data structure beyond the current capability is for
example the array data type: it is not possible to define a function
by case on an array.

In this paper, we present a new framework for the definition of
various data structures, including trees and arrays, together with a
generic language of filters enabling a rule-based programming style
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of functions. This framework is implemented in an experimental
language called MGS.

The underlying notions funding our framework have a topo-
logical nature and unify several programming paradigm like
Gamma [BM86] and the CHAM [BB92], Lindenmayer sys-
tems [RS92], Paun systems [Pau99] and cellular automata [VN66].
Gamma, CHAM and Paun systems are based on multiset rewrit-
ing and Lindenmayer systems on string rewriting. These kind of
data structures are qualified as monoidal [Man01, GM01b] and their
rewriting theories are now mastered. In this paper, we focus on non-
monoidal data structure and especially array-like data structures for
which there is no clear agreement on a rule-based rewriting mecha-
nism.

The rest of this paper is organized as follows. The next section
introduces a motivating example. Section 3 details the notion of
group indexed data structure or GBF (for group-based data fields).
Such structure generalizes the notion of array. We give a geometric
interpretation of GBFs in section 4. This interpretation underlies the
design of a generic pattern language described in section 5. Some
examples are worked out in section 6. The corresponding pattern-
matching algorithm is developed section 7, before reviewing some
related and future works.

2 A Motivating Example

This example is loosely inspired from lattice gas automata. In such
kind of cellular automata, rules of forms β⇒ f (β) are used to spec-
ify the local evolution of a set of particles distributed on a regular
subdivision of the plan. The expression β is a pattern that matches
a configuration (typically two particles in two neighbor cells that
would collide at the next time step) and f (β) is used to specify the
evolution of the particles.

In our arbitrary example, we want to specify the 90◦-rotation of a
cross in square lattice (see the two diagrams at left of figure 1). An
array-like data structure can be used to record the lattice state and
the rule β ⇒ f (β) is used to specify the rotation of a single cross.
Note that in this case, the pattern β does not filter a sub-array but
an arbitrary subset (a cross). Such rule must be applied to each
occurrence of a cross in the data structure. The result is an array
function, called here a transformation. We write:

trans Turn = { β ⇒ f (β); }
The transformation Turn is defined by case (here there is only one
case corresponding to one rule in the transformation Turn). The
case β specifies a sub-domain which is replaced by f (β). How-
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Figure 1. Application of transformation Turn on the array to the left or to the hexagonal subdivision at the right. In contrast with
cellular automata, the evolution concerns a multi-cell domain.

ever, in opposition with case-based function definition acting on
algebraic data type, the cases do not correspond to constructors nor
exhaust the data structure.

A transformation is a function taking a collection as argument. A
collection is an organized set of elements. The MGS language han-
dles several kind of collections including, sets, bags, sequences and
array-like data structure called GBFs. A square lattice, as pictured
in the left of figure 1 is a special case of GBF.

It is usual for physicists to work with an hexagonal lattice, because
such tiling of the plane respect more symmetries in the expression
of fundamental physical laws than a square lattice. We can trans-
pose our transformation in such tiling, cf. the two diagrams at the
right of figure 1. In this case, the pattern β involves a 7 cells sub-
domain.

To turn the description of the transformation Turn into a real pro-
gram, one must dispose of some new constructs in a language in
order to

1. define the type of a data structure representing a 2D array (or
better, some generalization like an hexagonal tiling),

2. define a pattern β that matches an arbitrary sub-domain in an
array,

3. specify a function using rules like β ⇒ f (β) that specify the
substitution of non-intersecting occurrences of subdomains
matched by β by a replacement computed as f (β).

Such devices are available in MGS, an experimental declarative lan-
guage. One of the objectives of the MGS project is to investigate
the use of a rule-based approach for the simulation of dynamical
systems (this explains the choice of our examples). In [GM01c]
we have show how MGS unifies multiset and string based rewriting
paradigms. In this paper, we extend further this unification towards
array-like data structure. In section 3 we show how to describe such
data structure. The problem of specifying a pattern β in this kind of
data structure is examined in section 4 and 5.

3 Group Indexed Data Structures

In this section, we introduce the concept of GBF with general-
izes the concept of array. Such data structure admits a geomet-
rical interpretation which is the basis of the language of filters
presented in section 5. As a matter of fact, a collection type al-
ways admit a topological interpretation in term of neighborhood
(cf. [GM02a, GM02b]) and the notions introduced in section 5 are
uniformly applicable to all collection types.

An n×m array A associates a well defined value to an index (i, j) for
1 ≤ i ≤ n and 1 ≤ j ≤ m. Thus, an array can be seen abstractly as a
total function from the set of indices I = [1,n]× [1,m] to some set of
values. The data field approach extends this notion by considering
the array A as a partial function with a finite support from a larger
set of indices I =�×�(the support of a partial function is the sub-
set of its domain for which the function takes a well defined value).
This enables the representation of “arrays with holes”, “triangular
arrays”, etc. The notion of data field appears in the development
of recurrence equations and goes back at least to [KMW67]. The
term itself seems to appear for the first time in [YC92, CiCL91] and
its investigation in a functional and data parallel context has been
mainly made by Lisper [Lis96] (see also [GDVS98]).

Our starting point to extend further the notion of data field, is the
remark that the set of indices I is provided with some operations.
The standard example of index algebra is integer tuples with linear
mappings. For instance, more than 99% of array references are
affine functions of array indices in scientific programs [GG95]. As
a consequence, we have proposed to provide the set of indices with
a group structure [GMS96]. Such data structure, a partial function
with a finite support from a group to a set of values, is called a GBF
for group-based data field. The basic example is the data fields
themselves, where the group of indices is the group (�n,+). The
advantage of providing the set of indices with a group structure and
several examples of GBF are detailed in [GM01a].

GBF are introduced in the MGS language using a type declaration
specifying the underlying group of indices. The definition of the
group is given using a finite presentation listing a set of generators
gi for the group and a set of equations ek = e′k where the ek are
formal sums of the gi :

gbf G = < g1, ..., gn;
e1 = e′1, ..., ep = e′p >

A formal sum of the generators is simply a linear combination as
for example:

3g1 + 2g3 - (5g4 + g5)

We use the following typographical conventions: if G is a GBF, we
write G (a finite group presentation) for its type and G (the group
of indices of G) for its domain. Beware that a group admits various
presentations, so a GBF type contains more information than just
the group structure. The set of values of a GBF G is not mentioned
in the type declaration for G because MGS is a dynamically typed
language and heterogeneous values can be recorded in a GBF.

In this paper we deal only with Abelian group and we use an ad-
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Figure 2. Graphical representation of the relationships between Cayley graphs and group theory. A vertex is a group element. An
edge labeled a is a generator a of the group. A word (a formal sum of generators) is a path. Path composition corresponds to group
addition. A closed path (a cycle) is a word equal to 0 (the identity of the group operation). An equation v = w can be rewritten
v−w = e and then corresponds to a cycle in the graph. There are two kinds of cycles in the graph: the cycles that are present in all
Cayley graphs and corresponding to group laws (intuitively: a backtracking path like b+a−a−b) and closed paths specific to the
own group equations (e.g.: a−b−a+b for Abelian groups). The graph connectivity, i.e. there is always a path going from x to y, is
equivalent to say that there is always a solution v to equation x+v = y.

ditive notation for the group operation. By convention a finite
presentation starting with “<” and ending with “>” introduces an
Abelian group, that is: the set of equations is completed implicitly
with the equations specifying the commutation of the generators
gi +g j = g j +gi.

Examples of GBF Types

The two examples of figure 1 correspond to the two GBF types:

gbf G2 = < north, east >
gbf H2 = < X, Y, Z; X+Z = Y >

The type H2 defines an hexagonal lattice that tiles the plane. This
geometrical interpretation of the presentation relies on the notion of
Cayley graph.

4 Group of Indices and Topological Represen-
tation

A Cayley graph is a graph representation of the presentation G of
a group G : each vertex in the Cayley graph is an element of the
group G and vertex x and y are linked if there is a generator u in the
presentation G such that x+u= y. See figure 2. This representation
support the following topological interpretation of a GBF:

• The group of indices G of a GBF type G is the set of positions
of a discrete space.

• A GBF G associates a value to some positions. As a partial
function with finite support, G can be seen as a finite set of
pairs (position, value). An element a of G, written a ∈ G,
is such a pair and we use the sentences “position of a” and
“value of a” to speak about the first and the second elements
of this pair.

• A generator g of the group presentation G is also an elemen-
tary translation (we use equivalently the words move, shift or
direction) from a position p to a position p+g.

• More generally, an element x ∈ G can be seen both as a po-
sition and as a translation (technically, we consider the left-
action of G on itself).

• The set of elementary translations provide a neighborhood
relationships to the set of positions: y is g-neighbor of x iff
x + g = y. Two elements u and v are said neighbors, and we
write “u,v” if there is a generator g such that u is a g-neighbor
of v or v is a g-neighbor of u.

• A path is a sequence of positions ui. It starts at position u0
and ends at position un. Usually ui and ui+1 are neighbors,
but we do not enforce this constraint. Paths can be translated
by a translation t simply by adding t to each ui.

• A relative path is a sequence ri of positions. A relative path is
a path but it is intended to be applied to a base position. The
application of a relative path ri to a position p0 gives an actual
path pi defined as pi+1 = pi + ri.

The graphical representations of G2 and H2 in figure 1 can be en-
lighten from this topological point of view. In these diagrams, a
vertex of the Cayley graph is pictured as a polygonal cell and two
neighbors share an edge in this representation. For G2, each posi-
tion (i.e. cell) has 4 neighbors corresponding to the north and east
directions and their inverse. In H2, each cell has six neighbors (fol-
lowing the three generators and their inverses). The equation X +
Z = Y specifies that a move following Y is the same has a move fol-
lowing the X direction followed by a move following the Z direction
(or equivalently, the translations corresponding to the relative paths
Y and X,Z are the same).
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The kind of spaces that can be described by a finite presentation
are uniform in the sense that each position has the same number of
neighbors reachable by the same set of elementary moves. Spaces
that can be described as GBFs include:

• n-ary trees as the Cayley graph of a presentation of a free
group with n generators [Ser77];

• n-dimensional grids as the Cayley graph of a presentation of
a free Abelian group with n generators;

• grids with circular dimension and screwed grids correspond-
ing to Abelian groups;

• archimedian partitions of the plane [Cha95].

5 A Generic Filter Language for Path Pat-
terns

In a rule β ⇒ f (β), the expression β is a pattern used to select a
“part of a GBF”. We call the part that can be matched and replaced
a sub-collection. Our idea is to specify this pattern as a path pat-
tern that matches in some order the elements of the sub-collection.
A path is a sequence of elements and thus, a path pattern Pat is
a sequence or a repetition Rep of basic filters Bfilt. A basic filter
matches one element in a GBF. The grammar of path patterns re-
flects this decomposition:

Pat ::= Rep | Rep Dir Pat | Pat as id | (Pat)

Rep ::= Bfilt | Bfilt/exp | Bfilt Dir+ | Bfilt Dir*

Bfilt ::= cte | id | | <undef>
Dir ::= , | |u1, ..., un>

where cte is a literal value, id ranges over the pattern variables, exp
is a boolean expression, and ui is a word of generators. The follow-
ing explanations give a systematic interpretation for these patterns.

literal: a literal value cte matches an element with the same value.
For example, 123 matches an element in a GBF with value
123.

empty element the symbol <undef> matches an element with an
undefined value, that is, an element whose position does not
belong to the support of the GBF. The use of this basic filter is
subject to some restriction: it can occur only as the neighbor
of a defined element.

variable: a pattern variable a matches exactly one element with a
well defined value. The variable a can then occur elsewhere
in the rest of the rule and denotes the value of the matched
element.

If the pattern variable a is not used in the rest of the rule, one
can spare the effort of giving a fresh name using the anony-
mous filter that matches any element with a defined value.
The position of a is accessible through the expression pos(x).

neighbor: b dir p is a pattern that matches a path with first element
matched by b and continuing as a path matched by p with the
first element p0 such that p0 is neighbor of b following the dir
direction. The specification dir of a direction is interpreted as
follows:

— the comma “,” means that p0 and b must be neighbors.

— |u> means that p0 must be a u-neighbor of b;

— the direction |u1, ..., un> means that p0 must be a
u0-neighbor or a u1-neighbor or ... or a un-neighbor of
b;

For example, x,y matches two connected elements (i.e., x
must be a neighbor of y). The pattern

1 |east> |north,east> 2

matches three elements. The first must have the value 1 and
the third the value 2. The second is at the east of the first and
the last is at the north or at the east of the second.

guard: p/exp matches a path matched by p if boolean expression
exp evaluates to true. For instance, x, y / y > x matches two
neighbor elements x and y such that y is greater than x.

repetition: pattern b dir∗ matches a possibly empty path
b dir b dir...dir b. If the basic filter b is a variable, then its
value refers the sequence of matched elements and not to one
of the individual values. The repetition b dir+ is similar but
enforces a non-empty path. The pattern x+ is an abbreviation
for “x ,+”.

naming: a sub-pattern can be named using the as construct. For
example, in the expression (1, x |north>+ , 3) as P, the
variable P is binded to the path matched by 1, x |north>+,
3.

Elements matched by basic filters in a rule are distinct. So a
matched path is without self-intersection. The identifier of a pat-
tern variable can be used only once in the position of a filter. That
is, the path pattern x,x is forbidden. However, this pattern can be
rewritten for instance as: x,y/y = x.

Suppose that the pattern Pat as P is used to match a path in a
GBF G. The value of a pattern variable x used as a basic filter in
Pat denotes a value found in G. The position of the matched value
is denoted by pos(x) which is an ad-hoc syntactic construct and
not the call of a function pos. The value of the pattern variable P
denotes the entire path matched by Pat. The value of P is a GBF
of the same type of G containing only the matched elements. Thus,
the construct pos(P) denotes a GBF with the same domain as P
and such that if (p,v) ∈ P, then (p, p) ∈ pos(P). The elements in
P have been matched following some order induced by the pattern
expression Pat. The construct seq(P) can be used to access to the
sequence of the matched values and seqpos(P) to the sequence of
the positions of the matched elements.

6 Examples

We give immediately some examples of path patterns and complete
MGS programs. The syntax and some specific features of MGS are
sketched and explained through these examples.

Sequences

A sequence is a predefined collection type in MGS corresponding to
the list algebraic data type in ML. However, we can specify as an
exercise a similar collection type using the following GBF declara-
tion:

gbf L = < right >

This example show also the difference between the term rewriting
approach of the algebraic data types and the path rewriting approach
developed in MGS. A value of type L can be build using an enumer-
ation: expression

L = 1 |right> 2 |right> 3 |right> 4
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Figure 3. Several patterns and the corresponding path shapes in G2. For example, filter x,y matches four possible configurations as
indicated.

creates a new GBF of type L (the type is inferred from the gener-
ators used in the enumeration) with value 1, 2 and 3. The value
1 is at position 0|right>. The value 2 is at the right of the value
1 and then is at the position 1|right>. The value 4 is at position
3|right>. We can picture this GBF by:

1 2 3 4 |right>−→
(the right direction extents to the horizontal right of the page; there
is an infinite number of undefined elements that are not represented
to the left of the element 1 and to the right of the element 4 ).

The main difference between a L and a value of the algebraic data
type list is that a L is a partial data structure. One can then define a
list “with holes”:

L′ = 1 |right> 2 |right> <undef> |right> 4

is pictured as:

1 2 4

The <undef> keyword is used to specify that the corresponding
position must be leaved empty and an empty box is used in the
picture (the empty boxes corresponding to the infinite number of
undefined elements at the right and at the left are not represented).

Transformations can be used to program the usual functions on lists.
For the head function hd that takes the head of a list in ML, we can
write:

trans hd = {
<undef> |right> x ⇒ return(x);

}
The statement return indicates that if the left hand side (l.h.s)
matches, then the argument of return must be evaluated and re-
turned as the global result of the entire transformation (instead of
inserting the result in the collection and looking for others appli-
cations of the rule). The pattern <undef> |right> x matches an
element x with an undefined neighbor at its left. Applied to a se-
quence without holes, there is only one such element x that can be
matched. However, if the data structure has holes, like L′, then ev-
ery element at the right of an undefined element can match the rule.

The result of the application of hd on such a structure is then one of
this element chosen in a non-deterministic manner. That is, hd(L′)
returns either 1 or 4.

The code of the tail function is very simple to specify because the
last element in a sequence is “the element without a right neighbor”:

trans tl = {
x |right> <undef> ⇒ return(x);

}
The definition of the map function is also very simple because it is
enough to replace each value x in the GBF by f (x):

trans mapf = { x ⇒ f(x); }
In this example, there is no return statement in the right hand side
(r.h.s.) of the unique rule of the transformation. Then, the strategy
for the transformation application is to apply in parallel as many
occurrences of the rule as possible to the collection, provided that
the sub-collection matched by an occurrence do not intersect a sub-
collection matched by another occurrence. In this case, this means
that every element x in the collection is replaced by f (x).

We need a way to parameterize the transformation with the function
f to be applied. This is easily done using an additional argument:

trans map( f) = { x ⇒ f(x); }
This transformation takes an additional argument f in addition to
the collection. The result map is a curried function and

map (\x.x+1) L′

computes the GBF 2 3 5 .

The fold operator is written in the same line:

trans fold(op) = {
x |right> y |right> <undef>
⇒ op(x,y),<undef>,<undef>;

}
The transformation fold just replaces the last two elements x and
y of the sequence by op(x,y). Indeed, in a rule p ⇒ sexp, where
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the expression sexp computes a built-in sequence s of elements, the
sequence s is used to replace point-wise1 the elements matched by
p. In addition, the comma operator in an expression corresponds
to the built-in sequence constructor. Thus, the comma denotes am-
biguously the neighborhood relationships in the l.h.s. of a rule and
the building of a sequence in the r.h.s. (The two interpretations
agree because two elements in a built-in sequence are neighbors if
they are argument of the comma constructor).

Thus fold (\x,y.x+y) L′ evaluates to 3 4 (the element 4
cannot be matched by the rule because it is an isolated element).
The expression fold (\x,y.x*y) L evaluates to 1 2 12. To ob-
tain the full reduction, the transformation must be iterated until a
fixed point is reached. This is provided in the MGS language using a
special syntax for the iteration:

fold[iter=fixpoint] (\x,y.x*y) L

the optional named parameters in the brackets are used to tune the
application strategy of a transformation. The iter parameter con-
trols the iteration of a transformation [GM01c]: fixpoint indicates
the iteration of the transformation until a fixed point is reached;
fixrule specifies the same behavior but the fixed point is detected
when no rule applies; an integer n stands for n iterations; etc. The
result of the previous expression is 24 (a GBF of type L with only
one element).

The cons function used to add an element a in front of a sequence l
can be defined as the transformation:

trans cons(a) = {
<undef> |right> x ⇒ a,x;

}
This transformation works as follow: all the elements without a left
neighbor gain a new element a located at their left. So, cons 9 L
evaluates to 9 1 2 9 4 .

Path Patterns in a NEWS Grid

We assume working in G2. Then, the pattern

x |north> y

matches two elements x and y with y at the north of the element x.
Using the convention used in the left diagram in figure 1, this filter
can be represented as a vertical domino. Figure 3 depicts several
other filters in G2. In this figure, a box indicates a matched
element in a GBF which is not binded to a pattern variable.

1If the r.h.s. computes a GBF g, then the GBF is inserted in
place of the sub-collection matched by p if the “borders” of p and
g agree, else it is an error. The notion of “border” is induced by
the neighborhood relationship of the collection. This strategy agree
with the standard behavior of a rule in term rewriting where a term
is replaced by another term.

The substitution behavior sketched in the text coexists gracefully
with the standard one. Both are meaningful because a pattern spec-
ifies both a path, i.e. a sequence of elements, and a sub-collection.
In this paper, we use only the substitution strategy presented in the
text where the r.h.s. evaluates to a sequence of elements.

Finding Its Way in a Labyrinth

Suppose a labyrinth represented as a GBF where the value 1 denotes
the entry doors, the value 2 codes the corridors and the value 3 the
exit doors. Then finding a path between the entry and the exit doors
is simply specified as:

(1, (2 ,*), 3)

this pattern matches a path beginning with 1 and ending with 3 after
a sequence of 2. This path can be used in a transformation

trans FindPath = {
(1,(2 ,*),3) as P ⇒ return(seqpos(P));

}
The statement return indicates that the transformation must stop
and return the argument value as soon as this rule matches. The
returned value is the sequence of the positions of the path P matched
by the l.h.s.

Rotation of the Cross

The transformation Turn on the square lattice G2 in section 2 can
be specified as:

trans Turn = {
a |east> b

|north - east> c
|-east - north> d
|east - north> e

⇒ a,e,b,c,d ;
}

The sequence s computed in the r.h.s. of the rule is used to replace
point-wise the elements matched by the l.h.s. Then, the first element
a of the sequence s replace the element named a in the pattern. The
second element, which is e, replace the element named b, etc. The
net result is a 90◦-rotation of the cross matched in the l.h.s. of the
rule, leaving the center a untouched.

The specification of Turn is also straightforward in H2:

trans Turn = {
a |X> b

|Z> c
|-X> d
|-Y> e
|-Z> f
|X> g

⇒ a,g,b,c,d,e, f ; }

Eden’s Growing Process

We consider a simple model of growth sometimes called the Eden
model (specifically, a type B Eden model [YPQ58]). The model
has been used since the 60’s as a model for things such as tumor
growth and growth of cities. In this model, a 2D space is partitioned
in empty or occupied cells (we use the value true for an occupied
cell and left undefined the unoccupied cells). We start with only one
occupied cell. At each step, occupied cells with an empty neighbor
are selected, and the corresponding empty cell is made occupied.
The Eden’s aggregation process is simply described as the follow-
ing MGS global transformation:

trans Eden = { x,<undef> ⇒ x,true ; }
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We assume that the boolean value true is used to represent an occu-
pied cell, other cells are simply left undefined. The special symbol
<undef> is used to match an undefined value. Then the previous
rule can be read: an occupied element x and an undefined neighbor
are transformed into two occupied elements. The transformation
Eden defines a function that can then be applied to compute the
evolution of some initial state. See the first evolution steps in fig-
ure 4.

One of the advantages of the MGS approach, is that this transfor-
mation can apply indifferently on grid or hexagonal lattices, or
any other collection kind (this also holds for the transformation
FindPath).
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Figure 4. Eden’s model on a grid and on an hexagonal mesh
(initial state, and states after the 2 and the 6 time steps). Ex-
actly the same MGS transformation is used for both cases. These
lattice correspond to G2 and H2 with the following conventions:
a vertex of the Cayley graph is represented as a polygonal face
and two neighbors in the Cayley graph share an edge in this
representation. An empty cell has an undefined value. Only a
part of the infinite domain is figured.

7 A Generic Pattern-Matching Algorithm

We present in this section a simplified pattern-matching algorithm
for GBF path patterns. This algorithm is inspired from the approach
taken by J. A. Brzozowski for the computation of the derivatives
of regular expressions [Brz64]. We recall in the next paragraph
the notion of derivative of a regular expression. Then we restrict
the language of pattern expression to its fundamental core and we
introduce the notations used before defining the derivative of a path
pattern. This section ends by a very simple but complete example
of path computations.

The Derivatives of a regular Expression

Let R be a regular expression and LR the language recognized by R.
For any letter a ∈ A the derivative of R with respect to a is denoted
by ∂R/∂a and is

∂R
∂a

= {m such that am ∈ LR}
The idea of derivative w.r.t. a letter can be defined generally for a
set L but it turns out that the derivative of a regular expression can

be defined by a regular expression. For example,

∂a.(a+b)∗

∂a
= ε+(a+b)∗

In words: if am is a word recognized by a.(a+b)∗ then m is either
empty or recognized by (a + b)∗. The derivative of a regular ex-
pression R is another regular expression that can be derived using
simple rule on the structure of R. These symbolic rules formally
mimic the classical rule of the derivation of real functions, hence
the name.

The notion of derivative has been used in word recognition because
if m = m1m2 . . .mn, then m ∈ LR iff m2 . . .mn ∈ ∂R/∂m1. By itera-
tion, the membership problem is then reduced to the membership of
the empty word ε to the language recognized by a regular expres-
sion. The annulator [R] of a regular expression is defined by:

[R] =
{

/0 if ε �∈ LR

{ε}if ε ∈ LR

and can also be computed by symbolic rule on the structure of R.
This gives a canonical decomposition of the words of LR:

LR = [R] ∪
�

a∈A

a⊗ ∂R
∂a

where a⊗L = {a.m such that m ∈ L}. Remark that a⊗ /0 = /0 and
that a⊗{ε} = {a}.

We want to adapt these idea in our case: a path pattern will play a
role similar to a regular expression and the GBF will correspond to
the vocabulary A. Several differences have to be taken into account:

• The notion of derivative of a regular expression is traditionally
used to check if a word belongs to a language defined by a
regular expression. In our case, we want to enumerate the
paths matched by a path pattern in a GBF.

• A path and a path pattern exhibit both a canonical order be-
tween their elements. However, there is no such canonical
order between the elements of a GBF.

• There is only one possible letter following another letter in a
word. There are several possible neighbor of a given element
in a GBF.

• Path patterns include logical expressions involving the value
of the matched elements through the binding of some vari-
ables.

The Pattern Expressions

For the sake of the simplicity, we restrict the grammar of path pat-
terns to the following abstract syntax:

Pattern ::= Atom | Atom Dir Pattern

Atom ::= id/exp | Dir ∗
Dir ::= |u1, ..., un>

Note that a literal pattern cte can be rewritten a / a = cte where a
is a fresh variable. A variable is systematically guarded but one
can use the pattern a/true if there is no check to do. The neigh-
borhood relation , can be recovered as the direction |g1, ...,
gn, -g1, ..., -gn> where the gi are the generators of the GBF
type. There is no naming in a repetition pattern to simplify the han-
dling of the variable binding. The unnamed filter “ ” in the previous
syntax can be coded as a/true where a is a fresh variable and “
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|u1,...,un>*” in the old syntax is coded as |u1,...,un>* in the
new syntax.The non-empty repetition + can be recovered using *,
e.g. p dir+ can be rewritten as

p dir p dir*

using fresh variables where needed. The handling of the naming of
a sub-pattern presents no special difficulties but will burden a lot
the presentation. For the same reason, we drop the handling of the
<undef> basic filter2.

For example, the path pattern

x, ( |north>+) |east> y

in G2 can be rewritten in the new syntax:

(x/true)
|north,east,-north,-east>
(u/true)
|north>
(|north>*)
|east>
(y/true)

Notations

We use brackets to enumerate the elements in a set and for set com-
prehension. The symbol /0 is for the empty set. The expression
S − x denotes the set S without the element x. [ ] is the empty
list; �@�′ is the concatenation of lists � and �′. The distribution
e⊗S of an expression e over elements of a set S of lists is defined
as {[e]@[l], l ∈ S}. An environment is a partial function defined
for a set of identifier i1, ..., in with value v1, ...,vn, and elsewhere
undefined; E ranges over environments; the augmentation of an
environment E with identifier in+1 and value vn+1 is a new envi-
ronment E′ = E + [in+1 → vn+1], such that E′(in+1) = vn+1 and
∀k,k �= n+1,E′(ik) = E(ik).

Derivatives of a Path Pattern

A pattern-matching expression is an element of Pattern. The
derivative of a pattern-matching expression P with respect to a po-
sition p, given a set C of pairs (position, value) (i.e., a GBF) and an
environment E is written

∂P
∂ p

(C,E)

and represents the set of paths in a GBF C starting at position p and
matched by the path pattern P. The environment E is an additional
argument used to record the variable bindings used in the evaluation
of guards in a pattern. The result of ∂P/∂ p(C,E) is a set of lists �
of positions. A list � records the sequence of elements of the GBF
that match the path pattern P.

2The handling of <undef> is complicated and will burden a lot
our exposition. We sketch two examples to show the difficulties. A
rule like <undef>⇒ 1 is forbidden in MGS because it implies the re-
placement of all undefined elements by a 1 and there is possibly an
infinite number of such elements. Other example, in the processing
of a rule like <undef>,x⇒ 1,x we cannot start by looking for an
undefined element (because there is a possibly infinite number of
such elements) but rather we have to look for a definite element x
that has an undefined neighbor.

Let ε be the empty environment, then all the occurrences of a path
pattern P in a GBF C are computed by:

�

p∈{q|∃v,(q,v)∈C}

∂P
∂ p

(C,ε) (7)

The derivatives of a path pattern is a 4-ary function ∂ ·/∂ ·(·, ·) de-
fined by induction on the path pattern P and the GBF C. The
specification is given in figure 5 and use three additional functions:
val(C, p) is a function that requires a GBF C and a position p and
returns the value of C at position p; eval(E,C,expr) is a predi-
cate that holds when expression expr evaluates to the boolean true
value in environment E with respect to C; neighbor(C,dir, p) is a
function that computes, given a list of directions and a GBF C, all
(defined) neighbors of a position p:

neighbor(C,|u1, ..., un>, p)

=
{

p+ui | 1 ≤ i ≤ n and ∃v s.t. (p+ui,v) ∈C
}

The equation in figure 5 can be intuitively explained as follow:

1. The first rule specifies that there is only one empty path in an
empty GBF.

2. The second rule says that there is no non-empty path in an
empty GBF.

3. This rule says that a path reduced to only one element matches
an element at position p if the condition expr is meet. In this
case, there is only one possible path with only one element at
position p. If the condition is not meet, there is no singleton
path starting at p.

4. A path specified by dir∗ starting at position p is either empty
or begins with any value at position p and continues following
the direction dir as a path specified by dir∗.

5. The paths starting at position p and beginning with an element
id satisfying condition exp and then following direction dir to
continue as a path P possibly exists if the condition is satis-
fied. This condition is checked by eval(E′,C,expr) using the
augmented environment E′: E ′ contains the previous bindings
together with the binding of id with the position p.

If the condition is satisfied, then such a path can be obtained
computing the paths starting from a dir-neighbor p′ of p and
matching P and then adding the position p in front of these
paths thanks the ⊗ operator.

6. The last rule decomposes in two sets the paths starting at po-
sition p beginning with a repetition dir∗ and continuing fol-
lowing direction dir′ by a path matched by P.

The first set corresponds to an empty repetition. So, we want
to match the paths specified by P starting from a dir′-neighbor
of P. displacement

The second set corresponds to a non empty-repetition and we
just unfold the repetition one time.

Example of Derivative Computation

To make these definitions more concrete, we compute the path
matching the pattern “ , 1 |north> x”. This pattern is first trans-
formed into

P = u/true
|north,east,-north,-east>
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∂dir∗
∂ p

( /0,E) =
{
[ ]

}
(1)

∂P
∂ p

( /0,E) = /0 provided that P �= dir∗ (2)

∂ id/expr
∂ p

(C,E) = if eval(E +[id → p],C,expr) then
{
[p]

}
else /0 (3)

∂dir∗
∂ p

(C,E) =
{
[ ]

} ∪ ∂(id/true dir dir∗)
∂ p

(C,E) where id is a fresh variable (4)

∂ id/expr dir P
∂ p

(C,E) = let E ′ = E +[id → p] and C′ = C− (p,val(C, p))

in if eval(E ′,C,expr)

then p⊗
(

�

p′∈neighbor(C,dir, p)

∂P
∂ p′

(C′,E ′)

)

else /0

(5)

∂dir∗ dir′ P
∂ p

(C,E) =
�

p′∈neighbor(C,dir′, p)

( ∂P
∂ p′

(C,E)
)

� ∂(id/true dir dir∗ dir′ P)
∂ p

(C,E)

where id is a fresh variable (6)

Figure 5. Specification of the derivatives of a path pattern. We suppose that C �= /0 in the equations.

Q
Q = v/v=1

|north>
x/true

(for convenience, we introduce a meta-variable Q to name a sub-
pattern). We look for paths in the GBF G of type G2

· · · · · · · · · · · · · · · · · ·
· · · · · ·
· · · 2 · · ·
· · · 1 0 · · ·
· · · · · ·
· · · · · · · · · · · · · · · · · ·

Which is represented as the set of pairs (position, value). To spare
the notation, we write a couple (n,e) for a position “n|north> +
e|east>”.

G =
{

((0,0),1), ((0,1),0), ((1,0),2)
}

(we have arbitrarily fixed the value 1 at position (0,0)). There is
only one path matching P in G: [(0,1);(0,0);(1,0)]. Indeed (0,0)
is a neighbor of (0,1) and its value is 1. Moreover, at north of (0,0),
i.e. at position (1,0), there is a value.

All the path matched by P are computed using equation (7):

∂P
∂(0,0)

(G,ε) ∪ ∂P
∂(0,1)

(G,ε) ∪ ∂P
∂(1,0)

(G,ε) (8)

Then we have:

∂P
∂(0,0)

(G,ε) = (0,0)⊗
�

p′∈{(1,0),(0,1)}

∂Q
∂ p′

(G′, [u → (0,0)])

where G′ = {((0,1),0), ((1,0),2)}. The union is composed of two
terms. The first one evaluates to /0:

∂Q
∂(1,0)

(G′, [u → (0,0)]) = (1,0)⊗
�

p′∈ /0

∂x/true
∂ p′

(...)

but the last union is done on an empty index set, so:

∂Q
∂(1,0)

(G′, [u → (0,0)]) = (1,0)⊗ /0 = /0

The second term
∂Q

∂(0,1)
(G′, [u → (0,0)]) gives a similar result and

then:

∂P
∂(0,0)

(G,ε) = (0,0)⊗ /0 = /0

This result is also true for
∂P

∂(1,0)
(G,ε).

There is a difference in the computation of:

∂P
∂(0,1)

(G,ε) =

(0,1)⊗
�

p′∈{(0,0),(0,1)}

∂Q
∂ p′

(G′′, [u → (0,1)])
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where G′′ = {((0,0),1), ((1,0),2)}. The evaluation of

∂Q
∂(1,0)

(G′′, [u → (0,1)])

returns /0. But the other term does not reduce to the empty set:

∂Q
∂(0,0)

(G′′, [u → (0,1)]) =

(0,0)⊗ ∂x/true
∂(1,0)

(G′′′, [u → (0,1),v → (0,0)])

where G′′′ = G′′ − ((0,0),1) = {((1,0),2)}. Because

∂x/true
∂(1,0)

(G′′′, ...)) = {[(1,0)]}

we have then that

(8) = (0,1)⊗
(
(0,0)⊗{

[(1,0)]
})

=
{
[(0,1);(0,0);(1,0)]

}
which is what is expected.

8 Conclusions

The array data structure is not smoothly handled in functional lan-
guages because they cannot be described convincingly as instances
of an algebraic data type. Therefore, there are no means to specify
by case a function on an array. This annoying situation is summa-
rized by Wadge: “We spent a great deal of efforts trying to find a
simple algebra of arrays (...) with little success” [WA85].

In this work, we have presented a framework, the group-based
data fields, that allows a uniform description of trees and arrays
in the same framework [GM01a]. The GBF approach puts the
emphasis on the logical neighborhood of the data structure ele-
ments [GM02a]. This topological point of view allows the defi-
nition of path patterns used to match a sub-collection in an array or
a tree. A first algorithm to enumerate all the paths matched by a
pattern is given, inspired by the notion of derivative developed for
the recognition of regular expressions on sequences. This algorithm
has been extended to handle a more complete pattern language and
is used in the current version of the MGS interpreter (see the web
home page http://www.lami.univ-evry/mgs). This interpreter
handles the examples proposed in section 6 as well as more intricate
ones like:

x, (y+ / x > Sum(y))

that looks for a path beginning with an x that is greater than the sum
of the rest of the matched elements (the function Sum is an auxiliary
function that computes the sum of all elements in an collection of
numbers). A remarkable feature is that the same algorithm sketched
here is used to find the occurrences of a pattern in a set, a multiset,
a sequence or a GBF. We think that this demonstrate the usefulness
and the unifying nature of our topological framework.

Several other examples of the programming style allowed by MGS
rules on GBF are developed in [GGMP02] in the context of bi-
ological simulations. Many mathematical models of objects and
processes are based on a notion of state that specifies the object or
the process by assigning some data to each point of a (physical or
abstract) space. The goal of the MGS is to support this approach of-
fering several mechanisms to build complex (and evolving) spaces

and handling the maps between these spaces and the data in a func-
tional framework. In this context, GBFs are used to model the uni-
form and regular discretization of spaces.

Pattern matching in arrays has been considered in the functional
language community as back as [Bir77, Bak78] and more recently
in [Jeu92] but the problem is then restricted to determine an oc-
currence of a rectangular sub-array. For example, if P is a p× q
rectangular two-dimensional array (a pattern of literals), and G is
a n × m array, the problem handled is to find a pair (i, j) such
that for all k and l such that 1 ≤ k ≤ p and 1 ≤ l ≤ q, we have
G[i− p+k, j−q+ l] = P[k, l].

Compared to these previous works, our algorithm is more general
in two directions: it handles group-indexed data structures and it al-
lows a more expressive pattern language. Obviously, there is a large
room for optimizations. For instance, we do not compute all paths
before applying a rule but we stop the search as soon as one match-
ing path has been found. By specifying an order for the unions
appearing in the definition of the derivative Fig. 5, we can param-
eterize a strategy for the enumeration of paths. We are currently
developing a pattern compiler for MGS based on pattern transforma-
tions.
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